sched.c 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. tg = p->user->tg;
  308. #elif defined(CONFIG_CGROUP_SCHED)
  309. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  310. struct task_group, css);
  311. #else
  312. tg = &init_task_group;
  313. #endif
  314. return tg;
  315. }
  316. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  318. {
  319. #ifdef CONFIG_FAIR_GROUP_SCHED
  320. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  321. p->se.parent = task_group(p)->se[cpu];
  322. #endif
  323. #ifdef CONFIG_RT_GROUP_SCHED
  324. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  325. p->rt.parent = task_group(p)->rt_se[cpu];
  326. #endif
  327. }
  328. #else
  329. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  330. static inline struct task_group *task_group(struct task_struct *p)
  331. {
  332. return NULL;
  333. }
  334. #endif /* CONFIG_GROUP_SCHED */
  335. /* CFS-related fields in a runqueue */
  336. struct cfs_rq {
  337. struct load_weight load;
  338. unsigned long nr_running;
  339. u64 exec_clock;
  340. u64 min_vruntime;
  341. struct rb_root tasks_timeline;
  342. struct rb_node *rb_leftmost;
  343. struct list_head tasks;
  344. struct list_head *balance_iterator;
  345. /*
  346. * 'curr' points to currently running entity on this cfs_rq.
  347. * It is set to NULL otherwise (i.e when none are currently running).
  348. */
  349. struct sched_entity *curr, *next, *last;
  350. unsigned int nr_spread_over;
  351. #ifdef CONFIG_FAIR_GROUP_SCHED
  352. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  353. /*
  354. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  355. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  356. * (like users, containers etc.)
  357. *
  358. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  359. * list is used during load balance.
  360. */
  361. struct list_head leaf_cfs_rq_list;
  362. struct task_group *tg; /* group that "owns" this runqueue */
  363. #ifdef CONFIG_SMP
  364. /*
  365. * the part of load.weight contributed by tasks
  366. */
  367. unsigned long task_weight;
  368. /*
  369. * h_load = weight * f(tg)
  370. *
  371. * Where f(tg) is the recursive weight fraction assigned to
  372. * this group.
  373. */
  374. unsigned long h_load;
  375. /*
  376. * this cpu's part of tg->shares
  377. */
  378. unsigned long shares;
  379. /*
  380. * load.weight at the time we set shares
  381. */
  382. unsigned long rq_weight;
  383. #endif
  384. #endif
  385. };
  386. /* Real-Time classes' related field in a runqueue: */
  387. struct rt_rq {
  388. struct rt_prio_array active;
  389. unsigned long rt_nr_running;
  390. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  391. struct {
  392. int curr; /* highest queued rt task prio */
  393. int next; /* next highest */
  394. } highest_prio;
  395. #endif
  396. #ifdef CONFIG_SMP
  397. unsigned long rt_nr_migratory;
  398. int overloaded;
  399. struct plist_head pushable_tasks;
  400. #endif
  401. int rt_throttled;
  402. u64 rt_time;
  403. u64 rt_runtime;
  404. /* Nests inside the rq lock: */
  405. spinlock_t rt_runtime_lock;
  406. #ifdef CONFIG_RT_GROUP_SCHED
  407. unsigned long rt_nr_boosted;
  408. struct rq *rq;
  409. struct list_head leaf_rt_rq_list;
  410. struct task_group *tg;
  411. struct sched_rt_entity *rt_se;
  412. #endif
  413. };
  414. #ifdef CONFIG_SMP
  415. /*
  416. * We add the notion of a root-domain which will be used to define per-domain
  417. * variables. Each exclusive cpuset essentially defines an island domain by
  418. * fully partitioning the member cpus from any other cpuset. Whenever a new
  419. * exclusive cpuset is created, we also create and attach a new root-domain
  420. * object.
  421. *
  422. */
  423. struct root_domain {
  424. atomic_t refcount;
  425. cpumask_var_t span;
  426. cpumask_var_t online;
  427. /*
  428. * The "RT overload" flag: it gets set if a CPU has more than
  429. * one runnable RT task.
  430. */
  431. cpumask_var_t rto_mask;
  432. atomic_t rto_count;
  433. #ifdef CONFIG_SMP
  434. struct cpupri cpupri;
  435. #endif
  436. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  437. /*
  438. * Preferred wake up cpu nominated by sched_mc balance that will be
  439. * used when most cpus are idle in the system indicating overall very
  440. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  441. */
  442. unsigned int sched_mc_preferred_wakeup_cpu;
  443. #endif
  444. };
  445. /*
  446. * By default the system creates a single root-domain with all cpus as
  447. * members (mimicking the global state we have today).
  448. */
  449. static struct root_domain def_root_domain;
  450. #endif
  451. /*
  452. * This is the main, per-CPU runqueue data structure.
  453. *
  454. * Locking rule: those places that want to lock multiple runqueues
  455. * (such as the load balancing or the thread migration code), lock
  456. * acquire operations must be ordered by ascending &runqueue.
  457. */
  458. struct rq {
  459. /* runqueue lock: */
  460. spinlock_t lock;
  461. /*
  462. * nr_running and cpu_load should be in the same cacheline because
  463. * remote CPUs use both these fields when doing load calculation.
  464. */
  465. unsigned long nr_running;
  466. #define CPU_LOAD_IDX_MAX 5
  467. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  468. unsigned char idle_at_tick;
  469. #ifdef CONFIG_NO_HZ
  470. unsigned long last_tick_seen;
  471. unsigned char in_nohz_recently;
  472. #endif
  473. /* capture load from *all* tasks on this cpu: */
  474. struct load_weight load;
  475. unsigned long nr_load_updates;
  476. u64 nr_switches;
  477. struct cfs_rq cfs;
  478. struct rt_rq rt;
  479. #ifdef CONFIG_FAIR_GROUP_SCHED
  480. /* list of leaf cfs_rq on this cpu: */
  481. struct list_head leaf_cfs_rq_list;
  482. #endif
  483. #ifdef CONFIG_RT_GROUP_SCHED
  484. struct list_head leaf_rt_rq_list;
  485. #endif
  486. /*
  487. * This is part of a global counter where only the total sum
  488. * over all CPUs matters. A task can increase this counter on
  489. * one CPU and if it got migrated afterwards it may decrease
  490. * it on another CPU. Always updated under the runqueue lock:
  491. */
  492. unsigned long nr_uninterruptible;
  493. struct task_struct *curr, *idle;
  494. unsigned long next_balance;
  495. struct mm_struct *prev_mm;
  496. u64 clock;
  497. atomic_t nr_iowait;
  498. #ifdef CONFIG_SMP
  499. struct root_domain *rd;
  500. struct sched_domain *sd;
  501. /* For active balancing */
  502. int active_balance;
  503. int push_cpu;
  504. /* cpu of this runqueue: */
  505. int cpu;
  506. int online;
  507. unsigned long avg_load_per_task;
  508. struct task_struct *migration_thread;
  509. struct list_head migration_queue;
  510. #endif
  511. #ifdef CONFIG_SCHED_HRTICK
  512. #ifdef CONFIG_SMP
  513. int hrtick_csd_pending;
  514. struct call_single_data hrtick_csd;
  515. #endif
  516. struct hrtimer hrtick_timer;
  517. #endif
  518. #ifdef CONFIG_SCHEDSTATS
  519. /* latency stats */
  520. struct sched_info rq_sched_info;
  521. /* sys_sched_yield() stats */
  522. unsigned int yld_exp_empty;
  523. unsigned int yld_act_empty;
  524. unsigned int yld_both_empty;
  525. unsigned int yld_count;
  526. /* schedule() stats */
  527. unsigned int sched_switch;
  528. unsigned int sched_count;
  529. unsigned int sched_goidle;
  530. /* try_to_wake_up() stats */
  531. unsigned int ttwu_count;
  532. unsigned int ttwu_local;
  533. /* BKL stats */
  534. unsigned int bkl_count;
  535. #endif
  536. };
  537. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  538. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  539. {
  540. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  541. }
  542. static inline int cpu_of(struct rq *rq)
  543. {
  544. #ifdef CONFIG_SMP
  545. return rq->cpu;
  546. #else
  547. return 0;
  548. #endif
  549. }
  550. /*
  551. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  552. * See detach_destroy_domains: synchronize_sched for details.
  553. *
  554. * The domain tree of any CPU may only be accessed from within
  555. * preempt-disabled sections.
  556. */
  557. #define for_each_domain(cpu, __sd) \
  558. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  559. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  560. #define this_rq() (&__get_cpu_var(runqueues))
  561. #define task_rq(p) cpu_rq(task_cpu(p))
  562. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  563. static inline void update_rq_clock(struct rq *rq)
  564. {
  565. rq->clock = sched_clock_cpu(cpu_of(rq));
  566. }
  567. /*
  568. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  569. */
  570. #ifdef CONFIG_SCHED_DEBUG
  571. # define const_debug __read_mostly
  572. #else
  573. # define const_debug static const
  574. #endif
  575. /**
  576. * runqueue_is_locked
  577. *
  578. * Returns true if the current cpu runqueue is locked.
  579. * This interface allows printk to be called with the runqueue lock
  580. * held and know whether or not it is OK to wake up the klogd.
  581. */
  582. int runqueue_is_locked(void)
  583. {
  584. int cpu = get_cpu();
  585. struct rq *rq = cpu_rq(cpu);
  586. int ret;
  587. ret = spin_is_locked(&rq->lock);
  588. put_cpu();
  589. return ret;
  590. }
  591. /*
  592. * Debugging: various feature bits
  593. */
  594. #define SCHED_FEAT(name, enabled) \
  595. __SCHED_FEAT_##name ,
  596. enum {
  597. #include "sched_features.h"
  598. };
  599. #undef SCHED_FEAT
  600. #define SCHED_FEAT(name, enabled) \
  601. (1UL << __SCHED_FEAT_##name) * enabled |
  602. const_debug unsigned int sysctl_sched_features =
  603. #include "sched_features.h"
  604. 0;
  605. #undef SCHED_FEAT
  606. #ifdef CONFIG_SCHED_DEBUG
  607. #define SCHED_FEAT(name, enabled) \
  608. #name ,
  609. static __read_mostly char *sched_feat_names[] = {
  610. #include "sched_features.h"
  611. NULL
  612. };
  613. #undef SCHED_FEAT
  614. static int sched_feat_show(struct seq_file *m, void *v)
  615. {
  616. int i;
  617. for (i = 0; sched_feat_names[i]; i++) {
  618. if (!(sysctl_sched_features & (1UL << i)))
  619. seq_puts(m, "NO_");
  620. seq_printf(m, "%s ", sched_feat_names[i]);
  621. }
  622. seq_puts(m, "\n");
  623. return 0;
  624. }
  625. static ssize_t
  626. sched_feat_write(struct file *filp, const char __user *ubuf,
  627. size_t cnt, loff_t *ppos)
  628. {
  629. char buf[64];
  630. char *cmp = buf;
  631. int neg = 0;
  632. int i;
  633. if (cnt > 63)
  634. cnt = 63;
  635. if (copy_from_user(&buf, ubuf, cnt))
  636. return -EFAULT;
  637. buf[cnt] = 0;
  638. if (strncmp(buf, "NO_", 3) == 0) {
  639. neg = 1;
  640. cmp += 3;
  641. }
  642. for (i = 0; sched_feat_names[i]; i++) {
  643. int len = strlen(sched_feat_names[i]);
  644. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  645. if (neg)
  646. sysctl_sched_features &= ~(1UL << i);
  647. else
  648. sysctl_sched_features |= (1UL << i);
  649. break;
  650. }
  651. }
  652. if (!sched_feat_names[i])
  653. return -EINVAL;
  654. filp->f_pos += cnt;
  655. return cnt;
  656. }
  657. static int sched_feat_open(struct inode *inode, struct file *filp)
  658. {
  659. return single_open(filp, sched_feat_show, NULL);
  660. }
  661. static struct file_operations sched_feat_fops = {
  662. .open = sched_feat_open,
  663. .write = sched_feat_write,
  664. .read = seq_read,
  665. .llseek = seq_lseek,
  666. .release = single_release,
  667. };
  668. static __init int sched_init_debug(void)
  669. {
  670. debugfs_create_file("sched_features", 0644, NULL, NULL,
  671. &sched_feat_fops);
  672. return 0;
  673. }
  674. late_initcall(sched_init_debug);
  675. #endif
  676. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  677. /*
  678. * Number of tasks to iterate in a single balance run.
  679. * Limited because this is done with IRQs disabled.
  680. */
  681. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  682. /*
  683. * ratelimit for updating the group shares.
  684. * default: 0.25ms
  685. */
  686. unsigned int sysctl_sched_shares_ratelimit = 250000;
  687. /*
  688. * Inject some fuzzyness into changing the per-cpu group shares
  689. * this avoids remote rq-locks at the expense of fairness.
  690. * default: 4
  691. */
  692. unsigned int sysctl_sched_shares_thresh = 4;
  693. /*
  694. * period over which we measure -rt task cpu usage in us.
  695. * default: 1s
  696. */
  697. unsigned int sysctl_sched_rt_period = 1000000;
  698. static __read_mostly int scheduler_running;
  699. /*
  700. * part of the period that we allow rt tasks to run in us.
  701. * default: 0.95s
  702. */
  703. int sysctl_sched_rt_runtime = 950000;
  704. static inline u64 global_rt_period(void)
  705. {
  706. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  707. }
  708. static inline u64 global_rt_runtime(void)
  709. {
  710. if (sysctl_sched_rt_runtime < 0)
  711. return RUNTIME_INF;
  712. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  713. }
  714. #ifndef prepare_arch_switch
  715. # define prepare_arch_switch(next) do { } while (0)
  716. #endif
  717. #ifndef finish_arch_switch
  718. # define finish_arch_switch(prev) do { } while (0)
  719. #endif
  720. static inline int task_current(struct rq *rq, struct task_struct *p)
  721. {
  722. return rq->curr == p;
  723. }
  724. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. return task_current(rq, p);
  728. }
  729. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  730. {
  731. }
  732. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  733. {
  734. #ifdef CONFIG_DEBUG_SPINLOCK
  735. /* this is a valid case when another task releases the spinlock */
  736. rq->lock.owner = current;
  737. #endif
  738. /*
  739. * If we are tracking spinlock dependencies then we have to
  740. * fix up the runqueue lock - which gets 'carried over' from
  741. * prev into current:
  742. */
  743. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  744. spin_unlock_irq(&rq->lock);
  745. }
  746. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. #ifdef CONFIG_SMP
  750. return p->oncpu;
  751. #else
  752. return task_current(rq, p);
  753. #endif
  754. }
  755. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  756. {
  757. #ifdef CONFIG_SMP
  758. /*
  759. * We can optimise this out completely for !SMP, because the
  760. * SMP rebalancing from interrupt is the only thing that cares
  761. * here.
  762. */
  763. next->oncpu = 1;
  764. #endif
  765. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  766. spin_unlock_irq(&rq->lock);
  767. #else
  768. spin_unlock(&rq->lock);
  769. #endif
  770. }
  771. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * After ->oncpu is cleared, the task can be moved to a different CPU.
  776. * We must ensure this doesn't happen until the switch is completely
  777. * finished.
  778. */
  779. smp_wmb();
  780. prev->oncpu = 0;
  781. #endif
  782. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  783. local_irq_enable();
  784. #endif
  785. }
  786. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  787. /*
  788. * __task_rq_lock - lock the runqueue a given task resides on.
  789. * Must be called interrupts disabled.
  790. */
  791. static inline struct rq *__task_rq_lock(struct task_struct *p)
  792. __acquires(rq->lock)
  793. {
  794. for (;;) {
  795. struct rq *rq = task_rq(p);
  796. spin_lock(&rq->lock);
  797. if (likely(rq == task_rq(p)))
  798. return rq;
  799. spin_unlock(&rq->lock);
  800. }
  801. }
  802. /*
  803. * task_rq_lock - lock the runqueue a given task resides on and disable
  804. * interrupts. Note the ordering: we can safely lookup the task_rq without
  805. * explicitly disabling preemption.
  806. */
  807. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  808. __acquires(rq->lock)
  809. {
  810. struct rq *rq;
  811. for (;;) {
  812. local_irq_save(*flags);
  813. rq = task_rq(p);
  814. spin_lock(&rq->lock);
  815. if (likely(rq == task_rq(p)))
  816. return rq;
  817. spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. }
  820. void task_rq_unlock_wait(struct task_struct *p)
  821. {
  822. struct rq *rq = task_rq(p);
  823. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  824. spin_unlock_wait(&rq->lock);
  825. }
  826. static void __task_rq_unlock(struct rq *rq)
  827. __releases(rq->lock)
  828. {
  829. spin_unlock(&rq->lock);
  830. }
  831. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  832. __releases(rq->lock)
  833. {
  834. spin_unlock_irqrestore(&rq->lock, *flags);
  835. }
  836. /*
  837. * this_rq_lock - lock this runqueue and disable interrupts.
  838. */
  839. static struct rq *this_rq_lock(void)
  840. __acquires(rq->lock)
  841. {
  842. struct rq *rq;
  843. local_irq_disable();
  844. rq = this_rq();
  845. spin_lock(&rq->lock);
  846. return rq;
  847. }
  848. #ifdef CONFIG_SCHED_HRTICK
  849. /*
  850. * Use HR-timers to deliver accurate preemption points.
  851. *
  852. * Its all a bit involved since we cannot program an hrt while holding the
  853. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  854. * reschedule event.
  855. *
  856. * When we get rescheduled we reprogram the hrtick_timer outside of the
  857. * rq->lock.
  858. */
  859. /*
  860. * Use hrtick when:
  861. * - enabled by features
  862. * - hrtimer is actually high res
  863. */
  864. static inline int hrtick_enabled(struct rq *rq)
  865. {
  866. if (!sched_feat(HRTICK))
  867. return 0;
  868. if (!cpu_active(cpu_of(rq)))
  869. return 0;
  870. return hrtimer_is_hres_active(&rq->hrtick_timer);
  871. }
  872. static void hrtick_clear(struct rq *rq)
  873. {
  874. if (hrtimer_active(&rq->hrtick_timer))
  875. hrtimer_cancel(&rq->hrtick_timer);
  876. }
  877. /*
  878. * High-resolution timer tick.
  879. * Runs from hardirq context with interrupts disabled.
  880. */
  881. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  882. {
  883. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  884. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  885. spin_lock(&rq->lock);
  886. update_rq_clock(rq);
  887. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  888. spin_unlock(&rq->lock);
  889. return HRTIMER_NORESTART;
  890. }
  891. #ifdef CONFIG_SMP
  892. /*
  893. * called from hardirq (IPI) context
  894. */
  895. static void __hrtick_start(void *arg)
  896. {
  897. struct rq *rq = arg;
  898. spin_lock(&rq->lock);
  899. hrtimer_restart(&rq->hrtick_timer);
  900. rq->hrtick_csd_pending = 0;
  901. spin_unlock(&rq->lock);
  902. }
  903. /*
  904. * Called to set the hrtick timer state.
  905. *
  906. * called with rq->lock held and irqs disabled
  907. */
  908. static void hrtick_start(struct rq *rq, u64 delay)
  909. {
  910. struct hrtimer *timer = &rq->hrtick_timer;
  911. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  912. hrtimer_set_expires(timer, time);
  913. if (rq == this_rq()) {
  914. hrtimer_restart(timer);
  915. } else if (!rq->hrtick_csd_pending) {
  916. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  917. rq->hrtick_csd_pending = 1;
  918. }
  919. }
  920. static int
  921. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  922. {
  923. int cpu = (int)(long)hcpu;
  924. switch (action) {
  925. case CPU_UP_CANCELED:
  926. case CPU_UP_CANCELED_FROZEN:
  927. case CPU_DOWN_PREPARE:
  928. case CPU_DOWN_PREPARE_FROZEN:
  929. case CPU_DEAD:
  930. case CPU_DEAD_FROZEN:
  931. hrtick_clear(cpu_rq(cpu));
  932. return NOTIFY_OK;
  933. }
  934. return NOTIFY_DONE;
  935. }
  936. static __init void init_hrtick(void)
  937. {
  938. hotcpu_notifier(hotplug_hrtick, 0);
  939. }
  940. #else
  941. /*
  942. * Called to set the hrtick timer state.
  943. *
  944. * called with rq->lock held and irqs disabled
  945. */
  946. static void hrtick_start(struct rq *rq, u64 delay)
  947. {
  948. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  949. }
  950. static inline void init_hrtick(void)
  951. {
  952. }
  953. #endif /* CONFIG_SMP */
  954. static void init_rq_hrtick(struct rq *rq)
  955. {
  956. #ifdef CONFIG_SMP
  957. rq->hrtick_csd_pending = 0;
  958. rq->hrtick_csd.flags = 0;
  959. rq->hrtick_csd.func = __hrtick_start;
  960. rq->hrtick_csd.info = rq;
  961. #endif
  962. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  963. rq->hrtick_timer.function = hrtick;
  964. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  965. }
  966. #else /* CONFIG_SCHED_HRTICK */
  967. static inline void hrtick_clear(struct rq *rq)
  968. {
  969. }
  970. static inline void init_rq_hrtick(struct rq *rq)
  971. {
  972. }
  973. static inline void init_hrtick(void)
  974. {
  975. }
  976. #endif /* CONFIG_SCHED_HRTICK */
  977. /*
  978. * resched_task - mark a task 'to be rescheduled now'.
