vmx.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return (vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return flexpriority_enabled
  205. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  206. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  207. }
  208. static inline int cpu_has_vmx_invept_individual_addr(void)
  209. {
  210. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  211. }
  212. static inline int cpu_has_vmx_invept_context(void)
  213. {
  214. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  215. }
  216. static inline int cpu_has_vmx_invept_global(void)
  217. {
  218. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  219. }
  220. static inline int cpu_has_vmx_ept(void)
  221. {
  222. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  223. SECONDARY_EXEC_ENABLE_EPT);
  224. }
  225. static inline int vm_need_ept(void)
  226. {
  227. return (cpu_has_vmx_ept() && enable_ept);
  228. }
  229. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  230. {
  231. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  232. (irqchip_in_kernel(kvm)));
  233. }
  234. static inline int cpu_has_vmx_vpid(void)
  235. {
  236. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  237. SECONDARY_EXEC_ENABLE_VPID);
  238. }
  239. static inline int cpu_has_virtual_nmis(void)
  240. {
  241. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  242. }
  243. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  244. {
  245. int i;
  246. for (i = 0; i < vmx->nmsrs; ++i)
  247. if (vmx->guest_msrs[i].index == msr)
  248. return i;
  249. return -1;
  250. }
  251. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  252. {
  253. struct {
  254. u64 vpid : 16;
  255. u64 rsvd : 48;
  256. u64 gva;
  257. } operand = { vpid, 0, gva };
  258. asm volatile (__ex(ASM_VMX_INVVPID)
  259. /* CF==1 or ZF==1 --> rc = -1 */
  260. "; ja 1f ; ud2 ; 1:"
  261. : : "a"(&operand), "c"(ext) : "cc", "memory");
  262. }
  263. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  264. {
  265. struct {
  266. u64 eptp, gpa;
  267. } operand = {eptp, gpa};
  268. asm volatile (__ex(ASM_VMX_INVEPT)
  269. /* CF==1 or ZF==1 --> rc = -1 */
  270. "; ja 1f ; ud2 ; 1:\n"
  271. : : "a" (&operand), "c" (ext) : "cc", "memory");
  272. }
  273. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  274. {
  275. int i;
  276. i = __find_msr_index(vmx, msr);
  277. if (i >= 0)
  278. return &vmx->guest_msrs[i];
  279. return NULL;
  280. }
  281. static void vmcs_clear(struct vmcs *vmcs)
  282. {
  283. u64 phys_addr = __pa(vmcs);
  284. u8 error;
  285. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  286. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  287. : "cc", "memory");
  288. if (error)
  289. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  290. vmcs, phys_addr);
  291. }
  292. static void __vcpu_clear(void *arg)
  293. {
  294. struct vcpu_vmx *vmx = arg;
  295. int cpu = raw_smp_processor_id();
  296. if (vmx->vcpu.cpu == cpu)
  297. vmcs_clear(vmx->vmcs);
  298. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  299. per_cpu(current_vmcs, cpu) = NULL;
  300. rdtscll(vmx->vcpu.arch.host_tsc);
  301. list_del(&vmx->local_vcpus_link);
  302. vmx->vcpu.cpu = -1;
  303. vmx->launched = 0;
  304. }
  305. static void vcpu_clear(struct vcpu_vmx *vmx)
  306. {
  307. if (vmx->vcpu.cpu == -1)
  308. return;
  309. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  310. }
  311. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  312. {
  313. if (vmx->vpid == 0)
  314. return;
  315. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  316. }
  317. static inline void ept_sync_global(void)
  318. {
  319. if (cpu_has_vmx_invept_global())
  320. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  321. }
  322. static inline void ept_sync_context(u64 eptp)
  323. {
  324. if (vm_need_ept()) {
  325. if (cpu_has_vmx_invept_context())
  326. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  327. else
  328. ept_sync_global();
  329. }
  330. }
  331. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  332. {
  333. if (vm_need_ept()) {
  334. if (cpu_has_vmx_invept_individual_addr())
  335. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  336. eptp, gpa);
  337. else
  338. ept_sync_context(eptp);
  339. }
  340. }
  341. static unsigned long vmcs_readl(unsigned long field)
  342. {
  343. unsigned long value;
  344. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  345. : "=a"(value) : "d"(field) : "cc");
  346. return value;
  347. }
  348. static u16 vmcs_read16(unsigned long field)
  349. {
  350. return vmcs_readl(field);
  351. }
  352. static u32 vmcs_read32(unsigned long field)
  353. {
  354. return vmcs_readl(field);
  355. }
  356. static u64 vmcs_read64(unsigned long field)
  357. {
  358. #ifdef CONFIG_X86_64
  359. return vmcs_readl(field);
  360. #else
  361. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  362. #endif
  363. }
  364. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  365. {
  366. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  367. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  368. dump_stack();
  369. }
  370. static void vmcs_writel(unsigned long field, unsigned long value)
  371. {
  372. u8 error;
  373. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  374. : "=q"(error) : "a"(value), "d"(field) : "cc");
  375. if (unlikely(error))
  376. vmwrite_error(field, value);
  377. }
  378. static void vmcs_write16(unsigned long field, u16 value)
  379. {
  380. vmcs_writel(field, value);
  381. }
  382. static void vmcs_write32(unsigned long field, u32 value)
  383. {
  384. vmcs_writel(field, value);
  385. }
  386. static void vmcs_write64(unsigned long field, u64 value)
  387. {
  388. vmcs_writel(field, value);
  389. #ifndef CONFIG_X86_64
  390. asm volatile ("");
  391. vmcs_writel(field+1, value >> 32);
  392. #endif
  393. }
  394. static void vmcs_clear_bits(unsigned long field, u32 mask)
  395. {
  396. vmcs_writel(field, vmcs_readl(field) & ~mask);
  397. }
  398. static void vmcs_set_bits(unsigned long field, u32 mask)
  399. {
  400. vmcs_writel(field, vmcs_readl(field) | mask);
  401. }
  402. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  403. {
  404. u32 eb;
  405. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  406. if (!vcpu->fpu_active)
  407. eb |= 1u << NM_VECTOR;
  408. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  409. if (vcpu->guest_debug &
  410. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  411. eb |= 1u << DB_VECTOR;
  412. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  413. eb |= 1u << BP_VECTOR;
  414. }
  415. if (vcpu->arch.rmode.active)
  416. eb = ~0;
  417. if (vm_need_ept())
  418. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  419. vmcs_write32(EXCEPTION_BITMAP, eb);
  420. }
  421. static void reload_tss(void)
  422. {
  423. /*
  424. * VT restores TR but not its size. Useless.
  425. */
  426. struct descriptor_table gdt;
  427. struct desc_struct *descs;
  428. kvm_get_gdt(&gdt);
  429. descs = (void *)gdt.base;
  430. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  431. load_TR_desc();
  432. }
  433. static void load_transition_efer(struct vcpu_vmx *vmx)
  434. {
  435. int efer_offset = vmx->msr_offset_efer;
  436. u64 host_efer = vmx->host_msrs[efer_offset].data;
  437. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  438. u64 ignore_bits;
  439. if (efer_offset < 0)
  440. return;
  441. /*
  442. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  443. * outside long mode
  444. */
  445. ignore_bits = EFER_NX | EFER_SCE;
  446. #ifdef CONFIG_X86_64
  447. ignore_bits |= EFER_LMA | EFER_LME;
  448. /* SCE is meaningful only in long mode on Intel */
  449. if (guest_efer & EFER_LMA)
  450. ignore_bits &= ~(u64)EFER_SCE;
  451. #endif
  452. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  453. return;
  454. vmx->host_state.guest_efer_loaded = 1;
  455. guest_efer &= ~ignore_bits;
  456. guest_efer |= host_efer & ignore_bits;
  457. wrmsrl(MSR_EFER, guest_efer);
  458. vmx->vcpu.stat.efer_reload++;
  459. }
  460. static void reload_host_efer(struct vcpu_vmx *vmx)
  461. {
  462. if (vmx->host_state.guest_efer_loaded) {
  463. vmx->host_state.guest_efer_loaded = 0;
  464. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  465. }
  466. }
  467. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  468. {
  469. struct vcpu_vmx *vmx = to_vmx(vcpu);
  470. if (vmx->host_state.loaded)
  471. return;
  472. vmx->host_state.loaded = 1;
  473. /*
  474. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  475. * allow segment selectors with cpl > 0 or ti == 1.
  476. */
  477. vmx->host_state.ldt_sel = kvm_read_ldt();
  478. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  479. vmx->host_state.fs_sel = kvm_read_fs();
  480. if (!(vmx->host_state.fs_sel & 7)) {
  481. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  482. vmx->host_state.fs_reload_needed = 0;
  483. } else {
  484. vmcs_write16(HOST_FS_SELECTOR, 0);
  485. vmx->host_state.fs_reload_needed = 1;
  486. }
  487. vmx->host_state.gs_sel = kvm_read_gs();
  488. if (!(vmx->host_state.gs_sel & 7))
  489. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  490. else {
  491. vmcs_write16(HOST_GS_SELECTOR, 0);
  492. vmx->host_state.gs_ldt_reload_needed = 1;
  493. }
  494. #ifdef CONFIG_X86_64
  495. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  496. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  497. #else
  498. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  499. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  500. #endif
  501. #ifdef CONFIG_X86_64
  502. if (is_long_mode(&vmx->vcpu))
  503. save_msrs(vmx->host_msrs +
  504. vmx->msr_offset_kernel_gs_base, 1);
  505. #endif
  506. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  507. load_transition_efer(vmx);
  508. }
  509. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  510. {
  511. unsigned long flags;
  512. if (!vmx->host_state.loaded)
  513. return;
  514. ++vmx->vcpu.stat.host_state_reload;
  515. vmx->host_state.loaded = 0;
  516. if (vmx->host_state.fs_reload_needed)
  517. kvm_load_fs(vmx->host_state.fs_sel);
  518. if (vmx->host_state.gs_ldt_reload_needed) {
  519. kvm_load_ldt(vmx->host_state.ldt_sel);
  520. /*
  521. * If we have to reload gs, we must take care to
  522. * preserve our gs base.
  523. */
  524. local_irq_save(flags);
  525. kvm_load_gs(vmx->host_state.gs_sel);
  526. #ifdef CONFIG_X86_64
  527. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  528. #endif
  529. local_irq_restore(flags);
  530. }
  531. reload_tss();
  532. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  533. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  534. reload_host_efer(vmx);
  535. }
  536. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  537. {
  538. preempt_disable();
  539. __vmx_load_host_state(vmx);
  540. preempt_enable();
  541. }
  542. /*
  543. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  544. * vcpu mutex is already taken.
  545. */
  546. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  547. {
  548. struct vcpu_vmx *vmx = to_vmx(vcpu);
  549. u64 phys_addr = __pa(vmx->vmcs);
  550. u64 tsc_this, delta, new_offset;
  551. if (vcpu->cpu != cpu) {
  552. vcpu_clear(vmx);
  553. kvm_migrate_timers(vcpu);
  554. vpid_sync_vcpu_all(vmx);
  555. local_irq_disable();
  556. list_add(&vmx->local_vcpus_link,
  557. &per_cpu(vcpus_on_cpu, cpu));
  558. local_irq_enable();
  559. }
  560. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  561. u8 error;
  562. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  563. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  564. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  565. : "cc");
  566. if (error)
  567. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  568. vmx->vmcs, phys_addr);
  569. }
  570. if (vcpu->cpu != cpu) {
  571. struct descriptor_table dt;
  572. unsigned long sysenter_esp;
  573. vcpu->cpu = cpu;
  574. /*
  575. * Linux uses per-cpu TSS and GDT, so set these when switching
  576. * processors.
  577. */
  578. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  579. kvm_get_gdt(&dt);
  580. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  581. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  582. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  583. /*
  584. * Make sure the time stamp counter is monotonous.
