page-writeback.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  43. * by raising pause time to max_pause when falls below it.
  44. */
  45. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  46. /*
  47. * Estimate write bandwidth at 200ms intervals.
  48. */
  49. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  50. #define RATELIMIT_CALC_SHIFT 10
  51. /*
  52. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  53. * will look to see if it needs to force writeback or throttling.
  54. */
  55. static long ratelimit_pages = 32;
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via writeback threads) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  63. * dirty_background_ratio * the amount of dirtyable memory
  64. */
  65. unsigned long dirty_background_bytes;
  66. /*
  67. * free highmem will not be subtracted from the total free memory
  68. * for calculating free ratios if vm_highmem_is_dirtyable is true
  69. */
  70. int vm_highmem_is_dirtyable;
  71. /*
  72. * The generator of dirty data starts writeback at this percentage
  73. */
  74. int vm_dirty_ratio = 20;
  75. /*
  76. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  77. * vm_dirty_ratio * the amount of dirtyable memory
  78. */
  79. unsigned long vm_dirty_bytes;
  80. /*
  81. * The interval between `kupdate'-style writebacks
  82. */
  83. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  84. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  85. /*
  86. * The longest time for which data is allowed to remain dirty
  87. */
  88. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  89. /*
  90. * Flag that makes the machine dump writes/reads and block dirtyings.
  91. */
  92. int block_dump;
  93. /*
  94. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  95. * a full sync is triggered after this time elapses without any disk activity.
  96. */
  97. int laptop_mode;
  98. EXPORT_SYMBOL(laptop_mode);
  99. /* End of sysctl-exported parameters */
  100. unsigned long global_dirty_limit;
  101. /*
  102. * Scale the writeback cache size proportional to the relative writeout speeds.
  103. *
  104. * We do this by keeping a floating proportion between BDIs, based on page
  105. * writeback completions [end_page_writeback()]. Those devices that write out
  106. * pages fastest will get the larger share, while the slower will get a smaller
  107. * share.
  108. *
  109. * We use page writeout completions because we are interested in getting rid of
  110. * dirty pages. Having them written out is the primary goal.
  111. *
  112. * We introduce a concept of time, a period over which we measure these events,
  113. * because demand can/will vary over time. The length of this period itself is
  114. * measured in page writeback completions.
  115. *
  116. */
  117. static struct prop_descriptor vm_completions;
  118. /*
  119. * Work out the current dirty-memory clamping and background writeout
  120. * thresholds.
  121. *
  122. * The main aim here is to lower them aggressively if there is a lot of mapped
  123. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  124. * pages. It is better to clamp down on writers than to start swapping, and
  125. * performing lots of scanning.
  126. *
  127. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  128. *
  129. * We don't permit the clamping level to fall below 5% - that is getting rather
  130. * excessive.
  131. *
  132. * We make sure that the background writeout level is below the adjusted
  133. * clamping level.
  134. */
  135. /*
  136. * In a memory zone, there is a certain amount of pages we consider
  137. * available for the page cache, which is essentially the number of
  138. * free and reclaimable pages, minus some zone reserves to protect
  139. * lowmem and the ability to uphold the zone's watermarks without
  140. * requiring writeback.
  141. *
  142. * This number of dirtyable pages is the base value of which the
  143. * user-configurable dirty ratio is the effictive number of pages that
  144. * are allowed to be actually dirtied. Per individual zone, or
  145. * globally by using the sum of dirtyable pages over all zones.
  146. *
  147. * Because the user is allowed to specify the dirty limit globally as
  148. * absolute number of bytes, calculating the per-zone dirty limit can
  149. * require translating the configured limit into a percentage of
  150. * global dirtyable memory first.
  151. */
  152. static unsigned long highmem_dirtyable_memory(unsigned long total)
  153. {
  154. #ifdef CONFIG_HIGHMEM
  155. int node;
  156. unsigned long x = 0;
  157. for_each_node_state(node, N_HIGH_MEMORY) {
  158. struct zone *z =
  159. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  160. x += zone_page_state(z, NR_FREE_PAGES) +
  161. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  162. }
  163. /*
  164. * Make sure that the number of highmem pages is never larger
  165. * than the number of the total dirtyable memory. This can only
  166. * occur in very strange VM situations but we want to make sure
  167. * that this does not occur.
  168. */
  169. return min(x, total);
  170. #else
  171. return 0;
  172. #endif
  173. }
  174. /**
  175. * global_dirtyable_memory - number of globally dirtyable pages
  176. *
  177. * Returns the global number of pages potentially available for dirty
  178. * page cache. This is the base value for the global dirty limits.
  179. */
  180. unsigned long global_dirtyable_memory(void)
  181. {
  182. unsigned long x;
  183. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
  184. dirty_balance_reserve;
  185. if (!vm_highmem_is_dirtyable)
  186. x -= highmem_dirtyable_memory(x);
  187. return x + 1; /* Ensure that we never return 0 */
  188. }
  189. /*
  190. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  191. *
  192. * Calculate the dirty thresholds based on sysctl parameters
  193. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  194. * - vm.dirty_ratio or vm.dirty_bytes
  195. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  196. * real-time tasks.
  197. */
  198. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  199. {
  200. unsigned long background;
  201. unsigned long dirty;
  202. unsigned long uninitialized_var(available_memory);
  203. struct task_struct *tsk;
  204. if (!vm_dirty_bytes || !dirty_background_bytes)
  205. available_memory = global_dirtyable_memory();
  206. if (vm_dirty_bytes)
  207. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  208. else
  209. dirty = (vm_dirty_ratio * available_memory) / 100;
  210. if (dirty_background_bytes)
  211. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  212. else
  213. background = (dirty_background_ratio * available_memory) / 100;
  214. if (background >= dirty)
  215. background = dirty / 2;
  216. tsk = current;
  217. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  218. background += background / 4;
  219. dirty += dirty / 4;
  220. }
  221. *pbackground = background;
  222. *pdirty = dirty;
  223. trace_global_dirty_state(background, dirty);
  224. }
  225. /**
  226. * zone_dirtyable_memory - number of dirtyable pages in a zone
  227. * @zone: the zone
  228. *
  229. * Returns the zone's number of pages potentially available for dirty
  230. * page cache. This is the base value for the per-zone dirty limits.
  231. */
  232. static unsigned long zone_dirtyable_memory(struct zone *zone)
  233. {
  234. /*
  235. * The effective global number of dirtyable pages may exclude
  236. * highmem as a big-picture measure to keep the ratio between
  237. * dirty memory and lowmem reasonable.
  238. *
  239. * But this function is purely about the individual zone and a
  240. * highmem zone can hold its share of dirty pages, so we don't
  241. * care about vm_highmem_is_dirtyable here.
  242. */
  243. return zone_page_state(zone, NR_FREE_PAGES) +
  244. zone_reclaimable_pages(zone) -
  245. zone->dirty_balance_reserve;
  246. }
  247. /**
  248. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  249. * @zone: the zone
  250. *
  251. * Returns the maximum number of dirty pages allowed in a zone, based
  252. * on the zone's dirtyable memory.
  253. */
  254. static unsigned long zone_dirty_limit(struct zone *zone)
  255. {
  256. unsigned long zone_memory = zone_dirtyable_memory(zone);
  257. struct task_struct *tsk = current;
  258. unsigned long dirty;
  259. if (vm_dirty_bytes)
  260. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  261. zone_memory / global_dirtyable_memory();
  262. else
  263. dirty = vm_dirty_ratio * zone_memory / 100;
  264. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  265. dirty += dirty / 4;
  266. return dirty;
  267. }
  268. /**
  269. * zone_dirty_ok - tells whether a zone is within its dirty limits
  270. * @zone: the zone to check
  271. *
  272. * Returns %true when the dirty pages in @zone are within the zone's
  273. * dirty limit, %false if the limit is exceeded.
  274. */
  275. bool zone_dirty_ok(struct zone *zone)
  276. {
  277. unsigned long limit = zone_dirty_limit(zone);
  278. return zone_page_state(zone, NR_FILE_DIRTY) +
  279. zone_page_state(zone, NR_UNSTABLE_NFS) +
  280. zone_page_state(zone, NR_WRITEBACK) <= limit;
  281. }
  282. /*
  283. * couple the period to the dirty_ratio:
  284. *
  285. * period/2 ~ roundup_pow_of_two(dirty limit)
  286. */
  287. static int calc_period_shift(void)
  288. {
  289. unsigned long dirty_total;
  290. if (vm_dirty_bytes)
  291. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  292. else
  293. dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
  294. 100;
  295. return 2 + ilog2(dirty_total - 1);
  296. }
  297. /*
  298. * update the period when the dirty threshold changes.