  979. *
  980. * On UP this means the setting of the need_resched flag, on SMP it
  981. * might also involve a cross-CPU call to trigger the scheduler on
  982. * the target CPU.
  983. */
  984. #ifdef CONFIG_SMP
  985. #ifndef tsk_is_polling
  986. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  987. #endif
  988. static void resched_task(struct task_struct *p)
  989. {
  990. int cpu;
  991. assert_spin_locked(&task_rq(p)->lock);
  992. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  993. return;
  994. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  995. cpu = task_cpu(p);
  996. if (cpu == smp_processor_id())
  997. return;
  998. /* NEED_RESCHED must be visible before we test polling */
  999. smp_mb();
  1000. if (!tsk_is_polling(p))
  1001. smp_send_reschedule(cpu);
  1002. }
  1003. static void resched_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. unsigned long flags;
  1007. if (!spin_trylock_irqsave(&rq->lock, flags))
  1008. return;
  1009. resched_task(cpu_curr(cpu));
  1010. spin_unlock_irqrestore(&rq->lock, flags);
  1011. }
  1012. #ifdef CONFIG_NO_HZ
  1013. /*
  1014. * When add_timer_on() enqueues a timer into the timer wheel of an
  1015. * idle CPU then this timer might expire before the next timer event
  1016. * which is scheduled to wake up that CPU. In case of a completely
  1017. * idle system the next event might even be infinite time into the
  1018. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1019. * leaves the inner idle loop so the newly added timer is taken into
  1020. * account when the CPU goes back to idle and evaluates the timer
  1021. * wheel for the next timer event.
  1022. */
  1023. void wake_up_idle_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. if (cpu == smp_processor_id())
  1027. return;
  1028. /*
  1029. * This is safe, as this function is called with the timer
  1030. * wheel base lock of (cpu) held. When the CPU is on the way
  1031. * to idle and has not yet set rq->curr to idle then it will
  1032. * be serialized on the timer wheel base lock and take the new
  1033. * timer into account automatically.
  1034. */
  1035. if (rq->curr != rq->idle)
  1036. return;
  1037. /*
  1038. * We can set TIF_RESCHED on the idle task of the other CPU
  1039. * lockless. The worst case is that the other CPU runs the
  1040. * idle task through an additional NOOP schedule()
  1041. */
  1042. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1043. /* NEED_RESCHED must be visible before we test polling */
  1044. smp_mb();
  1045. if (!tsk_is_polling(rq->idle))
  1046. smp_send_reschedule(cpu);
  1047. }
  1048. #endif /* CONFIG_NO_HZ */
  1049. #else /* !CONFIG_SMP */
  1050. static void resched_task(struct task_struct *p)
  1051. {
  1052. assert_spin_locked(&task_rq(p)->lock);
  1053. set_tsk_need_resched(p);
  1054. }
  1055. #endif /* CONFIG_SMP */
  1056. #if BITS_PER_LONG == 32
  1057. # define WMULT_CONST (~0UL)
  1058. #else
  1059. # define WMULT_CONST (1UL << 32)
  1060. #endif
  1061. #define WMULT_SHIFT 32
  1062. /*
  1063. * Shift right and round:
  1064. */
  1065. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1066. /*
  1067. * delta *= weight / lw
  1068. */
  1069. static unsigned long
  1070. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1071. struct load_weight *lw)
  1072. {
  1073. u64 tmp;
  1074. if (!lw->inv_weight) {
  1075. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1076. lw->inv_weight = 1;
  1077. else
  1078. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1079. / (lw->weight+1);
  1080. }
  1081. tmp = (u64)delta_exec * weight;
  1082. /*
  1083. * Check whether we'd overflow the 64-bit multiplication:
  1084. */
  1085. if (unlikely(tmp > WMULT_CONST))
  1086. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1087. WMULT_SHIFT/2);
  1088. else
  1089. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1090. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1091. }
  1092. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1093. {
  1094. lw->weight += inc;
  1095. lw->inv_weight = 0;
  1096. }
  1097. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1098. {
  1099. lw->weight -= dec;
  1100. lw->inv_weight = 0;
  1101. }
  1102. /*
  1103. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1104. * of tasks with abnormal "nice" values across CPUs the contribution that
  1105. * each task makes to its run queue's load is weighted according to its
  1106. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1107. * scaled version of the new time slice allocation that they receive on time
  1108. * slice expiry etc.
  1109. */
  1110. #define WEIGHT_IDLEPRIO 2
  1111. #define WMULT_IDLEPRIO (1 << 31)
  1112. /*
  1113. * Nice levels are multiplicative, with a gentle 10% change for every
  1114. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1115. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1116. * that remained on nice 0.
  1117. *
  1118. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1119. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1120. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1121. * If a task goes up by ~10% and another task goes down by ~10% then
  1122. * the relative distance between them is ~25%.)
  1123. */
  1124. static const int prio_to_weight[40] = {
  1125. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1126. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1127. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1128. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1129. /* 0 */ 1024, 820, 655, 526, 423,
  1130. /* 5 */ 335, 272, 215, 172, 137,
  1131. /* 10 */ 110, 87, 70, 56, 45,
  1132. /* 15 */ 36, 29, 23, 18, 15,
  1133. };
  1134. /*
  1135. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1136. *
  1137. * In cases where the weight does not change often, we can use the
  1138. * precalculated inverse to speed up arithmetics by turning divisions
  1139. * into multiplications:
  1140. */
  1141. static const u32 prio_to_wmult[40] = {
  1142. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1143. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1144. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1145. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1146. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1147. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1148. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1149. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1150. };
  1151. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1152. /*
  1153. * runqueue iterator, to support SMP load-balancing between different
  1154. * scheduling classes, without having to expose their internal data
  1155. * structures to the load-balancing proper:
  1156. */
  1157. struct rq_iterator {
  1158. void *arg;
  1159. struct task_struct *(*start)(void *);
  1160. struct task_struct *(*next)(void *);
  1161. };
  1162. #ifdef CONFIG_SMP
  1163. static unsigned long
  1164. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1165. unsigned long max_load_move, struct sched_domain *sd,
  1166. enum cpu_idle_type idle, int *all_pinned,
  1167. int *this_best_prio, struct rq_iterator *iterator);
  1168. static int
  1169. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1170. struct sched_domain *sd, enum cpu_idle_type idle,
  1171. struct rq_iterator *iterator);
  1172. #endif
  1173. #ifdef CONFIG_CGROUP_CPUACCT
  1174. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1175. #else
  1176. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1177. #endif
  1178. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1179. {
  1180. update_load_add(&rq->load, load);
  1181. }
  1182. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1183. {
  1184. update_load_sub(&rq->load, load);
  1185. }
  1186. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1187. typedef int (*tg_visitor)(struct task_group *, void *);
  1188. /*
  1189. * Iterate the full tree, calling @down when first entering a node and @up when
  1190. * leaving it for the final time.
  1191. */
  1192. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1193. {
  1194. struct task_group *parent, *child;
  1195. int ret;
  1196. rcu_read_lock();
  1197. parent = &root_task_group;
  1198. down:
  1199. ret = (*down)(parent, data);
  1200. if (ret)
  1201. goto out_unlock;
  1202. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1203. parent = child;
  1204. goto down;
  1205. up:
  1206. continue;
  1207. }
  1208. ret = (*up)(parent, data);
  1209. if (ret)
  1210. goto out_unlock;
  1211. child = parent;
  1212. parent = parent->parent;
  1213. if (parent)
  1214. goto up;
  1215. out_unlock:
  1216. rcu_read_unlock();
  1217. return ret;
  1218. }
  1219. static int tg_nop(struct task_group *tg, void *data)
  1220. {
  1221. return 0;
  1222. }
  1223. #endif
  1224. #ifdef CONFIG_SMP
  1225. static unsigned long source_load(int cpu, int type);
  1226. static unsigned long target_load(int cpu, int type);
  1227. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1228. static unsigned long cpu_avg_load_per_task(int cpu)
  1229. {
  1230. struct rq *rq = cpu_rq(cpu);
  1231. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1232. if (nr_running)
  1233. rq->avg_load_per_task = rq->load.weight / nr_running;
  1234. else
  1235. rq->avg_load_per_task = 0;
  1236. return rq->avg_load_per_task;
  1237. }
  1238. #ifdef CONFIG_FAIR_GROUP_SCHED
  1239. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1240. /*
  1241. * Calculate and set the cpu's group shares.
  1242. */
  1243. static void
  1244. update_group_shares_cpu(struct task_group *tg, int cpu,
  1245. unsigned long sd_shares, unsigned long sd_rq_weight)
  1246. {
  1247. unsigned long shares;
  1248. unsigned long rq_weight;
  1249. if (!tg->se[cpu])
  1250. return;
  1251. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1252. /*
  1253. * \Sum shares * rq_weight
  1254. * shares = -----------------------
  1255. * \Sum rq_weight
  1256. *
  1257. */
  1258. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1259. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1260. if (abs(shares - tg->se[cpu]->load.weight) >
  1261. sysctl_sched_shares_thresh) {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long flags;
  1264. spin_lock_irqsave(&rq->lock, flags);
  1265. tg->cfs_rq[cpu]->shares = shares;
  1266. __set_se_shares(tg->se[cpu], shares);
  1267. spin_unlock_irqrestore(&rq->lock, flags);
  1268. }
  1269. }
  1270. /*
  1271. * Re-compute the task group their per cpu shares over the given domain.
  1272. * This needs to be done in a bottom-up fashion because the rq weight of a
  1273. * parent group depends on the shares of its child groups.
  1274. */
  1275. static int tg_shares_up(struct task_group *tg, void *data)
  1276. {
  1277. unsigned long weight, rq_weight = 0;
  1278. unsigned long shares = 0;
  1279. struct sched_domain *sd = data;
  1280. int i;
  1281. for_each_cpu(i, sched_domain_span(sd)) {
  1282. /*
  1283. * If there are currently no tasks on the cpu pretend there
  1284. * is one of average load so that when a new task gets to
  1285. * run here it will not get delayed by group starvation.
  1286. */
  1287. weight = tg->cfs_rq[i]->load.weight;
  1288. if (!weight)
  1289. weight = NICE_0_LOAD;
  1290. tg->cfs_rq[i]->rq_weight = weight;
  1291. rq_weight += weight;
  1292. shares += tg->cfs_rq[i]->shares;
  1293. }
  1294. if ((!shares && rq_weight) || shares > tg->shares)
  1295. shares = tg->shares;
  1296. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1297. shares = tg->shares;
  1298. for_each_cpu(i, sched_domain_span(sd))
  1299. update_group_shares_cpu(tg, i, shares, rq_weight);
  1300. return 0;
  1301. }
  1302. /*
  1303. * Compute the cpu's hierarchical load factor for each task group.
  1304. * This needs to be done in a top-down fashion because the load of a child
  1305. * group is a fraction of its parents load.
  1306. */
  1307. static int tg_load_down(struct task_group *tg, void *data)
  1308. {
  1309. unsigned long load;
  1310. long cpu = (long)data;
  1311. if (!tg->parent) {
  1312. load = cpu_rq(cpu)->load.weight;
  1313. } else {
  1314. load = tg->parent->cfs_rq[cpu]->h_load;
  1315. load *= tg->cfs_rq[cpu]->shares;
  1316. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1317. }
  1318. tg->cfs_rq[cpu]->h_load = load;
  1319. return 0;
  1320. }
  1321. static void update_shares(struct sched_domain *sd)
  1322. {
  1323. u64 now = cpu_clock(raw_smp_processor_id());
  1324. s64 elapsed = now - sd->last_update;
  1325. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1326. sd->last_update = now;
  1327. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1328. }
  1329. }
  1330. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1331. {
  1332. spin_unlock(&rq->lock);
  1333. update_shares(sd);
  1334. spin_lock(&rq->lock);
  1335. }
  1336. static void update_h_load(long cpu)
  1337. {
  1338. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1339. }
  1340. #else
  1341. static inline void update_shares(struct sched_domain *sd)
  1342. {
  1343. }
  1344. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1345. {
  1346. }
  1347. #endif
  1348. #ifdef CONFIG_PREEMPT
  1349. /*
  1350. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1351. * way at the expense of forcing extra atomic operations in all
  1352. * invocations. This assures that the double_lock is acquired using the
  1353. * same underlying policy as the spinlock_t on this architecture, which
  1354. * reduces latency compared to the unfair variant below. However, it
  1355. * also adds more overhead and therefore may reduce throughput.
  1356. */
  1357. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1358. __releases(this_rq->lock)
  1359. __acquires(busiest->lock)
  1360. __acquires(this_rq->lock)
  1361. {
  1362. spin_unlock(&this_rq->lock);
  1363. double_rq_lock(this_rq, busiest);
  1364. return 1;
  1365. }
  1366. #else
  1367. /*
  1368. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1369. * latency by eliminating extra atomic operations when the locks are
  1370. * already in proper order on entry. This favors lower cpu-ids and will
  1371. * grant the double lock to lower cpus over higher ids under contention,
  1372. * regardless of entry order into the function.
  1373. */
  1374. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1375. __releases(this_rq->lock)
  1376. __acquires(busiest->lock)
  1377. __acquires(this_rq->lock)
  1378. {
  1379. int ret = 0;
  1380. if (unlikely(!spin_trylock(&busiest->lock))) {
  1381. if (busiest < this_rq) {
  1382. spin_unlock(&this_rq->lock);
  1383. spin_lock(&busiest->lock);
  1384. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1385. ret = 1;
  1386. } else
  1387. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1388. }
  1389. return ret;
  1390. }
  1391. #endif /* CONFIG_PREEMPT */
  1392. /*
  1393. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1394. */
  1395. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1396. {
  1397. if (unlikely(!irqs_disabled())) {
  1398. /* printk() doesn't work good under rq->lock */
  1399. spin_unlock(&this_rq->lock);
  1400. BUG_ON(1);
  1401. }
  1402. return _double_lock_balance(this_rq, busiest);
  1403. }
  1404. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(busiest->lock)
  1406. {
  1407. spin_unlock(&busiest->lock);
  1408. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1409. }
  1410. #endif
  1411. #ifdef CONFIG_FAIR_GROUP_SCHED
  1412. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1413. {
  1414. #ifdef CONFIG_SMP
  1415. cfs_rq->shares = shares;
  1416. #endif
  1417. }
  1418. #endif
  1419. #include "sched_stats.h"
  1420. #include "sched_idletask.c"
  1421. #include "sched_fair.c"
  1422. #include "sched_rt.c"
  1423. #ifdef CONFIG_SCHED_DEBUG
  1424. # include "sched_debug.c"
  1425. #endif
  1426. #define sched_class_highest (&rt_sched_class)
  1427. #define for_each_class(class) \
  1428. for (class = sched_class_highest; class; class = class->next)
  1429. static void inc_nr_running(struct rq *rq)
  1430. {
  1431. rq->nr_running++;
  1432. }
  1433. static void dec_nr_running(struct rq *rq)
  1434. {
  1435. rq->nr_running--;
  1436. }
  1437. static void set_load_weight(struct task_struct *p)
  1438. {
  1439. if (task_has_rt_policy(p)) {
  1440. p->se.load.weight = prio_to_weight[0] * 2;
  1441. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1442. return;
  1443. }
  1444. /*
  1445. * SCHED_IDLE tasks get minimal weight:
  1446. */
  1447. if (p->policy == SCHED_IDLE) {
  1448. p->se.load.weight = WEIGHT_IDLEPRIO;
  1449. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1450. return;
  1451. }
  1452. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1453. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1454. }
  1455. static void update_avg(u64 *avg, u64 sample)
  1456. {
  1457. s64 diff = sample - *avg;
  1458. *avg += diff >> 3;
  1459. }
  1460. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1461. {
  1462. sched_info_queued(p);
  1463. p->sched_class->enqueue_task(rq, p, wakeup);
  1464. p->se.on_rq = 1;
  1465. }
  1466. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1467. {
  1468. if (sleep && p->se.last_wakeup) {
  1469. update_avg(&p->se.avg_overlap,
  1470. p->se.sum_exec_runtime - p->se.last_wakeup);
  1471. p->se.last_wakeup = 0;
  1472. }
  1473. sched_info_dequeued(p);
  1474. p->sched_class->dequeue_task(rq, p, sleep);
  1475. p->se.on_rq = 0;
  1476. }
  1477. /*
  1478. * __normal_prio - return the priority that is based on the static prio
  1479. */
  1480. static inline int __normal_prio(struct task_struct *p)
  1481. {
  1482. return p->static_prio;
  1483. }
  1484. /*
  1485. * Calculate the expected normal priority: i.e. priority
  1486. * without taking RT-inheritance into account. Might be
  1487. * boosted by interactivity modifiers. Changes upon fork,
  1488. * setprio syscalls, and whenever the interactivity
  1489. * estimator recalculates.
  1490. */
  1491. static inline int normal_prio(struct task_struct *p)
  1492. {
  1493. int prio;
  1494. if (task_has_rt_policy(p))
  1495. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1496. else
  1497. prio = __normal_prio(p);
  1498. return prio;
  1499. }
  1500. /*
  1501. * Calculate the current priority, i.e. the priority
  1502. * taken into account by the scheduler. This value might
  1503. * be boosted by RT tasks, or might be boosted by
  1504. * interactivity modifiers. Will be RT if the task got
  1505. * RT-boosted. If not then it returns p->normal_prio.
  1506. */
  1507. static int effective_prio(struct task_struct *p)
  1508. {
  1509. p->normal_prio = normal_prio(p);
  1510. /*
  1511. * If we are RT tasks or we were boosted to RT priority,
  1512. * keep the priority unchanged. Otherwise, update priority
  1513. * to the normal priority:
  1514. */
  1515. if (!rt_prio(p->prio))
  1516. return p->normal_prio;
  1517. return p->prio;
  1518. }
  1519. /*
  1520. * activate_task - move a task to the runqueue.
  1521. */
  1522. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1523. {
  1524. if (task_contributes_to_load(p))
  1525. rq->nr_uninterruptible--;
  1526. enqueue_task(rq, p, wakeup);
  1527. inc_nr_running(rq);
  1528. }
  1529. /*
  1530. * deactivate_task - remove a task from the runqueue.
  1531. */
  1532. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1533. {
  1534. if (task_contributes_to_load(p))
  1535. rq->nr_uninterruptible++;
  1536. dequeue_task(rq, p, sleep);
  1537. dec_nr_running(rq);
  1538. }
  1539. /**
  1540. * task_curr - is this task currently executing on a CPU?
  1541. * @p: the task in question.
  1542. */
  1543. inline int task_curr(const struct task_struct *p)
  1544. {
  1545. return cpu_curr(task_cpu(p)) == p;
  1546. }
  1547. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1548. {
  1549. set_task_rq(p, cpu);
  1550. #ifdef CONFIG_SMP
  1551. /*
  1552. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1553. * successfuly executed on another CPU. We must ensure that updates of
  1554. * per-task data have been completed by this moment.
  1555. */
  1556. smp_wmb();
  1557. task_thread_info(p)->cpu = cpu;
  1558. #endif
  1559. }
  1560. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1561. const struct sched_class *prev_class,
  1562. int oldprio, int running)
  1563. {
  1564. if (prev_class != p->sched_class) {
  1565. if (prev_class->switched_from)
  1566. prev_class->switched_from(rq, p, running);
  1567. p->sched_class->switched_to(rq, p, running);
  1568. } else
  1569. p->sched_class->prio_changed(rq, p, oldprio, running);
  1570. }
  1571. #ifdef CONFIG_SMP
  1572. /* Used instead of source_load when we know the type == 0 */
  1573. static unsigned long weighted_cpuload(const int cpu)
  1574. {
  1575. return cpu_rq(cpu)->load.weight;
  1576. }
  1577. /*
  1578. * Is this task likely cache-hot:
  1579. */
  1580. static int
  1581. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1582. {
  1583. s64 delta;
  1584. /*
  1585. * Buddy candidates are cache hot:
  1586. */
  1587. if (sched_feat(CACHE_HOT_BUDDY) &&
  1588. (&p->se == cfs_rq_of(&p->se)->next ||
  1589. &p->se == cfs_rq_of(&p->se)->last))
  1590. return 1;
  1591. if (p->sched_class != &fair_sched_class)
  1592. return 0;
  1593. if (sysctl_sched_migration_cost == -1)
  1594. return 1;
  1595. if (sysctl_sched_migration_cost == 0)
  1596. return 0;
  1597. delta = now - p->se.exec_start;
  1598. return delta < (s64)sysctl_sched_migration_cost;
  1599. }
  1600. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1601. {
  1602. int old_cpu = task_cpu(p);
  1603. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1604. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1605. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1606. u64 clock_offset;
  1607. clock_offset = old_rq->clock - new_rq->clock;
  1608. #ifdef CONFIG_SCHEDSTATS
  1609. if (p->se.wait_start)
  1610. p->se.wait_start -= clock_offset;
  1611. if (p->se.sleep_start)
  1612. p->se.sleep_start -= clock_offset;
  1613. if (p->se.block_start)
  1614. p->se.block_start -= clock_offset;
  1615. if (old_cpu != new_cpu) {
  1616. schedstat_inc(p, se.nr_migrations);
  1617. if (task_hot(p, old_rq->clock, NULL))
  1618. schedstat_inc(p, se.nr_forced2_migrations);
  1619. }
  1620. #endif
  1621. p->se.vruntime -= old_cfsrq->min_vruntime -
  1622. new_cfsrq->min_vruntime;
  1623. __set_task_cpu(p, new_cpu);
  1624. }
  1625. struct migration_req {
  1626. struct list_head list;
  1627. struct task_struct *task;
  1628. int dest_cpu;
  1629. struct completion done;
  1630. };
  1631. /*
  1632. * The task's runqueue lock must be held.