  585. */
  586. rdtscll(tsc_this);
  587. if (tsc_this < vcpu->arch.host_tsc) {
  588. delta = vcpu->arch.host_tsc - tsc_this;
  589. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  590. vmcs_write64(TSC_OFFSET, new_offset);
  591. }
  592. }
  593. }
  594. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  595. {
  596. __vmx_load_host_state(to_vmx(vcpu));
  597. }
  598. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  599. {
  600. if (vcpu->fpu_active)
  601. return;
  602. vcpu->fpu_active = 1;
  603. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  604. if (vcpu->arch.cr0 & X86_CR0_TS)
  605. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  606. update_exception_bitmap(vcpu);
  607. }
  608. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  609. {
  610. if (!vcpu->fpu_active)
  611. return;
  612. vcpu->fpu_active = 0;
  613. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  614. update_exception_bitmap(vcpu);
  615. }
  616. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  617. {
  618. return vmcs_readl(GUEST_RFLAGS);
  619. }
  620. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  621. {
  622. if (vcpu->arch.rmode.active)
  623. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  624. vmcs_writel(GUEST_RFLAGS, rflags);
  625. }
  626. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  627. {
  628. unsigned long rip;
  629. u32 interruptibility;
  630. rip = kvm_rip_read(vcpu);
  631. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  632. kvm_rip_write(vcpu, rip);
  633. /*
  634. * We emulated an instruction, so temporary interrupt blocking
  635. * should be removed, if set.
  636. */
  637. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  638. if (interruptibility & 3)
  639. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  640. interruptibility & ~3);
  641. vcpu->arch.interrupt_window_open = 1;
  642. }
  643. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  644. bool has_error_code, u32 error_code)
  645. {
  646. struct vcpu_vmx *vmx = to_vmx(vcpu);
  647. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  648. if (has_error_code) {
  649. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  650. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  651. }
  652. if (vcpu->arch.rmode.active) {
  653. vmx->rmode.irq.pending = true;
  654. vmx->rmode.irq.vector = nr;
  655. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  656. if (nr == BP_VECTOR || nr == OF_VECTOR)
  657. vmx->rmode.irq.rip++;
  658. intr_info |= INTR_TYPE_SOFT_INTR;
  659. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  660. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  661. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  662. return;
  663. }
  664. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  665. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  666. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  667. } else
  668. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  669. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  670. }
  671. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  672. {
  673. return false;
  674. }
  675. /*
  676. * Swap MSR entry in host/guest MSR entry array.
  677. */
  678. #ifdef CONFIG_X86_64
  679. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  680. {
  681. struct kvm_msr_entry tmp;
  682. tmp = vmx->guest_msrs[to];
  683. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  684. vmx->guest_msrs[from] = tmp;
  685. tmp = vmx->host_msrs[to];
  686. vmx->host_msrs[to] = vmx->host_msrs[from];
  687. vmx->host_msrs[from] = tmp;
  688. }
  689. #endif
  690. /*
  691. * Set up the vmcs to automatically save and restore system
  692. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  693. * mode, as fiddling with msrs is very expensive.
  694. */
  695. static void setup_msrs(struct vcpu_vmx *vmx)
  696. {
  697. int save_nmsrs;
  698. unsigned long *msr_bitmap;
  699. vmx_load_host_state(vmx);
  700. save_nmsrs = 0;
  701. #ifdef CONFIG_X86_64
  702. if (is_long_mode(&vmx->vcpu)) {
  703. int index;
  704. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_LSTAR);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. index = __find_msr_index(vmx, MSR_CSTAR);
  711. if (index >= 0)
  712. move_msr_up(vmx, index, save_nmsrs++);
  713. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  714. if (index >= 0)
  715. move_msr_up(vmx, index, save_nmsrs++);
  716. /*
  717. * MSR_K6_STAR is only needed on long mode guests, and only
  718. * if efer.sce is enabled.
  719. */
  720. index = __find_msr_index(vmx, MSR_K6_STAR);
  721. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  722. move_msr_up(vmx, index, save_nmsrs++);
  723. }
  724. #endif
  725. vmx->save_nmsrs = save_nmsrs;
  726. #ifdef CONFIG_X86_64
  727. vmx->msr_offset_kernel_gs_base =
  728. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  729. #endif
  730. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  731. if (cpu_has_vmx_msr_bitmap()) {
  732. if (is_long_mode(&vmx->vcpu))
  733. msr_bitmap = vmx_msr_bitmap_longmode;
  734. else
  735. msr_bitmap = vmx_msr_bitmap_legacy;
  736. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  737. }
  738. }
  739. /*
  740. * reads and returns guest's timestamp counter "register"
  741. * guest_tsc = host_tsc + tsc_offset -- 21.3
  742. */
  743. static u64 guest_read_tsc(void)
  744. {
  745. u64 host_tsc, tsc_offset;
  746. rdtscll(host_tsc);
  747. tsc_offset = vmcs_read64(TSC_OFFSET);
  748. return host_tsc + tsc_offset;
  749. }
  750. /*
  751. * writes 'guest_tsc' into guest's timestamp counter "register"
  752. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  753. */
  754. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  755. {
  756. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  757. }
  758. /*
  759. * Reads an msr value (of 'msr_index') into 'pdata'.
  760. * Returns 0 on success, non-0 otherwise.
  761. * Assumes vcpu_load() was already called.
  762. */
  763. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  764. {
  765. u64 data;
  766. struct kvm_msr_entry *msr;
  767. if (!pdata) {
  768. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  769. return -EINVAL;
  770. }
  771. switch (msr_index) {
  772. #ifdef CONFIG_X86_64
  773. case MSR_FS_BASE:
  774. data = vmcs_readl(GUEST_FS_BASE);
  775. break;
  776. case MSR_GS_BASE:
  777. data = vmcs_readl(GUEST_GS_BASE);
  778. break;
  779. case MSR_EFER:
  780. return kvm_get_msr_common(vcpu, msr_index, pdata);
  781. #endif
  782. case MSR_IA32_TIME_STAMP_COUNTER:
  783. data = guest_read_tsc();
  784. break;
  785. case MSR_IA32_SYSENTER_CS:
  786. data = vmcs_read32(GUEST_SYSENTER_CS);
  787. break;
  788. case MSR_IA32_SYSENTER_EIP:
  789. data = vmcs_readl(GUEST_SYSENTER_EIP);
  790. break;
  791. case MSR_IA32_SYSENTER_ESP:
  792. data = vmcs_readl(GUEST_SYSENTER_ESP);
  793. break;
  794. default:
  795. vmx_load_host_state(to_vmx(vcpu));
  796. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  797. if (msr) {
  798. data = msr->data;
  799. break;
  800. }
  801. return kvm_get_msr_common(vcpu, msr_index, pdata);
  802. }
  803. *pdata = data;
  804. return 0;
  805. }
  806. /*
  807. * Writes msr value into into the appropriate "register".
  808. * Returns 0 on success, non-0 otherwise.
  809. * Assumes vcpu_load() was already called.
  810. */
  811. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  812. {
  813. struct vcpu_vmx *vmx = to_vmx(vcpu);
  814. struct kvm_msr_entry *msr;
  815. u64 host_tsc;
  816. int ret = 0;
  817. switch (msr_index) {
  818. case MSR_EFER:
  819. vmx_load_host_state(vmx);
  820. ret = kvm_set_msr_common(vcpu, msr_index, data);
  821. break;
  822. #ifdef CONFIG_X86_64
  823. case MSR_FS_BASE:
  824. vmcs_writel(GUEST_FS_BASE, data);
  825. break;
  826. case MSR_GS_BASE:
  827. vmcs_writel(GUEST_GS_BASE, data);
  828. break;
  829. #endif
  830. case MSR_IA32_SYSENTER_CS:
  831. vmcs_write32(GUEST_SYSENTER_CS, data);
  832. break;
  833. case MSR_IA32_SYSENTER_EIP:
  834. vmcs_writel(GUEST_SYSENTER_EIP, data);
  835. break;
  836. case MSR_IA32_SYSENTER_ESP:
  837. vmcs_writel(GUEST_SYSENTER_ESP, data);
  838. break;
  839. case MSR_IA32_TIME_STAMP_COUNTER:
  840. rdtscll(host_tsc);
  841. guest_write_tsc(data, host_tsc);
  842. break;
  843. case MSR_P6_PERFCTR0:
  844. case MSR_P6_PERFCTR1:
  845. case MSR_P6_EVNTSEL0:
  846. case MSR_P6_EVNTSEL1:
  847. /*
  848. * Just discard all writes to the performance counters; this
  849. * should keep both older linux and windows 64-bit guests
  850. * happy
  851. */
  852. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  853. break;
  854. case MSR_IA32_CR_PAT:
  855. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  856. vmcs_write64(GUEST_IA32_PAT, data);
  857. vcpu->arch.pat = data;
  858. break;
  859. }
  860. /* Otherwise falls through to kvm_set_msr_common */
  861. default:
  862. vmx_load_host_state(vmx);
  863. msr = find_msr_entry(vmx, msr_index);
  864. if (msr) {
  865. msr->data = data;
  866. break;
  867. }
  868. ret = kvm_set_msr_common(vcpu, msr_index, data);
  869. }
  870. return ret;
  871. }
  872. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  873. {
  874. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  875. switch (reg) {
  876. case VCPU_REGS_RSP:
  877. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  878. break;
  879. case VCPU_REGS_RIP:
  880. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  881. break;
  882. default:
  883. break;
  884. }
  885. }
  886. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  887. {
  888. int old_debug = vcpu->guest_debug;
  889. unsigned long flags;
  890. vcpu->guest_debug = dbg->control;
  891. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  892. vcpu->guest_debug = 0;
  893. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  894. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  895. else
  896. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  897. flags = vmcs_readl(GUEST_RFLAGS);
  898. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  899. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  900. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  901. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  902. vmcs_writel(GUEST_RFLAGS, flags);
  903. update_exception_bitmap(vcpu);
  904. return 0;
  905. }
  906. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  907. {
  908. if (!vcpu->arch.interrupt.pending)
  909. return -1;
  910. return vcpu->arch.interrupt.nr;
  911. }
  912. static __init int cpu_has_kvm_support(void)
  913. {
  914. return cpu_has_vmx();
  915. }
  916. static __init int vmx_disabled_by_bios(void)
  917. {
  918. u64 msr;
  919. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  920. return (msr & (FEATURE_CONTROL_LOCKED |
  921. FEATURE_CONTROL_VMXON_ENABLED))
  922. == FEATURE_CONTROL_LOCKED;
  923. /* locked but not enabled */
  924. }
  925. static void hardware_enable(void *garbage)
  926. {
  927. int cpu = raw_smp_processor_id();
  928. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  929. u64 old;
  930. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  931. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  932. if ((old & (FEATURE_CONTROL_LOCKED |
  933. FEATURE_CONTROL_VMXON_ENABLED))
  934. != (FEATURE_CONTROL_LOCKED |
  935. FEATURE_CONTROL_VMXON_ENABLED))
  936. /* enable and lock */
  937. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  938. FEATURE_CONTROL_LOCKED |
  939. FEATURE_CONTROL_VMXON_ENABLED);
  940. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  941. asm volatile (ASM_VMX_VMXON_RAX
  942. : : "a"(&phys_addr), "m"(phys_addr)
  943. : "memory", "cc");
  944. }
  945. static void vmclear_local_vcpus(void)
  946. {
  947. int cpu = raw_smp_processor_id();
  948. struct vcpu_vmx *vmx, *n;
  949. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  950. local_vcpus_link)
  951. __vcpu_clear(vmx);
  952. }
  953. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  954. * tricks.