  299. */
  300. static void update_completion_period(void)
  301. {
  302. int shift = calc_period_shift();
  303. prop_change_shift(&vm_completions, shift);
  304. writeback_set_ratelimit();
  305. }
  306. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  307. void __user *buffer, size_t *lenp,
  308. loff_t *ppos)
  309. {
  310. int ret;
  311. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  312. if (ret == 0 && write)
  313. dirty_background_bytes = 0;
  314. return ret;
  315. }
  316. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  317. void __user *buffer, size_t *lenp,
  318. loff_t *ppos)
  319. {
  320. int ret;
  321. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  322. if (ret == 0 && write)
  323. dirty_background_ratio = 0;
  324. return ret;
  325. }
  326. int dirty_ratio_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int old_ratio = vm_dirty_ratio;
  331. int ret;
  332. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  333. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  334. update_completion_period();
  335. vm_dirty_bytes = 0;
  336. }
  337. return ret;
  338. }
  339. int dirty_bytes_handler(struct ctl_table *table, int write,
  340. void __user *buffer, size_t *lenp,
  341. loff_t *ppos)
  342. {
  343. unsigned long old_bytes = vm_dirty_bytes;
  344. int ret;
  345. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  346. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  347. update_completion_period();
  348. vm_dirty_ratio = 0;
  349. }
  350. return ret;
  351. }
  352. /*
  353. * Increment the BDI's writeout completion count and the global writeout
  354. * completion count. Called from test_clear_page_writeback().
  355. */
  356. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  357. {
  358. __inc_bdi_stat(bdi, BDI_WRITTEN);
  359. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  360. bdi->max_prop_frac);
  361. }
  362. void bdi_writeout_inc(struct backing_dev_info *bdi)
  363. {
  364. unsigned long flags;
  365. local_irq_save(flags);
  366. __bdi_writeout_inc(bdi);
  367. local_irq_restore(flags);
  368. }
  369. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  370. /*
  371. * Obtain an accurate fraction of the BDI's portion.
  372. */
  373. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  374. long *numerator, long *denominator)
  375. {
  376. prop_fraction_percpu(&vm_completions, &bdi->completions,
  377. numerator, denominator);
  378. }
  379. /*
  380. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  381. * registered backing devices, which, for obvious reasons, can not
  382. * exceed 100%.
  383. */
  384. static unsigned int bdi_min_ratio;
  385. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  386. {
  387. int ret = 0;
  388. spin_lock_bh(&bdi_lock);
  389. if (min_ratio > bdi->max_ratio) {
  390. ret = -EINVAL;
  391. } else {
  392. min_ratio -= bdi->min_ratio;
  393. if (bdi_min_ratio + min_ratio < 100) {
  394. bdi_min_ratio += min_ratio;
  395. bdi->min_ratio += min_ratio;
  396. } else {
  397. ret = -EINVAL;
  398. }
  399. }
  400. spin_unlock_bh(&bdi_lock);
  401. return ret;
  402. }
  403. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  404. {
  405. int ret = 0;
  406. if (max_ratio > 100)
  407. return -EINVAL;
  408. spin_lock_bh(&bdi_lock);
  409. if (bdi->min_ratio > max_ratio) {
  410. ret = -EINVAL;
  411. } else {
  412. bdi->max_ratio = max_ratio;
  413. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  414. }
  415. spin_unlock_bh(&bdi_lock);
  416. return ret;
  417. }
  418. EXPORT_SYMBOL(bdi_set_max_ratio);
  419. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  420. unsigned long bg_thresh)
  421. {
  422. return (thresh + bg_thresh) / 2;
  423. }
  424. static unsigned long hard_dirty_limit(unsigned long thresh)
  425. {
  426. return max(thresh, global_dirty_limit);
  427. }
  428. /**
  429. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  430. * @bdi: the backing_dev_info to query
  431. * @dirty: global dirty limit in pages
  432. *
  433. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  434. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  435. *
  436. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  437. * when sleeping max_pause per page is not enough to keep the dirty pages under
  438. * control. For example, when the device is completely stalled due to some error
  439. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  440. * In the other normal situations, it acts more gently by throttling the tasks
  441. * more (rather than completely block them) when the bdi dirty pages go high.
  442. *
  443. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  444. * - starving fast devices
  445. * - piling up dirty pages (that will take long time to sync) on slow devices
  446. *
  447. * The bdi's share of dirty limit will be adapting to its throughput and
  448. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  449. */
  450. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  451. {
  452. u64 bdi_dirty;
  453. long numerator, denominator;
  454. /*
  455. * Calculate this BDI's share of the dirty ratio.
  456. */
  457. bdi_writeout_fraction(bdi, &numerator, &denominator);
  458. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  459. bdi_dirty *= numerator;
  460. do_div(bdi_dirty, denominator);
  461. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  462. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  463. bdi_dirty = dirty * bdi->max_ratio / 100;
  464. return bdi_dirty;
  465. }
  466. /*
  467. * Dirty position control.
  468. *
  469. * (o) global/bdi setpoints
  470. *
  471. * We want the dirty pages be balanced around the global/bdi setpoints.
  472. * When the number of dirty pages is higher/lower than the setpoint, the
  473. * dirty position control ratio (and hence task dirty ratelimit) will be
  474. * decreased/increased to bring the dirty pages back to the setpoint.
  475. *
  476. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  477. *
  478. * if (dirty < setpoint) scale up pos_ratio
  479. * if (dirty > setpoint) scale down pos_ratio
  480. *
  481. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  482. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  483. *
  484. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  485. *
  486. * (o) global control line
  487. *
  488. * ^ pos_ratio
  489. * |
  490. * | |<===== global dirty control scope ======>|
  491. * 2.0 .............*
  492. * | .*
  493. * | . *
  494. * | . *
  495. * | . *
  496. * | . *
  497. * | . *
  498. * 1.0 ................................*
  499. * | . . *
  500. * | . . *
  501. * | . . *
  502. * | . . *
  503. * | . . *
  504. * 0 +------------.------------------.----------------------*------------->
  505. * freerun^ setpoint^ limit^ dirty pages
  506. *
  507. * (o) bdi control line
  508. *
  509. * ^ pos_ratio
  510. * |
  511. * | *
  512. * | *
  513. * | *
  514. * | *
  515. * | * |<=========== span ============>|
  516. * 1.0 .......................*
  517. * | . *
  518. * | . *
  519. * | . *
  520. * | . *
  521. * | . *
  522. * | . *
  523. * | . *
  524. * | . *
  525. * | . *
  526. * | . *
  527. * | . *
  528. * 1/4 ...............................................* * * * * * * * * * * *
  529. * | . .
  530. * | . .
  531. * | . .
  532. * 0 +----------------------.-------------------------------.------------->
  533. * bdi_setpoint^ x_intercept^
  534. *
  535. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  536. * be smoothly throttled down to normal if it starts high in situations like
  537. * - start writing to a slow SD card and a fast disk at the same time. The SD
  538. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  539. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  540. */
  541. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  542. unsigned long thresh,
  543. unsigned long bg_thresh,
  544. unsigned long dirty,
  545. unsigned long bdi_thresh,
  546. unsigned long bdi_dirty)
  547. {
  548. unsigned long write_bw = bdi->avg_write_bandwidth;
  549. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  550. unsigned long limit = hard_dirty_limit(thresh);
  551. unsigned long x_intercept;
  552. unsigned long setpoint; /* dirty pages' target balance point */
  553. unsigned long bdi_setpoint;
  554. unsigned long span;
  555. long long pos_ratio; /* for scaling up/down the rate limit */
  556. long x;
  557. if (unlikely(dirty >= limit))
  558. return 0;
  559. /*
  560. * global setpoint
  561. *
  562. * setpoint - dirty 3
  563. * f(dirty) := 1.0 + (----------------)
  564. * limit - setpoint
  565. *
  566. * it's a 3rd order polynomial that subjects to
  567. *
  568. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  569. * (2) f(setpoint) = 1.0 => the balance point
  570. * (3) f(limit) = 0 => the hard limit
  571. * (4) df/dx <= 0 => negative feedback control
  572. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  573. * => fast response on large errors; small oscillation near setpoint
  574. */
  575. setpoint = (freerun + limit) / 2;
  576. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  577. limit - setpoint + 1);
  578. pos_ratio = x;
  579. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  580. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  581. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  582. /*
  583. * We have computed basic pos_ratio above based on global situation. If
  584. * the bdi is over/under its share of dirty pages, we want to scale
  585. * pos_ratio further down/up. That is done by the following mechanism.