  1633. * Returns true if you have to wait for migration thread.
  1634. */
  1635. static int
  1636. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1637. {
  1638. struct rq *rq = task_rq(p);
  1639. /*
  1640. * If the task is not on a runqueue (and not running), then
  1641. * it is sufficient to simply update the task's cpu field.
  1642. */
  1643. if (!p->se.on_rq && !task_running(rq, p)) {
  1644. set_task_cpu(p, dest_cpu);
  1645. return 0;
  1646. }
  1647. init_completion(&req->done);
  1648. req->task = p;
  1649. req->dest_cpu = dest_cpu;
  1650. list_add(&req->list, &rq->migration_queue);
  1651. return 1;
  1652. }
  1653. /*
  1654. * wait_task_inactive - wait for a thread to unschedule.
  1655. *
  1656. * If @match_state is nonzero, it's the @p->state value just checked and
  1657. * not expected to change. If it changes, i.e. @p might have woken up,
  1658. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1659. * we return a positive number (its total switch count). If a second call
  1660. * a short while later returns the same number, the caller can be sure that
  1661. * @p has remained unscheduled the whole time.
  1662. *
  1663. * The caller must ensure that the task *will* unschedule sometime soon,
  1664. * else this function might spin for a *long* time. This function can't
  1665. * be called with interrupts off, or it may introduce deadlock with
  1666. * smp_call_function() if an IPI is sent by the same process we are
  1667. * waiting to become inactive.
  1668. */
  1669. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1670. {
  1671. unsigned long flags;
  1672. int running, on_rq;
  1673. unsigned long ncsw;
  1674. struct rq *rq;
  1675. for (;;) {
  1676. /*
  1677. * We do the initial early heuristics without holding
  1678. * any task-queue locks at all. We'll only try to get
  1679. * the runqueue lock when things look like they will
  1680. * work out!
  1681. */
  1682. rq = task_rq(p);
  1683. /*
  1684. * If the task is actively running on another CPU
  1685. * still, just relax and busy-wait without holding
  1686. * any locks.
  1687. *
  1688. * NOTE! Since we don't hold any locks, it's not
  1689. * even sure that "rq" stays as the right runqueue!
  1690. * But we don't care, since "task_running()" will
  1691. * return false if the runqueue has changed and p
  1692. * is actually now running somewhere else!
  1693. */
  1694. while (task_running(rq, p)) {
  1695. if (match_state && unlikely(p->state != match_state))
  1696. return 0;
  1697. cpu_relax();
  1698. }
  1699. /*
  1700. * Ok, time to look more closely! We need the rq
  1701. * lock now, to be *sure*. If we're wrong, we'll
  1702. * just go back and repeat.
  1703. */
  1704. rq = task_rq_lock(p, &flags);
  1705. trace_sched_wait_task(rq, p);
  1706. running = task_running(rq, p);
  1707. on_rq = p->se.on_rq;
  1708. ncsw = 0;
  1709. if (!match_state || p->state == match_state)
  1710. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1711. task_rq_unlock(rq, &flags);
  1712. /*
  1713. * If it changed from the expected state, bail out now.
  1714. */
  1715. if (unlikely(!ncsw))
  1716. break;
  1717. /*
  1718. * Was it really running after all now that we
  1719. * checked with the proper locks actually held?
  1720. *
  1721. * Oops. Go back and try again..
  1722. */
  1723. if (unlikely(running)) {
  1724. cpu_relax();
  1725. continue;
  1726. }
  1727. /*
  1728. * It's not enough that it's not actively running,
  1729. * it must be off the runqueue _entirely_, and not
  1730. * preempted!
  1731. *
  1732. * So if it wa still runnable (but just not actively
  1733. * running right now), it's preempted, and we should
  1734. * yield - it could be a while.
  1735. */
  1736. if (unlikely(on_rq)) {
  1737. schedule_timeout_uninterruptible(1);
  1738. continue;
  1739. }
  1740. /*
  1741. * Ahh, all good. It wasn't running, and it wasn't
  1742. * runnable, which means that it will never become
  1743. * running in the future either. We're all done!
  1744. */
  1745. break;
  1746. }
  1747. return ncsw;
  1748. }
  1749. /***
  1750. * kick_process - kick a running thread to enter/exit the kernel
  1751. * @p: the to-be-kicked thread
  1752. *
  1753. * Cause a process which is running on another CPU to enter
  1754. * kernel-mode, without any delay. (to get signals handled.)
  1755. *
  1756. * NOTE: this function doesnt have to take the runqueue lock,
  1757. * because all it wants to ensure is that the remote task enters
  1758. * the kernel. If the IPI races and the task has been migrated
  1759. * to another CPU then no harm is done and the purpose has been
  1760. * achieved as well.
  1761. */
  1762. void kick_process(struct task_struct *p)
  1763. {
  1764. int cpu;
  1765. preempt_disable();
  1766. cpu = task_cpu(p);
  1767. if ((cpu != smp_processor_id()) && task_curr(p))
  1768. smp_send_reschedule(cpu);
  1769. preempt_enable();
  1770. }
  1771. /*
  1772. * Return a low guess at the load of a migration-source cpu weighted
  1773. * according to the scheduling class and "nice" value.
  1774. *
  1775. * We want to under-estimate the load of migration sources, to
  1776. * balance conservatively.
  1777. */
  1778. static unsigned long source_load(int cpu, int type)
  1779. {
  1780. struct rq *rq = cpu_rq(cpu);
  1781. unsigned long total = weighted_cpuload(cpu);
  1782. if (type == 0 || !sched_feat(LB_BIAS))
  1783. return total;
  1784. return min(rq->cpu_load[type-1], total);
  1785. }
  1786. /*
  1787. * Return a high guess at the load of a migration-target cpu weighted
  1788. * according to the scheduling class and "nice" value.
  1789. */
  1790. static unsigned long target_load(int cpu, int type)
  1791. {
  1792. struct rq *rq = cpu_rq(cpu);
  1793. unsigned long total = weighted_cpuload(cpu);
  1794. if (type == 0 || !sched_feat(LB_BIAS))
  1795. return total;
  1796. return max(rq->cpu_load[type-1], total);
  1797. }
  1798. /*
  1799. * find_idlest_group finds and returns the least busy CPU group within the
  1800. * domain.
  1801. */
  1802. static struct sched_group *
  1803. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1804. {
  1805. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1806. unsigned long min_load = ULONG_MAX, this_load = 0;
  1807. int load_idx = sd->forkexec_idx;
  1808. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1809. do {
  1810. unsigned long load, avg_load;
  1811. int local_group;
  1812. int i;
  1813. /* Skip over this group if it has no CPUs allowed */
  1814. if (!cpumask_intersects(sched_group_cpus(group),
  1815. &p->cpus_allowed))
  1816. continue;
  1817. local_group = cpumask_test_cpu(this_cpu,
  1818. sched_group_cpus(group));
  1819. /* Tally up the load of all CPUs in the group */
  1820. avg_load = 0;
  1821. for_each_cpu(i, sched_group_cpus(group)) {
  1822. /* Bias balancing toward cpus of our domain */
  1823. if (local_group)
  1824. load = source_load(i, load_idx);
  1825. else
  1826. load = target_load(i, load_idx);
  1827. avg_load += load;
  1828. }
  1829. /* Adjust by relative CPU power of the group */
  1830. avg_load = sg_div_cpu_power(group,
  1831. avg_load * SCHED_LOAD_SCALE);
  1832. if (local_group) {
  1833. this_load = avg_load;
  1834. this = group;
  1835. } else if (avg_load < min_load) {
  1836. min_load = avg_load;
  1837. idlest = group;
  1838. }
  1839. } while (group = group->next, group != sd->groups);
  1840. if (!idlest || 100*this_load < imbalance*min_load)
  1841. return NULL;
  1842. return idlest;
  1843. }
  1844. /*
  1845. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1846. */
  1847. static int
  1848. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1849. {
  1850. unsigned long load, min_load = ULONG_MAX;
  1851. int idlest = -1;
  1852. int i;
  1853. /* Traverse only the allowed CPUs */
  1854. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1855. load = weighted_cpuload(i);
  1856. if (load < min_load || (load == min_load && i == this_cpu)) {
  1857. min_load = load;
  1858. idlest = i;
  1859. }
  1860. }
  1861. return idlest;
  1862. }
  1863. /*
  1864. * sched_balance_self: balance the current task (running on cpu) in domains
  1865. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1866. * SD_BALANCE_EXEC.
  1867. *
  1868. * Balance, ie. select the least loaded group.
  1869. *
  1870. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1871. *
  1872. * preempt must be disabled.
  1873. */
  1874. static int sched_balance_self(int cpu, int flag)
  1875. {
  1876. struct task_struct *t = current;
  1877. struct sched_domain *tmp, *sd = NULL;
  1878. for_each_domain(cpu, tmp) {
  1879. /*
  1880. * If power savings logic is enabled for a domain, stop there.
  1881. */
  1882. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1883. break;
  1884. if (tmp->flags & flag)
  1885. sd = tmp;
  1886. }
  1887. if (sd)
  1888. update_shares(sd);
  1889. while (sd) {
  1890. struct sched_group *group;
  1891. int new_cpu, weight;
  1892. if (!(sd->flags & flag)) {
  1893. sd = sd->child;
  1894. continue;
  1895. }
  1896. group = find_idlest_group(sd, t, cpu);
  1897. if (!group) {
  1898. sd = sd->child;
  1899. continue;
  1900. }
  1901. new_cpu = find_idlest_cpu(group, t, cpu);
  1902. if (new_cpu == -1 || new_cpu == cpu) {
  1903. /* Now try balancing at a lower domain level of cpu */
  1904. sd = sd->child;
  1905. continue;
  1906. }
  1907. /* Now try balancing at a lower domain level of new_cpu */
  1908. cpu = new_cpu;
  1909. weight = cpumask_weight(sched_domain_span(sd));
  1910. sd = NULL;
  1911. for_each_domain(cpu, tmp) {
  1912. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1913. break;
  1914. if (tmp->flags & flag)
  1915. sd = tmp;
  1916. }
  1917. /* while loop will break here if sd == NULL */
  1918. }
  1919. return cpu;
  1920. }
  1921. #endif /* CONFIG_SMP */
  1922. /***
  1923. * try_to_wake_up - wake up a thread
  1924. * @p: the to-be-woken-up thread
  1925. * @state: the mask of task states that can be woken
  1926. * @sync: do a synchronous wakeup?
  1927. *
  1928. * Put it on the run-queue if it's not already there. The "current"
  1929. * thread is always on the run-queue (except when the actual
  1930. * re-schedule is in progress), and as such you're allowed to do
  1931. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1932. * runnable without the overhead of this.
  1933. *
  1934. * returns failure only if the task is already active.
  1935. */
  1936. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1937. {
  1938. int cpu, orig_cpu, this_cpu, success = 0;
  1939. unsigned long flags;
  1940. long old_state;
  1941. struct rq *rq;
  1942. if (!sched_feat(SYNC_WAKEUPS))
  1943. sync = 0;
  1944. #ifdef CONFIG_SMP
  1945. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1946. struct sched_domain *sd;
  1947. this_cpu = raw_smp_processor_id();
  1948. cpu = task_cpu(p);
  1949. for_each_domain(this_cpu, sd) {
  1950. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1951. update_shares(sd);
  1952. break;
  1953. }
  1954. }
  1955. }
  1956. #endif
  1957. smp_wmb();
  1958. rq = task_rq_lock(p, &flags);
  1959. old_state = p->state;
  1960. if (!(old_state & state))
  1961. goto out;
  1962. if (p->se.on_rq)
  1963. goto out_running;
  1964. cpu = task_cpu(p);
  1965. orig_cpu = cpu;
  1966. this_cpu = smp_processor_id();
  1967. #ifdef CONFIG_SMP
  1968. if (unlikely(task_running(rq, p)))
  1969. goto out_activate;
  1970. cpu = p->sched_class->select_task_rq(p, sync);
  1971. if (cpu != orig_cpu) {
  1972. set_task_cpu(p, cpu);
  1973. task_rq_unlock(rq, &flags);
  1974. /* might preempt at this point */
  1975. rq = task_rq_lock(p, &flags);
  1976. old_state = p->state;
  1977. if (!(old_state & state))
  1978. goto out;
  1979. if (p->se.on_rq)
  1980. goto out_running;
  1981. this_cpu = smp_processor_id();
  1982. cpu = task_cpu(p);
  1983. }
  1984. #ifdef CONFIG_SCHEDSTATS
  1985. schedstat_inc(rq, ttwu_count);
  1986. if (cpu == this_cpu)
  1987. schedstat_inc(rq, ttwu_local);
  1988. else {
  1989. struct sched_domain *sd;
  1990. for_each_domain(this_cpu, sd) {
  1991. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1992. schedstat_inc(sd, ttwu_wake_remote);
  1993. break;
  1994. }
  1995. }
  1996. }
  1997. #endif /* CONFIG_SCHEDSTATS */
  1998. out_activate:
  1999. #endif /* CONFIG_SMP */
  2000. schedstat_inc(p, se.nr_wakeups);
  2001. if (sync)
  2002. schedstat_inc(p, se.nr_wakeups_sync);
  2003. if (orig_cpu != cpu)
  2004. schedstat_inc(p, se.nr_wakeups_migrate);
  2005. if (cpu == this_cpu)
  2006. schedstat_inc(p, se.nr_wakeups_local);
  2007. else
  2008. schedstat_inc(p, se.nr_wakeups_remote);
  2009. update_rq_clock(rq);
  2010. activate_task(rq, p, 1);
  2011. success = 1;
  2012. out_running:
  2013. trace_sched_wakeup(rq, p);
  2014. check_preempt_curr(rq, p, sync);
  2015. p->state = TASK_RUNNING;
  2016. #ifdef CONFIG_SMP
  2017. if (p->sched_class->task_wake_up)
  2018. p->sched_class->task_wake_up(rq, p);
  2019. #endif
  2020. out:
  2021. current->se.last_wakeup = current->se.sum_exec_runtime;
  2022. task_rq_unlock(rq, &flags);
  2023. return success;
  2024. }
  2025. int wake_up_process(struct task_struct *p)
  2026. {
  2027. return try_to_wake_up(p, TASK_ALL, 0);
  2028. }
  2029. EXPORT_SYMBOL(wake_up_process);
  2030. int wake_up_state(struct task_struct *p, unsigned int state)
  2031. {
  2032. return try_to_wake_up(p, state, 0);
  2033. }
  2034. /*
  2035. * Perform scheduler related setup for a newly forked process p.
  2036. * p is forked by current.
  2037. *
  2038. * __sched_fork() is basic setup used by init_idle() too:
  2039. */
  2040. static void __sched_fork(struct task_struct *p)
  2041. {
  2042. p->se.exec_start = 0;
  2043. p->se.sum_exec_runtime = 0;
  2044. p->se.prev_sum_exec_runtime = 0;
  2045. p->se.last_wakeup = 0;
  2046. p->se.avg_overlap = 0;
  2047. #ifdef CONFIG_SCHEDSTATS
  2048. p->se.wait_start = 0;
  2049. p->se.sum_sleep_runtime = 0;
  2050. p->se.sleep_start = 0;
  2051. p->se.block_start = 0;
  2052. p->se.sleep_max = 0;
  2053. p->se.block_max = 0;
  2054. p->se.exec_max = 0;
  2055. p->se.slice_max = 0;
  2056. p->se.wait_max = 0;
  2057. #endif
  2058. INIT_LIST_HEAD(&p->rt.run_list);
  2059. p->se.on_rq = 0;
  2060. INIT_LIST_HEAD(&p->se.group_node);
  2061. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2062. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2063. #endif
  2064. /*
  2065. * We mark the process as running here, but have not actually
  2066. * inserted it onto the runqueue yet. This guarantees that
  2067. * nobody will actually run it, and a signal or other external
  2068. * event cannot wake it up and insert it on the runqueue either.
  2069. */
  2070. p->state = TASK_RUNNING;
  2071. }
  2072. /*
  2073. * fork()/clone()-time setup:
  2074. */
  2075. void sched_fork(struct task_struct *p, int clone_flags)
  2076. {
  2077. int cpu = get_cpu();
  2078. __sched_fork(p);
  2079. #ifdef CONFIG_SMP
  2080. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2081. #endif
  2082. set_task_cpu(p, cpu);
  2083. /*
  2084. * Make sure we do not leak PI boosting priority to the child:
  2085. */
  2086. p->prio = current->normal_prio;
  2087. if (!rt_prio(p->prio))
  2088. p->sched_class = &fair_sched_class;
  2089. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2090. if (likely(sched_info_on()))
  2091. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2092. #endif
  2093. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2094. p->oncpu = 0;
  2095. #endif
  2096. #ifdef CONFIG_PREEMPT
  2097. /* Want to start with kernel preemption disabled. */
  2098. task_thread_info(p)->preempt_count = 1;
  2099. #endif
  2100. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2101. put_cpu();
  2102. }
  2103. /*
  2104. * wake_up_new_task - wake up a newly created task for the first time.
  2105. *
  2106. * This function will do some initial scheduler statistics housekeeping
  2107. * that must be done for every newly created context, then puts the task
  2108. * on the runqueue and wakes it.
  2109. */
  2110. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2111. {
  2112. unsigned long flags;
  2113. struct rq *rq;
  2114. rq = task_rq_lock(p, &flags);
  2115. BUG_ON(p->state != TASK_RUNNING);
  2116. update_rq_clock(rq);
  2117. p->prio = effective_prio(p);
  2118. if (!p->sched_class->task_new || !current->se.on_rq) {
  2119. activate_task(rq, p, 0);
  2120. } else {
  2121. /*
  2122. * Let the scheduling class do new task startup
  2123. * management (if any):
  2124. */
  2125. p->sched_class->task_new(rq, p);
  2126. inc_nr_running(rq);
  2127. }
  2128. trace_sched_wakeup_new(rq, p);
  2129. check_preempt_curr(rq, p, 0);
  2130. #ifdef CONFIG_SMP
  2131. if (p->sched_class->task_wake_up)
  2132. p->sched_class->task_wake_up(rq, p);
  2133. #endif
  2134. task_rq_unlock(rq, &flags);
  2135. }
  2136. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2137. /**
  2138. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2139. * @notifier: notifier struct to register
  2140. */
  2141. void preempt_notifier_register(struct preempt_notifier *notifier)
  2142. {
  2143. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2144. }
  2145. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2146. /**
  2147. * preempt_notifier_unregister - no longer interested in preemption notifications
  2148. * @notifier: notifier struct to unregister
  2149. *
  2150. * This is safe to call from within a preemption notifier.
  2151. */
  2152. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2153. {
  2154. hlist_del(&notifier->link);
  2155. }
  2156. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2157. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2158. {
  2159. struct preempt_notifier *notifier;
  2160. struct hlist_node *node;
  2161. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2162. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2163. }
  2164. static void
  2165. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2166. struct task_struct *next)
  2167. {
  2168. struct preempt_notifier *notifier;
  2169. struct hlist_node *node;
  2170. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2171. notifier->ops->sched_out(notifier, next);
  2172. }
  2173. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2174. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2175. {
  2176. }
  2177. static void
  2178. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2179. struct task_struct *next)
  2180. {
  2181. }
  2182. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2183. /**
  2184. * prepare_task_switch - prepare to switch tasks
  2185. * @rq: the runqueue preparing to switch
  2186. * @prev: the current task that is being switched out
  2187. * @next: the task we are going to switch to.
  2188. *
  2189. * This is called with the rq lock held and interrupts off. It must
  2190. * be paired with a subsequent finish_task_switch after the context
  2191. * switch.
  2192. *
  2193. * prepare_task_switch sets up locking and calls architecture specific
  2194. * hooks.
  2195. */
  2196. static inline void
  2197. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2198. struct task_struct *next)
  2199. {
  2200. fire_sched_out_preempt_notifiers(prev, next);
  2201. prepare_lock_switch(rq, next);
  2202. prepare_arch_switch(next);
  2203. }
  2204. /**
  2205. * finish_task_switch - clean up after a task-switch
  2206. * @rq: runqueue associated with task-switch
  2207. * @prev: the thread we just switched away from.
  2208. *
  2209. * finish_task_switch must be called after the context switch, paired
  2210. * with a prepare_task_switch call before the context switch.
  2211. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2212. * and do any other architecture-specific cleanup actions.
  2213. *
  2214. * Note that we may have delayed dropping an mm in context_switch(). If
  2215. * so, we finish that here outside of the runqueue lock. (Doing it
  2216. * with the lock held can cause deadlocks; see schedule() for
  2217. * details.)