  955. */
  956. static void kvm_cpu_vmxoff(void)
  957. {
  958. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  959. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  960. }
  961. static void hardware_disable(void *garbage)
  962. {
  963. vmclear_local_vcpus();
  964. kvm_cpu_vmxoff();
  965. }
  966. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  967. u32 msr, u32 *result)
  968. {
  969. u32 vmx_msr_low, vmx_msr_high;
  970. u32 ctl = ctl_min | ctl_opt;
  971. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  972. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  973. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  974. /* Ensure minimum (required) set of control bits are supported. */
  975. if (ctl_min & ~ctl)
  976. return -EIO;
  977. *result = ctl;
  978. return 0;
  979. }
  980. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  981. {
  982. u32 vmx_msr_low, vmx_msr_high;
  983. u32 min, opt, min2, opt2;
  984. u32 _pin_based_exec_control = 0;
  985. u32 _cpu_based_exec_control = 0;
  986. u32 _cpu_based_2nd_exec_control = 0;
  987. u32 _vmexit_control = 0;
  988. u32 _vmentry_control = 0;
  989. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  990. opt = PIN_BASED_VIRTUAL_NMIS;
  991. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  992. &_pin_based_exec_control) < 0)
  993. return -EIO;
  994. min = CPU_BASED_HLT_EXITING |
  995. #ifdef CONFIG_X86_64
  996. CPU_BASED_CR8_LOAD_EXITING |
  997. CPU_BASED_CR8_STORE_EXITING |
  998. #endif
  999. CPU_BASED_CR3_LOAD_EXITING |
  1000. CPU_BASED_CR3_STORE_EXITING |
  1001. CPU_BASED_USE_IO_BITMAPS |
  1002. CPU_BASED_MOV_DR_EXITING |
  1003. CPU_BASED_USE_TSC_OFFSETING |
  1004. CPU_BASED_INVLPG_EXITING;
  1005. opt = CPU_BASED_TPR_SHADOW |
  1006. CPU_BASED_USE_MSR_BITMAPS |
  1007. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1008. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1009. &_cpu_based_exec_control) < 0)
  1010. return -EIO;
  1011. #ifdef CONFIG_X86_64
  1012. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1013. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1014. ~CPU_BASED_CR8_STORE_EXITING;
  1015. #endif
  1016. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1017. min2 = 0;
  1018. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1019. SECONDARY_EXEC_WBINVD_EXITING |
  1020. SECONDARY_EXEC_ENABLE_VPID |
  1021. SECONDARY_EXEC_ENABLE_EPT;
  1022. if (adjust_vmx_controls(min2, opt2,
  1023. MSR_IA32_VMX_PROCBASED_CTLS2,
  1024. &_cpu_based_2nd_exec_control) < 0)
  1025. return -EIO;
  1026. }
  1027. #ifndef CONFIG_X86_64
  1028. if (!(_cpu_based_2nd_exec_control &
  1029. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1030. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1031. #endif
  1032. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1033. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1034. enabled */
  1035. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1036. CPU_BASED_CR3_STORE_EXITING |
  1037. CPU_BASED_INVLPG_EXITING);
  1038. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1039. &_cpu_based_exec_control) < 0)
  1040. return -EIO;
  1041. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1042. vmx_capability.ept, vmx_capability.vpid);
  1043. }
  1044. if (!cpu_has_vmx_vpid())
  1045. enable_vpid = 0;
  1046. min = 0;
  1047. #ifdef CONFIG_X86_64
  1048. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1049. #endif
  1050. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1051. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1052. &_vmexit_control) < 0)
  1053. return -EIO;
  1054. min = 0;
  1055. opt = VM_ENTRY_LOAD_IA32_PAT;
  1056. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1057. &_vmentry_control) < 0)
  1058. return -EIO;
  1059. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1060. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1061. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1062. return -EIO;
  1063. #ifdef CONFIG_X86_64
  1064. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1065. if (vmx_msr_high & (1u<<16))
  1066. return -EIO;
  1067. #endif
  1068. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1069. if (((vmx_msr_high >> 18) & 15) != 6)
  1070. return -EIO;
  1071. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1072. vmcs_conf->order = get_order(vmcs_config.size);
  1073. vmcs_conf->revision_id = vmx_msr_low;
  1074. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1075. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1076. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1077. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1078. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1079. return 0;
  1080. }
  1081. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1082. {
  1083. int node = cpu_to_node(cpu);
  1084. struct page *pages;
  1085. struct vmcs *vmcs;
  1086. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1087. if (!pages)
  1088. return NULL;
  1089. vmcs = page_address(pages);
  1090. memset(vmcs, 0, vmcs_config.size);
  1091. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1092. return vmcs;
  1093. }
  1094. static struct vmcs *alloc_vmcs(void)
  1095. {
  1096. return alloc_vmcs_cpu(raw_smp_processor_id());
  1097. }
  1098. static void free_vmcs(struct vmcs *vmcs)
  1099. {
  1100. free_pages((unsigned long)vmcs, vmcs_config.order);
  1101. }
  1102. static void free_kvm_area(void)
  1103. {
  1104. int cpu;
  1105. for_each_online_cpu(cpu)
  1106. free_vmcs(per_cpu(vmxarea, cpu));
  1107. }
  1108. static __init int alloc_kvm_area(void)
  1109. {
  1110. int cpu;
  1111. for_each_online_cpu(cpu) {
  1112. struct vmcs *vmcs;
  1113. vmcs = alloc_vmcs_cpu(cpu);
  1114. if (!vmcs) {
  1115. free_kvm_area();
  1116. return -ENOMEM;
  1117. }
  1118. per_cpu(vmxarea, cpu) = vmcs;
  1119. }
  1120. return 0;
  1121. }
  1122. static __init int hardware_setup(void)
  1123. {
  1124. if (setup_vmcs_config(&vmcs_config) < 0)
  1125. return -EIO;
  1126. if (boot_cpu_has(X86_FEATURE_NX))
  1127. kvm_enable_efer_bits(EFER_NX);
  1128. return alloc_kvm_area();
  1129. }
  1130. static __exit void hardware_unsetup(void)
  1131. {
  1132. free_kvm_area();
  1133. }
  1134. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1135. {
  1136. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1137. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1138. vmcs_write16(sf->selector, save->selector);
  1139. vmcs_writel(sf->base, save->base);
  1140. vmcs_write32(sf->limit, save->limit);
  1141. vmcs_write32(sf->ar_bytes, save->ar);
  1142. } else {
  1143. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1144. << AR_DPL_SHIFT;
  1145. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1146. }
  1147. }
  1148. static void enter_pmode(struct kvm_vcpu *vcpu)
  1149. {
  1150. unsigned long flags;
  1151. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1152. vmx->emulation_required = 1;
  1153. vcpu->arch.rmode.active = 0;
  1154. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1155. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1156. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1157. flags = vmcs_readl(GUEST_RFLAGS);
  1158. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1159. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1160. vmcs_writel(GUEST_RFLAGS, flags);
  1161. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1162. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1163. update_exception_bitmap(vcpu);
  1164. if (emulate_invalid_guest_state)
  1165. return;
  1166. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1167. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1168. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1169. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1170. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1171. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1172. vmcs_write16(GUEST_CS_SELECTOR,
  1173. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1174. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1175. }
  1176. static gva_t rmode_tss_base(struct kvm *kvm)
  1177. {
  1178. if (!kvm->arch.tss_addr) {
  1179. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1180. kvm->memslots[0].npages - 3;
  1181. return base_gfn << PAGE_SHIFT;
  1182. }
  1183. return kvm->arch.tss_addr;
  1184. }
  1185. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1186. {
  1187. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1188. save->selector = vmcs_read16(sf->selector);
  1189. save->base = vmcs_readl(sf->base);
  1190. save->limit = vmcs_read32(sf->limit);
  1191. save->ar = vmcs_read32(sf->ar_bytes);
  1192. vmcs_write16(sf->selector, save->base >> 4);
  1193. vmcs_write32(sf->base, save->base & 0xfffff);
  1194. vmcs_write32(sf->limit, 0xffff);
  1195. vmcs_write32(sf->ar_bytes, 0xf3);
  1196. }
  1197. static void enter_rmode(struct kvm_vcpu *vcpu)
  1198. {
  1199. unsigned long flags;
  1200. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1201. vmx->emulation_required = 1;
  1202. vcpu->arch.rmode.active = 1;
  1203. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1204. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1205. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1206. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1207. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1208. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1209. flags = vmcs_readl(GUEST_RFLAGS);
  1210. vcpu->arch.rmode.save_iopl
  1211. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1212. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1213. vmcs_writel(GUEST_RFLAGS, flags);
  1214. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1215. update_exception_bitmap(vcpu);
  1216. if (emulate_invalid_guest_state)
  1217. goto continue_rmode;
  1218. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1219. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1220. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1221. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1222. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1223. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1224. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1225. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1226. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1227. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1228. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1229. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1230. continue_rmode:
  1231. kvm_mmu_reset_context(vcpu);
  1232. init_rmode(vcpu->kvm);
  1233. }
  1234. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1235. {
  1236. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1237. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1238. vcpu->arch.shadow_efer = efer;
  1239. if (!msr)
  1240. return;
  1241. if (efer & EFER_LMA) {
  1242. vmcs_write32(VM_ENTRY_CONTROLS,
  1243. vmcs_read32(VM_ENTRY_CONTROLS) |
  1244. VM_ENTRY_IA32E_MODE);
  1245. msr->data = efer;
  1246. } else {
  1247. vmcs_write32(VM_ENTRY_CONTROLS,
  1248. vmcs_read32(VM_ENTRY_CONTROLS) &
  1249. ~VM_ENTRY_IA32E_MODE);
  1250. msr->data = efer & ~EFER_LME;
  1251. }
  1252. setup_msrs(vmx);
  1253. }
  1254. #ifdef CONFIG_X86_64
  1255. static void enter_lmode(struct kvm_vcpu *vcpu)
  1256. {
  1257. u32 guest_tr_ar;
  1258. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1259. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1260. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1261. __func__);
  1262. vmcs_write32(GUEST_TR_AR_BYTES,
  1263. (guest_tr_ar & ~AR_TYPE_MASK)
  1264. | AR_TYPE_BUSY_64_TSS);
  1265. }
  1266. vcpu->arch.shadow_efer |= EFER_LMA;
  1267. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1268. }
  1269. static void exit_lmode(struct kvm_vcpu *vcpu)
  1270. {
  1271. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1272. vmcs_write32(VM_ENTRY_CONTROLS,
  1273. vmcs_read32(VM_ENTRY_CONTROLS)
  1274. & ~VM_ENTRY_IA32E_MODE);
  1275. }
  1276. #endif
  1277. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1278. {
  1279. vpid_sync_vcpu_all(to_vmx(vcpu));
  1280. if (vm_need_ept())
  1281. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1282. }
  1283. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1284. {
  1285. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1286. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1287. }
  1288. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1289. {
  1290. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1291. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1292. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1293. return;
  1294. }
  1295. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1296. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1297. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1298. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1299. }
  1300. }
  1301. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1302. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1303. unsigned long cr0,
  1304. struct kvm_vcpu *vcpu)
  1305. {
  1306. if (!(cr0 & X86_CR0_PG)) {
  1307. /* From paging/starting to nonpaging */
  1308. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1309. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1310. (CPU_BASED_CR3_LOAD_EXITING |
  1311. CPU_BASED_CR3_STORE_EXITING));
  1312. vcpu->arch.cr0 = cr0;
  1313. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1314. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1315. *hw_cr0 &= ~X86_CR0_WP;
  1316. } else if (!is_paging(vcpu)) {
  1317. /* From nonpaging to paging */
  1318. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1319. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1320. ~(CPU_BASED_CR3_LOAD_EXITING |
  1321. CPU_BASED_CR3_STORE_EXITING));
  1322. vcpu->arch.cr0 = cr0;
  1323. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1324. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1325. *hw_cr0 &= ~X86_CR0_WP;
  1326. }
  1327. }
  1328. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1329. struct kvm_vcpu *vcpu)
  1330. {
  1331. if (!is_paging(vcpu)) {
  1332. *hw_cr4 &= ~X86_CR4_PAE;
  1333. *hw_cr4 |= X86_CR4_PSE;
  1334. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1335. *hw_cr4 &= ~X86_CR4_PAE;
  1336. }
  1337. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1338. {
  1339. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1340. KVM_VM_CR0_ALWAYS_ON;
  1341. vmx_fpu_deactivate(vcpu);
  1342. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1343. enter_pmode(vcpu);
  1344. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1345. enter_rmode(vcpu);
  1346. #ifdef CONFIG_X86_64
  1347. if (vcpu->arch.shadow_efer & EFER_LME) {
  1348. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1349. enter_lmode(vcpu);