  586. */
  587. /*
  588. * bdi setpoint
  589. *
  590. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  591. *
  592. * x_intercept - bdi_dirty
  593. * := --------------------------
  594. * x_intercept - bdi_setpoint
  595. *
  596. * The main bdi control line is a linear function that subjects to
  597. *
  598. * (1) f(bdi_setpoint) = 1.0
  599. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  600. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  601. *
  602. * For single bdi case, the dirty pages are observed to fluctuate
  603. * regularly within range
  604. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  605. * for various filesystems, where (2) can yield in a reasonable 12.5%
  606. * fluctuation range for pos_ratio.
  607. *
  608. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  609. * own size, so move the slope over accordingly and choose a slope that
  610. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  611. */
  612. if (unlikely(bdi_thresh > thresh))
  613. bdi_thresh = thresh;
  614. /*
  615. * It's very possible that bdi_thresh is close to 0 not because the
  616. * device is slow, but that it has remained inactive for long time.
  617. * Honour such devices a reasonable good (hopefully IO efficient)
  618. * threshold, so that the occasional writes won't be blocked and active
  619. * writes can rampup the threshold quickly.
  620. */
  621. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  622. /*
  623. * scale global setpoint to bdi's:
  624. * bdi_setpoint = setpoint * bdi_thresh / thresh
  625. */
  626. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  627. bdi_setpoint = setpoint * (u64)x >> 16;
  628. /*
  629. * Use span=(8*write_bw) in single bdi case as indicated by
  630. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  631. *
  632. * bdi_thresh thresh - bdi_thresh
  633. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  634. * thresh thresh
  635. */
  636. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  637. x_intercept = bdi_setpoint + span;
  638. if (bdi_dirty < x_intercept - span / 4) {
  639. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  640. x_intercept - bdi_setpoint + 1);
  641. } else
  642. pos_ratio /= 4;
  643. /*
  644. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  645. * It may push the desired control point of global dirty pages higher
  646. * than setpoint.
  647. */
  648. x_intercept = bdi_thresh / 2;
  649. if (bdi_dirty < x_intercept) {
  650. if (bdi_dirty > x_intercept / 8)
  651. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  652. else
  653. pos_ratio *= 8;
  654. }
  655. return pos_ratio;
  656. }
  657. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  658. unsigned long elapsed,
  659. unsigned long written)
  660. {
  661. const unsigned long period = roundup_pow_of_two(3 * HZ);
  662. unsigned long avg = bdi->avg_write_bandwidth;
  663. unsigned long old = bdi->write_bandwidth;
  664. u64 bw;
  665. /*
  666. * bw = written * HZ / elapsed
  667. *
  668. * bw * elapsed + write_bandwidth * (period - elapsed)
  669. * write_bandwidth = ---------------------------------------------------
  670. * period
  671. */
  672. bw = written - bdi->written_stamp;
  673. bw *= HZ;
  674. if (unlikely(elapsed > period)) {
  675. do_div(bw, elapsed);
  676. avg = bw;
  677. goto out;
  678. }
  679. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  680. bw >>= ilog2(period);
  681. /*
  682. * one more level of smoothing, for filtering out sudden spikes
  683. */
  684. if (avg > old && old >= (unsigned long)bw)
  685. avg -= (avg - old) >> 3;
  686. if (avg < old && old <= (unsigned long)bw)
  687. avg += (old - avg) >> 3;
  688. out:
  689. bdi->write_bandwidth = bw;
  690. bdi->avg_write_bandwidth = avg;
  691. }
  692. /*
  693. * The global dirtyable memory and dirty threshold could be suddenly knocked
  694. * down by a large amount (eg. on the startup of KVM in a swapless system).
  695. * This may throw the system into deep dirty exceeded state and throttle
  696. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  697. * global_dirty_limit for tracking slowly down to the knocked down dirty
  698. * threshold.
  699. */
  700. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  701. {
  702. unsigned long limit = global_dirty_limit;
  703. /*
  704. * Follow up in one step.
  705. */
  706. if (limit < thresh) {
  707. limit = thresh;
  708. goto update;
  709. }
  710. /*
  711. * Follow down slowly. Use the higher one as the target, because thresh
  712. * may drop below dirty. This is exactly the reason to introduce
  713. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  714. */
  715. thresh = max(thresh, dirty);
  716. if (limit > thresh) {
  717. limit -= (limit - thresh) >> 5;
  718. goto update;
  719. }
  720. return;
  721. update:
  722. global_dirty_limit = limit;
  723. }
  724. static void global_update_bandwidth(unsigned long thresh,
  725. unsigned long dirty,
  726. unsigned long now)
  727. {
  728. static DEFINE_SPINLOCK(dirty_lock);
  729. static unsigned long update_time;
  730. /*
  731. * check locklessly first to optimize away locking for the most time
  732. */
  733. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  734. return;
  735. spin_lock(&dirty_lock);
  736. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  737. update_dirty_limit(thresh, dirty);
  738. update_time = now;
  739. }
  740. spin_unlock(&dirty_lock);
  741. }
  742. /*
  743. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  744. *
  745. * Normal bdi tasks will be curbed at or below it in long term.
  746. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  747. */
  748. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  749. unsigned long thresh,
  750. unsigned long bg_thresh,
  751. unsigned long dirty,
  752. unsigned long bdi_thresh,
  753. unsigned long bdi_dirty,
  754. unsigned long dirtied,
  755. unsigned long elapsed)
  756. {
  757. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  758. unsigned long limit = hard_dirty_limit(thresh);
  759. unsigned long setpoint = (freerun + limit) / 2;
  760. unsigned long write_bw = bdi->avg_write_bandwidth;
  761. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  762. unsigned long dirty_rate;
  763. unsigned long task_ratelimit;
  764. unsigned long balanced_dirty_ratelimit;
  765. unsigned long pos_ratio;
  766. unsigned long step;
  767. unsigned long x;
  768. /*
  769. * The dirty rate will match the writeout rate in long term, except
  770. * when dirty pages are truncated by userspace or re-dirtied by FS.
  771. */
  772. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  773. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  774. bdi_thresh, bdi_dirty);
  775. /*
  776. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  777. */
  778. task_ratelimit = (u64)dirty_ratelimit *
  779. pos_ratio >> RATELIMIT_CALC_SHIFT;
  780. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  781. /*
  782. * A linear estimation of the "balanced" throttle rate. The theory is,
  783. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  784. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  785. * formula will yield the balanced rate limit (write_bw / N).
  786. *
  787. * Note that the expanded form is not a pure rate feedback:
  788. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  789. * but also takes pos_ratio into account:
  790. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  791. *
  792. * (1) is not realistic because pos_ratio also takes part in balancing
  793. * the dirty rate. Consider the state
  794. * pos_ratio = 0.5 (3)
  795. * rate = 2 * (write_bw / N) (4)
  796. * If (1) is used, it will stuck in that state! Because each dd will
  797. * be throttled at
  798. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  799. * yielding
  800. * dirty_rate = N * task_ratelimit = write_bw (6)
  801. * put (6) into (1) we get
  802. * rate_(i+1) = rate_(i) (7)
  803. *
  804. * So we end up using (2) to always keep
  805. * rate_(i+1) ~= (write_bw / N) (8)
  806. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  807. * pos_ratio is able to drive itself to 1.0, which is not only where
  808. * the dirty count meet the setpoint, but also where the slope of
  809. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  810. */
  811. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  812. dirty_rate | 1);
  813. /*
  814. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  815. */
  816. if (unlikely(balanced_dirty_ratelimit > write_bw))
  817. balanced_dirty_ratelimit = write_bw;
  818. /*
  819. * We could safely do this and return immediately:
  820. *
  821. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  822. *
  823. * However to get a more stable dirty_ratelimit, the below elaborated
  824. * code makes use of task_ratelimit to filter out sigular points and
  825. * limit the step size.
  826. *
  827. * The below code essentially only uses the relative value of
  828. *
  829. * task_ratelimit - dirty_ratelimit
  830. * = (pos_ratio - 1) * dirty_ratelimit
  831. *
  832. * which reflects the direction and size of dirty position error.
  833. */
  834. /*
  835. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  836. * task_ratelimit is on the same side of dirty_ratelimit, too.