  2218. */
  2219. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2220. __releases(rq->lock)
  2221. {
  2222. struct mm_struct *mm = rq->prev_mm;
  2223. long prev_state;
  2224. #ifdef CONFIG_SMP
  2225. int post_schedule = 0;
  2226. if (current->sched_class->needs_post_schedule)
  2227. post_schedule = current->sched_class->needs_post_schedule(rq);
  2228. #endif
  2229. rq->prev_mm = NULL;
  2230. /*
  2231. * A task struct has one reference for the use as "current".
  2232. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2233. * schedule one last time. The schedule call will never return, and
  2234. * the scheduled task must drop that reference.
  2235. * The test for TASK_DEAD must occur while the runqueue locks are
  2236. * still held, otherwise prev could be scheduled on another cpu, die
  2237. * there before we look at prev->state, and then the reference would
  2238. * be dropped twice.
  2239. * Manfred Spraul <manfred@colorfullife.com>
  2240. */
  2241. prev_state = prev->state;
  2242. finish_arch_switch(prev);
  2243. finish_lock_switch(rq, prev);
  2244. #ifdef CONFIG_SMP
  2245. if (post_schedule)
  2246. current->sched_class->post_schedule(rq);
  2247. #endif
  2248. fire_sched_in_preempt_notifiers(current);
  2249. if (mm)
  2250. mmdrop(mm);
  2251. if (unlikely(prev_state == TASK_DEAD)) {
  2252. /*
  2253. * Remove function-return probe instances associated with this
  2254. * task and put them back on the free list.
  2255. */
  2256. kprobe_flush_task(prev);
  2257. put_task_struct(prev);
  2258. }
  2259. }
  2260. /**
  2261. * schedule_tail - first thing a freshly forked thread must call.
  2262. * @prev: the thread we just switched away from.
  2263. */
  2264. asmlinkage void schedule_tail(struct task_struct *prev)
  2265. __releases(rq->lock)
  2266. {
  2267. struct rq *rq = this_rq();
  2268. finish_task_switch(rq, prev);
  2269. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2270. /* In this case, finish_task_switch does not reenable preemption */
  2271. preempt_enable();
  2272. #endif
  2273. if (current->set_child_tid)
  2274. put_user(task_pid_vnr(current), current->set_child_tid);
  2275. }
  2276. /*
  2277. * context_switch - switch to the new MM and the new
  2278. * thread's register state.
  2279. */
  2280. static inline void
  2281. context_switch(struct rq *rq, struct task_struct *prev,
  2282. struct task_struct *next)
  2283. {
  2284. struct mm_struct *mm, *oldmm;
  2285. prepare_task_switch(rq, prev, next);
  2286. trace_sched_switch(rq, prev, next);
  2287. mm = next->mm;
  2288. oldmm = prev->active_mm;
  2289. /*
  2290. * For paravirt, this is coupled with an exit in switch_to to
  2291. * combine the page table reload and the switch backend into
  2292. * one hypercall.
  2293. */
  2294. arch_enter_lazy_cpu_mode();
  2295. if (unlikely(!mm)) {
  2296. next->active_mm = oldmm;
  2297. atomic_inc(&oldmm->mm_count);
  2298. enter_lazy_tlb(oldmm, next);
  2299. } else
  2300. switch_mm(oldmm, mm, next);
  2301. if (unlikely(!prev->mm)) {
  2302. prev->active_mm = NULL;
  2303. rq->prev_mm = oldmm;
  2304. }
  2305. /*
  2306. * Since the runqueue lock will be released by the next
  2307. * task (which is an invalid locking op but in the case
  2308. * of the scheduler it's an obvious special-case), so we
  2309. * do an early lockdep release here:
  2310. */
  2311. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2312. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2313. #endif
  2314. /* Here we just switch the register state and the stack. */
  2315. switch_to(prev, next, prev);
  2316. barrier();
  2317. /*
  2318. * this_rq must be evaluated again because prev may have moved
  2319. * CPUs since it called schedule(), thus the 'rq' on its stack
  2320. * frame will be invalid.
  2321. */
  2322. finish_task_switch(this_rq(), prev);
  2323. }
  2324. /*
  2325. * nr_running, nr_uninterruptible and nr_context_switches:
  2326. *
  2327. * externally visible scheduler statistics: current number of runnable
  2328. * threads, current number of uninterruptible-sleeping threads, total
  2329. * number of context switches performed since bootup.
  2330. */
  2331. unsigned long nr_running(void)
  2332. {
  2333. unsigned long i, sum = 0;
  2334. for_each_online_cpu(i)
  2335. sum += cpu_rq(i)->nr_running;
  2336. return sum;
  2337. }
  2338. unsigned long nr_uninterruptible(void)
  2339. {
  2340. unsigned long i, sum = 0;
  2341. for_each_possible_cpu(i)
  2342. sum += cpu_rq(i)->nr_uninterruptible;
  2343. /*
  2344. * Since we read the counters lockless, it might be slightly
  2345. * inaccurate. Do not allow it to go below zero though:
  2346. */
  2347. if (unlikely((long)sum < 0))
  2348. sum = 0;
  2349. return sum;
  2350. }
  2351. unsigned long long nr_context_switches(void)
  2352. {
  2353. int i;
  2354. unsigned long long sum = 0;
  2355. for_each_possible_cpu(i)
  2356. sum += cpu_rq(i)->nr_switches;
  2357. return sum;
  2358. }
  2359. unsigned long nr_iowait(void)
  2360. {
  2361. unsigned long i, sum = 0;
  2362. for_each_possible_cpu(i)
  2363. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2364. return sum;
  2365. }
  2366. unsigned long nr_active(void)
  2367. {
  2368. unsigned long i, running = 0, uninterruptible = 0;
  2369. for_each_online_cpu(i) {
  2370. running += cpu_rq(i)->nr_running;
  2371. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2372. }
  2373. if (unlikely((long)uninterruptible < 0))
  2374. uninterruptible = 0;
  2375. return running + uninterruptible;
  2376. }
  2377. /*
  2378. * Update rq->cpu_load[] statistics. This function is usually called every
  2379. * scheduler tick (TICK_NSEC).
  2380. */
  2381. static void update_cpu_load(struct rq *this_rq)
  2382. {
  2383. unsigned long this_load = this_rq->load.weight;
  2384. int i, scale;
  2385. this_rq->nr_load_updates++;
  2386. /* Update our load: */
  2387. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2388. unsigned long old_load, new_load;
  2389. /* scale is effectively 1 << i now, and >> i divides by scale */
  2390. old_load = this_rq->cpu_load[i];
  2391. new_load = this_load;
  2392. /*
  2393. * Round up the averaging division if load is increasing. This
  2394. * prevents us from getting stuck on 9 if the load is 10, for
  2395. * example.
  2396. */
  2397. if (new_load > old_load)
  2398. new_load += scale-1;
  2399. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2400. }
  2401. }
  2402. #ifdef CONFIG_SMP
  2403. /*
  2404. * double_rq_lock - safely lock two runqueues
  2405. *
  2406. * Note this does not disable interrupts like task_rq_lock,
  2407. * you need to do so manually before calling.
  2408. */
  2409. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2410. __acquires(rq1->lock)
  2411. __acquires(rq2->lock)
  2412. {
  2413. BUG_ON(!irqs_disabled());
  2414. if (rq1 == rq2) {
  2415. spin_lock(&rq1->lock);
  2416. __acquire(rq2->lock); /* Fake it out ;) */
  2417. } else {
  2418. if (rq1 < rq2) {
  2419. spin_lock(&rq1->lock);
  2420. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2421. } else {
  2422. spin_lock(&rq2->lock);
  2423. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2424. }
  2425. }
  2426. update_rq_clock(rq1);
  2427. update_rq_clock(rq2);
  2428. }
  2429. /*
  2430. * double_rq_unlock - safely unlock two runqueues
  2431. *
  2432. * Note this does not restore interrupts like task_rq_unlock,
  2433. * you need to do so manually after calling.
  2434. */
  2435. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2436. __releases(rq1->lock)
  2437. __releases(rq2->lock)
  2438. {
  2439. spin_unlock(&rq1->lock);
  2440. if (rq1 != rq2)
  2441. spin_unlock(&rq2->lock);
  2442. else
  2443. __release(rq2->lock);
  2444. }
  2445. /*
  2446. * If dest_cpu is allowed for this process, migrate the task to it.
  2447. * This is accomplished by forcing the cpu_allowed mask to only
  2448. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2449. * the cpu_allowed mask is restored.
  2450. */
  2451. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2452. {
  2453. struct migration_req req;
  2454. unsigned long flags;
  2455. struct rq *rq;
  2456. rq = task_rq_lock(p, &flags);
  2457. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2458. || unlikely(!cpu_active(dest_cpu)))
  2459. goto out;
  2460. trace_sched_migrate_task(rq, p, dest_cpu);
  2461. /* force the process onto the specified CPU */
  2462. if (migrate_task(p, dest_cpu, &req)) {
  2463. /* Need to wait for migration thread (might exit: take ref). */
  2464. struct task_struct *mt = rq->migration_thread;
  2465. get_task_struct(mt);
  2466. task_rq_unlock(rq, &flags);
  2467. wake_up_process(mt);
  2468. put_task_struct(mt);
  2469. wait_for_completion(&req.done);
  2470. return;
  2471. }
  2472. out:
  2473. task_rq_unlock(rq, &flags);
  2474. }
  2475. /*
  2476. * sched_exec - execve() is a valuable balancing opportunity, because at
  2477. * this point the task has the smallest effective memory and cache footprint.
  2478. */
  2479. void sched_exec(void)
  2480. {
  2481. int new_cpu, this_cpu = get_cpu();
  2482. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2483. put_cpu();
  2484. if (new_cpu != this_cpu)
  2485. sched_migrate_task(current, new_cpu);
  2486. }
  2487. /*
  2488. * pull_task - move a task from a remote runqueue to the local runqueue.
  2489. * Both runqueues must be locked.
  2490. */
  2491. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2492. struct rq *this_rq, int this_cpu)
  2493. {
  2494. deactivate_task(src_rq, p, 0);
  2495. set_task_cpu(p, this_cpu);
  2496. activate_task(this_rq, p, 0);
  2497. /*
  2498. * Note that idle threads have a prio of MAX_PRIO, for this test
  2499. * to be always true for them.
  2500. */
  2501. check_preempt_curr(this_rq, p, 0);
  2502. }
  2503. /*
  2504. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2505. */
  2506. static
  2507. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2508. struct sched_domain *sd, enum cpu_idle_type idle,
  2509. int *all_pinned)
  2510. {
  2511. /*
  2512. * We do not migrate tasks that are:
  2513. * 1) running (obviously), or
  2514. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2515. * 3) are cache-hot on their current CPU.
  2516. */
  2517. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2518. schedstat_inc(p, se.nr_failed_migrations_affine);
  2519. return 0;
  2520. }
  2521. *all_pinned = 0;
  2522. if (task_running(rq, p)) {
  2523. schedstat_inc(p, se.nr_failed_migrations_running);
  2524. return 0;
  2525. }
  2526. /*
  2527. * Aggressive migration if:
  2528. * 1) task is cache cold, or
  2529. * 2) too many balance attempts have failed.
  2530. */
  2531. if (!task_hot(p, rq->clock, sd) ||
  2532. sd->nr_balance_failed > sd->cache_nice_tries) {
  2533. #ifdef CONFIG_SCHEDSTATS
  2534. if (task_hot(p, rq->clock, sd)) {
  2535. schedstat_inc(sd, lb_hot_gained[idle]);
  2536. schedstat_inc(p, se.nr_forced_migrations);
  2537. }
  2538. #endif
  2539. return 1;
  2540. }
  2541. if (task_hot(p, rq->clock, sd)) {
  2542. schedstat_inc(p, se.nr_failed_migrations_hot);
  2543. return 0;
  2544. }
  2545. return 1;
  2546. }
  2547. static unsigned long
  2548. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2549. unsigned long max_load_move, struct sched_domain *sd,
  2550. enum cpu_idle_type idle, int *all_pinned,
  2551. int *this_best_prio, struct rq_iterator *iterator)
  2552. {
  2553. int loops = 0, pulled = 0, pinned = 0;
  2554. struct task_struct *p;
  2555. long rem_load_move = max_load_move;
  2556. if (max_load_move == 0)
  2557. goto out;
  2558. pinned = 1;
  2559. /*
  2560. * Start the load-balancing iterator:
  2561. */
  2562. p = iterator->start(iterator->arg);
  2563. next:
  2564. if (!p || loops++ > sysctl_sched_nr_migrate)
  2565. goto out;
  2566. if ((p->se.load.weight >> 1) > rem_load_move ||
  2567. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2568. p = iterator->next(iterator->arg);
  2569. goto next;
  2570. }
  2571. pull_task(busiest, p, this_rq, this_cpu);
  2572. pulled++;
  2573. rem_load_move -= p->se.load.weight;
  2574. #ifdef CONFIG_PREEMPT
  2575. /*
  2576. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2577. * will stop after the first task is pulled to minimize the critical
  2578. * section.
  2579. */
  2580. if (idle == CPU_NEWLY_IDLE)
  2581. goto out;
  2582. #endif
  2583. /*
  2584. * We only want to steal up to the prescribed amount of weighted load.
  2585. */
  2586. if (rem_load_move > 0) {
  2587. if (p->prio < *this_best_prio)
  2588. *this_best_prio = p->prio;
  2589. p = iterator->next(iterator->arg);
  2590. goto next;
  2591. }
  2592. out:
  2593. /*
  2594. * Right now, this is one of only two places pull_task() is called,
  2595. * so we can safely collect pull_task() stats here rather than
  2596. * inside pull_task().
  2597. */
  2598. schedstat_add(sd, lb_gained[idle], pulled);
  2599. if (all_pinned)
  2600. *all_pinned = pinned;
  2601. return max_load_move - rem_load_move;
  2602. }
  2603. /*
  2604. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2605. * this_rq, as part of a balancing operation within domain "sd".
  2606. * Returns 1 if successful and 0 otherwise.
  2607. *
  2608. * Called with both runqueues locked.
  2609. */
  2610. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2611. unsigned long max_load_move,
  2612. struct sched_domain *sd, enum cpu_idle_type idle,
  2613. int *all_pinned)
  2614. {
  2615. const struct sched_class *class = sched_class_highest;
  2616. unsigned long total_load_moved = 0;
  2617. int this_best_prio = this_rq->curr->prio;
  2618. do {
  2619. total_load_moved +=
  2620. class->load_balance(this_rq, this_cpu, busiest,
  2621. max_load_move - total_load_moved,
  2622. sd, idle, all_pinned, &this_best_prio);
  2623. class = class->next;
  2624. #ifdef CONFIG_PREEMPT
  2625. /*
  2626. * NEWIDLE balancing is a source of latency, so preemptible
  2627. * kernels will stop after the first task is pulled to minimize
  2628. * the critical section.
  2629. */
  2630. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2631. break;
  2632. #endif
  2633. } while (class && max_load_move > total_load_moved);
  2634. return total_load_moved > 0;
  2635. }
  2636. static int
  2637. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2638. struct sched_domain *sd, enum cpu_idle_type idle,
  2639. struct rq_iterator *iterator)
  2640. {
  2641. struct task_struct *p = iterator->start(iterator->arg);
  2642. int pinned = 0;
  2643. while (p) {
  2644. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2645. pull_task(busiest, p, this_rq, this_cpu);
  2646. /*
  2647. * Right now, this is only the second place pull_task()
  2648. * is called, so we can safely collect pull_task()
  2649. * stats here rather than inside pull_task().
  2650. */
  2651. schedstat_inc(sd, lb_gained[idle]);
  2652. return 1;
  2653. }
  2654. p = iterator->next(iterator->arg);
  2655. }
  2656. return 0;
  2657. }
  2658. /*
  2659. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2660. * part of active balancing operations within "domain".
  2661. * Returns 1 if successful and 0 otherwise.
  2662. *
  2663. * Called with both runqueues locked.
  2664. */
  2665. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. struct sched_domain *sd, enum cpu_idle_type idle)
  2667. {
  2668. const struct sched_class *class;
  2669. for (class = sched_class_highest; class; class = class->next)
  2670. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2671. return 1;
  2672. return 0;
  2673. }
  2674. /*
  2675. * find_busiest_group finds and returns the busiest CPU group within the
  2676. * domain. It calculates and returns the amount of weighted load which
  2677. * should be moved to restore balance via the imbalance parameter.
  2678. */
  2679. static struct sched_group *
  2680. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2681. unsigned long *imbalance, enum cpu_idle_type idle,
  2682. int *sd_idle, const struct cpumask *cpus, int *balance)
  2683. {
  2684. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2685. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2686. unsigned long max_pull;
  2687. unsigned long busiest_load_per_task, busiest_nr_running;
  2688. unsigned long this_load_per_task, this_nr_running;
  2689. int load_idx, group_imb = 0;
  2690. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2691. int power_savings_balance = 1;
  2692. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2693. unsigned long min_nr_running = ULONG_MAX;
  2694. struct sched_group *group_min = NULL, *group_leader = NULL;
  2695. #endif
  2696. max_load = this_load = total_load = total_pwr = 0;
  2697. busiest_load_per_task = busiest_nr_running = 0;
  2698. this_load_per_task = this_nr_running = 0;
  2699. if (idle == CPU_NOT_IDLE)
  2700. load_idx = sd->busy_idx;
  2701. else if (idle == CPU_NEWLY_IDLE)
  2702. load_idx = sd->newidle_idx;
  2703. else
  2704. load_idx = sd->idle_idx;
  2705. do {
  2706. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2707. int local_group;
  2708. int i;
  2709. int __group_imb = 0;
  2710. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2711. unsigned long sum_nr_running, sum_weighted_load;
  2712. unsigned long sum_avg_load_per_task;
  2713. unsigned long avg_load_per_task;
  2714. local_group = cpumask_test_cpu(this_cpu,
  2715. sched_group_cpus(group));
  2716. if (local_group)
  2717. balance_cpu = cpumask_first(sched_group_cpus(group));
  2718. /* Tally up the load of all CPUs in the group */
  2719. sum_weighted_load = sum_nr_running = avg_load = 0;
  2720. sum_avg_load_per_task = avg_load_per_task = 0;
  2721. max_cpu_load = 0;
  2722. min_cpu_load = ~0UL;
  2723. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2724. struct rq *rq = cpu_rq(i);
  2725. if (*sd_idle && rq->nr_running)
  2726. *sd_idle = 0;
  2727. /* Bias balancing toward cpus of our domain */
  2728. if (local_group) {
  2729. if (idle_cpu(i) && !first_idle_cpu) {
  2730. first_idle_cpu = 1;
  2731. balance_cpu = i;
  2732. }
  2733. load = target_load(i, load_idx);
  2734. } else {
  2735. load = source_load(i, load_idx);
  2736. if (load > max_cpu_load)
  2737. max_cpu_load = load;
  2738. if (min_cpu_load > load)
  2739. min_cpu_load = load;
  2740. }
  2741. avg_load += load;
  2742. sum_nr_running += rq->nr_running;
  2743. sum_weighted_load += weighted_cpuload(i);
  2744. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2745. }
  2746. /*
  2747. * First idle cpu or the first cpu(busiest) in this sched group
  2748. * is eligible for doing load balancing at this and above
  2749. * domains. In the newly idle case, we will allow all the cpu's
  2750. * to do the newly idle load balance.
  2751. */
  2752. if (idle != CPU_NEWLY_IDLE && local_group &&
  2753. balance_cpu != this_cpu && balance) {
  2754. *balance = 0;
  2755. goto ret;
  2756. }
  2757. total_load += avg_load;
  2758. total_pwr += group->__cpu_power;
  2759. /* Adjust by relative CPU power of the group */
  2760. avg_load = sg_div_cpu_power(group,
  2761. avg_load * SCHED_LOAD_SCALE);
  2762. /*
  2763. * Consider the group unbalanced when the imbalance is larger
  2764. * than the average weight of two tasks.
  2765. *
  2766. * APZ: with cgroup the avg task weight can vary wildly and
  2767. * might not be a suitable number - should we keep a
  2768. * normalized nr_running number somewhere that negates
  2769. * the hierarchy?
  2770. */
  2771. avg_load_per_task = sg_div_cpu_power(group,
  2772. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2773. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2774. __group_imb = 1;
  2775. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2776. if (local_group) {
  2777. this_load = avg_load;
  2778. this = group;
  2779. this_nr_running = sum_nr_running;
  2780. this_load_per_task = sum_weighted_load;
  2781. } else if (avg_load > max_load &&
  2782. (sum_nr_running > group_capacity || __group_imb)) {
  2783. max_load = avg_load;
  2784. busiest = group;
  2785. busiest_nr_running = sum_nr_running;
  2786. busiest_load_per_task = sum_weighted_load;
  2787. group_imb = __group_imb;
  2788. }
  2789. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2790. /*
  2791. * Busy processors will not participate in power savings
  2792. * balance.
  2793. */
  2794. if (idle == CPU_NOT_IDLE ||
  2795. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2796. goto group_next;
  2797. /*
  2798. * If the local group is idle or completely loaded
  2799. * no need to do power savings balance at this domain
  2800. */
  2801. if (local_group && (this_nr_running >= group_capacity ||
  2802. !this_nr_running))
  2803. power_savings_balance = 0;
  2804. /*
  2805. * If a group is already running at full capacity or idle,
  2806. * don't include that group in power savings calculations
  2807. */
  2808. if (!power_savings_balance || sum_nr_running >= group_capacity
  2809. || !sum_nr_running)
  2810. goto group_next;
  2811. /*
  2812. * Calculate the group which has the least non-idle load.