  1350. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1351. exit_lmode(vcpu);
  1352. }
  1353. #endif
  1354. if (vm_need_ept())
  1355. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1356. vmcs_writel(CR0_READ_SHADOW, cr0);
  1357. vmcs_writel(GUEST_CR0, hw_cr0);
  1358. vcpu->arch.cr0 = cr0;
  1359. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1360. vmx_fpu_activate(vcpu);
  1361. }
  1362. static u64 construct_eptp(unsigned long root_hpa)
  1363. {
  1364. u64 eptp;
  1365. /* TODO write the value reading from MSR */
  1366. eptp = VMX_EPT_DEFAULT_MT |
  1367. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1368. eptp |= (root_hpa & PAGE_MASK);
  1369. return eptp;
  1370. }
  1371. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1372. {
  1373. unsigned long guest_cr3;
  1374. u64 eptp;
  1375. guest_cr3 = cr3;
  1376. if (vm_need_ept()) {
  1377. eptp = construct_eptp(cr3);
  1378. vmcs_write64(EPT_POINTER, eptp);
  1379. ept_sync_context(eptp);
  1380. ept_load_pdptrs(vcpu);
  1381. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1382. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1383. }
  1384. vmx_flush_tlb(vcpu);
  1385. vmcs_writel(GUEST_CR3, guest_cr3);
  1386. if (vcpu->arch.cr0 & X86_CR0_PE)
  1387. vmx_fpu_deactivate(vcpu);
  1388. }
  1389. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1390. {
  1391. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1392. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1393. vcpu->arch.cr4 = cr4;
  1394. if (vm_need_ept())
  1395. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1396. vmcs_writel(CR4_READ_SHADOW, cr4);
  1397. vmcs_writel(GUEST_CR4, hw_cr4);
  1398. }
  1399. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1400. {
  1401. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1402. return vmcs_readl(sf->base);
  1403. }
  1404. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1405. struct kvm_segment *var, int seg)
  1406. {
  1407. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1408. u32 ar;
  1409. var->base = vmcs_readl(sf->base);
  1410. var->limit = vmcs_read32(sf->limit);
  1411. var->selector = vmcs_read16(sf->selector);
  1412. ar = vmcs_read32(sf->ar_bytes);
  1413. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1414. ar = 0;
  1415. var->type = ar & 15;
  1416. var->s = (ar >> 4) & 1;
  1417. var->dpl = (ar >> 5) & 3;
  1418. var->present = (ar >> 7) & 1;
  1419. var->avl = (ar >> 12) & 1;
  1420. var->l = (ar >> 13) & 1;
  1421. var->db = (ar >> 14) & 1;
  1422. var->g = (ar >> 15) & 1;
  1423. var->unusable = (ar >> 16) & 1;
  1424. }
  1425. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1426. {
  1427. struct kvm_segment kvm_seg;
  1428. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1429. return 0;
  1430. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1431. return 3;
  1432. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1433. return kvm_seg.selector & 3;
  1434. }
  1435. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1436. {
  1437. u32 ar;
  1438. if (var->unusable)
  1439. ar = 1 << 16;
  1440. else {
  1441. ar = var->type & 15;
  1442. ar |= (var->s & 1) << 4;
  1443. ar |= (var->dpl & 3) << 5;
  1444. ar |= (var->present & 1) << 7;
  1445. ar |= (var->avl & 1) << 12;
  1446. ar |= (var->l & 1) << 13;
  1447. ar |= (var->db & 1) << 14;
  1448. ar |= (var->g & 1) << 15;
  1449. }
  1450. if (ar == 0) /* a 0 value means unusable */
  1451. ar = AR_UNUSABLE_MASK;
  1452. return ar;
  1453. }
  1454. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1455. struct kvm_segment *var, int seg)
  1456. {
  1457. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1458. u32 ar;
  1459. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1460. vcpu->arch.rmode.tr.selector = var->selector;
  1461. vcpu->arch.rmode.tr.base = var->base;
  1462. vcpu->arch.rmode.tr.limit = var->limit;
  1463. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1464. return;
  1465. }
  1466. vmcs_writel(sf->base, var->base);
  1467. vmcs_write32(sf->limit, var->limit);
  1468. vmcs_write16(sf->selector, var->selector);
  1469. if (vcpu->arch.rmode.active && var->s) {
  1470. /*
  1471. * Hack real-mode segments into vm86 compatibility.
  1472. */
  1473. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1474. vmcs_writel(sf->base, 0xf0000);
  1475. ar = 0xf3;
  1476. } else
  1477. ar = vmx_segment_access_rights(var);
  1478. vmcs_write32(sf->ar_bytes, ar);
  1479. }
  1480. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1481. {
  1482. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1483. *db = (ar >> 14) & 1;
  1484. *l = (ar >> 13) & 1;
  1485. }
  1486. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1487. {
  1488. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1489. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1490. }
  1491. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1492. {
  1493. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1494. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1495. }
  1496. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1497. {
  1498. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1499. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1500. }
  1501. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1502. {
  1503. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1504. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1505. }
  1506. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1507. {
  1508. struct kvm_segment var;
  1509. u32 ar;
  1510. vmx_get_segment(vcpu, &var, seg);
  1511. ar = vmx_segment_access_rights(&var);
  1512. if (var.base != (var.selector << 4))
  1513. return false;
  1514. if (var.limit != 0xffff)
  1515. return false;
  1516. if (ar != 0xf3)
  1517. return false;
  1518. return true;
  1519. }
  1520. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1521. {
  1522. struct kvm_segment cs;
  1523. unsigned int cs_rpl;
  1524. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1525. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1526. if (cs.unusable)
  1527. return false;
  1528. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1529. return false;
  1530. if (!cs.s)
  1531. return false;
  1532. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1533. if (cs.dpl > cs_rpl)
  1534. return false;
  1535. } else {
  1536. if (cs.dpl != cs_rpl)
  1537. return false;
  1538. }
  1539. if (!cs.present)
  1540. return false;
  1541. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1542. return true;
  1543. }
  1544. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct kvm_segment ss;
  1547. unsigned int ss_rpl;
  1548. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1549. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1550. if (ss.unusable)
  1551. return true;
  1552. if (ss.type != 3 && ss.type != 7)
  1553. return false;
  1554. if (!ss.s)
  1555. return false;
  1556. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1557. return false;
  1558. if (!ss.present)
  1559. return false;
  1560. return true;
  1561. }
  1562. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1563. {
  1564. struct kvm_segment var;
  1565. unsigned int rpl;
  1566. vmx_get_segment(vcpu, &var, seg);
  1567. rpl = var.selector & SELECTOR_RPL_MASK;
  1568. if (var.unusable)
  1569. return true;
  1570. if (!var.s)
  1571. return false;
  1572. if (!var.present)
  1573. return false;
  1574. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1575. if (var.dpl < rpl) /* DPL < RPL */
  1576. return false;
  1577. }
  1578. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1579. * rights flags
  1580. */
  1581. return true;
  1582. }
  1583. static bool tr_valid(struct kvm_vcpu *vcpu)
  1584. {
  1585. struct kvm_segment tr;
  1586. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1587. if (tr.unusable)
  1588. return false;
  1589. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1590. return false;
  1591. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1592. return false;
  1593. if (!tr.present)
  1594. return false;
  1595. return true;
  1596. }
  1597. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1598. {
  1599. struct kvm_segment ldtr;
  1600. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1601. if (ldtr.unusable)
  1602. return true;
  1603. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1604. return false;
  1605. if (ldtr.type != 2)
  1606. return false;
  1607. if (!ldtr.present)
  1608. return false;
  1609. return true;
  1610. }
  1611. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1612. {
  1613. struct kvm_segment cs, ss;
  1614. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1615. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1616. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1617. (ss.selector & SELECTOR_RPL_MASK));
  1618. }
  1619. /*
  1620. * Check if guest state is valid. Returns true if valid, false if
  1621. * not.
  1622. * We assume that registers are always usable
  1623. */
  1624. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1625. {
  1626. /* real mode guest state checks */
  1627. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1628. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1629. return false;
  1630. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1631. return false;
  1632. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1633. return false;
  1634. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1635. return false;
  1636. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1637. return false;
  1638. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1639. return false;
  1640. } else {
  1641. /* protected mode guest state checks */
  1642. if (!cs_ss_rpl_check(vcpu))
  1643. return false;
  1644. if (!code_segment_valid(vcpu))
  1645. return false;
  1646. if (!stack_segment_valid(vcpu))
  1647. return false;
  1648. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1649. return false;
  1650. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1651. return false;
  1652. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1653. return false;
  1654. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1655. return false;
  1656. if (!tr_valid(vcpu))
  1657. return false;
  1658. if (!ldtr_valid(vcpu))
  1659. return false;
  1660. }
  1661. /* TODO:
  1662. * - Add checks on RIP
  1663. * - Add checks on RFLAGS
  1664. */
  1665. return true;
  1666. }
  1667. static int init_rmode_tss(struct kvm *kvm)
  1668. {
  1669. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1670. u16 data = 0;
  1671. int ret = 0;
  1672. int r;
  1673. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1674. if (r < 0)
  1675. goto out;
  1676. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1677. r = kvm_write_guest_page(kvm, fn++, &data,
  1678. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1679. if (r < 0)
  1680. goto out;
  1681. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1682. if (r < 0)
  1683. goto out;
  1684. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1685. if (r < 0)
  1686. goto out;
  1687. data = ~0;
  1688. r = kvm_write_guest_page(kvm, fn, &data,
  1689. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1690. sizeof(u8));
  1691. if (r < 0)
  1692. goto out;
  1693. ret = 1;
  1694. out:
  1695. return ret;
  1696. }
  1697. static int init_rmode_identity_map(struct kvm *kvm)
  1698. {
  1699. int i, r, ret;
  1700. pfn_t identity_map_pfn;
  1701. u32 tmp;
  1702. if (!vm_need_ept())
  1703. return 1;
  1704. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1705. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1706. "haven't been allocated!\n");
  1707. return 0;
  1708. }
  1709. if (likely(kvm->arch.ept_identity_pagetable_done))
  1710. return 1;
  1711. ret = 0;
  1712. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1713. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1714. if (r < 0)
  1715. goto out;
  1716. /* Set up identity-mapping pagetable for EPT in real mode */
  1717. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1718. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1719. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1720. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1721. &tmp, i * sizeof(tmp), sizeof(tmp));
  1722. if (r < 0)
  1723. goto out;
  1724. }
  1725. kvm->arch.ept_identity_pagetable_done = true;
  1726. ret = 1;
  1727. out:
  1728. return ret;
  1729. }
  1730. static void seg_setup(int seg)
  1731. {
  1732. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1733. vmcs_write16(sf->selector, 0);
  1734. vmcs_writel(sf->base, 0);
  1735. vmcs_write32(sf->limit, 0xffff);
  1736. vmcs_write32(sf->ar_bytes, 0xf3);
  1737. }
  1738. static int alloc_apic_access_page(struct kvm *kvm)
  1739. {
  1740. struct kvm_userspace_memory_region kvm_userspace_mem;
  1741. int r = 0;
  1742. down_write(&kvm->slots_lock);
  1743. if (kvm->arch.apic_access_page)
  1744. goto out;
  1745. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1746. kvm_userspace_mem.flags = 0;
  1747. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1748. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1749. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1750. if (r)
  1751. goto out;
  1752. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1753. out:
  1754. up_write(&kvm->slots_lock);
  1755. return r;
  1756. }
  1757. static int alloc_identity_pagetable(struct kvm *kvm)
  1758. {
  1759. struct kvm_userspace_memory_region kvm_userspace_mem;
  1760. int r = 0;
  1761. down_write(&kvm->slots_lock);
  1762. if (kvm->arch.ept_identity_pagetable)
  1763. goto out;
  1764. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1765. kvm_userspace_mem.flags = 0;
  1766. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1767. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1768. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1769. if (r)
  1770. goto out;
  1771. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1772. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1773. out:
  1774. up_write(&kvm->slots_lock);
  1775. return r;
  1776. }
  1777. static void allocate_vpid(struct vcpu_vmx *vmx)
  1778. {
  1779. int vpid;
  1780. vmx->vpid = 0;
  1781. if (!enable_vpid)
  1782. return;
  1783. spin_lock(&vmx_vpid_lock);
  1784. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1785. if (vpid < VMX_NR_VPIDS) {
  1786. vmx->vpid = vpid;
  1787. __set_bit(vpid, vmx_vpid_bitmap);
  1788. }
  1789. spin_unlock(&vmx_vpid_lock);
  1790. }
  1791. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1792. {
  1793. int f = sizeof(unsigned long);
  1794. if (!cpu_has_vmx_msr_bitmap())
  1795. return;
  1796. /*
  1797. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1798. * have the write-low and read-high bitmap offsets the wrong way round.