  837. * For example, when
  838. * - dirty_ratelimit > balanced_dirty_ratelimit
  839. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  840. * lowering dirty_ratelimit will help meet both the position and rate
  841. * control targets. Otherwise, don't update dirty_ratelimit if it will
  842. * only help meet the rate target. After all, what the users ultimately
  843. * feel and care are stable dirty rate and small position error.
  844. *
  845. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  846. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  847. * keeps jumping around randomly and can even leap far away at times
  848. * due to the small 200ms estimation period of dirty_rate (we want to
  849. * keep that period small to reduce time lags).
  850. */
  851. step = 0;
  852. if (dirty < setpoint) {
  853. x = min(bdi->balanced_dirty_ratelimit,
  854. min(balanced_dirty_ratelimit, task_ratelimit));
  855. if (dirty_ratelimit < x)
  856. step = x - dirty_ratelimit;
  857. } else {
  858. x = max(bdi->balanced_dirty_ratelimit,
  859. max(balanced_dirty_ratelimit, task_ratelimit));
  860. if (dirty_ratelimit > x)
  861. step = dirty_ratelimit - x;
  862. }
  863. /*
  864. * Don't pursue 100% rate matching. It's impossible since the balanced
  865. * rate itself is constantly fluctuating. So decrease the track speed
  866. * when it gets close to the target. Helps eliminate pointless tremors.
  867. */
  868. step >>= dirty_ratelimit / (2 * step + 1);
  869. /*
  870. * Limit the tracking speed to avoid overshooting.
  871. */
  872. step = (step + 7) / 8;
  873. if (dirty_ratelimit < balanced_dirty_ratelimit)
  874. dirty_ratelimit += step;
  875. else
  876. dirty_ratelimit -= step;
  877. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  878. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  879. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  880. }
  881. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  882. unsigned long thresh,
  883. unsigned long bg_thresh,
  884. unsigned long dirty,
  885. unsigned long bdi_thresh,
  886. unsigned long bdi_dirty,
  887. unsigned long start_time)
  888. {
  889. unsigned long now = jiffies;
  890. unsigned long elapsed = now - bdi->bw_time_stamp;
  891. unsigned long dirtied;
  892. unsigned long written;
  893. /*
  894. * rate-limit, only update once every 200ms.
  895. */
  896. if (elapsed < BANDWIDTH_INTERVAL)
  897. return;
  898. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  899. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  900. /*
  901. * Skip quiet periods when disk bandwidth is under-utilized.
  902. * (at least 1s idle time between two flusher runs)
  903. */
  904. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  905. goto snapshot;
  906. if (thresh) {
  907. global_update_bandwidth(thresh, dirty, now);
  908. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  909. bdi_thresh, bdi_dirty,
  910. dirtied, elapsed);
  911. }
  912. bdi_update_write_bandwidth(bdi, elapsed, written);
  913. snapshot:
  914. bdi->dirtied_stamp = dirtied;
  915. bdi->written_stamp = written;
  916. bdi->bw_time_stamp = now;
  917. }
  918. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  919. unsigned long thresh,
  920. unsigned long bg_thresh,
  921. unsigned long dirty,
  922. unsigned long bdi_thresh,
  923. unsigned long bdi_dirty,
  924. unsigned long start_time)
  925. {
  926. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  927. return;
  928. spin_lock(&bdi->wb.list_lock);
  929. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  930. bdi_thresh, bdi_dirty, start_time);
  931. spin_unlock(&bdi->wb.list_lock);
  932. }
  933. /*
  934. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  935. * will look to see if it needs to start dirty throttling.
  936. *
  937. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  938. * global_page_state() too often. So scale it near-sqrt to the safety margin
  939. * (the number of pages we may dirty without exceeding the dirty limits).
  940. */
  941. static unsigned long dirty_poll_interval(unsigned long dirty,
  942. unsigned long thresh)
  943. {
  944. if (thresh > dirty)
  945. return 1UL << (ilog2(thresh - dirty) >> 1);
  946. return 1;
  947. }
  948. static long bdi_max_pause(struct backing_dev_info *bdi,
  949. unsigned long bdi_dirty)
  950. {
  951. long bw = bdi->avg_write_bandwidth;
  952. long t;
  953. /*
  954. * Limit pause time for small memory systems. If sleeping for too long
  955. * time, a small pool of dirty/writeback pages may go empty and disk go
  956. * idle.
  957. *
  958. * 8 serves as the safety ratio.
  959. */
  960. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  961. t++;
  962. return min_t(long, t, MAX_PAUSE);
  963. }
  964. static long bdi_min_pause(struct backing_dev_info *bdi,
  965. long max_pause,
  966. unsigned long task_ratelimit,
  967. unsigned long dirty_ratelimit,
  968. int *nr_dirtied_pause)
  969. {
  970. long hi = ilog2(bdi->avg_write_bandwidth);
  971. long lo = ilog2(bdi->dirty_ratelimit);
  972. long t; /* target pause */
  973. long pause; /* estimated next pause */
  974. int pages; /* target nr_dirtied_pause */
  975. /* target for 10ms pause on 1-dd case */
  976. t = max(1, HZ / 100);
  977. /*
  978. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  979. * overheads.
  980. *
  981. * (N * 10ms) on 2^N concurrent tasks.
  982. */
  983. if (hi > lo)
  984. t += (hi - lo) * (10 * HZ) / 1024;
  985. /*
  986. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  987. * on the much more stable dirty_ratelimit. However the next pause time
  988. * will be computed based on task_ratelimit and the two rate limits may
  989. * depart considerably at some time. Especially if task_ratelimit goes
  990. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  991. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  992. * result task_ratelimit won't be executed faithfully, which could
  993. * eventually bring down dirty_ratelimit.
  994. *
  995. * We apply two rules to fix it up:
  996. * 1) try to estimate the next pause time and if necessary, use a lower
  997. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  998. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  999. * 2) limit the target pause time to max_pause/2, so that the normal
  1000. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1001. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1002. */
  1003. t = min(t, 1 + max_pause / 2);
  1004. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1005. /*
  1006. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1007. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1008. * When the 16 consecutive reads are often interrupted by some dirty
  1009. * throttling pause during the async writes, cfq will go into idles
  1010. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1011. * until reaches DIRTY_POLL_THRESH=32 pages.
  1012. */
  1013. if (pages < DIRTY_POLL_THRESH) {
  1014. t = max_pause;
  1015. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1016. if (pages > DIRTY_POLL_THRESH) {
  1017. pages = DIRTY_POLL_THRESH;
  1018. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1019. }
  1020. }
  1021. pause = HZ * pages / (task_ratelimit + 1);
  1022. if (pause > max_pause) {
  1023. t = max_pause;
  1024. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1025. }
  1026. *nr_dirtied_pause = pages;
  1027. /*
  1028. * The minimal pause time will normally be half the target pause time.
  1029. */
  1030. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1031. }
  1032. /*
  1033. * balance_dirty_pages() must be called by processes which are generating dirty
  1034. * data. It looks at the number of dirty pages in the machine and will force
  1035. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1036. * If we're over `background_thresh' then the writeback threads are woken to
  1037. * perform some writeout.
  1038. */
  1039. static void balance_dirty_pages(struct address_space *mapping,
  1040. unsigned long pages_dirtied)
  1041. {
  1042. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1043. unsigned long bdi_reclaimable;
  1044. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1045. unsigned long bdi_dirty;
  1046. unsigned long freerun;
  1047. unsigned long background_thresh;
  1048. unsigned long dirty_thresh;
  1049. unsigned long bdi_thresh;
  1050. long period;
  1051. long pause;
  1052. long max_pause;
  1053. long min_pause;
  1054. int nr_dirtied_pause;
  1055. bool dirty_exceeded = false;
  1056. unsigned long task_ratelimit;
  1057. unsigned long dirty_ratelimit;
  1058. unsigned long pos_ratio;
  1059. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1060. unsigned long start_time = jiffies;
  1061. for (;;) {
  1062. unsigned long now = jiffies;
  1063. /*
  1064. * Unstable writes are a feature of certain networked
  1065. * filesystems (i.e. NFS) in which data may have been
  1066. * written to the server's write cache, but has not yet
  1067. * been flushed to permanent storage.
  1068. */
  1069. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1070. global_page_state(NR_UNSTABLE_NFS);
  1071. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1072. global_dirty_limits(&background_thresh, &dirty_thresh);
  1073. /*
  1074. * Throttle it only when the background writeback cannot
  1075. * catch-up. This avoids (excessively) small writeouts
  1076. * when the bdi limits are ramping up.