  2813. * This is the group from where we need to pick up the load
  2814. * for saving power
  2815. */
  2816. if ((sum_nr_running < min_nr_running) ||
  2817. (sum_nr_running == min_nr_running &&
  2818. cpumask_first(sched_group_cpus(group)) >
  2819. cpumask_first(sched_group_cpus(group_min)))) {
  2820. group_min = group;
  2821. min_nr_running = sum_nr_running;
  2822. min_load_per_task = sum_weighted_load /
  2823. sum_nr_running;
  2824. }
  2825. /*
  2826. * Calculate the group which is almost near its
  2827. * capacity but still has some space to pick up some load
  2828. * from other group and save more power
  2829. */
  2830. if (sum_nr_running <= group_capacity - 1) {
  2831. if (sum_nr_running > leader_nr_running ||
  2832. (sum_nr_running == leader_nr_running &&
  2833. cpumask_first(sched_group_cpus(group)) <
  2834. cpumask_first(sched_group_cpus(group_leader)))) {
  2835. group_leader = group;
  2836. leader_nr_running = sum_nr_running;
  2837. }
  2838. }
  2839. group_next:
  2840. #endif
  2841. group = group->next;
  2842. } while (group != sd->groups);
  2843. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2844. goto out_balanced;
  2845. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2846. if (this_load >= avg_load ||
  2847. 100*max_load <= sd->imbalance_pct*this_load)
  2848. goto out_balanced;
  2849. busiest_load_per_task /= busiest_nr_running;
  2850. if (group_imb)
  2851. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2852. /*
  2853. * We're trying to get all the cpus to the average_load, so we don't
  2854. * want to push ourselves above the average load, nor do we wish to
  2855. * reduce the max loaded cpu below the average load, as either of these
  2856. * actions would just result in more rebalancing later, and ping-pong
  2857. * tasks around. Thus we look for the minimum possible imbalance.
  2858. * Negative imbalances (*we* are more loaded than anyone else) will
  2859. * be counted as no imbalance for these purposes -- we can't fix that
  2860. * by pulling tasks to us. Be careful of negative numbers as they'll
  2861. * appear as very large values with unsigned longs.
  2862. */
  2863. if (max_load <= busiest_load_per_task)
  2864. goto out_balanced;
  2865. /*
  2866. * In the presence of smp nice balancing, certain scenarios can have
  2867. * max load less than avg load(as we skip the groups at or below
  2868. * its cpu_power, while calculating max_load..)
  2869. */
  2870. if (max_load < avg_load) {
  2871. *imbalance = 0;
  2872. goto small_imbalance;
  2873. }
  2874. /* Don't want to pull so many tasks that a group would go idle */
  2875. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2876. /* How much load to actually move to equalise the imbalance */
  2877. *imbalance = min(max_pull * busiest->__cpu_power,
  2878. (avg_load - this_load) * this->__cpu_power)
  2879. / SCHED_LOAD_SCALE;
  2880. /*
  2881. * if *imbalance is less than the average load per runnable task
  2882. * there is no gaurantee that any tasks will be moved so we'll have
  2883. * a think about bumping its value to force at least one task to be
  2884. * moved
  2885. */
  2886. if (*imbalance < busiest_load_per_task) {
  2887. unsigned long tmp, pwr_now, pwr_move;
  2888. unsigned int imbn;
  2889. small_imbalance:
  2890. pwr_move = pwr_now = 0;
  2891. imbn = 2;
  2892. if (this_nr_running) {
  2893. this_load_per_task /= this_nr_running;
  2894. if (busiest_load_per_task > this_load_per_task)
  2895. imbn = 1;
  2896. } else
  2897. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2898. if (max_load - this_load + busiest_load_per_task >=
  2899. busiest_load_per_task * imbn) {
  2900. *imbalance = busiest_load_per_task;
  2901. return busiest;
  2902. }
  2903. /*
  2904. * OK, we don't have enough imbalance to justify moving tasks,
  2905. * however we may be able to increase total CPU power used by
  2906. * moving them.
  2907. */
  2908. pwr_now += busiest->__cpu_power *
  2909. min(busiest_load_per_task, max_load);
  2910. pwr_now += this->__cpu_power *
  2911. min(this_load_per_task, this_load);
  2912. pwr_now /= SCHED_LOAD_SCALE;
  2913. /* Amount of load we'd subtract */
  2914. tmp = sg_div_cpu_power(busiest,
  2915. busiest_load_per_task * SCHED_LOAD_SCALE);
  2916. if (max_load > tmp)
  2917. pwr_move += busiest->__cpu_power *
  2918. min(busiest_load_per_task, max_load - tmp);
  2919. /* Amount of load we'd add */
  2920. if (max_load * busiest->__cpu_power <
  2921. busiest_load_per_task * SCHED_LOAD_SCALE)
  2922. tmp = sg_div_cpu_power(this,
  2923. max_load * busiest->__cpu_power);
  2924. else
  2925. tmp = sg_div_cpu_power(this,
  2926. busiest_load_per_task * SCHED_LOAD_SCALE);
  2927. pwr_move += this->__cpu_power *
  2928. min(this_load_per_task, this_load + tmp);
  2929. pwr_move /= SCHED_LOAD_SCALE;
  2930. /* Move if we gain throughput */
  2931. if (pwr_move > pwr_now)
  2932. *imbalance = busiest_load_per_task;
  2933. }
  2934. return busiest;
  2935. out_balanced:
  2936. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2937. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2938. goto ret;
  2939. if (this == group_leader && group_leader != group_min) {
  2940. *imbalance = min_load_per_task;
  2941. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2942. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2943. cpumask_first(sched_group_cpus(group_leader));
  2944. }
  2945. return group_min;
  2946. }
  2947. #endif
  2948. ret:
  2949. *imbalance = 0;
  2950. return NULL;
  2951. }
  2952. /*
  2953. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2954. */
  2955. static struct rq *
  2956. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2957. unsigned long imbalance, const struct cpumask *cpus)
  2958. {
  2959. struct rq *busiest = NULL, *rq;
  2960. unsigned long max_load = 0;
  2961. int i;
  2962. for_each_cpu(i, sched_group_cpus(group)) {
  2963. unsigned long wl;
  2964. if (!cpumask_test_cpu(i, cpus))
  2965. continue;
  2966. rq = cpu_rq(i);
  2967. wl = weighted_cpuload(i);
  2968. if (rq->nr_running == 1 && wl > imbalance)
  2969. continue;
  2970. if (wl > max_load) {
  2971. max_load = wl;
  2972. busiest = rq;
  2973. }
  2974. }
  2975. return busiest;
  2976. }
  2977. /*
  2978. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2979. * so long as it is large enough.
  2980. */
  2981. #define MAX_PINNED_INTERVAL 512
  2982. /*
  2983. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2984. * tasks if there is an imbalance.
  2985. */
  2986. static int load_balance(int this_cpu, struct rq *this_rq,
  2987. struct sched_domain *sd, enum cpu_idle_type idle,
  2988. int *balance, struct cpumask *cpus)
  2989. {
  2990. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2991. struct sched_group *group;
  2992. unsigned long imbalance;
  2993. struct rq *busiest;
  2994. unsigned long flags;
  2995. cpumask_setall(cpus);
  2996. /*
  2997. * When power savings policy is enabled for the parent domain, idle
  2998. * sibling can pick up load irrespective of busy siblings. In this case,
  2999. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3000. * portraying it as CPU_NOT_IDLE.
  3001. */
  3002. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3003. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3004. sd_idle = 1;
  3005. schedstat_inc(sd, lb_count[idle]);
  3006. redo:
  3007. update_shares(sd);
  3008. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3009. cpus, balance);
  3010. if (*balance == 0)
  3011. goto out_balanced;
  3012. if (!group) {
  3013. schedstat_inc(sd, lb_nobusyg[idle]);
  3014. goto out_balanced;
  3015. }
  3016. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3017. if (!busiest) {
  3018. schedstat_inc(sd, lb_nobusyq[idle]);
  3019. goto out_balanced;
  3020. }
  3021. BUG_ON(busiest == this_rq);
  3022. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3023. ld_moved = 0;
  3024. if (busiest->nr_running > 1) {
  3025. /*
  3026. * Attempt to move tasks. If find_busiest_group has found
  3027. * an imbalance but busiest->nr_running <= 1, the group is
  3028. * still unbalanced. ld_moved simply stays zero, so it is
  3029. * correctly treated as an imbalance.
  3030. */
  3031. local_irq_save(flags);
  3032. double_rq_lock(this_rq, busiest);
  3033. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3034. imbalance, sd, idle, &all_pinned);
  3035. double_rq_unlock(this_rq, busiest);
  3036. local_irq_restore(flags);
  3037. /*
  3038. * some other cpu did the load balance for us.
  3039. */
  3040. if (ld_moved && this_cpu != smp_processor_id())
  3041. resched_cpu(this_cpu);
  3042. /* All tasks on this runqueue were pinned by CPU affinity */
  3043. if (unlikely(all_pinned)) {
  3044. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3045. if (!cpumask_empty(cpus))
  3046. goto redo;
  3047. goto out_balanced;
  3048. }
  3049. }
  3050. if (!ld_moved) {
  3051. schedstat_inc(sd, lb_failed[idle]);
  3052. sd->nr_balance_failed++;
  3053. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3054. spin_lock_irqsave(&busiest->lock, flags);
  3055. /* don't kick the migration_thread, if the curr
  3056. * task on busiest cpu can't be moved to this_cpu
  3057. */
  3058. if (!cpumask_test_cpu(this_cpu,
  3059. &busiest->curr->cpus_allowed)) {
  3060. spin_unlock_irqrestore(&busiest->lock, flags);
  3061. all_pinned = 1;
  3062. goto out_one_pinned;
  3063. }
  3064. if (!busiest->active_balance) {
  3065. busiest->active_balance = 1;
  3066. busiest->push_cpu = this_cpu;
  3067. active_balance = 1;
  3068. }
  3069. spin_unlock_irqrestore(&busiest->lock, flags);
  3070. if (active_balance)
  3071. wake_up_process(busiest->migration_thread);
  3072. /*
  3073. * We've kicked active balancing, reset the failure
  3074. * counter.
  3075. */
  3076. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3077. }
  3078. } else
  3079. sd->nr_balance_failed = 0;
  3080. if (likely(!active_balance)) {
  3081. /* We were unbalanced, so reset the balancing interval */
  3082. sd->balance_interval = sd->min_interval;
  3083. } else {
  3084. /*
  3085. * If we've begun active balancing, start to back off. This
  3086. * case may not be covered by the all_pinned logic if there
  3087. * is only 1 task on the busy runqueue (because we don't call
  3088. * move_tasks).
  3089. */
  3090. if (sd->balance_interval < sd->max_interval)
  3091. sd->balance_interval *= 2;
  3092. }
  3093. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3094. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3095. ld_moved = -1;
  3096. goto out;
  3097. out_balanced:
  3098. schedstat_inc(sd, lb_balanced[idle]);
  3099. sd->nr_balance_failed = 0;
  3100. out_one_pinned:
  3101. /* tune up the balancing interval */
  3102. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3103. (sd->balance_interval < sd->max_interval))
  3104. sd->balance_interval *= 2;
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. ld_moved = -1;
  3108. else
  3109. ld_moved = 0;
  3110. out:
  3111. if (ld_moved)
  3112. update_shares(sd);
  3113. return ld_moved;
  3114. }
  3115. /*
  3116. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3117. * tasks if there is an imbalance.
  3118. *
  3119. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3120. * this_rq is locked.
  3121. */
  3122. static int
  3123. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3124. struct cpumask *cpus)
  3125. {
  3126. struct sched_group *group;
  3127. struct rq *busiest = NULL;
  3128. unsigned long imbalance;
  3129. int ld_moved = 0;
  3130. int sd_idle = 0;
  3131. int all_pinned = 0;
  3132. cpumask_setall(cpus);
  3133. /*
  3134. * When power savings policy is enabled for the parent domain, idle
  3135. * sibling can pick up load irrespective of busy siblings. In this case,
  3136. * let the state of idle sibling percolate up as IDLE, instead of
  3137. * portraying it as CPU_NOT_IDLE.
  3138. */
  3139. if (sd->flags & SD_SHARE_CPUPOWER &&
  3140. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3141. sd_idle = 1;
  3142. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3143. redo:
  3144. update_shares_locked(this_rq, sd);
  3145. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3146. &sd_idle, cpus, NULL);
  3147. if (!group) {
  3148. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3149. goto out_balanced;
  3150. }
  3151. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3152. if (!busiest) {
  3153. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3154. goto out_balanced;
  3155. }
  3156. BUG_ON(busiest == this_rq);
  3157. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3158. ld_moved = 0;
  3159. if (busiest->nr_running > 1) {
  3160. /* Attempt to move tasks */
  3161. double_lock_balance(this_rq, busiest);
  3162. /* this_rq->clock is already updated */
  3163. update_rq_clock(busiest);
  3164. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3165. imbalance, sd, CPU_NEWLY_IDLE,
  3166. &all_pinned);
  3167. double_unlock_balance(this_rq, busiest);
  3168. if (unlikely(all_pinned)) {
  3169. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3170. if (!cpumask_empty(cpus))
  3171. goto redo;
  3172. }
  3173. }
  3174. if (!ld_moved) {
  3175. int active_balance = 0;
  3176. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3177. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3178. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3179. return -1;
  3180. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3181. return -1;
  3182. if (sd->nr_balance_failed++ < 2)
  3183. return -1;
  3184. /*
  3185. * The only task running in a non-idle cpu can be moved to this
  3186. * cpu in an attempt to completely freeup the other CPU
  3187. * package. The same method used to move task in load_balance()
  3188. * have been extended for load_balance_newidle() to speedup
  3189. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3190. *
  3191. * The package power saving logic comes from
  3192. * find_busiest_group(). If there are no imbalance, then
  3193. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3194. * f_b_g() will select a group from which a running task may be
  3195. * pulled to this cpu in order to make the other package idle.
  3196. * If there is no opportunity to make a package idle and if
  3197. * there are no imbalance, then f_b_g() will return NULL and no
  3198. * action will be taken in load_balance_newidle().
  3199. *
  3200. * Under normal task pull operation due to imbalance, there
  3201. * will be more than one task in the source run queue and
  3202. * move_tasks() will succeed. ld_moved will be true and this
  3203. * active balance code will not be triggered.
  3204. */
  3205. /* Lock busiest in correct order while this_rq is held */
  3206. double_lock_balance(this_rq, busiest);
  3207. /*
  3208. * don't kick the migration_thread, if the curr
  3209. * task on busiest cpu can't be moved to this_cpu
  3210. */
  3211. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3212. double_unlock_balance(this_rq, busiest);
  3213. all_pinned = 1;
  3214. return ld_moved;
  3215. }
  3216. if (!busiest->active_balance) {
  3217. busiest->active_balance = 1;
  3218. busiest->push_cpu = this_cpu;
  3219. active_balance = 1;
  3220. }
  3221. double_unlock_balance(this_rq, busiest);
  3222. if (active_balance)
  3223. wake_up_process(busiest->migration_thread);
  3224. } else
  3225. sd->nr_balance_failed = 0;
  3226. update_shares_locked(this_rq, sd);
  3227. return ld_moved;
  3228. out_balanced:
  3229. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3230. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3231. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3232. return -1;
  3233. sd->nr_balance_failed = 0;
  3234. return 0;
  3235. }
  3236. /*
  3237. * idle_balance is called by schedule() if this_cpu is about to become
  3238. * idle. Attempts to pull tasks from other CPUs.
  3239. */
  3240. static void idle_balance(int this_cpu, struct rq *this_rq)
  3241. {
  3242. struct sched_domain *sd;
  3243. int pulled_task = 0;
  3244. unsigned long next_balance = jiffies + HZ;
  3245. cpumask_var_t tmpmask;
  3246. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3247. return;
  3248. for_each_domain(this_cpu, sd) {
  3249. unsigned long interval;
  3250. if (!(sd->flags & SD_LOAD_BALANCE))
  3251. continue;
  3252. if (sd->flags & SD_BALANCE_NEWIDLE)
  3253. /* If we've pulled tasks over stop searching: */
  3254. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3255. sd, tmpmask);
  3256. interval = msecs_to_jiffies(sd->balance_interval);
  3257. if (time_after(next_balance, sd->last_balance + interval))
  3258. next_balance = sd->last_balance + interval;
  3259. if (pulled_task)
  3260. break;
  3261. }
  3262. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3263. /*
  3264. * We are going idle. next_balance may be set based on
  3265. * a busy processor. So reset next_balance.
  3266. */
  3267. this_rq->next_balance = next_balance;
  3268. }
  3269. free_cpumask_var(tmpmask);
  3270. }
  3271. /*
  3272. * active_load_balance is run by migration threads. It pushes running tasks
  3273. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3274. * running on each physical CPU where possible, and avoids physical /
  3275. * logical imbalances.
  3276. *
  3277. * Called with busiest_rq locked.
  3278. */
  3279. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3280. {
  3281. int target_cpu = busiest_rq->push_cpu;
  3282. struct sched_domain *sd;
  3283. struct rq *target_rq;
  3284. /* Is there any task to move? */
  3285. if (busiest_rq->nr_running <= 1)
  3286. return;
  3287. target_rq = cpu_rq(target_cpu);
  3288. /*
  3289. * This condition is "impossible", if it occurs
  3290. * we need to fix it. Originally reported by
  3291. * Bjorn Helgaas on a 128-cpu setup.
  3292. */
  3293. BUG_ON(busiest_rq == target_rq);
  3294. /* move a task from busiest_rq to target_rq */
  3295. double_lock_balance(busiest_rq, target_rq);
  3296. update_rq_clock(busiest_rq);
  3297. update_rq_clock(target_rq);
  3298. /* Search for an sd spanning us and the target CPU. */
  3299. for_each_domain(target_cpu, sd) {
  3300. if ((sd->flags & SD_LOAD_BALANCE) &&
  3301. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3302. break;
  3303. }
  3304. if (likely(sd)) {
  3305. schedstat_inc(sd, alb_count);
  3306. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3307. sd, CPU_IDLE))
  3308. schedstat_inc(sd, alb_pushed);
  3309. else
  3310. schedstat_inc(sd, alb_failed);
  3311. }
  3312. double_unlock_balance(busiest_rq, target_rq);
  3313. }
  3314. #ifdef CONFIG_NO_HZ
  3315. static struct {
  3316. atomic_t load_balancer;
  3317. cpumask_var_t cpu_mask;
  3318. } nohz ____cacheline_aligned = {
  3319. .load_balancer = ATOMIC_INIT(-1),
  3320. };
  3321. /*
  3322. * This routine will try to nominate the ilb (idle load balancing)
  3323. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3324. * load balancing on behalf of all those cpus. If all the cpus in the system
  3325. * go into this tickless mode, then there will be no ilb owner (as there is
  3326. * no need for one) and all the cpus will sleep till the next wakeup event
  3327. * arrives...
  3328. *
  3329. * For the ilb owner, tick is not stopped. And this tick will be used
  3330. * for idle load balancing. ilb owner will still be part of
  3331. * nohz.cpu_mask..
  3332. *
  3333. * While stopping the tick, this cpu will become the ilb owner if there
  3334. * is no other owner. And will be the owner till that cpu becomes busy
  3335. * or if all cpus in the system stop their ticks at which point
  3336. * there is no need for ilb owner.
  3337. *
  3338. * When the ilb owner becomes busy, it nominates another owner, during the
  3339. * next busy scheduler_tick()
  3340. */
  3341. int select_nohz_load_balancer(int stop_tick)
  3342. {
  3343. int cpu = smp_processor_id();
  3344. if (stop_tick) {
  3345. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3346. cpu_rq(cpu)->in_nohz_recently = 1;
  3347. /*
  3348. * If we are going offline and still the leader, give up!
  3349. */
  3350. if (!cpu_active(cpu) &&
  3351. atomic_read(&nohz.load_balancer) == cpu) {
  3352. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3353. BUG();
  3354. return 0;
  3355. }
  3356. /* time for ilb owner also to sleep */
  3357. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3358. if (atomic_read(&nohz.load_balancer) == cpu)
  3359. atomic_set(&nohz.load_balancer, -1);
  3360. return 0;
  3361. }
  3362. if (atomic_read(&nohz.load_balancer) == -1) {
  3363. /* make me the ilb owner */
  3364. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3365. return 1;
  3366. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3367. return 1;
  3368. } else {
  3369. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3370. return 0;
  3371. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3372. if (atomic_read(&nohz.load_balancer) == cpu)
  3373. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3374. BUG();
  3375. }
  3376. return 0;
  3377. }
  3378. #endif
  3379. static DEFINE_SPINLOCK(balancing);
  3380. /*
  3381. * It checks each scheduling domain to see if it is due to be balanced,
  3382. * and initiates a balancing operation if so.
  3383. *
  3384. * Balancing parameters are set up in arch_init_sched_domains.