  1799. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1800. */
  1801. if (msr <= 0x1fff) {
  1802. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1803. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1804. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1805. msr &= 0x1fff;
  1806. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1807. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1808. }
  1809. }
  1810. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1811. {
  1812. if (!longmode_only)
  1813. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1814. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1815. }
  1816. /*
  1817. * Sets up the vmcs for emulated real mode.
  1818. */
  1819. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1820. {
  1821. u32 host_sysenter_cs, msr_low, msr_high;
  1822. u32 junk;
  1823. u64 host_pat, tsc_this, tsc_base;
  1824. unsigned long a;
  1825. struct descriptor_table dt;
  1826. int i;
  1827. unsigned long kvm_vmx_return;
  1828. u32 exec_control;
  1829. /* I/O */
  1830. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1831. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1832. if (cpu_has_vmx_msr_bitmap())
  1833. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1834. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1835. /* Control */
  1836. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1837. vmcs_config.pin_based_exec_ctrl);
  1838. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1839. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1840. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1841. #ifdef CONFIG_X86_64
  1842. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1843. CPU_BASED_CR8_LOAD_EXITING;
  1844. #endif
  1845. }
  1846. if (!vm_need_ept())
  1847. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1848. CPU_BASED_CR3_LOAD_EXITING |
  1849. CPU_BASED_INVLPG_EXITING;
  1850. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1851. if (cpu_has_secondary_exec_ctrls()) {
  1852. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1853. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1854. exec_control &=
  1855. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1856. if (vmx->vpid == 0)
  1857. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1858. if (!vm_need_ept())
  1859. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1860. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1861. }
  1862. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1863. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1864. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1865. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1866. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1867. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1868. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1869. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1870. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1871. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1872. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1873. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1874. #ifdef CONFIG_X86_64
  1875. rdmsrl(MSR_FS_BASE, a);
  1876. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1877. rdmsrl(MSR_GS_BASE, a);
  1878. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1879. #else
  1880. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1881. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1882. #endif
  1883. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1884. kvm_get_idt(&dt);
  1885. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1886. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1887. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1888. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1889. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1890. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1891. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1892. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1893. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1894. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1895. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1896. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1897. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1898. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1899. host_pat = msr_low | ((u64) msr_high << 32);
  1900. vmcs_write64(HOST_IA32_PAT, host_pat);
  1901. }
  1902. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1903. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1904. host_pat = msr_low | ((u64) msr_high << 32);
  1905. /* Write the default value follow host pat */
  1906. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1907. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1908. vmx->vcpu.arch.pat = host_pat;
  1909. }
  1910. for (i = 0; i < NR_VMX_MSR; ++i) {
  1911. u32 index = vmx_msr_index[i];
  1912. u32 data_low, data_high;
  1913. u64 data;
  1914. int j = vmx->nmsrs;
  1915. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1916. continue;
  1917. if (wrmsr_safe(index, data_low, data_high) < 0)
  1918. continue;
  1919. data = data_low | ((u64)data_high << 32);
  1920. vmx->host_msrs[j].index = index;
  1921. vmx->host_msrs[j].reserved = 0;
  1922. vmx->host_msrs[j].data = data;
  1923. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1924. ++vmx->nmsrs;
  1925. }
  1926. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1927. /* 22.2.1, 20.8.1 */
  1928. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1929. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1930. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1931. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1932. rdtscll(tsc_this);
  1933. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1934. tsc_base = tsc_this;
  1935. guest_write_tsc(0, tsc_base);
  1936. return 0;
  1937. }
  1938. static int init_rmode(struct kvm *kvm)
  1939. {
  1940. if (!init_rmode_tss(kvm))
  1941. return 0;
  1942. if (!init_rmode_identity_map(kvm))
  1943. return 0;
  1944. return 1;
  1945. }
  1946. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1947. {
  1948. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1949. u64 msr;
  1950. int ret;
  1951. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1952. down_read(&vcpu->kvm->slots_lock);
  1953. if (!init_rmode(vmx->vcpu.kvm)) {
  1954. ret = -ENOMEM;
  1955. goto out;
  1956. }
  1957. vmx->vcpu.arch.rmode.active = 0;
  1958. vmx->soft_vnmi_blocked = 0;
  1959. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1960. kvm_set_cr8(&vmx->vcpu, 0);
  1961. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1962. if (vmx->vcpu.vcpu_id == 0)
  1963. msr |= MSR_IA32_APICBASE_BSP;
  1964. kvm_set_apic_base(&vmx->vcpu, msr);
  1965. fx_init(&vmx->vcpu);
  1966. seg_setup(VCPU_SREG_CS);
  1967. /*
  1968. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1969. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1970. */
  1971. if (vmx->vcpu.vcpu_id == 0) {
  1972. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1973. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1974. } else {
  1975. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1976. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1977. }
  1978. seg_setup(VCPU_SREG_DS);
  1979. seg_setup(VCPU_SREG_ES);
  1980. seg_setup(VCPU_SREG_FS);
  1981. seg_setup(VCPU_SREG_GS);
  1982. seg_setup(VCPU_SREG_SS);
  1983. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1984. vmcs_writel(GUEST_TR_BASE, 0);
  1985. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1986. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1987. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1988. vmcs_writel(GUEST_LDTR_BASE, 0);
  1989. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1990. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1991. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1992. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1993. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1994. vmcs_writel(GUEST_RFLAGS, 0x02);
  1995. if (vmx->vcpu.vcpu_id == 0)
  1996. kvm_rip_write(vcpu, 0xfff0);
  1997. else
  1998. kvm_rip_write(vcpu, 0);
  1999. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2000. vmcs_writel(GUEST_DR7, 0x400);
  2001. vmcs_writel(GUEST_GDTR_BASE, 0);
  2002. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2003. vmcs_writel(GUEST_IDTR_BASE, 0);
  2004. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2005. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2006. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2007. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2008. /* Special registers */
  2009. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2010. setup_msrs(vmx);
  2011. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2012. if (cpu_has_vmx_tpr_shadow()) {
  2013. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2014. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2015. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2016. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2017. vmcs_write32(TPR_THRESHOLD, 0);
  2018. }
  2019. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2020. vmcs_write64(APIC_ACCESS_ADDR,
  2021. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2022. if (vmx->vpid != 0)
  2023. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2024. vmx->vcpu.arch.cr0 = 0x60000010;
  2025. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2026. vmx_set_cr4(&vmx->vcpu, 0);
  2027. vmx_set_efer(&vmx->vcpu, 0);
  2028. vmx_fpu_activate(&vmx->vcpu);
  2029. update_exception_bitmap(&vmx->vcpu);
  2030. vpid_sync_vcpu_all(vmx);
  2031. ret = 0;
  2032. /* HACK: Don't enable emulation on guest boot/reset */
  2033. vmx->emulation_required = 0;
  2034. out:
  2035. up_read(&vcpu->kvm->slots_lock);
  2036. return ret;
  2037. }
  2038. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2039. {
  2040. u32 cpu_based_vm_exec_control;
  2041. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2042. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2043. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2044. }
  2045. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2046. {
  2047. u32 cpu_based_vm_exec_control;
  2048. if (!cpu_has_virtual_nmis()) {
  2049. enable_irq_window(vcpu);
  2050. return;
  2051. }
  2052. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2053. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2054. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2055. }
  2056. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2057. {
  2058. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2059. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2060. ++vcpu->stat.irq_injections;
  2061. if (vcpu->arch.rmode.active) {
  2062. vmx->rmode.irq.pending = true;
  2063. vmx->rmode.irq.vector = irq;
  2064. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2065. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2066. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2067. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2068. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2069. return;
  2070. }
  2071. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2072. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2073. }
  2074. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2075. {
  2076. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2077. if (!cpu_has_virtual_nmis()) {
  2078. /*
  2079. * Tracking the NMI-blocked state in software is built upon
  2080. * finding the next open IRQ window. This, in turn, depends on
  2081. * well-behaving guests: They have to keep IRQs disabled at
  2082. * least as long as the NMI handler runs. Otherwise we may
  2083. * cause NMI nesting, maybe breaking the guest. But as this is
  2084. * highly unlikely, we can live with the residual risk.
  2085. */
  2086. vmx->soft_vnmi_blocked = 1;
  2087. vmx->vnmi_blocked_time = 0;
  2088. }
  2089. ++vcpu->stat.nmi_injections;
  2090. if (vcpu->arch.rmode.active) {
  2091. vmx->rmode.irq.pending = true;
  2092. vmx->rmode.irq.vector = NMI_VECTOR;
  2093. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2094. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2095. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2096. INTR_INFO_VALID_MASK);
  2097. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2098. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2099. return;
  2100. }
  2101. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2102. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2103. }
  2104. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2105. {
  2106. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2107. vcpu->arch.nmi_window_open =
  2108. !(guest_intr & (GUEST_INTR_STATE_STI |
  2109. GUEST_INTR_STATE_MOV_SS |
  2110. GUEST_INTR_STATE_NMI));
  2111. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2112. vcpu->arch.nmi_window_open = 0;
  2113. vcpu->arch.interrupt_window_open =
  2114. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2115. !(guest_intr & (GUEST_INTR_STATE_STI |
  2116. GUEST_INTR_STATE_MOV_SS)));
  2117. }
  2118. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2119. struct kvm_run *kvm_run)
  2120. {
  2121. vmx_update_window_states(vcpu);
  2122. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2123. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2124. GUEST_INTR_STATE_STI |
  2125. GUEST_INTR_STATE_MOV_SS);
  2126. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2127. if (vcpu->arch.interrupt.pending) {
  2128. enable_nmi_window(vcpu);
  2129. } else if (vcpu->arch.nmi_window_open) {
  2130. vcpu->arch.nmi_pending = false;
  2131. vcpu->arch.nmi_injected = true;
  2132. } else {
  2133. enable_nmi_window(vcpu);
  2134. return;
  2135. }
  2136. }
  2137. if (vcpu->arch.nmi_injected) {
  2138. vmx_inject_nmi(vcpu);
  2139. if (vcpu->arch.nmi_pending)
  2140. enable_nmi_window(vcpu);
  2141. else if (vcpu->arch.irq_summary
  2142. || kvm_run->request_interrupt_window)
  2143. enable_irq_window(vcpu);
  2144. return;
  2145. }
  2146. if (vcpu->arch.interrupt_window_open) {
  2147. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2148. kvm_queue_interrupt(vcpu, kvm_pop_irq(vcpu));
  2149. if (vcpu->arch.interrupt.pending)
  2150. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2151. }
  2152. if (!vcpu->arch.interrupt_window_open &&
  2153. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2154. enable_irq_window(vcpu);
  2155. }
  2156. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2157. {
  2158. int ret;
  2159. struct kvm_userspace_memory_region tss_mem = {
  2160. .slot = TSS_PRIVATE_MEMSLOT,
  2161. .guest_phys_addr = addr,
  2162. .memory_size = PAGE_SIZE * 3,
  2163. .flags = 0,
  2164. };
  2165. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2166. if (ret)
  2167. return ret;
  2168. kvm->arch.tss_addr = addr;
  2169. return 0;
  2170. }
  2171. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2172. int vec, u32 err_code)
  2173. {
  2174. /*
  2175. * Instruction with address size override prefix opcode 0x67
  2176. * Cause the #SS fault with 0 error code in VM86 mode.