  1077. */
  1078. freerun = dirty_freerun_ceiling(dirty_thresh,
  1079. background_thresh);
  1080. if (nr_dirty <= freerun) {
  1081. current->dirty_paused_when = now;
  1082. current->nr_dirtied = 0;
  1083. current->nr_dirtied_pause =
  1084. dirty_poll_interval(nr_dirty, dirty_thresh);
  1085. break;
  1086. }
  1087. if (unlikely(!writeback_in_progress(bdi)))
  1088. bdi_start_background_writeback(bdi);
  1089. /*
  1090. * bdi_thresh is not treated as some limiting factor as
  1091. * dirty_thresh, due to reasons
  1092. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1093. * - in a system with HDD and USB key, the USB key may somehow
  1094. * go into state (bdi_dirty >> bdi_thresh) either because
  1095. * bdi_dirty starts high, or because bdi_thresh drops low.
  1096. * In this case we don't want to hard throttle the USB key
  1097. * dirtiers for 100 seconds until bdi_dirty drops under
  1098. * bdi_thresh. Instead the auxiliary bdi control line in
  1099. * bdi_position_ratio() will let the dirtier task progress
  1100. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1101. */
  1102. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1103. /*
  1104. * In order to avoid the stacked BDI deadlock we need
  1105. * to ensure we accurately count the 'dirty' pages when
  1106. * the threshold is low.
  1107. *
  1108. * Otherwise it would be possible to get thresh+n pages
  1109. * reported dirty, even though there are thresh-m pages
  1110. * actually dirty; with m+n sitting in the percpu
  1111. * deltas.
  1112. */
  1113. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1114. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1115. bdi_dirty = bdi_reclaimable +
  1116. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1117. } else {
  1118. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1119. bdi_dirty = bdi_reclaimable +
  1120. bdi_stat(bdi, BDI_WRITEBACK);
  1121. }
  1122. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1123. (nr_dirty > dirty_thresh);
  1124. if (dirty_exceeded && !bdi->dirty_exceeded)
  1125. bdi->dirty_exceeded = 1;
  1126. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1127. nr_dirty, bdi_thresh, bdi_dirty,
  1128. start_time);
  1129. dirty_ratelimit = bdi->dirty_ratelimit;
  1130. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1131. background_thresh, nr_dirty,
  1132. bdi_thresh, bdi_dirty);
  1133. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1134. RATELIMIT_CALC_SHIFT;
  1135. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1136. min_pause = bdi_min_pause(bdi, max_pause,
  1137. task_ratelimit, dirty_ratelimit,
  1138. &nr_dirtied_pause);
  1139. if (unlikely(task_ratelimit == 0)) {
  1140. period = max_pause;
  1141. pause = max_pause;
  1142. goto pause;
  1143. }
  1144. period = HZ * pages_dirtied / task_ratelimit;
  1145. pause = period;
  1146. if (current->dirty_paused_when)
  1147. pause -= now - current->dirty_paused_when;
  1148. /*
  1149. * For less than 1s think time (ext3/4 may block the dirtier
  1150. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1151. * however at much less frequency), try to compensate it in
  1152. * future periods by updating the virtual time; otherwise just
  1153. * do a reset, as it may be a light dirtier.
  1154. */
  1155. if (pause < min_pause) {
  1156. trace_balance_dirty_pages(bdi,
  1157. dirty_thresh,
  1158. background_thresh,
  1159. nr_dirty,
  1160. bdi_thresh,
  1161. bdi_dirty,
  1162. dirty_ratelimit,
  1163. task_ratelimit,
  1164. pages_dirtied,
  1165. period,
  1166. min(pause, 0L),
  1167. start_time);
  1168. if (pause < -HZ) {
  1169. current->dirty_paused_when = now;
  1170. current->nr_dirtied = 0;
  1171. } else if (period) {
  1172. current->dirty_paused_when += period;
  1173. current->nr_dirtied = 0;
  1174. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1175. current->nr_dirtied_pause += pages_dirtied;
  1176. break;
  1177. }
  1178. if (unlikely(pause > max_pause)) {
  1179. /* for occasional dropped task_ratelimit */
  1180. now += min(pause - max_pause, max_pause);
  1181. pause = max_pause;
  1182. }
  1183. pause:
  1184. trace_balance_dirty_pages(bdi,
  1185. dirty_thresh,
  1186. background_thresh,
  1187. nr_dirty,
  1188. bdi_thresh,
  1189. bdi_dirty,
  1190. dirty_ratelimit,
  1191. task_ratelimit,
  1192. pages_dirtied,
  1193. period,
  1194. pause,
  1195. start_time);
  1196. __set_current_state(TASK_KILLABLE);
  1197. io_schedule_timeout(pause);
  1198. current->dirty_paused_when = now + pause;
  1199. current->nr_dirtied = 0;
  1200. current->nr_dirtied_pause = nr_dirtied_pause;
  1201. /*
  1202. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1203. * also keep "1000+ dd on a slow USB stick" under control.
  1204. */
  1205. if (task_ratelimit)
  1206. break;
  1207. /*
  1208. * In the case of an unresponding NFS server and the NFS dirty
  1209. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1210. * to go through, so that tasks on them still remain responsive.
  1211. *
  1212. * In theory 1 page is enough to keep the comsumer-producer
  1213. * pipe going: the flusher cleans 1 page => the task dirties 1
  1214. * more page. However bdi_dirty has accounting errors. So use
  1215. * the larger and more IO friendly bdi_stat_error.
  1216. */
  1217. if (bdi_dirty <= bdi_stat_error(bdi))
  1218. break;
  1219. if (fatal_signal_pending(current))
  1220. break;
  1221. }
  1222. if (!dirty_exceeded && bdi->dirty_exceeded)
  1223. bdi->dirty_exceeded = 0;
  1224. if (writeback_in_progress(bdi))
  1225. return;
  1226. /*
  1227. * In laptop mode, we wait until hitting the higher threshold before
  1228. * starting background writeout, and then write out all the way down
  1229. * to the lower threshold. So slow writers cause minimal disk activity.
  1230. *
  1231. * In normal mode, we start background writeout at the lower
  1232. * background_thresh, to keep the amount of dirty memory low.
  1233. */
  1234. if (laptop_mode)
  1235. return;
  1236. if (nr_reclaimable > background_thresh)
  1237. bdi_start_background_writeback(bdi);
  1238. }
  1239. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1240. {
  1241. if (set_page_dirty(page) || page_mkwrite) {
  1242. struct address_space *mapping = page_mapping(page);
  1243. if (mapping)
  1244. balance_dirty_pages_ratelimited(mapping);
  1245. }
  1246. }
  1247. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1248. /*
  1249. * Normal tasks are throttled by
  1250. * loop {
  1251. * dirty tsk->nr_dirtied_pause pages;
  1252. * take a snap in balance_dirty_pages();
  1253. * }
  1254. * However there is a worst case. If every task exit immediately when dirtied
  1255. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1256. * called to throttle the page dirties. The solution is to save the not yet
  1257. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1258. * randomly into the running tasks. This works well for the above worst case,
  1259. * as the new task will pick up and accumulate the old task's leaked dirty
  1260. * count and eventually get throttled.
  1261. */
  1262. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1263. /**
  1264. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1265. * @mapping: address_space which was dirtied
  1266. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1267. *
  1268. * Processes which are dirtying memory should call in here once for each page
  1269. * which was newly dirtied. The function will periodically check the system's
  1270. * dirty state and will initiate writeback if needed.
  1271. *
  1272. * On really big machines, get_writeback_state is expensive, so try to avoid
  1273. * calling it too often (ratelimiting). But once we're over the dirty memory
  1274. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1275. * from overshooting the limit by (ratelimit_pages) each.
  1276. */
  1277. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1278. unsigned long nr_pages_dirtied)
  1279. {
  1280. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1281. int ratelimit;
  1282. int *p;
  1283. if (!bdi_cap_account_dirty(bdi))
  1284. return;
  1285. ratelimit = current->nr_dirtied_pause;
  1286. if (bdi->dirty_exceeded)
  1287. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1288. preempt_disable();
  1289. /*
  1290. * This prevents one CPU to accumulate too many dirtied pages without
  1291. * calling into balance_dirty_pages(), which can happen when there are
  1292. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1293. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1294. */
  1295. p = &__get_cpu_var(bdp_ratelimits);
  1296. if (unlikely(current->nr_dirtied >= ratelimit))
  1297. *p = 0;
  1298. else if (unlikely(*p >= ratelimit_pages)) {
  1299. *p = 0;
  1300. ratelimit = 0;
  1301. }
  1302. /*
  1303. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1304. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1305. * the dirty throttling and livelock other long-run dirtiers.