  3385. */
  3386. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3387. {
  3388. int balance = 1;
  3389. struct rq *rq = cpu_rq(cpu);
  3390. unsigned long interval;
  3391. struct sched_domain *sd;
  3392. /* Earliest time when we have to do rebalance again */
  3393. unsigned long next_balance = jiffies + 60*HZ;
  3394. int update_next_balance = 0;
  3395. int need_serialize;
  3396. cpumask_var_t tmp;
  3397. /* Fails alloc? Rebalancing probably not a priority right now. */
  3398. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3399. return;
  3400. for_each_domain(cpu, sd) {
  3401. if (!(sd->flags & SD_LOAD_BALANCE))
  3402. continue;
  3403. interval = sd->balance_interval;
  3404. if (idle != CPU_IDLE)
  3405. interval *= sd->busy_factor;
  3406. /* scale ms to jiffies */
  3407. interval = msecs_to_jiffies(interval);
  3408. if (unlikely(!interval))
  3409. interval = 1;
  3410. if (interval > HZ*NR_CPUS/10)
  3411. interval = HZ*NR_CPUS/10;
  3412. need_serialize = sd->flags & SD_SERIALIZE;
  3413. if (need_serialize) {
  3414. if (!spin_trylock(&balancing))
  3415. goto out;
  3416. }
  3417. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3418. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3419. /*
  3420. * We've pulled tasks over so either we're no
  3421. * longer idle, or one of our SMT siblings is
  3422. * not idle.
  3423. */
  3424. idle = CPU_NOT_IDLE;
  3425. }
  3426. sd->last_balance = jiffies;
  3427. }
  3428. if (need_serialize)
  3429. spin_unlock(&balancing);
  3430. out:
  3431. if (time_after(next_balance, sd->last_balance + interval)) {
  3432. next_balance = sd->last_balance + interval;
  3433. update_next_balance = 1;
  3434. }
  3435. /*
  3436. * Stop the load balance at this level. There is another
  3437. * CPU in our sched group which is doing load balancing more
  3438. * actively.
  3439. */
  3440. if (!balance)
  3441. break;
  3442. }
  3443. /*
  3444. * next_balance will be updated only when there is a need.
  3445. * When the cpu is attached to null domain for ex, it will not be
  3446. * updated.
  3447. */
  3448. if (likely(update_next_balance))
  3449. rq->next_balance = next_balance;
  3450. free_cpumask_var(tmp);
  3451. }
  3452. /*
  3453. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3454. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3455. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3456. */
  3457. static void run_rebalance_domains(struct softirq_action *h)
  3458. {
  3459. int this_cpu = smp_processor_id();
  3460. struct rq *this_rq = cpu_rq(this_cpu);
  3461. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3462. CPU_IDLE : CPU_NOT_IDLE;
  3463. rebalance_domains(this_cpu, idle);
  3464. #ifdef CONFIG_NO_HZ
  3465. /*
  3466. * If this cpu is the owner for idle load balancing, then do the
  3467. * balancing on behalf of the other idle cpus whose ticks are
  3468. * stopped.
  3469. */
  3470. if (this_rq->idle_at_tick &&
  3471. atomic_read(&nohz.load_balancer) == this_cpu) {
  3472. struct rq *rq;
  3473. int balance_cpu;
  3474. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3475. if (balance_cpu == this_cpu)
  3476. continue;
  3477. /*
  3478. * If this cpu gets work to do, stop the load balancing
  3479. * work being done for other cpus. Next load
  3480. * balancing owner will pick it up.
  3481. */
  3482. if (need_resched())
  3483. break;
  3484. rebalance_domains(balance_cpu, CPU_IDLE);
  3485. rq = cpu_rq(balance_cpu);
  3486. if (time_after(this_rq->next_balance, rq->next_balance))
  3487. this_rq->next_balance = rq->next_balance;
  3488. }
  3489. }
  3490. #endif
  3491. }
  3492. /*
  3493. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3494. *
  3495. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3496. * idle load balancing owner or decide to stop the periodic load balancing,
  3497. * if the whole system is idle.
  3498. */
  3499. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3500. {
  3501. #ifdef CONFIG_NO_HZ
  3502. /*
  3503. * If we were in the nohz mode recently and busy at the current
  3504. * scheduler tick, then check if we need to nominate new idle
  3505. * load balancer.
  3506. */
  3507. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3508. rq->in_nohz_recently = 0;
  3509. if (atomic_read(&nohz.load_balancer) == cpu) {
  3510. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3511. atomic_set(&nohz.load_balancer, -1);
  3512. }
  3513. if (atomic_read(&nohz.load_balancer) == -1) {
  3514. /*
  3515. * simple selection for now: Nominate the
  3516. * first cpu in the nohz list to be the next
  3517. * ilb owner.
  3518. *
  3519. * TBD: Traverse the sched domains and nominate
  3520. * the nearest cpu in the nohz.cpu_mask.
  3521. */
  3522. int ilb = cpumask_first(nohz.cpu_mask);
  3523. if (ilb < nr_cpu_ids)
  3524. resched_cpu(ilb);
  3525. }
  3526. }
  3527. /*
  3528. * If this cpu is idle and doing idle load balancing for all the
  3529. * cpus with ticks stopped, is it time for that to stop?
  3530. */
  3531. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3532. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3533. resched_cpu(cpu);
  3534. return;
  3535. }
  3536. /*
  3537. * If this cpu is idle and the idle load balancing is done by
  3538. * someone else, then no need raise the SCHED_SOFTIRQ
  3539. */
  3540. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3541. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3542. return;
  3543. #endif
  3544. if (time_after_eq(jiffies, rq->next_balance))
  3545. raise_softirq(SCHED_SOFTIRQ);
  3546. }
  3547. #else /* CONFIG_SMP */
  3548. /*
  3549. * on UP we do not need to balance between CPUs:
  3550. */
  3551. static inline void idle_balance(int cpu, struct rq *rq)
  3552. {
  3553. }
  3554. #endif
  3555. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3556. EXPORT_PER_CPU_SYMBOL(kstat);
  3557. /*
  3558. * Return any ns on the sched_clock that have not yet been banked in
  3559. * @p in case that task is currently running.
  3560. */
  3561. unsigned long long task_delta_exec(struct task_struct *p)
  3562. {
  3563. unsigned long flags;
  3564. struct rq *rq;
  3565. u64 ns = 0;
  3566. rq = task_rq_lock(p, &flags);
  3567. if (task_current(rq, p)) {
  3568. u64 delta_exec;
  3569. update_rq_clock(rq);
  3570. delta_exec = rq->clock - p->se.exec_start;
  3571. if ((s64)delta_exec > 0)
  3572. ns = delta_exec;
  3573. }
  3574. task_rq_unlock(rq, &flags);
  3575. return ns;
  3576. }
  3577. /*
  3578. * Account user cpu time to a process.
  3579. * @p: the process that the cpu time gets accounted to
  3580. * @cputime: the cpu time spent in user space since the last update
  3581. */
  3582. void account_user_time(struct task_struct *p, cputime_t cputime)
  3583. {
  3584. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3585. cputime64_t tmp;
  3586. p->utime = cputime_add(p->utime, cputime);
  3587. account_group_user_time(p, cputime);
  3588. /* Add user time to cpustat. */
  3589. tmp = cputime_to_cputime64(cputime);
  3590. if (TASK_NICE(p) > 0)
  3591. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3592. else
  3593. cpustat->user = cputime64_add(cpustat->user, tmp);
  3594. /* Account for user time used */
  3595. acct_update_integrals(p);
  3596. }
  3597. /*
  3598. * Account guest cpu time to a process.
  3599. * @p: the process that the cpu time gets accounted to
  3600. * @cputime: the cpu time spent in virtual machine since the last update
  3601. */
  3602. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3603. {
  3604. cputime64_t tmp;
  3605. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3606. tmp = cputime_to_cputime64(cputime);
  3607. p->utime = cputime_add(p->utime, cputime);
  3608. account_group_user_time(p, cputime);
  3609. p->gtime = cputime_add(p->gtime, cputime);
  3610. cpustat->user = cputime64_add(cpustat->user, tmp);
  3611. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3612. }
  3613. /*
  3614. * Account scaled user cpu time to a process.
  3615. * @p: the process that the cpu time gets accounted to
  3616. * @cputime: the cpu time spent in user space since the last update
  3617. */
  3618. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3619. {
  3620. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3621. }
  3622. /*
  3623. * Account system cpu time to a process.
  3624. * @p: the process that the cpu time gets accounted to
  3625. * @hardirq_offset: the offset to subtract from hardirq_count()
  3626. * @cputime: the cpu time spent in kernel space since the last update
  3627. */
  3628. void account_system_time(struct task_struct *p, int hardirq_offset,
  3629. cputime_t cputime)
  3630. {
  3631. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3632. struct rq *rq = this_rq();
  3633. cputime64_t tmp;
  3634. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3635. account_guest_time(p, cputime);
  3636. return;
  3637. }
  3638. p->stime = cputime_add(p->stime, cputime);
  3639. account_group_system_time(p, cputime);
  3640. /* Add system time to cpustat. */
  3641. tmp = cputime_to_cputime64(cputime);
  3642. if (hardirq_count() - hardirq_offset)
  3643. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3644. else if (softirq_count())
  3645. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3646. else if (p != rq->idle)
  3647. cpustat->system = cputime64_add(cpustat->system, tmp);
  3648. else if (atomic_read(&rq->nr_iowait) > 0)
  3649. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3650. else
  3651. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3652. /* Account for system time used */
  3653. acct_update_integrals(p);
  3654. }
  3655. /*
  3656. * Account scaled system cpu time to a process.
  3657. * @p: the process that the cpu time gets accounted to
  3658. * @hardirq_offset: the offset to subtract from hardirq_count()
  3659. * @cputime: the cpu time spent in kernel space since the last update
  3660. */
  3661. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3662. {
  3663. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3664. }
  3665. /*
  3666. * Account for involuntary wait time.
  3667. * @p: the process from which the cpu time has been stolen
  3668. * @steal: the cpu time spent in involuntary wait
  3669. */
  3670. void account_steal_time(struct task_struct *p, cputime_t steal)
  3671. {
  3672. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3673. cputime64_t tmp = cputime_to_cputime64(steal);
  3674. struct rq *rq = this_rq();
  3675. if (p == rq->idle) {
  3676. p->stime = cputime_add(p->stime, steal);
  3677. if (atomic_read(&rq->nr_iowait) > 0)
  3678. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3679. else
  3680. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3681. } else
  3682. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3683. }
  3684. /*
  3685. * Use precise platform statistics if available:
  3686. */
  3687. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3688. cputime_t task_utime(struct task_struct *p)
  3689. {
  3690. return p->utime;
  3691. }
  3692. cputime_t task_stime(struct task_struct *p)
  3693. {
  3694. return p->stime;
  3695. }
  3696. #else
  3697. cputime_t task_utime(struct task_struct *p)
  3698. {
  3699. clock_t utime = cputime_to_clock_t(p->utime),
  3700. total = utime + cputime_to_clock_t(p->stime);
  3701. u64 temp;
  3702. /*
  3703. * Use CFS's precise accounting:
  3704. */
  3705. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3706. if (total) {
  3707. temp *= utime;
  3708. do_div(temp, total);
  3709. }
  3710. utime = (clock_t)temp;
  3711. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3712. return p->prev_utime;
  3713. }
  3714. cputime_t task_stime(struct task_struct *p)
  3715. {
  3716. clock_t stime;
  3717. /*
  3718. * Use CFS's precise accounting. (we subtract utime from
  3719. * the total, to make sure the total observed by userspace
  3720. * grows monotonically - apps rely on that):
  3721. */
  3722. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3723. cputime_to_clock_t(task_utime(p));
  3724. if (stime >= 0)
  3725. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3726. return p->prev_stime;
  3727. }
  3728. #endif
  3729. inline cputime_t task_gtime(struct task_struct *p)
  3730. {
  3731. return p->gtime;
  3732. }
  3733. /*
  3734. * This function gets called by the timer code, with HZ frequency.
  3735. * We call it with interrupts disabled.
  3736. *
  3737. * It also gets called by the fork code, when changing the parent's
  3738. * timeslices.
  3739. */
  3740. void scheduler_tick(void)
  3741. {
  3742. int cpu = smp_processor_id();
  3743. struct rq *rq = cpu_rq(cpu);
  3744. struct task_struct *curr = rq->curr;
  3745. sched_clock_tick();
  3746. spin_lock(&rq->lock);
  3747. update_rq_clock(rq);
  3748. update_cpu_load(rq);
  3749. curr->sched_class->task_tick(rq, curr, 0);
  3750. spin_unlock(&rq->lock);
  3751. #ifdef CONFIG_SMP
  3752. rq->idle_at_tick = idle_cpu(cpu);
  3753. trigger_load_balance(rq, cpu);
  3754. #endif
  3755. }
  3756. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3757. defined(CONFIG_PREEMPT_TRACER))
  3758. static inline unsigned long get_parent_ip(unsigned long addr)
  3759. {
  3760. if (in_lock_functions(addr)) {
  3761. addr = CALLER_ADDR2;
  3762. if (in_lock_functions(addr))
  3763. addr = CALLER_ADDR3;
  3764. }
  3765. return addr;
  3766. }
  3767. void __kprobes add_preempt_count(int val)
  3768. {
  3769. #ifdef CONFIG_DEBUG_PREEMPT
  3770. /*
  3771. * Underflow?
  3772. */
  3773. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3774. return;
  3775. #endif
  3776. preempt_count() += val;
  3777. #ifdef CONFIG_DEBUG_PREEMPT
  3778. /*
  3779. * Spinlock count overflowing soon?
  3780. */
  3781. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3782. PREEMPT_MASK - 10);
  3783. #endif
  3784. if (preempt_count() == val)
  3785. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3786. }
  3787. EXPORT_SYMBOL(add_preempt_count);
  3788. void __kprobes sub_preempt_count(int val)
  3789. {
  3790. #ifdef CONFIG_DEBUG_PREEMPT
  3791. /*
  3792. * Underflow?
  3793. */
  3794. if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
  3795. return;
  3796. /*
  3797. * Is the spinlock portion underflowing?
  3798. */
  3799. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3800. !(preempt_count() & PREEMPT_MASK)))
  3801. return;
  3802. #endif
  3803. if (preempt_count() == val)
  3804. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3805. preempt_count() -= val;
  3806. }
  3807. EXPORT_SYMBOL(sub_preempt_count);
  3808. #endif
  3809. /*
  3810. * Print scheduling while atomic bug:
  3811. */
  3812. static noinline void __schedule_bug(struct task_struct *prev)
  3813. {
  3814. struct pt_regs *regs = get_irq_regs();
  3815. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3816. prev->comm, prev->pid, preempt_count());
  3817. debug_show_held_locks(prev);
  3818. print_modules();
  3819. if (irqs_disabled())
  3820. print_irqtrace_events(prev);
  3821. if (regs)
  3822. show_regs(regs);
  3823. else
  3824. dump_stack();
  3825. }
  3826. /*
  3827. * Various schedule()-time debugging checks and statistics:
  3828. */
  3829. static inline void schedule_debug(struct task_struct *prev)
  3830. {
  3831. /*
  3832. * Test if we are atomic. Since do_exit() needs to call into
  3833. * schedule() atomically, we ignore that path for now.
  3834. * Otherwise, whine if we are scheduling when we should not be.
  3835. */
  3836. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3837. __schedule_bug(prev);
  3838. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3839. schedstat_inc(this_rq(), sched_count);
  3840. #ifdef CONFIG_SCHEDSTATS
  3841. if (unlikely(prev->lock_depth >= 0)) {
  3842. schedstat_inc(this_rq(), bkl_count);
  3843. schedstat_inc(prev, sched_info.bkl_count);
  3844. }
  3845. #endif
  3846. }
  3847. /*
  3848. * Pick up the highest-prio task:
  3849. */
  3850. static inline struct task_struct *
  3851. pick_next_task(struct rq *rq, struct task_struct *prev)
  3852. {
  3853. const struct sched_class *class;
  3854. struct task_struct *p;
  3855. /*
  3856. * Optimization: we know that if all tasks are in
  3857. * the fair class we can call that function directly:
  3858. */
  3859. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3860. p = fair_sched_class.pick_next_task(rq);
  3861. if (likely(p))
  3862. return p;
  3863. }
  3864. class = sched_class_highest;
  3865. for ( ; ; ) {
  3866. p = class->pick_next_task(rq);
  3867. if (p)
  3868. return p;
  3869. /*
  3870. * Will never be NULL as the idle class always
  3871. * returns a non-NULL p:
  3872. */
  3873. class = class->next;
  3874. }
  3875. }
  3876. /*
  3877. * schedule() is the main scheduler function.
  3878. */
  3879. asmlinkage void __sched schedule(void)
  3880. {
  3881. struct task_struct *prev, *next;
  3882. unsigned long *switch_count;
  3883. struct rq *rq;
  3884. int cpu;
  3885. need_resched:
  3886. preempt_disable();
  3887. cpu = smp_processor_id();
  3888. rq = cpu_rq(cpu);
  3889. rcu_qsctr_inc(cpu);
  3890. prev = rq->curr;
  3891. switch_count = &prev->nivcsw;
  3892. release_kernel_lock(prev);
  3893. need_resched_nonpreemptible:
  3894. schedule_debug(prev);
  3895. if (sched_feat(HRTICK))
  3896. hrtick_clear(rq);
  3897. spin_lock_irq(&rq->lock);
  3898. update_rq_clock(rq);
  3899. clear_tsk_need_resched(prev);
  3900. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3901. if (unlikely(signal_pending_state(prev->state, prev)))
  3902. prev->state = TASK_RUNNING;
  3903. else
  3904. deactivate_task(rq, prev, 1);
  3905. switch_count = &prev->nvcsw;
  3906. }
  3907. #ifdef CONFIG_SMP
  3908. if (prev->sched_class->pre_schedule)
  3909. prev->sched_class->pre_schedule(rq, prev);
  3910. #endif
  3911. if (unlikely(!rq->nr_running))
  3912. idle_balance(cpu, rq);
  3913. prev->sched_class->put_prev_task(rq, prev);
  3914. next = pick_next_task(rq, prev);
  3915. if (likely(prev != next)) {
  3916. sched_info_switch(prev, next);
  3917. rq->nr_switches++;
  3918. rq->curr = next;
  3919. ++*switch_count;
  3920. context_switch(rq, prev, next); /* unlocks the rq */
  3921. /*
  3922. * the context switch might have flipped the stack from under
  3923. * us, hence refresh the local variables.
  3924. */
  3925. cpu = smp_processor_id();
  3926. rq = cpu_rq(cpu);
  3927. } else
  3928. spin_unlock_irq(&rq->lock);
  3929. if (unlikely(reacquire_kernel_lock(current) < 0))
  3930. goto need_resched_nonpreemptible;
  3931. preempt_enable_no_resched();
  3932. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3933. goto need_resched;
  3934. }
  3935. EXPORT_SYMBOL(schedule);
  3936. #ifdef CONFIG_PREEMPT
  3937. /*
  3938. * this is the entry point to schedule() from in-kernel preemption
  3939. * off of preempt_enable. Kernel preemptions off return from interrupt
  3940. * occur there and call schedule directly.
  3941. */
  3942. asmlinkage void __sched preempt_schedule(void)
  3943. {
  3944. struct thread_info *ti = current_thread_info();
  3945. /*
  3946. * If there is a non-zero preempt_count or interrupts are disabled,
  3947. * we do not want to preempt the current task. Just return..
  3948. */
  3949. if (likely(ti->preempt_count || irqs_disabled()))
  3950. return;
  3951. do {
  3952. add_preempt_count(PREEMPT_ACTIVE);
  3953. schedule();
  3954. sub_preempt_count(PREEMPT_ACTIVE);
  3955. /*
  3956. * Check again in case we missed a preemption opportunity
  3957. * between schedule and now.
  3958. */
  3959. barrier();
  3960. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3961. }
  3962. EXPORT_SYMBOL(preempt_schedule);
  3963. /*
  3964. * this is the entry point to schedule() from kernel preemption
  3965. * off of irq context.
  3966. * Note, that this is called and return with irqs disabled. This will
  3967. * protect us against recursive calling from irq.
  3968. */
  3969. asmlinkage void __sched preempt_schedule_irq(void)
  3970. {
  3971. struct thread_info *ti = current_thread_info();
  3972. /* Catch callers which need to be fixed */
  3973. BUG_ON(ti->preempt_count || !irqs_disabled());
  3974. do {
  3975. add_preempt_count(PREEMPT_ACTIVE);
  3976. local_irq_enable();
  3977. schedule();
  3978. local_irq_disable();
  3979. sub_preempt_count(PREEMPT_ACTIVE);
  3980. /*
  3981. * Check again in case we missed a preemption opportunity
  3982. * between schedule and now.
  3983. */
  3984. barrier();
  3985. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3986. }
  3987. #endif /* CONFIG_PREEMPT */
  3988. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3989. void *key)
  3990. {
  3991. return try_to_wake_up(curr->private, mode, sync);
  3992. }
  3993. EXPORT_SYMBOL(default_wake_function);
  3994. /*
  3995. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3996. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3997. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3998. *
  3999. * There are circumstances in which we can try to wake a task which has already
  4000. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4001. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4002. */
  4003. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4004. int nr_exclusive, int sync, void *key)
  4005. {
  4006. wait_queue_t *curr, *next;
  4007. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4008. unsigned flags = curr->flags;
  4009. if (curr->func(curr, mode, sync, key) &&
  4010. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4011. break;
  4012. }
  4013. }
  4014. /**
  4015. * __wake_up - wake up threads blocked on a waitqueue.