  2177. */
  2178. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2179. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2180. return 1;
  2181. /*
  2182. * Forward all other exceptions that are valid in real mode.
  2183. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2184. * the required debugging infrastructure rework.
  2185. */
  2186. switch (vec) {
  2187. case DB_VECTOR:
  2188. if (vcpu->guest_debug &
  2189. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2190. return 0;
  2191. kvm_queue_exception(vcpu, vec);
  2192. return 1;
  2193. case BP_VECTOR:
  2194. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2195. return 0;
  2196. /* fall through */
  2197. case DE_VECTOR:
  2198. case OF_VECTOR:
  2199. case BR_VECTOR:
  2200. case UD_VECTOR:
  2201. case DF_VECTOR:
  2202. case SS_VECTOR:
  2203. case GP_VECTOR:
  2204. case MF_VECTOR:
  2205. kvm_queue_exception(vcpu, vec);
  2206. return 1;
  2207. }
  2208. return 0;
  2209. }
  2210. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2211. {
  2212. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2213. u32 intr_info, ex_no, error_code;
  2214. unsigned long cr2, rip, dr6;
  2215. u32 vect_info;
  2216. enum emulation_result er;
  2217. vect_info = vmx->idt_vectoring_info;
  2218. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2219. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2220. !is_page_fault(intr_info))
  2221. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2222. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2223. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2224. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2225. kvm_push_irq(vcpu, irq);
  2226. }
  2227. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2228. return 1; /* already handled by vmx_vcpu_run() */
  2229. if (is_no_device(intr_info)) {
  2230. vmx_fpu_activate(vcpu);
  2231. return 1;
  2232. }
  2233. if (is_invalid_opcode(intr_info)) {
  2234. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2235. if (er != EMULATE_DONE)
  2236. kvm_queue_exception(vcpu, UD_VECTOR);
  2237. return 1;
  2238. }
  2239. error_code = 0;
  2240. rip = kvm_rip_read(vcpu);
  2241. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2242. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2243. if (is_page_fault(intr_info)) {
  2244. /* EPT won't cause page fault directly */
  2245. if (vm_need_ept())
  2246. BUG();
  2247. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2248. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2249. (u32)((u64)cr2 >> 32), handler);
  2250. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2251. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2252. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2253. }
  2254. if (vcpu->arch.rmode.active &&
  2255. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2256. error_code)) {
  2257. if (vcpu->arch.halt_request) {
  2258. vcpu->arch.halt_request = 0;
  2259. return kvm_emulate_halt(vcpu);
  2260. }
  2261. return 1;
  2262. }
  2263. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2264. switch (ex_no) {
  2265. case DB_VECTOR:
  2266. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2267. if (!(vcpu->guest_debug &
  2268. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2269. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2270. kvm_queue_exception(vcpu, DB_VECTOR);
  2271. return 1;
  2272. }
  2273. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2274. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2275. /* fall through */
  2276. case BP_VECTOR:
  2277. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2278. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2279. kvm_run->debug.arch.exception = ex_no;
  2280. break;
  2281. default:
  2282. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2283. kvm_run->ex.exception = ex_no;
  2284. kvm_run->ex.error_code = error_code;
  2285. break;
  2286. }
  2287. return 0;
  2288. }
  2289. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2290. struct kvm_run *kvm_run)
  2291. {
  2292. ++vcpu->stat.irq_exits;
  2293. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2294. return 1;
  2295. }
  2296. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2297. {
  2298. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2299. return 0;
  2300. }
  2301. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2302. {
  2303. unsigned long exit_qualification;
  2304. int size, in, string;
  2305. unsigned port;
  2306. ++vcpu->stat.io_exits;
  2307. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2308. string = (exit_qualification & 16) != 0;
  2309. if (string) {
  2310. if (emulate_instruction(vcpu,
  2311. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2312. return 0;
  2313. return 1;
  2314. }
  2315. size = (exit_qualification & 7) + 1;
  2316. in = (exit_qualification & 8) != 0;
  2317. port = exit_qualification >> 16;
  2318. skip_emulated_instruction(vcpu);
  2319. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2320. }
  2321. static void
  2322. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2323. {
  2324. /*
  2325. * Patch in the VMCALL instruction:
  2326. */
  2327. hypercall[0] = 0x0f;
  2328. hypercall[1] = 0x01;
  2329. hypercall[2] = 0xc1;
  2330. }
  2331. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2332. {
  2333. unsigned long exit_qualification;
  2334. int cr;
  2335. int reg;
  2336. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2337. cr = exit_qualification & 15;
  2338. reg = (exit_qualification >> 8) & 15;
  2339. switch ((exit_qualification >> 4) & 3) {
  2340. case 0: /* mov to cr */
  2341. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2342. (u32)kvm_register_read(vcpu, reg),
  2343. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2344. handler);
  2345. switch (cr) {
  2346. case 0:
  2347. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2348. skip_emulated_instruction(vcpu);
  2349. return 1;
  2350. case 3:
  2351. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2352. skip_emulated_instruction(vcpu);
  2353. return 1;
  2354. case 4:
  2355. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2356. skip_emulated_instruction(vcpu);
  2357. return 1;
  2358. case 8:
  2359. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2360. skip_emulated_instruction(vcpu);
  2361. if (irqchip_in_kernel(vcpu->kvm))
  2362. return 1;
  2363. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2364. return 0;
  2365. };
  2366. break;
  2367. case 2: /* clts */
  2368. vmx_fpu_deactivate(vcpu);
  2369. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2370. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2371. vmx_fpu_activate(vcpu);
  2372. KVMTRACE_0D(CLTS, vcpu, handler);
  2373. skip_emulated_instruction(vcpu);
  2374. return 1;
  2375. case 1: /*mov from cr*/
  2376. switch (cr) {
  2377. case 3:
  2378. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2379. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2380. (u32)kvm_register_read(vcpu, reg),
  2381. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2382. handler);
  2383. skip_emulated_instruction(vcpu);
  2384. return 1;
  2385. case 8:
  2386. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2387. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2388. (u32)kvm_register_read(vcpu, reg), handler);
  2389. skip_emulated_instruction(vcpu);
  2390. return 1;
  2391. }
  2392. break;
  2393. case 3: /* lmsw */
  2394. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2395. skip_emulated_instruction(vcpu);
  2396. return 1;
  2397. default:
  2398. break;
  2399. }
  2400. kvm_run->exit_reason = 0;
  2401. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2402. (int)(exit_qualification >> 4) & 3, cr);
  2403. return 0;
  2404. }
  2405. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2406. {
  2407. unsigned long exit_qualification;
  2408. unsigned long val;
  2409. int dr, reg;
  2410. dr = vmcs_readl(GUEST_DR7);
  2411. if (dr & DR7_GD) {
  2412. /*
  2413. * As the vm-exit takes precedence over the debug trap, we
  2414. * need to emulate the latter, either for the host or the
  2415. * guest debugging itself.
  2416. */
  2417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2418. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2419. kvm_run->debug.arch.dr7 = dr;
  2420. kvm_run->debug.arch.pc =
  2421. vmcs_readl(GUEST_CS_BASE) +
  2422. vmcs_readl(GUEST_RIP);
  2423. kvm_run->debug.arch.exception = DB_VECTOR;
  2424. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2425. return 0;
  2426. } else {
  2427. vcpu->arch.dr7 &= ~DR7_GD;
  2428. vcpu->arch.dr6 |= DR6_BD;
  2429. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2430. kvm_queue_exception(vcpu, DB_VECTOR);
  2431. return 1;
  2432. }
  2433. }
  2434. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2435. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2436. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2437. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2438. switch (dr) {
  2439. case 0 ... 3:
  2440. val = vcpu->arch.db[dr];
  2441. break;
  2442. case 6:
  2443. val = vcpu->arch.dr6;
  2444. break;
  2445. case 7:
  2446. val = vcpu->arch.dr7;
  2447. break;
  2448. default:
  2449. val = 0;
  2450. }
  2451. kvm_register_write(vcpu, reg, val);
  2452. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2453. } else {
  2454. val = vcpu->arch.regs[reg];
  2455. switch (dr) {
  2456. case 0 ... 3:
  2457. vcpu->arch.db[dr] = val;
  2458. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2459. vcpu->arch.eff_db[dr] = val;
  2460. break;
  2461. case 4 ... 5:
  2462. if (vcpu->arch.cr4 & X86_CR4_DE)
  2463. kvm_queue_exception(vcpu, UD_VECTOR);
  2464. break;
  2465. case 6:
  2466. if (val & 0xffffffff00000000ULL) {
  2467. kvm_queue_exception(vcpu, GP_VECTOR);
  2468. break;
  2469. }
  2470. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2471. break;
  2472. case 7:
  2473. if (val & 0xffffffff00000000ULL) {
  2474. kvm_queue_exception(vcpu, GP_VECTOR);
  2475. break;
  2476. }
  2477. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2478. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2479. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2480. vcpu->arch.switch_db_regs =
  2481. (val & DR7_BP_EN_MASK);
  2482. }
  2483. break;
  2484. }
  2485. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2486. }
  2487. skip_emulated_instruction(vcpu);
  2488. return 1;
  2489. }
  2490. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2491. {
  2492. kvm_emulate_cpuid(vcpu);
  2493. return 1;
  2494. }
  2495. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2496. {
  2497. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2498. u64 data;
  2499. if (vmx_get_msr(vcpu, ecx, &data)) {
  2500. kvm_inject_gp(vcpu, 0);
  2501. return 1;
  2502. }
  2503. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2504. handler);
  2505. /* FIXME: handling of bits 32:63 of rax, rdx */
  2506. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2507. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2508. skip_emulated_instruction(vcpu);
  2509. return 1;
  2510. }
  2511. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2512. {
  2513. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2514. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2515. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2516. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2517. handler);
  2518. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2519. kvm_inject_gp(vcpu, 0);
  2520. return 1;
  2521. }
  2522. skip_emulated_instruction(vcpu);
  2523. return 1;
  2524. }
  2525. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2526. struct kvm_run *kvm_run)
  2527. {
  2528. return 1;
  2529. }
  2530. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2531. struct kvm_run *kvm_run)
  2532. {
  2533. u32 cpu_based_vm_exec_control;
  2534. /* clear pending irq */
  2535. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2536. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2537. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2538. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2539. ++vcpu->stat.irq_window_exits;
  2540. /*
  2541. * If the user space waits to inject interrupts, exit as soon as
  2542. * possible
  2543. */
  2544. if (kvm_run->request_interrupt_window &&
  2545. !vcpu->arch.irq_summary) {
  2546. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2547. return 0;
  2548. }
  2549. return 1;
  2550. }
  2551. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2552. {
  2553. skip_emulated_instruction(vcpu);
  2554. return kvm_emulate_halt(vcpu);
  2555. }
  2556. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2557. {
  2558. skip_emulated_instruction(vcpu);
  2559. kvm_emulate_hypercall(vcpu);
  2560. return 1;
  2561. }
  2562. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2563. {
  2564. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2565. kvm_mmu_invlpg(vcpu, exit_qualification);
  2566. skip_emulated_instruction(vcpu);
  2567. return 1;
  2568. }
  2569. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2570. {
  2571. skip_emulated_instruction(vcpu);
  2572. /* TODO: Add support for VT-d/pass-through device */
  2573. return 1;
  2574. }
  2575. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2576. {
  2577. u64 exit_qualification;
  2578. enum emulation_result er;
  2579. unsigned long offset;
  2580. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2581. offset = exit_qualification & 0xffful;
  2582. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2583. if (er != EMULATE_DONE) {
  2584. printk(KERN_ERR
  2585. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2586. offset);
  2587. return -ENOTSUPP;
  2588. }
  2589. return 1;
  2590. }
  2591. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2592. {
  2593. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2594. unsigned long exit_qualification;
  2595. u16 tss_selector;
  2596. int reason;
  2597. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2598. reason = (u32)exit_qualification >> 30;
  2599. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2600. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2601. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2602. == INTR_TYPE_NMI_INTR) {
  2603. vcpu->arch.nmi_injected = false;
  2604. if (cpu_has_virtual_nmis())
  2605. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2606. GUEST_INTR_STATE_NMI);
  2607. }
  2608. tss_selector = exit_qualification;
  2609. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2610. return 0;
  2611. /* clear all local breakpoint enable flags */
  2612. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2613. /*
  2614. * TODO: What about debug traps on tss switch?