  1306. */
  1307. p = &__get_cpu_var(dirty_throttle_leaks);
  1308. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1309. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1310. *p -= nr_pages_dirtied;
  1311. current->nr_dirtied += nr_pages_dirtied;
  1312. }
  1313. preempt_enable();
  1314. if (unlikely(current->nr_dirtied >= ratelimit))
  1315. balance_dirty_pages(mapping, current->nr_dirtied);
  1316. }
  1317. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1318. void throttle_vm_writeout(gfp_t gfp_mask)
  1319. {
  1320. unsigned long background_thresh;
  1321. unsigned long dirty_thresh;
  1322. for ( ; ; ) {
  1323. global_dirty_limits(&background_thresh, &dirty_thresh);
  1324. /*
  1325. * Boost the allowable dirty threshold a bit for page
  1326. * allocators so they don't get DoS'ed by heavy writers
  1327. */
  1328. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1329. if (global_page_state(NR_UNSTABLE_NFS) +
  1330. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1331. break;
  1332. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1333. /*
  1334. * The caller might hold locks which can prevent IO completion
  1335. * or progress in the filesystem. So we cannot just sit here
  1336. * waiting for IO to complete.
  1337. */
  1338. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1339. break;
  1340. }
  1341. }
  1342. /*
  1343. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1344. */
  1345. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1346. void __user *buffer, size_t *length, loff_t *ppos)
  1347. {
  1348. proc_dointvec(table, write, buffer, length, ppos);
  1349. bdi_arm_supers_timer();
  1350. return 0;
  1351. }
  1352. #ifdef CONFIG_BLOCK
  1353. void laptop_mode_timer_fn(unsigned long data)
  1354. {
  1355. struct request_queue *q = (struct request_queue *)data;
  1356. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1357. global_page_state(NR_UNSTABLE_NFS);
  1358. /*
  1359. * We want to write everything out, not just down to the dirty
  1360. * threshold
  1361. */
  1362. if (bdi_has_dirty_io(&q->backing_dev_info))
  1363. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1364. WB_REASON_LAPTOP_TIMER);
  1365. }
  1366. /*
  1367. * We've spun up the disk and we're in laptop mode: schedule writeback
  1368. * of all dirty data a few seconds from now. If the flush is already scheduled
  1369. * then push it back - the user is still using the disk.
  1370. */
  1371. void laptop_io_completion(struct backing_dev_info *info)
  1372. {
  1373. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1374. }
  1375. /*
  1376. * We're in laptop mode and we've just synced. The sync's writes will have
  1377. * caused another writeback to be scheduled by laptop_io_completion.
  1378. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1379. */
  1380. void laptop_sync_completion(void)
  1381. {
  1382. struct backing_dev_info *bdi;
  1383. rcu_read_lock();
  1384. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1385. del_timer(&bdi->laptop_mode_wb_timer);
  1386. rcu_read_unlock();
  1387. }
  1388. #endif
  1389. /*
  1390. * If ratelimit_pages is too high then we can get into dirty-data overload
  1391. * if a large number of processes all perform writes at the same time.
  1392. * If it is too low then SMP machines will call the (expensive)
  1393. * get_writeback_state too often.
  1394. *
  1395. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1396. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1397. * thresholds.
  1398. */
  1399. void writeback_set_ratelimit(void)
  1400. {
  1401. unsigned long background_thresh;
  1402. unsigned long dirty_thresh;
  1403. global_dirty_limits(&background_thresh, &dirty_thresh);
  1404. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1405. if (ratelimit_pages < 16)
  1406. ratelimit_pages = 16;
  1407. }
  1408. static int __cpuinit
  1409. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1410. {
  1411. writeback_set_ratelimit();
  1412. return NOTIFY_DONE;
  1413. }
  1414. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1415. .notifier_call = ratelimit_handler,
  1416. .next = NULL,
  1417. };
  1418. /*
  1419. * Called early on to tune the page writeback dirty limits.
  1420. *
  1421. * We used to scale dirty pages according to how total memory
  1422. * related to pages that could be allocated for buffers (by
  1423. * comparing nr_free_buffer_pages() to vm_total_pages.
  1424. *
  1425. * However, that was when we used "dirty_ratio" to scale with
  1426. * all memory, and we don't do that any more. "dirty_ratio"
  1427. * is now applied to total non-HIGHPAGE memory (by subtracting
  1428. * totalhigh_pages from vm_total_pages), and as such we can't
  1429. * get into the old insane situation any more where we had
  1430. * large amounts of dirty pages compared to a small amount of
  1431. * non-HIGHMEM memory.
  1432. *
  1433. * But we might still want to scale the dirty_ratio by how
  1434. * much memory the box has..
  1435. */
  1436. void __init page_writeback_init(void)
  1437. {
  1438. int shift;
  1439. writeback_set_ratelimit();
  1440. register_cpu_notifier(&ratelimit_nb);
  1441. shift = calc_period_shift();
  1442. prop_descriptor_init(&vm_completions, shift);
  1443. }
  1444. /**
  1445. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1446. * @mapping: address space structure to write
  1447. * @start: starting page index
  1448. * @end: ending page index (inclusive)
  1449. *
  1450. * This function scans the page range from @start to @end (inclusive) and tags
  1451. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1452. * that write_cache_pages (or whoever calls this function) will then use
  1453. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1454. * used to avoid livelocking of writeback by a process steadily creating new
  1455. * dirty pages in the file (thus it is important for this function to be quick
  1456. * so that it can tag pages faster than a dirtying process can create them).
  1457. */
  1458. /*
  1459. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1460. */
  1461. void tag_pages_for_writeback(struct address_space *mapping,
  1462. pgoff_t start, pgoff_t end)
  1463. {
  1464. #define WRITEBACK_TAG_BATCH 4096
  1465. unsigned long tagged;
  1466. do {
  1467. spin_lock_irq(&mapping->tree_lock);
  1468. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1469. &start, end, WRITEBACK_TAG_BATCH,
  1470. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1471. spin_unlock_irq(&mapping->tree_lock);
  1472. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1473. cond_resched();
  1474. /* We check 'start' to handle wrapping when end == ~0UL */
  1475. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1476. }
  1477. EXPORT_SYMBOL(tag_pages_for_writeback);
  1478. /**
  1479. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1480. * @mapping: address space structure to write
  1481. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1482. * @writepage: function called for each page
  1483. * @data: data passed to writepage function
  1484. *
  1485. * If a page is already under I/O, write_cache_pages() skips it, even
  1486. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1487. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1488. * and msync() need to guarantee that all the data which was dirty at the time
  1489. * the call was made get new I/O started against them. If wbc->sync_mode is
  1490. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1491. * existing IO to complete.
  1492. *
  1493. * To avoid livelocks (when other process dirties new pages), we first tag
  1494. * pages which should be written back with TOWRITE tag and only then start
  1495. * writing them. For data-integrity sync we have to be careful so that we do
  1496. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1497. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1498. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1499. */
  1500. int write_cache_pages(struct address_space *mapping,
  1501. struct writeback_control *wbc, writepage_t writepage,
  1502. void *data)
  1503. {
  1504. int ret = 0;
  1505. int done = 0;
  1506. struct pagevec pvec;
  1507. int nr_pages;
  1508. pgoff_t uninitialized_var(writeback_index);
  1509. pgoff_t index;
  1510. pgoff_t end; /* Inclusive */
  1511. pgoff_t done_index;
  1512. int cycled;
  1513. int range_whole = 0;
  1514. int tag;
  1515. pagevec_init(&pvec, 0);
  1516. if (wbc->range_cyclic) {
  1517. writeback_index = mapping->writeback_index; /* prev offset */
  1518. index = writeback_index;
  1519. if (index == 0)
  1520. cycled = 1;
  1521. else
  1522. cycled = 0;
  1523. end = -1;
  1524. } else {
  1525. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1526. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1527. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1528. range_whole = 1;
  1529. cycled = 1; /* ignore range_cyclic tests */
  1530. }
  1531. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1532. tag = PAGECACHE_TAG_TOWRITE;
  1533. else
  1534. tag = PAGECACHE_TAG_DIRTY;
  1535. retry:
  1536. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1537. tag_pages_for_writeback(mapping, index, end);
  1538. done_index = index;
  1539. while (!done && (index <= end)) {
  1540. int i;
  1541. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1542. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1543. if (nr_pages == 0)
  1544. break;
  1545. for (i = 0; i < nr_pages; i++) {
  1546. struct page *page = pvec.pages[i];
  1547. /*
  1548. * At this point, the page may be truncated or
  1549. * invalidated (changing page->mapping to NULL), or
  1550. * even swizzled back from swapper_space to tmpfs file
  1551. * mapping. However, page->index will not change
  1552. * because we have a reference on the page.