  4016. * @q: the waitqueue
  4017. * @mode: which threads
  4018. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4019. * @key: is directly passed to the wakeup function
  4020. */
  4021. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4022. int nr_exclusive, void *key)
  4023. {
  4024. unsigned long flags;
  4025. spin_lock_irqsave(&q->lock, flags);
  4026. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4027. spin_unlock_irqrestore(&q->lock, flags);
  4028. }
  4029. EXPORT_SYMBOL(__wake_up);
  4030. /*
  4031. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4032. */
  4033. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4034. {
  4035. __wake_up_common(q, mode, 1, 0, NULL);
  4036. }
  4037. /**
  4038. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4039. * @q: the waitqueue
  4040. * @mode: which threads
  4041. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4042. *
  4043. * The sync wakeup differs that the waker knows that it will schedule
  4044. * away soon, so while the target thread will be woken up, it will not
  4045. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4046. * with each other. This can prevent needless bouncing between CPUs.
  4047. *
  4048. * On UP it can prevent extra preemption.
  4049. */
  4050. void
  4051. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4052. {
  4053. unsigned long flags;
  4054. int sync = 1;
  4055. if (unlikely(!q))
  4056. return;
  4057. if (unlikely(!nr_exclusive))
  4058. sync = 0;
  4059. spin_lock_irqsave(&q->lock, flags);
  4060. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4061. spin_unlock_irqrestore(&q->lock, flags);
  4062. }
  4063. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4064. /**
  4065. * complete: - signals a single thread waiting on this completion
  4066. * @x: holds the state of this particular completion
  4067. *
  4068. * This will wake up a single thread waiting on this completion. Threads will be
  4069. * awakened in the same order in which they were queued.
  4070. *
  4071. * See also complete_all(), wait_for_completion() and related routines.
  4072. */
  4073. void complete(struct completion *x)
  4074. {
  4075. unsigned long flags;
  4076. spin_lock_irqsave(&x->wait.lock, flags);
  4077. x->done++;
  4078. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4079. spin_unlock_irqrestore(&x->wait.lock, flags);
  4080. }
  4081. EXPORT_SYMBOL(complete);
  4082. /**
  4083. * complete_all: - signals all threads waiting on this completion
  4084. * @x: holds the state of this particular completion
  4085. *
  4086. * This will wake up all threads waiting on this particular completion event.
  4087. */
  4088. void complete_all(struct completion *x)
  4089. {
  4090. unsigned long flags;
  4091. spin_lock_irqsave(&x->wait.lock, flags);
  4092. x->done += UINT_MAX/2;
  4093. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4094. spin_unlock_irqrestore(&x->wait.lock, flags);
  4095. }
  4096. EXPORT_SYMBOL(complete_all);
  4097. static inline long __sched
  4098. do_wait_for_common(struct completion *x, long timeout, int state)
  4099. {
  4100. if (!x->done) {
  4101. DECLARE_WAITQUEUE(wait, current);
  4102. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4103. __add_wait_queue_tail(&x->wait, &wait);
  4104. do {
  4105. if (signal_pending_state(state, current)) {
  4106. timeout = -ERESTARTSYS;
  4107. break;
  4108. }
  4109. __set_current_state(state);
  4110. spin_unlock_irq(&x->wait.lock);
  4111. timeout = schedule_timeout(timeout);
  4112. spin_lock_irq(&x->wait.lock);
  4113. } while (!x->done && timeout);
  4114. __remove_wait_queue(&x->wait, &wait);
  4115. if (!x->done)
  4116. return timeout;
  4117. }
  4118. x->done--;
  4119. return timeout ?: 1;
  4120. }
  4121. static long __sched
  4122. wait_for_common(struct completion *x, long timeout, int state)
  4123. {
  4124. might_sleep();
  4125. spin_lock_irq(&x->wait.lock);
  4126. timeout = do_wait_for_common(x, timeout, state);
  4127. spin_unlock_irq(&x->wait.lock);
  4128. return timeout;
  4129. }
  4130. /**
  4131. * wait_for_completion: - waits for completion of a task
  4132. * @x: holds the state of this particular completion
  4133. *
  4134. * This waits to be signaled for completion of a specific task. It is NOT
  4135. * interruptible and there is no timeout.
  4136. *
  4137. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4138. * and interrupt capability. Also see complete().
  4139. */
  4140. void __sched wait_for_completion(struct completion *x)
  4141. {
  4142. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4143. }
  4144. EXPORT_SYMBOL(wait_for_completion);
  4145. /**
  4146. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4147. * @x: holds the state of this particular completion
  4148. * @timeout: timeout value in jiffies
  4149. *
  4150. * This waits for either a completion of a specific task to be signaled or for a
  4151. * specified timeout to expire. The timeout is in jiffies. It is not
  4152. * interruptible.
  4153. */
  4154. unsigned long __sched
  4155. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4156. {
  4157. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4158. }
  4159. EXPORT_SYMBOL(wait_for_completion_timeout);
  4160. /**
  4161. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4162. * @x: holds the state of this particular completion
  4163. *
  4164. * This waits for completion of a specific task to be signaled. It is
  4165. * interruptible.
  4166. */
  4167. int __sched wait_for_completion_interruptible(struct completion *x)
  4168. {
  4169. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4170. if (t == -ERESTARTSYS)
  4171. return t;
  4172. return 0;
  4173. }
  4174. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4175. /**
  4176. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4177. * @x: holds the state of this particular completion
  4178. * @timeout: timeout value in jiffies
  4179. *
  4180. * This waits for either a completion of a specific task to be signaled or for a
  4181. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4182. */
  4183. unsigned long __sched
  4184. wait_for_completion_interruptible_timeout(struct completion *x,
  4185. unsigned long timeout)
  4186. {
  4187. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4188. }
  4189. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4190. /**
  4191. * wait_for_completion_killable: - waits for completion of a task (killable)
  4192. * @x: holds the state of this particular completion
  4193. *
  4194. * This waits to be signaled for completion of a specific task. It can be
  4195. * interrupted by a kill signal.
  4196. */
  4197. int __sched wait_for_completion_killable(struct completion *x)
  4198. {
  4199. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4200. if (t == -ERESTARTSYS)
  4201. return t;
  4202. return 0;
  4203. }
  4204. EXPORT_SYMBOL(wait_for_completion_killable);
  4205. /**
  4206. * try_wait_for_completion - try to decrement a completion without blocking
  4207. * @x: completion structure
  4208. *
  4209. * Returns: 0 if a decrement cannot be done without blocking
  4210. * 1 if a decrement succeeded.
  4211. *
  4212. * If a completion is being used as a counting completion,
  4213. * attempt to decrement the counter without blocking. This
  4214. * enables us to avoid waiting if the resource the completion
  4215. * is protecting is not available.
  4216. */
  4217. bool try_wait_for_completion(struct completion *x)
  4218. {
  4219. int ret = 1;
  4220. spin_lock_irq(&x->wait.lock);
  4221. if (!x->done)
  4222. ret = 0;
  4223. else
  4224. x->done--;
  4225. spin_unlock_irq(&x->wait.lock);
  4226. return ret;
  4227. }
  4228. EXPORT_SYMBOL(try_wait_for_completion);
  4229. /**
  4230. * completion_done - Test to see if a completion has any waiters
  4231. * @x: completion structure
  4232. *
  4233. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4234. * 1 if there are no waiters.
  4235. *
  4236. */
  4237. bool completion_done(struct completion *x)
  4238. {
  4239. int ret = 1;
  4240. spin_lock_irq(&x->wait.lock);
  4241. if (!x->done)
  4242. ret = 0;
  4243. spin_unlock_irq(&x->wait.lock);
  4244. return ret;
  4245. }
  4246. EXPORT_SYMBOL(completion_done);
  4247. static long __sched
  4248. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4249. {
  4250. unsigned long flags;
  4251. wait_queue_t wait;
  4252. init_waitqueue_entry(&wait, current);
  4253. __set_current_state(state);
  4254. spin_lock_irqsave(&q->lock, flags);
  4255. __add_wait_queue(q, &wait);
  4256. spin_unlock(&q->lock);
  4257. timeout = schedule_timeout(timeout);
  4258. spin_lock_irq(&q->lock);
  4259. __remove_wait_queue(q, &wait);
  4260. spin_unlock_irqrestore(&q->lock, flags);
  4261. return timeout;
  4262. }
  4263. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4264. {
  4265. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4266. }
  4267. EXPORT_SYMBOL(interruptible_sleep_on);
  4268. long __sched
  4269. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4270. {
  4271. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4272. }
  4273. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4274. void __sched sleep_on(wait_queue_head_t *q)
  4275. {
  4276. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4277. }
  4278. EXPORT_SYMBOL(sleep_on);
  4279. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4280. {
  4281. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4282. }
  4283. EXPORT_SYMBOL(sleep_on_timeout);
  4284. #ifdef CONFIG_RT_MUTEXES
  4285. /*
  4286. * rt_mutex_setprio - set the current priority of a task
  4287. * @p: task
  4288. * @prio: prio value (kernel-internal form)
  4289. *
  4290. * This function changes the 'effective' priority of a task. It does
  4291. * not touch ->normal_prio like __setscheduler().
  4292. *
  4293. * Used by the rt_mutex code to implement priority inheritance logic.
  4294. */
  4295. void rt_mutex_setprio(struct task_struct *p, int prio)
  4296. {
  4297. unsigned long flags;
  4298. int oldprio, on_rq, running;
  4299. struct rq *rq;
  4300. const struct sched_class *prev_class = p->sched_class;
  4301. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4302. rq = task_rq_lock(p, &flags);
  4303. update_rq_clock(rq);
  4304. oldprio = p->prio;
  4305. on_rq = p->se.on_rq;
  4306. running = task_current(rq, p);
  4307. if (on_rq)
  4308. dequeue_task(rq, p, 0);
  4309. if (running)
  4310. p->sched_class->put_prev_task(rq, p);
  4311. if (rt_prio(prio))
  4312. p->sched_class = &rt_sched_class;
  4313. else
  4314. p->sched_class = &fair_sched_class;
  4315. p->prio = prio;
  4316. if (running)
  4317. p->sched_class->set_curr_task(rq);
  4318. if (on_rq) {
  4319. enqueue_task(rq, p, 0);
  4320. check_class_changed(rq, p, prev_class, oldprio, running);
  4321. }
  4322. task_rq_unlock(rq, &flags);
  4323. }
  4324. #endif
  4325. void set_user_nice(struct task_struct *p, long nice)
  4326. {
  4327. int old_prio, delta, on_rq;
  4328. unsigned long flags;
  4329. struct rq *rq;
  4330. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4331. return;
  4332. /*
  4333. * We have to be careful, if called from sys_setpriority(),
  4334. * the task might be in the middle of scheduling on another CPU.
  4335. */
  4336. rq = task_rq_lock(p, &flags);
  4337. update_rq_clock(rq);
  4338. /*
  4339. * The RT priorities are set via sched_setscheduler(), but we still
  4340. * allow the 'normal' nice value to be set - but as expected
  4341. * it wont have any effect on scheduling until the task is
  4342. * SCHED_FIFO/SCHED_RR:
  4343. */
  4344. if (task_has_rt_policy(p)) {
  4345. p->static_prio = NICE_TO_PRIO(nice);
  4346. goto out_unlock;
  4347. }
  4348. on_rq = p->se.on_rq;
  4349. if (on_rq)
  4350. dequeue_task(rq, p, 0);
  4351. p->static_prio = NICE_TO_PRIO(nice);
  4352. set_load_weight(p);
  4353. old_prio = p->prio;
  4354. p->prio = effective_prio(p);
  4355. delta = p->prio - old_prio;
  4356. if (on_rq) {
  4357. enqueue_task(rq, p, 0);
  4358. /*
  4359. * If the task increased its priority or is running and
  4360. * lowered its priority, then reschedule its CPU:
  4361. */
  4362. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4363. resched_task(rq->curr);
  4364. }
  4365. out_unlock:
  4366. task_rq_unlock(rq, &flags);
  4367. }
  4368. EXPORT_SYMBOL(set_user_nice);
  4369. /*
  4370. * can_nice - check if a task can reduce its nice value
  4371. * @p: task
  4372. * @nice: nice value
  4373. */
  4374. int can_nice(const struct task_struct *p, const int nice)
  4375. {
  4376. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4377. int nice_rlim = 20 - nice;
  4378. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4379. capable(CAP_SYS_NICE));
  4380. }
  4381. #ifdef __ARCH_WANT_SYS_NICE
  4382. /*
  4383. * sys_nice - change the priority of the current process.
  4384. * @increment: priority increment
  4385. *
  4386. * sys_setpriority is a more generic, but much slower function that
  4387. * does similar things.
  4388. */
  4389. asmlinkage long sys_nice(int increment)
  4390. {
  4391. long nice, retval;
  4392. /*
  4393. * Setpriority might change our priority at the same moment.
  4394. * We don't have to worry. Conceptually one call occurs first
  4395. * and we have a single winner.
  4396. */
  4397. if (increment < -40)
  4398. increment = -40;
  4399. if (increment > 40)
  4400. increment = 40;
  4401. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4402. if (nice < -20)
  4403. nice = -20;
  4404. if (nice > 19)
  4405. nice = 19;
  4406. if (increment < 0 && !can_nice(current, nice))
  4407. return -EPERM;
  4408. retval = security_task_setnice(current, nice);
  4409. if (retval)
  4410. return retval;
  4411. set_user_nice(current, nice);
  4412. return 0;
  4413. }
  4414. #endif
  4415. /**
  4416. * task_prio - return the priority value of a given task.
  4417. * @p: the task in question.
  4418. *
  4419. * This is the priority value as seen by users in /proc.
  4420. * RT tasks are offset by -200. Normal tasks are centered
  4421. * around 0, value goes from -16 to +15.
  4422. */
  4423. int task_prio(const struct task_struct *p)
  4424. {
  4425. return p->prio - MAX_RT_PRIO;
  4426. }
  4427. /**
  4428. * task_nice - return the nice value of a given task.
  4429. * @p: the task in question.
  4430. */
  4431. int task_nice(const struct task_struct *p)
  4432. {
  4433. return TASK_NICE(p);
  4434. }
  4435. EXPORT_SYMBOL(task_nice);
  4436. /**
  4437. * idle_cpu - is a given cpu idle currently?
  4438. * @cpu: the processor in question.
  4439. */
  4440. int idle_cpu(int cpu)
  4441. {
  4442. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4443. }
  4444. /**
  4445. * idle_task - return the idle task for a given cpu.
  4446. * @cpu: the processor in question.
  4447. */
  4448. struct task_struct *idle_task(int cpu)
  4449. {
  4450. return cpu_rq(cpu)->idle;
  4451. }
  4452. /**
  4453. * find_process_by_pid - find a process with a matching PID value.
  4454. * @pid: the pid in question.
  4455. */
  4456. static struct task_struct *find_process_by_pid(pid_t pid)
  4457. {
  4458. return pid ? find_task_by_vpid(pid) : current;
  4459. }
  4460. /* Actually do priority change: must hold rq lock. */
  4461. static void
  4462. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4463. {
  4464. BUG_ON(p->se.on_rq);
  4465. p->policy = policy;
  4466. switch (p->policy) {
  4467. case SCHED_NORMAL:
  4468. case SCHED_BATCH:
  4469. case SCHED_IDLE:
  4470. p->sched_class = &fair_sched_class;
  4471. break;
  4472. case SCHED_FIFO:
  4473. case SCHED_RR:
  4474. p->sched_class = &rt_sched_class;
  4475. break;
  4476. }
  4477. p->rt_priority = prio;
  4478. p->normal_prio = normal_prio(p);
  4479. /* we are holding p->pi_lock already */
  4480. p->prio = rt_mutex_getprio(p);
  4481. set_load_weight(p);
  4482. }
  4483. static int __sched_setscheduler(struct task_struct *p, int policy,
  4484. struct sched_param *param, bool user)
  4485. {
  4486. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4487. unsigned long flags;
  4488. const struct sched_class *prev_class = p->sched_class;
  4489. struct rq *rq;
  4490. /* may grab non-irq protected spin_locks */
  4491. BUG_ON(in_interrupt());
  4492. recheck:
  4493. /* double check policy once rq lock held */
  4494. if (policy < 0)
  4495. policy = oldpolicy = p->policy;
  4496. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4497. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4498. policy != SCHED_IDLE)
  4499. return -EINVAL;
  4500. /*
  4501. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4502. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4503. * SCHED_BATCH and SCHED_IDLE is 0.
  4504. */
  4505. if (param->sched_priority < 0 ||
  4506. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4507. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4508. return -EINVAL;
  4509. if (rt_policy(policy) != (param->sched_priority != 0))
  4510. return -EINVAL;
  4511. /*
  4512. * Allow unprivileged RT tasks to decrease priority:
  4513. */
  4514. if (user && !capable(CAP_SYS_NICE)) {
  4515. if (rt_policy(policy)) {
  4516. unsigned long rlim_rtprio;
  4517. if (!lock_task_sighand(p, &flags))
  4518. return -ESRCH;
  4519. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4520. unlock_task_sighand(p, &flags);
  4521. /* can't set/change the rt policy */
  4522. if (policy != p->policy && !rlim_rtprio)
  4523. return -EPERM;
  4524. /* can't increase priority */
  4525. if (param->sched_priority > p->rt_priority &&
  4526. param->sched_priority > rlim_rtprio)
  4527. return -EPERM;
  4528. }
  4529. /*
  4530. * Like positive nice levels, dont allow tasks to
  4531. * move out of SCHED_IDLE either:
  4532. */
  4533. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4534. return -EPERM;
  4535. /* can't change other user's priorities */
  4536. if ((current->euid != p->euid) &&
  4537. (current->euid != p->uid))
  4538. return -EPERM;
  4539. }
  4540. if (user) {
  4541. #ifdef CONFIG_RT_GROUP_SCHED
  4542. /*
  4543. * Do not allow realtime tasks into groups that have no runtime
  4544. * assigned.
  4545. */
  4546. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4547. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4548. return -EPERM;
  4549. #endif
  4550. retval = security_task_setscheduler(p, policy, param);
  4551. if (retval)
  4552. return retval;
  4553. }
  4554. /*
  4555. * make sure no PI-waiters arrive (or leave) while we are
  4556. * changing the priority of the task:
  4557. */
  4558. spin_lock_irqsave(&p->pi_lock, flags);
  4559. /*
  4560. * To be able to change p->policy safely, the apropriate
  4561. * runqueue lock must be held.
  4562. */
  4563. rq = __task_rq_lock(p);
  4564. /* recheck policy now with rq lock held */
  4565. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4566. policy = oldpolicy = -1;
  4567. __task_rq_unlock(rq);
  4568. spin_unlock_irqrestore(&p->pi_lock, flags);
  4569. goto recheck;
  4570. }
  4571. update_rq_clock(rq);
  4572. on_rq = p->se.on_rq;
  4573. running = task_current(rq, p);
  4574. if (on_rq)
  4575. deactivate_task(rq, p, 0);
  4576. if (running)
  4577. p->sched_class->put_prev_task(rq, p);
  4578. oldprio = p->prio;
  4579. __setscheduler(rq, p, policy, param->sched_priority);
  4580. if (running)
  4581. p->sched_class->set_curr_task(rq);
  4582. if (on_rq) {
  4583. activate_task(rq, p, 0);
  4584. check_class_changed(rq, p, prev_class, oldprio, running);
  4585. }
  4586. __task_rq_unlock(rq);
  4587. spin_unlock_irqrestore(&p->pi_lock, flags);
  4588. rt_mutex_adjust_pi(p);
  4589. return 0;
  4590. }
  4591. /**
  4592. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4593. * @p: the task in question.
  4594. * @policy: new policy.
  4595. * @param: structure containing the new RT priority.
  4596. *
  4597. * NOTE that the task may be already dead.
  4598. */
  4599. int sched_setscheduler(struct task_struct *p, int policy,
  4600. struct sched_param *param)
  4601. {
  4602. return __sched_setscheduler(p, policy, param, true);
  4603. }
  4604. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4605. /**
  4606. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4607. * @p: the task in question.
  4608. * @policy: new policy.
  4609. * @param: structure containing the new RT priority.
  4610. *
  4611. * Just like sched_setscheduler, only don't bother checking if the
  4612. * current context has permission. For example, this is needed in
  4613. * stop_machine(): we create temporary high priority worker threads,
  4614. * but our caller might not have that capability.
  4615. */
  4616. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4617. struct sched_param *param)
  4618. {
  4619. return __sched_setscheduler(p, policy, param, false);
  4620. }
  4621. static int
  4622. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4623. {
  4624. struct sched_param lparam;
  4625. struct task_struct *p;
  4626. int retval;
  4627. if (!param || pid < 0)
  4628. return -EINVAL;
  4629. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4630. return -EFAULT;
  4631. rcu_read_lock();
  4632. retval = -ESRCH;
  4633. p = find_process_by_pid(pid);
  4634. if (p != NULL)
  4635. retval = sched_setscheduler(p, policy, &lparam);
  4636. rcu_read_unlock();
  4637. return retval;
  4638. }
  4639. /**
  4640. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4641. * @pid: the pid in question.
  4642. * @policy: new policy.
  4643. * @param: structure containing the new RT priority.