  2615. * Are we supposed to inject them and update dr6?
  2616. */
  2617. return 1;
  2618. }
  2619. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2620. {
  2621. u64 exit_qualification;
  2622. gpa_t gpa;
  2623. int gla_validity;
  2624. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2625. if (exit_qualification & (1 << 6)) {
  2626. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2627. return -ENOTSUPP;
  2628. }
  2629. gla_validity = (exit_qualification >> 7) & 0x3;
  2630. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2631. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2632. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2633. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2634. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2635. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2636. (long unsigned int)exit_qualification);
  2637. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2638. kvm_run->hw.hardware_exit_reason = 0;
  2639. return -ENOTSUPP;
  2640. }
  2641. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2642. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2643. }
  2644. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2645. {
  2646. u32 cpu_based_vm_exec_control;
  2647. /* clear pending NMI */
  2648. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2649. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2650. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2651. ++vcpu->stat.nmi_window_exits;
  2652. return 1;
  2653. }
  2654. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2655. struct kvm_run *kvm_run)
  2656. {
  2657. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2658. enum emulation_result err = EMULATE_DONE;
  2659. preempt_enable();
  2660. local_irq_enable();
  2661. while (!guest_state_valid(vcpu)) {
  2662. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2663. if (err == EMULATE_DO_MMIO)
  2664. break;
  2665. if (err != EMULATE_DONE) {
  2666. kvm_report_emulation_failure(vcpu, "emulation failure");
  2667. return;
  2668. }
  2669. if (signal_pending(current))
  2670. break;
  2671. if (need_resched())
  2672. schedule();
  2673. }
  2674. local_irq_disable();
  2675. preempt_disable();
  2676. vmx->invalid_state_emulation_result = err;
  2677. }
  2678. /*
  2679. * The exit handlers return 1 if the exit was handled fully and guest execution
  2680. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2681. * to be done to userspace and return 0.
  2682. */
  2683. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2684. struct kvm_run *kvm_run) = {
  2685. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2686. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2687. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2688. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2689. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2690. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2691. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2692. [EXIT_REASON_CPUID] = handle_cpuid,
  2693. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2694. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2695. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2696. [EXIT_REASON_HLT] = handle_halt,
  2697. [EXIT_REASON_INVLPG] = handle_invlpg,
  2698. [EXIT_REASON_VMCALL] = handle_vmcall,
  2699. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2700. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2701. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2702. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2703. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2704. };
  2705. static const int kvm_vmx_max_exit_handlers =
  2706. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2707. /*
  2708. * The guest has exited. See if we can fix it or if we need userspace
  2709. * assistance.
  2710. */
  2711. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2712. {
  2713. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2714. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2715. u32 vectoring_info = vmx->idt_vectoring_info;
  2716. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2717. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2718. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2719. * we just return 0 */
  2720. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2721. if (guest_state_valid(vcpu))
  2722. vmx->emulation_required = 0;
  2723. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2724. }
  2725. /* Access CR3 don't cause VMExit in paging mode, so we need
  2726. * to sync with guest real CR3. */
  2727. if (vm_need_ept() && is_paging(vcpu)) {
  2728. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2729. ept_load_pdptrs(vcpu);
  2730. }
  2731. if (unlikely(vmx->fail)) {
  2732. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2733. kvm_run->fail_entry.hardware_entry_failure_reason
  2734. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2735. return 0;
  2736. }
  2737. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2738. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2739. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2740. exit_reason != EXIT_REASON_TASK_SWITCH))
  2741. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2742. "(0x%x) and exit reason is 0x%x\n",
  2743. __func__, vectoring_info, exit_reason);
  2744. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2745. if (vcpu->arch.interrupt_window_open) {
  2746. vmx->soft_vnmi_blocked = 0;
  2747. vcpu->arch.nmi_window_open = 1;
  2748. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2749. vcpu->arch.nmi_pending) {
  2750. /*
  2751. * This CPU don't support us in finding the end of an
  2752. * NMI-blocked window if the guest runs with IRQs
  2753. * disabled. So we pull the trigger after 1 s of
  2754. * futile waiting, but inform the user about this.
  2755. */
  2756. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2757. "state on VCPU %d after 1 s timeout\n",
  2758. __func__, vcpu->vcpu_id);
  2759. vmx->soft_vnmi_blocked = 0;
  2760. vmx->vcpu.arch.nmi_window_open = 1;
  2761. }
  2762. }
  2763. if (exit_reason < kvm_vmx_max_exit_handlers
  2764. && kvm_vmx_exit_handlers[exit_reason])
  2765. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2766. else {
  2767. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2768. kvm_run->hw.hardware_exit_reason = exit_reason;
  2769. }
  2770. return 0;
  2771. }
  2772. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2773. {
  2774. int max_irr, tpr;
  2775. if (!vm_need_tpr_shadow(vcpu->kvm))
  2776. return;
  2777. if (!kvm_lapic_enabled(vcpu) ||
  2778. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2779. vmcs_write32(TPR_THRESHOLD, 0);
  2780. return;
  2781. }
  2782. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2783. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2784. }
  2785. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2786. {
  2787. u32 exit_intr_info;
  2788. u32 idt_vectoring_info;
  2789. bool unblock_nmi;
  2790. u8 vector;
  2791. int type;
  2792. bool idtv_info_valid;
  2793. u32 error;
  2794. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2795. if (cpu_has_virtual_nmis()) {
  2796. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2797. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2798. /*
  2799. * SDM 3: 25.7.1.2
  2800. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2801. * a guest IRET fault.
  2802. */
  2803. if (unblock_nmi && vector != DF_VECTOR)
  2804. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2805. GUEST_INTR_STATE_NMI);
  2806. } else if (unlikely(vmx->soft_vnmi_blocked))
  2807. vmx->vnmi_blocked_time +=
  2808. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2809. idt_vectoring_info = vmx->idt_vectoring_info;
  2810. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2811. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2812. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2813. if (vmx->vcpu.arch.nmi_injected) {
  2814. /*
  2815. * SDM 3: 25.7.1.2
  2816. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2817. * faulted.
  2818. */
  2819. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2820. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2821. GUEST_INTR_STATE_NMI);
  2822. else
  2823. vmx->vcpu.arch.nmi_injected = false;
  2824. }
  2825. kvm_clear_exception_queue(&vmx->vcpu);
  2826. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2827. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2828. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2829. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2830. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2831. } else
  2832. kvm_queue_exception(&vmx->vcpu, vector);
  2833. vmx->idt_vectoring_info = 0;
  2834. }
  2835. kvm_clear_interrupt_queue(&vmx->vcpu);
  2836. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2837. kvm_queue_interrupt(&vmx->vcpu, vector);
  2838. vmx->idt_vectoring_info = 0;
  2839. }
  2840. }
  2841. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2842. {
  2843. update_tpr_threshold(vcpu);
  2844. vmx_update_window_states(vcpu);
  2845. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2846. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2847. GUEST_INTR_STATE_STI |
  2848. GUEST_INTR_STATE_MOV_SS);
  2849. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2850. if (vcpu->arch.interrupt.pending) {
  2851. enable_nmi_window(vcpu);
  2852. } else if (vcpu->arch.nmi_window_open) {
  2853. vcpu->arch.nmi_pending = false;
  2854. vcpu->arch.nmi_injected = true;
  2855. } else {
  2856. enable_nmi_window(vcpu);
  2857. return;
  2858. }
  2859. }
  2860. if (vcpu->arch.nmi_injected) {
  2861. vmx_inject_nmi(vcpu);
  2862. if (vcpu->arch.nmi_pending)
  2863. enable_nmi_window(vcpu);
  2864. else if (kvm_cpu_has_interrupt(vcpu))
  2865. enable_irq_window(vcpu);
  2866. return;
  2867. }
  2868. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2869. if (vcpu->arch.interrupt_window_open)
  2870. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2871. else
  2872. enable_irq_window(vcpu);
  2873. }
  2874. if (vcpu->arch.interrupt.pending) {
  2875. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2876. if (kvm_cpu_has_interrupt(vcpu))
  2877. enable_irq_window(vcpu);
  2878. }
  2879. }
  2880. /*
  2881. * Failure to inject an interrupt should give us the information
  2882. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2883. * when fetching the interrupt redirection bitmap in the real-mode
  2884. * tss, this doesn't happen. So we do it ourselves.