  1553. */
  1554. if (page->index > end) {
  1555. /*
  1556. * can't be range_cyclic (1st pass) because
  1557. * end == -1 in that case.
  1558. */
  1559. done = 1;
  1560. break;
  1561. }
  1562. done_index = page->index;
  1563. lock_page(page);
  1564. /*
  1565. * Page truncated or invalidated. We can freely skip it
  1566. * then, even for data integrity operations: the page
  1567. * has disappeared concurrently, so there could be no
  1568. * real expectation of this data interity operation
  1569. * even if there is now a new, dirty page at the same
  1570. * pagecache address.
  1571. */
  1572. if (unlikely(page->mapping != mapping)) {
  1573. continue_unlock:
  1574. unlock_page(page);
  1575. continue;
  1576. }
  1577. if (!PageDirty(page)) {
  1578. /* someone wrote it for us */
  1579. goto continue_unlock;
  1580. }
  1581. if (PageWriteback(page)) {
  1582. if (wbc->sync_mode != WB_SYNC_NONE)
  1583. wait_on_page_writeback(page);
  1584. else
  1585. goto continue_unlock;
  1586. }
  1587. BUG_ON(PageWriteback(page));
  1588. if (!clear_page_dirty_for_io(page))
  1589. goto continue_unlock;
  1590. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1591. ret = (*writepage)(page, wbc, data);
  1592. if (unlikely(ret)) {
  1593. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1594. unlock_page(page);
  1595. ret = 0;
  1596. } else {
  1597. /*
  1598. * done_index is set past this page,
  1599. * so media errors will not choke
  1600. * background writeout for the entire
  1601. * file. This has consequences for
  1602. * range_cyclic semantics (ie. it may
  1603. * not be suitable for data integrity
  1604. * writeout).
  1605. */
  1606. done_index = page->index + 1;
  1607. done = 1;
  1608. break;
  1609. }
  1610. }
  1611. /*
  1612. * We stop writing back only if we are not doing
  1613. * integrity sync. In case of integrity sync we have to
  1614. * keep going until we have written all the pages
  1615. * we tagged for writeback prior to entering this loop.
  1616. */
  1617. if (--wbc->nr_to_write <= 0 &&
  1618. wbc->sync_mode == WB_SYNC_NONE) {
  1619. done = 1;
  1620. break;
  1621. }
  1622. }
  1623. pagevec_release(&pvec);
  1624. cond_resched();
  1625. }
  1626. if (!cycled && !done) {
  1627. /*
  1628. * range_cyclic:
  1629. * We hit the last page and there is more work to be done: wrap
  1630. * back to the start of the file
  1631. */
  1632. cycled = 1;
  1633. index = 0;
  1634. end = writeback_index - 1;
  1635. goto retry;
  1636. }
  1637. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1638. mapping->writeback_index = done_index;
  1639. return ret;
  1640. }
  1641. EXPORT_SYMBOL(write_cache_pages);
  1642. /*
  1643. * Function used by generic_writepages to call the real writepage
  1644. * function and set the mapping flags on error
  1645. */
  1646. static int __writepage(struct page *page, struct writeback_control *wbc,
  1647. void *data)
  1648. {
  1649. struct address_space *mapping = data;
  1650. int ret = mapping->a_ops->writepage(page, wbc);
  1651. mapping_set_error(mapping, ret);
  1652. return ret;
  1653. }
  1654. /**
  1655. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1656. * @mapping: address space structure to write
  1657. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1658. *
  1659. * This is a library function, which implements the writepages()
  1660. * address_space_operation.
  1661. */
  1662. int generic_writepages(struct address_space *mapping,
  1663. struct writeback_control *wbc)
  1664. {
  1665. struct blk_plug plug;
  1666. int ret;
  1667. /* deal with chardevs and other special file */
  1668. if (!mapping->a_ops->writepage)
  1669. return 0;
  1670. blk_start_plug(&plug);
  1671. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1672. blk_finish_plug(&plug);
  1673. return ret;
  1674. }
  1675. EXPORT_SYMBOL(generic_writepages);
  1676. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1677. {
  1678. int ret;
  1679. if (wbc->nr_to_write <= 0)
  1680. return 0;
  1681. if (mapping->a_ops->writepages)
  1682. ret = mapping->a_ops->writepages(mapping, wbc);
  1683. else
  1684. ret = generic_writepages(mapping, wbc);
  1685. return ret;
  1686. }
  1687. /**
  1688. * write_one_page - write out a single page and optionally wait on I/O
  1689. * @page: the page to write
  1690. * @wait: if true, wait on writeout
  1691. *
  1692. * The page must be locked by the caller and will be unlocked upon return.
  1693. *
  1694. * write_one_page() returns a negative error code if I/O failed.
  1695. */
  1696. int write_one_page(struct page *page, int wait)
  1697. {
  1698. struct address_space *mapping = page->mapping;
  1699. int ret = 0;
  1700. struct writeback_control wbc = {
  1701. .sync_mode = WB_SYNC_ALL,
  1702. .nr_to_write = 1,
  1703. };
  1704. BUG_ON(!PageLocked(page));
  1705. if (wait)
  1706. wait_on_page_writeback(page);
  1707. if (clear_page_dirty_for_io(page)) {
  1708. page_cache_get(page);
  1709. ret = mapping->a_ops->writepage(page, &wbc);
  1710. if (ret == 0 && wait) {
  1711. wait_on_page_writeback(page);
  1712. if (PageError(page))
  1713. ret = -EIO;
  1714. }
  1715. page_cache_release(page);
  1716. } else {
  1717. unlock_page(page);
  1718. }
  1719. return ret;
  1720. }
  1721. EXPORT_SYMBOL(write_one_page);
  1722. /*
  1723. * For address_spaces which do not use buffers nor write back.
  1724. */
  1725. int __set_page_dirty_no_writeback(struct page *page)
  1726. {
  1727. if (!PageDirty(page))
  1728. return !TestSetPageDirty(page);
  1729. return 0;
  1730. }
  1731. /*
  1732. * Helper function for set_page_dirty family.
  1733. * NOTE: This relies on being atomic wrt interrupts.
  1734. */
  1735. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1736. {
  1737. if (mapping_cap_account_dirty(mapping)) {
  1738. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1739. __inc_zone_page_state(page, NR_DIRTIED);
  1740. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1741. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1742. task_io_account_write(PAGE_CACHE_SIZE);
  1743. current->nr_dirtied++;
  1744. this_cpu_inc(bdp_ratelimits);
  1745. }
  1746. }
  1747. EXPORT_SYMBOL(account_page_dirtied);
  1748. /*
  1749. * Helper function for set_page_writeback family.
  1750. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1751. * wrt interrupts.
  1752. */
  1753. void account_page_writeback(struct page *page)
  1754. {
  1755. inc_zone_page_state(page, NR_WRITEBACK);
  1756. }
  1757. EXPORT_SYMBOL(account_page_writeback);
  1758. /*
  1759. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1760. * its radix tree.
  1761. *
  1762. * This is also used when a single buffer is being dirtied: we want to set the
  1763. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1764. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1765. *
  1766. * Most callers have locked the page, which pins the address_space in memory.
  1767. * But zap_pte_range() does not lock the page, however in that case the
  1768. * mapping is pinned by the vma's ->vm_file reference.
  1769. *
  1770. * We take care to handle the case where the page was truncated from the
  1771. * mapping by re-checking page_mapping() inside tree_lock.
  1772. */
  1773. int __set_page_dirty_nobuffers(struct page *page)
  1774. {
  1775. if (!TestSetPageDirty(page)) {
  1776. struct address_space *mapping = page_mapping(page);
  1777. struct address_space *mapping2;
  1778. if (!mapping)
  1779. return 1;
  1780. spin_lock_irq(&mapping->tree_lock);
  1781. mapping2 = page_mapping(page);
  1782. if (mapping2) { /* Race with truncate? */
  1783. BUG_ON(mapping2 != mapping);
  1784. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1785. account_page_dirtied(page, mapping);
  1786. radix_tree_tag_set(&mapping->page_tree,
  1787. page_index(page), PAGECACHE_TAG_DIRTY);
  1788. }
  1789. spin_unlock_irq(&mapping->tree_lock);
  1790. if (mapping->host) {
  1791. /* !PageAnon && !swapper_space */
  1792. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1793. }
  1794. return 1;
  1795. }
  1796. return 0;
  1797. }
  1798. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1799. /*
  1800. * Call this whenever redirtying a page, to de-account the dirty counters
  1801. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1802. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1803. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1804. * control.
  1805. */
  1806. void account_page_redirty(struct page *page)
  1807. {
  1808. struct address_space *mapping = page->mapping;
  1809. if (mapping && mapping_cap_account_dirty(mapping)) {
  1810. current->nr_dirtied--;
  1811. dec_zone_page_state(page, NR_DIRTIED);
  1812. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1813. }
  1814. }
  1815. EXPORT_SYMBOL(account_page_redirty);
  1816. /*
  1817. * When a writepage implementation decides that it doesn't want to write this
  1818. * page for some reason, it should redirty the locked page via
  1819. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1820. */
  1821. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1822. {
  1823. wbc->pages_skipped++;
  1824. account_page_redirty(page);
  1825. return __set_page_dirty_nobuffers(page);
  1826. }
  1827. EXPORT_SYMBOL(redirty_page_for_writepage);
  1828. /*
  1829. * Dirty a page.
  1830. *
  1831. * For pages with a mapping this should be done under the page lock
  1832. * for the benefit of asynchronous memory errors who prefer a consistent
  1833. * dirty state. This rule can be broken in some special cases,
  1834. * but should be better not to.
  1835. *
  1836. * If the mapping doesn't provide a set_page_dirty a_op, then
  1837. * just fall through and assume that it wants buffer_heads.
  1838. */
  1839. int set_page_dirty(struct page *page)
  1840. {
  1841. struct address_space *mapping = page_mapping(page);
  1842. if (likely(mapping)) {
  1843. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1844. /*
  1845. * readahead/lru_deactivate_page could remain
  1846. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1847. * About readahead, if the page is written, the flags would be
  1848. * reset. So no problem.
  1849. * About lru_deactivate_page, if the page is redirty, the flag
  1850. * will be reset. So no problem. but if the page is used by readahead
  1851. * it will confuse readahead and make it restart the size rampup
  1852. * process. But it's a trivial problem.
  1853. */
  1854. ClearPageReclaim(page);
  1855. #ifdef CONFIG_BLOCK
  1856. if (!spd)
  1857. spd = __set_page_dirty_buffers;
  1858. #endif
  1859. return (*spd)(page);
  1860. }
  1861. if (!PageDirty(page)) {
  1862. if (!TestSetPageDirty(page))
  1863. return 1;
  1864. }
  1865. return 0;
  1866. }
  1867. EXPORT_SYMBOL(set_page_dirty);
  1868. /*
  1869. * set_page_dirty() is racy if the caller has no reference against
  1870. * page->mapping->host, and if the page is unlocked. This is because another
  1871. * CPU could truncate the page off the mapping and then free the mapping.
  1872. *
  1873. * Usually, the page _is_ locked, or the caller is a user-space process which
  1874. * holds a reference on the inode by having an open file.
  1875. *
  1876. * In other cases, the page should be locked before running set_page_dirty().
  1877. */
  1878. int set_page_dirty_lock(struct page *page)
  1879. {
  1880. int ret;
  1881. lock_page(page);
  1882. ret = set_page_dirty(page);
  1883. unlock_page(page);
  1884. return ret;
  1885. }
  1886. EXPORT_SYMBOL(set_page_dirty_lock);
  1887. /*
  1888. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1889. * Returns true if the page was previously dirty.
  1890. *
  1891. * This is for preparing to put the page under writeout. We leave the page
  1892. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1893. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1894. * implementation will run either set_page_writeback() or set_page_dirty(),
  1895. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1896. * back into sync.
  1897. *
  1898. * This incoherency between the page's dirty flag and radix-tree tag is
  1899. * unfortunate, but it only exists while the page is locked.
  1900. */
  1901. int clear_page_dirty_for_io(struct page *page)
  1902. {
  1903. struct address_space *mapping = page_mapping(page);
  1904. BUG_ON(!PageLocked(page));
  1905. if (mapping && mapping_cap_account_dirty(mapping)) {
  1906. /*
  1907. * Yes, Virginia, this is indeed insane.
  1908. *
  1909. * We use this sequence to make sure that
  1910. * (a) we account for dirty stats properly
  1911. * (b) we tell the low-level filesystem to
  1912. * mark the whole page dirty if it was
  1913. * dirty in a pagetable. Only to then
  1914. * (c) clean the page again and return 1 to
  1915. * cause the writeback.
  1916. *
  1917. * This way we avoid all nasty races with the
  1918. * dirty bit in multiple places and clearing
  1919. * them concurrently from different threads.
  1920. *
  1921. * Note! Normally the "set_page_dirty(page)"
  1922. * has no effect on the actual dirty bit - since
  1923. * that will already usually be set. But we
  1924. * need the side effects, and it can help us
  1925. * avoid races.
  1926. *
  1927. * We basically use the page "master dirty bit"
  1928. * as a serialization point for all the different
  1929. * threads doing their things.
  1930. */
  1931. if (page_mkclean(page))
  1932. set_page_dirty(page);
  1933. /*
  1934. * We carefully synchronise fault handlers against
  1935. * installing a dirty pte and marking the page dirty
  1936. * at this point. We do this by having them hold the
  1937. * page lock at some point after installing their
  1938. * pte, but before marking the page dirty.
  1939. * Pages are always locked coming in here, so we get
  1940. * the desired exclusion. See mm/memory.c:do_wp_page()
  1941. * for more comments.
  1942. */
  1943. if (TestClearPageDirty(page)) {
  1944. dec_zone_page_state(page, NR_FILE_DIRTY);
  1945. dec_bdi_stat(mapping->backing_dev_info,
  1946. BDI_RECLAIMABLE);
  1947. return 1;
  1948. }
  1949. return 0;
  1950. }
  1951. return TestClearPageDirty(page);
  1952. }
  1953. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1954. int test_clear_page_writeback(struct page *page)
  1955. {
  1956. struct address_space *mapping = page_mapping(page);
  1957. int ret;
  1958. if (mapping) {
  1959. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1960. unsigned long flags;
  1961. spin_lock_irqsave(&mapping->tree_lock, flags);
  1962. ret = TestClearPageWriteback(page);
  1963. if (ret) {
  1964. radix_tree_tag_clear(&mapping->page_tree,
  1965. page_index(page),
  1966. PAGECACHE_TAG_WRITEBACK);
  1967. if (bdi_cap_account_writeback(bdi)) {
  1968. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1969. __bdi_writeout_inc(bdi);
  1970. }
  1971. }
  1972. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1973. } else {
  1974. ret = TestClearPageWriteback(page);
  1975. }
  1976. if (ret) {
  1977. dec_zone_page_state(page, NR_WRITEBACK);
  1978. inc_zone_page_state(page, NR_WRITTEN);
  1979. }
  1980. return ret;
  1981. }
  1982. int test_set_page_writeback(struct page *page)
  1983. {
  1984. struct address_space *mapping = page_mapping(page);
  1985. int ret;
  1986. if (mapping) {
  1987. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1988. unsigned long flags;
  1989. spin_lock_irqsave(&mapping->tree_lock, flags);
  1990. ret = TestSetPageWriteback(page);
  1991. if (!ret) {
  1992. radix_tree_tag_set(&mapping->page_tree,
  1993. page_index(page),
  1994. PAGECACHE_TAG_WRITEBACK);
  1995. if (bdi_cap_account_writeback(bdi))
  1996. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1997. }
  1998. if (!PageDirty(page))
  1999. radix_tree_tag_clear(&mapping->page_tree,
  2000. page_index(page),
  2001. PAGECACHE_TAG_DIRTY);
  2002. radix_tree_tag_clear(&mapping->page_tree,
  2003. page_index(page),
  2004. PAGECACHE_TAG_TOWRITE);
  2005. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2006. } else {
  2007. ret = TestSetPageWriteback(page);
  2008. }
  2009. if (!ret)
  2010. account_page_writeback(page);
  2011. return ret;
  2012. }
  2013. EXPORT_SYMBOL(test_set_page_writeback);
  2014. /*
  2015. * Return true if any of the pages in the mapping are marked with the
  2016. * passed tag.
  2017. */
  2018. int mapping_tagged(struct address_space *mapping, int tag)
  2019. {
  2020. return radix_tree_tagged(&mapping->page_tree, tag);
  2021. }
  2022. EXPORT_SYMBOL(mapping_tagged);