  2885. */
  2886. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2887. {
  2888. vmx->rmode.irq.pending = 0;
  2889. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2890. return;
  2891. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2892. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2893. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2894. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2895. return;
  2896. }
  2897. vmx->idt_vectoring_info =
  2898. VECTORING_INFO_VALID_MASK
  2899. | INTR_TYPE_EXT_INTR
  2900. | vmx->rmode.irq.vector;
  2901. }
  2902. #ifdef CONFIG_X86_64
  2903. #define R "r"
  2904. #define Q "q"
  2905. #else
  2906. #define R "e"
  2907. #define Q "l"
  2908. #endif
  2909. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2910. {
  2911. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2912. u32 intr_info;
  2913. /* Record the guest's net vcpu time for enforced NMI injections. */
  2914. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2915. vmx->entry_time = ktime_get();
  2916. /* Handle invalid guest state instead of entering VMX */
  2917. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2918. handle_invalid_guest_state(vcpu, kvm_run);
  2919. return;
  2920. }
  2921. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2922. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2923. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2924. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2925. /*
  2926. * Loading guest fpu may have cleared host cr0.ts
  2927. */
  2928. vmcs_writel(HOST_CR0, read_cr0());
  2929. set_debugreg(vcpu->arch.dr6, 6);
  2930. asm(
  2931. /* Store host registers */
  2932. "push %%"R"dx; push %%"R"bp;"
  2933. "push %%"R"cx \n\t"
  2934. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2935. "je 1f \n\t"
  2936. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2937. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2938. "1: \n\t"
  2939. /* Check if vmlaunch of vmresume is needed */
  2940. "cmpl $0, %c[launched](%0) \n\t"
  2941. /* Load guest registers. Don't clobber flags. */
  2942. "mov %c[cr2](%0), %%"R"ax \n\t"
  2943. "mov %%"R"ax, %%cr2 \n\t"
  2944. "mov %c[rax](%0), %%"R"ax \n\t"
  2945. "mov %c[rbx](%0), %%"R"bx \n\t"
  2946. "mov %c[rdx](%0), %%"R"dx \n\t"
  2947. "mov %c[rsi](%0), %%"R"si \n\t"
  2948. "mov %c[rdi](%0), %%"R"di \n\t"
  2949. "mov %c[rbp](%0), %%"R"bp \n\t"
  2950. #ifdef CONFIG_X86_64
  2951. "mov %c[r8](%0), %%r8 \n\t"
  2952. "mov %c[r9](%0), %%r9 \n\t"
  2953. "mov %c[r10](%0), %%r10 \n\t"
  2954. "mov %c[r11](%0), %%r11 \n\t"
  2955. "mov %c[r12](%0), %%r12 \n\t"
  2956. "mov %c[r13](%0), %%r13 \n\t"
  2957. "mov %c[r14](%0), %%r14 \n\t"
  2958. "mov %c[r15](%0), %%r15 \n\t"
  2959. #endif
  2960. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2961. /* Enter guest mode */
  2962. "jne .Llaunched \n\t"
  2963. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2964. "jmp .Lkvm_vmx_return \n\t"
  2965. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2966. ".Lkvm_vmx_return: "
  2967. /* Save guest registers, load host registers, keep flags */
  2968. "xchg %0, (%%"R"sp) \n\t"
  2969. "mov %%"R"ax, %c[rax](%0) \n\t"
  2970. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2971. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2972. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2973. "mov %%"R"si, %c[rsi](%0) \n\t"
  2974. "mov %%"R"di, %c[rdi](%0) \n\t"
  2975. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2976. #ifdef CONFIG_X86_64
  2977. "mov %%r8, %c[r8](%0) \n\t"
  2978. "mov %%r9, %c[r9](%0) \n\t"
  2979. "mov %%r10, %c[r10](%0) \n\t"
  2980. "mov %%r11, %c[r11](%0) \n\t"
  2981. "mov %%r12, %c[r12](%0) \n\t"
  2982. "mov %%r13, %c[r13](%0) \n\t"
  2983. "mov %%r14, %c[r14](%0) \n\t"
  2984. "mov %%r15, %c[r15](%0) \n\t"
  2985. #endif
  2986. "mov %%cr2, %%"R"ax \n\t"
  2987. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2988. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2989. "setbe %c[fail](%0) \n\t"
  2990. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2991. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2992. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2993. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2994. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2995. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2996. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2997. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2998. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2999. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3000. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3001. #ifdef CONFIG_X86_64
  3002. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3003. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3004. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3005. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3006. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3007. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3008. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3009. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3010. #endif
  3011. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3012. : "cc", "memory"
  3013. , R"bx", R"di", R"si"
  3014. #ifdef CONFIG_X86_64
  3015. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3016. #endif
  3017. );
  3018. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3019. vcpu->arch.regs_dirty = 0;
  3020. get_debugreg(vcpu->arch.dr6, 6);
  3021. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3022. if (vmx->rmode.irq.pending)
  3023. fixup_rmode_irq(vmx);
  3024. vmx_update_window_states(vcpu);
  3025. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3026. vmx->launched = 1;
  3027. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3028. /* We need to handle NMIs before interrupts are enabled */
  3029. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3030. (intr_info & INTR_INFO_VALID_MASK)) {
  3031. KVMTRACE_0D(NMI, vcpu, handler);
  3032. asm("int $2");
  3033. }
  3034. vmx_complete_interrupts(vmx);
  3035. }
  3036. #undef R
  3037. #undef Q
  3038. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3039. {
  3040. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3041. if (vmx->vmcs) {
  3042. vcpu_clear(vmx);
  3043. free_vmcs(vmx->vmcs);
  3044. vmx->vmcs = NULL;
  3045. }
  3046. }
  3047. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3048. {
  3049. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3050. spin_lock(&vmx_vpid_lock);
  3051. if (vmx->vpid != 0)
  3052. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3053. spin_unlock(&vmx_vpid_lock);
  3054. vmx_free_vmcs(vcpu);
  3055. kfree(vmx->host_msrs);
  3056. kfree(vmx->guest_msrs);
  3057. kvm_vcpu_uninit(vcpu);
  3058. kmem_cache_free(kvm_vcpu_cache, vmx);
  3059. }
  3060. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3061. {
  3062. int err;
  3063. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3064. int cpu;
  3065. if (!vmx)
  3066. return ERR_PTR(-ENOMEM);
  3067. allocate_vpid(vmx);
  3068. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3069. if (err)
  3070. goto free_vcpu;
  3071. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3072. if (!vmx->guest_msrs) {
  3073. err = -ENOMEM;
  3074. goto uninit_vcpu;
  3075. }
  3076. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3077. if (!vmx->host_msrs)
  3078. goto free_guest_msrs;
  3079. vmx->vmcs = alloc_vmcs();
  3080. if (!vmx->vmcs)
  3081. goto free_msrs;
  3082. vmcs_clear(vmx->vmcs);
  3083. cpu = get_cpu();
  3084. vmx_vcpu_load(&vmx->vcpu, cpu);
  3085. err = vmx_vcpu_setup(vmx);
  3086. vmx_vcpu_put(&vmx->vcpu);
  3087. put_cpu();
  3088. if (err)
  3089. goto free_vmcs;
  3090. if (vm_need_virtualize_apic_accesses(kvm))
  3091. if (alloc_apic_access_page(kvm) != 0)
  3092. goto free_vmcs;
  3093. if (vm_need_ept())
  3094. if (alloc_identity_pagetable(kvm) != 0)
  3095. goto free_vmcs;
  3096. return &vmx->vcpu;
  3097. free_vmcs:
  3098. free_vmcs(vmx->vmcs);
  3099. free_msrs:
  3100. kfree(vmx->host_msrs);
  3101. free_guest_msrs:
  3102. kfree(vmx->guest_msrs);
  3103. uninit_vcpu:
  3104. kvm_vcpu_uninit(&vmx->vcpu);
  3105. free_vcpu:
  3106. kmem_cache_free(kvm_vcpu_cache, vmx);
  3107. return ERR_PTR(err);
  3108. }
  3109. static void __init vmx_check_processor_compat(void *rtn)
  3110. {
  3111. struct vmcs_config vmcs_conf;
  3112. *(int *)rtn = 0;
  3113. if (setup_vmcs_config(&vmcs_conf) < 0)
  3114. *(int *)rtn = -EIO;
  3115. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3116. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3117. smp_processor_id());
  3118. *(int *)rtn = -EIO;
  3119. }
  3120. }
  3121. static int get_ept_level(void)
  3122. {
  3123. return VMX_EPT_DEFAULT_GAW + 1;
  3124. }
  3125. static int vmx_get_mt_mask_shift(void)
  3126. {
  3127. return VMX_EPT_MT_EPTE_SHIFT;
  3128. }
  3129. static struct kvm_x86_ops vmx_x86_ops = {
  3130. .cpu_has_kvm_support = cpu_has_kvm_support,
  3131. .disabled_by_bios = vmx_disabled_by_bios,
  3132. .hardware_setup = hardware_setup,
  3133. .hardware_unsetup = hardware_unsetup,
  3134. .check_processor_compatibility = vmx_check_processor_compat,
  3135. .hardware_enable = hardware_enable,
  3136. .hardware_disable = hardware_disable,
  3137. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3138. .vcpu_create = vmx_create_vcpu,
  3139. .vcpu_free = vmx_free_vcpu,
  3140. .vcpu_reset = vmx_vcpu_reset,
  3141. .prepare_guest_switch = vmx_save_host_state,
  3142. .vcpu_load = vmx_vcpu_load,
  3143. .vcpu_put = vmx_vcpu_put,
  3144. .set_guest_debug = set_guest_debug,
  3145. .get_msr = vmx_get_msr,
  3146. .set_msr = vmx_set_msr,
  3147. .get_segment_base = vmx_get_segment_base,
  3148. .get_segment = vmx_get_segment,
  3149. .set_segment = vmx_set_segment,
  3150. .get_cpl = vmx_get_cpl,
  3151. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3152. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3153. .set_cr0 = vmx_set_cr0,
  3154. .set_cr3 = vmx_set_cr3,
  3155. .set_cr4 = vmx_set_cr4,
  3156. .set_efer = vmx_set_efer,
  3157. .get_idt = vmx_get_idt,
  3158. .set_idt = vmx_set_idt,
  3159. .get_gdt = vmx_get_gdt,
  3160. .set_gdt = vmx_set_gdt,
  3161. .cache_reg = vmx_cache_reg,
  3162. .get_rflags = vmx_get_rflags,
  3163. .set_rflags = vmx_set_rflags,
  3164. .tlb_flush = vmx_flush_tlb,
  3165. .run = vmx_vcpu_run,
  3166. .handle_exit = vmx_handle_exit,
  3167. .skip_emulated_instruction = skip_emulated_instruction,
  3168. .patch_hypercall = vmx_patch_hypercall,
  3169. .get_irq = vmx_get_irq,
  3170. .set_irq = vmx_inject_irq,
  3171. .queue_exception = vmx_queue_exception,
  3172. .exception_injected = vmx_exception_injected,
  3173. .inject_pending_irq = vmx_intr_assist,
  3174. .inject_pending_vectors = do_interrupt_requests,
  3175. .set_tss_addr = vmx_set_tss_addr,
  3176. .get_tdp_level = get_ept_level,
  3177. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3178. };
  3179. static int __init vmx_init(void)
  3180. {
  3181. int r;
  3182. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3183. if (!vmx_io_bitmap_a)
  3184. return -ENOMEM;
  3185. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3186. if (!vmx_io_bitmap_b) {
  3187. r = -ENOMEM;
  3188. goto out;
  3189. }
  3190. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3191. if (!vmx_msr_bitmap_legacy) {
  3192. r = -ENOMEM;
  3193. goto out1;
  3194. }
  3195. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3196. if (!vmx_msr_bitmap_longmode) {
  3197. r = -ENOMEM;
  3198. goto out2;
  3199. }
  3200. /*
  3201. * Allow direct access to the PC debug port (it is often used for I/O
  3202. * delays, but the vmexits simply slow things down).
  3203. */
  3204. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3205. clear_bit(0x80, vmx_io_bitmap_a);
  3206. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3207. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3208. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3209. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3210. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3211. if (r)
  3212. goto out3;
  3213. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3214. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3215. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3216. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3217. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3218. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3219. if (vm_need_ept()) {
  3220. bypass_guest_pf = 0;
  3221. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3222. VMX_EPT_WRITABLE_MASK);
  3223. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3224. VMX_EPT_EXECUTABLE_MASK,
  3225. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3226. kvm_enable_tdp();
  3227. } else
  3228. kvm_disable_tdp();
  3229. if (bypass_guest_pf)
  3230. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3231. ept_sync_global();
  3232. return 0;
  3233. out3:
  3234. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3235. out2:
  3236. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3237. out1:
  3238. free_page((unsigned long)vmx_io_bitmap_b);
  3239. out:
  3240. free_page((unsigned long)vmx_io_bitmap_a);
  3241. return r;
  3242. }
  3243. static void __exit vmx_exit(void)
  3244. {
  3245. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3246. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3247. free_page((unsigned long)vmx_io_bitmap_b);
  3248. free_page((unsigned long)vmx_io_bitmap_a);
  3249. kvm_exit();
  3250. }
  3251. module_init(vmx_init)
  3252. module_exit(vmx_exit)