  4644. */
  4645. asmlinkage long
  4646. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4647. {
  4648. /* negative values for policy are not valid */
  4649. if (policy < 0)
  4650. return -EINVAL;
  4651. return do_sched_setscheduler(pid, policy, param);
  4652. }
  4653. /**
  4654. * sys_sched_setparam - set/change the RT priority of a thread
  4655. * @pid: the pid in question.
  4656. * @param: structure containing the new RT priority.
  4657. */
  4658. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4659. {
  4660. return do_sched_setscheduler(pid, -1, param);
  4661. }
  4662. /**
  4663. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4664. * @pid: the pid in question.
  4665. */
  4666. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4667. {
  4668. struct task_struct *p;
  4669. int retval;
  4670. if (pid < 0)
  4671. return -EINVAL;
  4672. retval = -ESRCH;
  4673. read_lock(&tasklist_lock);
  4674. p = find_process_by_pid(pid);
  4675. if (p) {
  4676. retval = security_task_getscheduler(p);
  4677. if (!retval)
  4678. retval = p->policy;
  4679. }
  4680. read_unlock(&tasklist_lock);
  4681. return retval;
  4682. }
  4683. /**
  4684. * sys_sched_getscheduler - get the RT priority of a thread
  4685. * @pid: the pid in question.
  4686. * @param: structure containing the RT priority.
  4687. */
  4688. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4689. {
  4690. struct sched_param lp;
  4691. struct task_struct *p;
  4692. int retval;
  4693. if (!param || pid < 0)
  4694. return -EINVAL;
  4695. read_lock(&tasklist_lock);
  4696. p = find_process_by_pid(pid);
  4697. retval = -ESRCH;
  4698. if (!p)
  4699. goto out_unlock;
  4700. retval = security_task_getscheduler(p);
  4701. if (retval)
  4702. goto out_unlock;
  4703. lp.sched_priority = p->rt_priority;
  4704. read_unlock(&tasklist_lock);
  4705. /*
  4706. * This one might sleep, we cannot do it with a spinlock held ...
  4707. */
  4708. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4709. return retval;
  4710. out_unlock:
  4711. read_unlock(&tasklist_lock);
  4712. return retval;
  4713. }
  4714. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4715. {
  4716. cpumask_var_t cpus_allowed, new_mask;
  4717. struct task_struct *p;
  4718. int retval;
  4719. get_online_cpus();
  4720. read_lock(&tasklist_lock);
  4721. p = find_process_by_pid(pid);
  4722. if (!p) {
  4723. read_unlock(&tasklist_lock);
  4724. put_online_cpus();
  4725. return -ESRCH;
  4726. }
  4727. /*
  4728. * It is not safe to call set_cpus_allowed with the
  4729. * tasklist_lock held. We will bump the task_struct's
  4730. * usage count and then drop tasklist_lock.
  4731. */
  4732. get_task_struct(p);
  4733. read_unlock(&tasklist_lock);
  4734. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4735. retval = -ENOMEM;
  4736. goto out_put_task;
  4737. }
  4738. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4739. retval = -ENOMEM;
  4740. goto out_free_cpus_allowed;
  4741. }
  4742. retval = -EPERM;
  4743. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4744. !capable(CAP_SYS_NICE))
  4745. goto out_unlock;
  4746. retval = security_task_setscheduler(p, 0, NULL);
  4747. if (retval)
  4748. goto out_unlock;
  4749. cpuset_cpus_allowed(p, cpus_allowed);
  4750. cpumask_and(new_mask, in_mask, cpus_allowed);
  4751. again:
  4752. retval = set_cpus_allowed_ptr(p, new_mask);
  4753. if (!retval) {
  4754. cpuset_cpus_allowed(p, cpus_allowed);
  4755. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4756. /*
  4757. * We must have raced with a concurrent cpuset
  4758. * update. Just reset the cpus_allowed to the
  4759. * cpuset's cpus_allowed
  4760. */
  4761. cpumask_copy(new_mask, cpus_allowed);
  4762. goto again;
  4763. }
  4764. }
  4765. out_unlock:
  4766. free_cpumask_var(new_mask);
  4767. out_free_cpus_allowed:
  4768. free_cpumask_var(cpus_allowed);
  4769. out_put_task:
  4770. put_task_struct(p);
  4771. put_online_cpus();
  4772. return retval;
  4773. }
  4774. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4775. struct cpumask *new_mask)
  4776. {
  4777. if (len < cpumask_size())
  4778. cpumask_clear(new_mask);
  4779. else if (len > cpumask_size())
  4780. len = cpumask_size();
  4781. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4782. }
  4783. /**
  4784. * sys_sched_setaffinity - set the cpu affinity of a process
  4785. * @pid: pid of the process
  4786. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4787. * @user_mask_ptr: user-space pointer to the new cpu mask
  4788. */
  4789. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4790. unsigned long __user *user_mask_ptr)
  4791. {
  4792. cpumask_var_t new_mask;
  4793. int retval;
  4794. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4795. return -ENOMEM;
  4796. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4797. if (retval == 0)
  4798. retval = sched_setaffinity(pid, new_mask);
  4799. free_cpumask_var(new_mask);
  4800. return retval;
  4801. }
  4802. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4803. {
  4804. struct task_struct *p;
  4805. int retval;
  4806. get_online_cpus();
  4807. read_lock(&tasklist_lock);
  4808. retval = -ESRCH;
  4809. p = find_process_by_pid(pid);
  4810. if (!p)
  4811. goto out_unlock;
  4812. retval = security_task_getscheduler(p);
  4813. if (retval)
  4814. goto out_unlock;
  4815. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4816. out_unlock:
  4817. read_unlock(&tasklist_lock);
  4818. put_online_cpus();
  4819. return retval;
  4820. }
  4821. /**
  4822. * sys_sched_getaffinity - get the cpu affinity of a process
  4823. * @pid: pid of the process
  4824. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4825. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4826. */
  4827. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4828. unsigned long __user *user_mask_ptr)
  4829. {
  4830. int ret;
  4831. cpumask_var_t mask;
  4832. if (len < cpumask_size())
  4833. return -EINVAL;
  4834. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4835. return -ENOMEM;
  4836. ret = sched_getaffinity(pid, mask);
  4837. if (ret == 0) {
  4838. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4839. ret = -EFAULT;
  4840. else
  4841. ret = cpumask_size();
  4842. }
  4843. free_cpumask_var(mask);
  4844. return ret;
  4845. }
  4846. /**
  4847. * sys_sched_yield - yield the current processor to other threads.
  4848. *
  4849. * This function yields the current CPU to other tasks. If there are no
  4850. * other threads running on this CPU then this function will return.
  4851. */
  4852. asmlinkage long sys_sched_yield(void)
  4853. {
  4854. struct rq *rq = this_rq_lock();
  4855. schedstat_inc(rq, yld_count);
  4856. current->sched_class->yield_task(rq);
  4857. /*
  4858. * Since we are going to call schedule() anyway, there's
  4859. * no need to preempt or enable interrupts:
  4860. */
  4861. __release(rq->lock);
  4862. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4863. _raw_spin_unlock(&rq->lock);
  4864. preempt_enable_no_resched();
  4865. schedule();
  4866. return 0;
  4867. }
  4868. static void __cond_resched(void)
  4869. {
  4870. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4871. __might_sleep(__FILE__, __LINE__);
  4872. #endif
  4873. /*
  4874. * The BKS might be reacquired before we have dropped
  4875. * PREEMPT_ACTIVE, which could trigger a second
  4876. * cond_resched() call.
  4877. */
  4878. do {
  4879. add_preempt_count(PREEMPT_ACTIVE);
  4880. schedule();
  4881. sub_preempt_count(PREEMPT_ACTIVE);
  4882. } while (need_resched());
  4883. }
  4884. int __sched _cond_resched(void)
  4885. {
  4886. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4887. system_state == SYSTEM_RUNNING) {
  4888. __cond_resched();
  4889. return 1;
  4890. }
  4891. return 0;
  4892. }
  4893. EXPORT_SYMBOL(_cond_resched);
  4894. /*
  4895. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4896. * call schedule, and on return reacquire the lock.
  4897. *
  4898. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4899. * operations here to prevent schedule() from being called twice (once via
  4900. * spin_unlock(), once by hand).
  4901. */
  4902. int cond_resched_lock(spinlock_t *lock)
  4903. {
  4904. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4905. int ret = 0;
  4906. if (spin_needbreak(lock) || resched) {
  4907. spin_unlock(lock);
  4908. if (resched && need_resched())
  4909. __cond_resched();
  4910. else
  4911. cpu_relax();
  4912. ret = 1;
  4913. spin_lock(lock);
  4914. }
  4915. return ret;
  4916. }
  4917. EXPORT_SYMBOL(cond_resched_lock);
  4918. int __sched cond_resched_softirq(void)
  4919. {
  4920. BUG_ON(!in_softirq());
  4921. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4922. local_bh_enable();
  4923. __cond_resched();
  4924. local_bh_disable();
  4925. return 1;
  4926. }
  4927. return 0;
  4928. }
  4929. EXPORT_SYMBOL(cond_resched_softirq);
  4930. /**
  4931. * yield - yield the current processor to other threads.
  4932. *
  4933. * This is a shortcut for kernel-space yielding - it marks the
  4934. * thread runnable and calls sys_sched_yield().
  4935. */
  4936. void __sched yield(void)
  4937. {
  4938. set_current_state(TASK_RUNNING);
  4939. sys_sched_yield();
  4940. }
  4941. EXPORT_SYMBOL(yield);
  4942. /*
  4943. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4944. * that process accounting knows that this is a task in IO wait state.
  4945. *
  4946. * But don't do that if it is a deliberate, throttling IO wait (this task
  4947. * has set its backing_dev_info: the queue against which it should throttle)
  4948. */
  4949. void __sched io_schedule(void)
  4950. {
  4951. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4952. delayacct_blkio_start();
  4953. atomic_inc(&rq->nr_iowait);
  4954. schedule();
  4955. atomic_dec(&rq->nr_iowait);
  4956. delayacct_blkio_end();
  4957. }
  4958. EXPORT_SYMBOL(io_schedule);
  4959. long __sched io_schedule_timeout(long timeout)
  4960. {
  4961. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4962. long ret;
  4963. delayacct_blkio_start();
  4964. atomic_inc(&rq->nr_iowait);
  4965. ret = schedule_timeout(timeout);
  4966. atomic_dec(&rq->nr_iowait);
  4967. delayacct_blkio_end();
  4968. return ret;
  4969. }
  4970. /**
  4971. * sys_sched_get_priority_max - return maximum RT priority.
  4972. * @policy: scheduling class.
  4973. *
  4974. * this syscall returns the maximum rt_priority that can be used
  4975. * by a given scheduling class.
  4976. */
  4977. asmlinkage long sys_sched_get_priority_max(int policy)
  4978. {
  4979. int ret = -EINVAL;
  4980. switch (policy) {
  4981. case SCHED_FIFO:
  4982. case SCHED_RR:
  4983. ret = MAX_USER_RT_PRIO-1;
  4984. break;
  4985. case SCHED_NORMAL:
  4986. case SCHED_BATCH:
  4987. case SCHED_IDLE:
  4988. ret = 0;
  4989. break;
  4990. }
  4991. return ret;
  4992. }
  4993. /**
  4994. * sys_sched_get_priority_min - return minimum RT priority.
  4995. * @policy: scheduling class.
  4996. *
  4997. * this syscall returns the minimum rt_priority that can be used
  4998. * by a given scheduling class.
  4999. */
  5000. asmlinkage long sys_sched_get_priority_min(int policy)
  5001. {
  5002. int ret = -EINVAL;
  5003. switch (policy) {
  5004. case SCHED_FIFO:
  5005. case SCHED_RR:
  5006. ret = 1;
  5007. break;
  5008. case SCHED_NORMAL:
  5009. case SCHED_BATCH:
  5010. case SCHED_IDLE:
  5011. ret = 0;
  5012. }
  5013. return ret;
  5014. }
  5015. /**
  5016. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5017. * @pid: pid of the process.
  5018. * @interval: userspace pointer to the timeslice value.
  5019. *
  5020. * this syscall writes the default timeslice value of a given process
  5021. * into the user-space timespec buffer. A value of '0' means infinity.
  5022. */
  5023. asmlinkage
  5024. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  5025. {
  5026. struct task_struct *p;
  5027. unsigned int time_slice;
  5028. int retval;
  5029. struct timespec t;
  5030. if (pid < 0)
  5031. return -EINVAL;
  5032. retval = -ESRCH;
  5033. read_lock(&tasklist_lock);
  5034. p = find_process_by_pid(pid);
  5035. if (!p)
  5036. goto out_unlock;
  5037. retval = security_task_getscheduler(p);
  5038. if (retval)
  5039. goto out_unlock;
  5040. /*
  5041. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5042. * tasks that are on an otherwise idle runqueue:
  5043. */
  5044. time_slice = 0;
  5045. if (p->policy == SCHED_RR) {
  5046. time_slice = DEF_TIMESLICE;
  5047. } else if (p->policy != SCHED_FIFO) {
  5048. struct sched_entity *se = &p->se;
  5049. unsigned long flags;
  5050. struct rq *rq;
  5051. rq = task_rq_lock(p, &flags);
  5052. if (rq->cfs.load.weight)
  5053. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5054. task_rq_unlock(rq, &flags);
  5055. }
  5056. read_unlock(&tasklist_lock);
  5057. jiffies_to_timespec(time_slice, &t);
  5058. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5059. return retval;
  5060. out_unlock:
  5061. read_unlock(&tasklist_lock);
  5062. return retval;
  5063. }
  5064. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5065. void sched_show_task(struct task_struct *p)
  5066. {
  5067. unsigned long free = 0;
  5068. unsigned state;
  5069. state = p->state ? __ffs(p->state) + 1 : 0;
  5070. printk(KERN_INFO "%-13.13s %c", p->comm,
  5071. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5072. #if BITS_PER_LONG == 32
  5073. if (state == TASK_RUNNING)
  5074. printk(KERN_CONT " running ");
  5075. else
  5076. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5077. #else
  5078. if (state == TASK_RUNNING)
  5079. printk(KERN_CONT " running task ");
  5080. else
  5081. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5082. #endif
  5083. #ifdef CONFIG_DEBUG_STACK_USAGE
  5084. {
  5085. unsigned long *n = end_of_stack(p);
  5086. while (!*n)
  5087. n++;
  5088. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  5089. }
  5090. #endif
  5091. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5092. task_pid_nr(p), task_pid_nr(p->real_parent));
  5093. show_stack(p, NULL);
  5094. }
  5095. void show_state_filter(unsigned long state_filter)
  5096. {
  5097. struct task_struct *g, *p;
  5098. #if BITS_PER_LONG == 32
  5099. printk(KERN_INFO
  5100. " task PC stack pid father\n");
  5101. #else
  5102. printk(KERN_INFO
  5103. " task PC stack pid father\n");
  5104. #endif
  5105. read_lock(&tasklist_lock);
  5106. do_each_thread(g, p) {
  5107. /*
  5108. * reset the NMI-timeout, listing all files on a slow
  5109. * console might take alot of time:
  5110. */
  5111. touch_nmi_watchdog();
  5112. if (!state_filter || (p->state & state_filter))
  5113. sched_show_task(p);
  5114. } while_each_thread(g, p);
  5115. touch_all_softlockup_watchdogs();
  5116. #ifdef CONFIG_SCHED_DEBUG
  5117. sysrq_sched_debug_show();
  5118. #endif
  5119. read_unlock(&tasklist_lock);
  5120. /*
  5121. * Only show locks if all tasks are dumped:
  5122. */
  5123. if (state_filter == -1)
  5124. debug_show_all_locks();
  5125. }
  5126. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5127. {
  5128. idle->sched_class = &idle_sched_class;
  5129. }
  5130. /**
  5131. * init_idle - set up an idle thread for a given CPU
  5132. * @idle: task in question
  5133. * @cpu: cpu the idle task belongs to
  5134. *
  5135. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5136. * flag, to make booting more robust.
  5137. */
  5138. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5139. {
  5140. struct rq *rq = cpu_rq(cpu);
  5141. unsigned long flags;
  5142. spin_lock_irqsave(&rq->lock, flags);
  5143. __sched_fork(idle);
  5144. idle->se.exec_start = sched_clock();
  5145. idle->prio = idle->normal_prio = MAX_PRIO;
  5146. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5147. __set_task_cpu(idle, cpu);
  5148. rq->curr = rq->idle = idle;
  5149. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5150. idle->oncpu = 1;
  5151. #endif
  5152. spin_unlock_irqrestore(&rq->lock, flags);
  5153. /* Set the preempt count _outside_ the spinlocks! */
  5154. #if defined(CONFIG_PREEMPT)
  5155. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5156. #else
  5157. task_thread_info(idle)->preempt_count = 0;
  5158. #endif
  5159. /*
  5160. * The idle tasks have their own, simple scheduling class:
  5161. */
  5162. idle->sched_class = &idle_sched_class;
  5163. ftrace_graph_init_task(idle);
  5164. }
  5165. /*
  5166. * In a system that switches off the HZ timer nohz_cpu_mask
  5167. * indicates which cpus entered this state. This is used
  5168. * in the rcu update to wait only for active cpus. For system
  5169. * which do not switch off the HZ timer nohz_cpu_mask should
  5170. * always be CPU_BITS_NONE.
  5171. */
  5172. cpumask_var_t nohz_cpu_mask;
  5173. /*
  5174. * Increase the granularity value when there are more CPUs,
  5175. * because with more CPUs the 'effective latency' as visible
  5176. * to users decreases. But the relationship is not linear,
  5177. * so pick a second-best guess by going with the log2 of the
  5178. * number of CPUs.
  5179. *
  5180. * This idea comes from the SD scheduler of Con Kolivas:
  5181. */
  5182. static inline void sched_init_granularity(void)
  5183. {
  5184. unsigned int factor = 1 + ilog2(num_online_cpus());
  5185. const unsigned long limit = 200000000;
  5186. sysctl_sched_min_granularity *= factor;
  5187. if (sysctl_sched_min_granularity > limit)
  5188. sysctl_sched_min_granularity = limit;
  5189. sysctl_sched_latency *= factor;
  5190. if (sysctl_sched_latency > limit)
  5191. sysctl_sched_latency = limit;
  5192. sysctl_sched_wakeup_granularity *= factor;
  5193. sysctl_sched_shares_ratelimit *= factor;
  5194. }
  5195. #ifdef CONFIG_SMP
  5196. /*
  5197. * This is how migration works:
  5198. *
  5199. * 1) we queue a struct migration_req structure in the source CPU's
  5200. * runqueue and wake up that CPU's migration thread.
  5201. * 2) we down() the locked semaphore => thread blocks.
  5202. * 3) migration thread wakes up (implicitly it forces the migrated
  5203. * thread off the CPU)
  5204. * 4) it gets the migration request and checks whether the migrated
  5205. * task is still in the wrong runqueue.
  5206. * 5) if it's in the wrong runqueue then the migration thread removes
  5207. * it and puts it into the right queue.
  5208. * 6) migration thread up()s the semaphore.
  5209. * 7) we wake up and the migration is done.
  5210. */
  5211. /*
  5212. * Change a given task's CPU affinity. Migrate the thread to a
  5213. * proper CPU and schedule it away if the CPU it's executing on
  5214. * is removed from the allowed bitmask.
  5215. *
  5216. * NOTE: the caller must have a valid reference to the task, the
  5217. * task must not exit() & deallocate itself prematurely. The
  5218. * call is not atomic; no spinlocks may be held.
  5219. */
  5220. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5221. {
  5222. struct migration_req req;
  5223. unsigned long flags;
  5224. struct rq *rq;
  5225. int ret = 0;
  5226. rq = task_rq_lock(p, &flags);
  5227. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5228. ret = -EINVAL;
  5229. goto out;
  5230. }
  5231. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5232. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5233. ret = -EINVAL;
  5234. goto out;
  5235. }
  5236. if (p->sched_class->set_cpus_allowed)
  5237. p->sched_class->set_cpus_allowed(p, new_mask);
  5238. else {
  5239. cpumask_copy(&p->cpus_allowed, new_mask);
  5240. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5241. }
  5242. /* Can the task run on the task's current CPU? If so, we're done */
  5243. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5244. goto out;
  5245. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5246. /* Need help from migration thread: drop lock and wait. */
  5247. task_rq_unlock(rq, &flags);
  5248. wake_up_process(rq->migration_thread);
  5249. wait_for_completion(&req.done);
  5250. tlb_migrate_finish(p->mm);
  5251. return 0;
  5252. }
  5253. out:
  5254. task_rq_unlock(rq, &flags);
  5255. return ret;
  5256. }
  5257. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5258. /*
  5259. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5260. * this because either it can't run here any more (set_cpus_allowed()
  5261. * away from this CPU, or CPU going down), or because we're
  5262. * attempting to rebalance this task on exec (sched_exec).
  5263. *
  5264. * So we race with normal scheduler movements, but that's OK, as long
  5265. * as the task is no longer on this CPU.
  5266. *
  5267. * Returns non-zero if task was successfully migrated.
  5268. */
  5269. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5270. {
  5271. struct rq *rq_dest, *rq_src;
  5272. int ret = 0, on_rq;
  5273. if (unlikely(!cpu_active(dest_cpu)))
  5274. return ret;
  5275. rq_src = cpu_rq(src_cpu);
  5276. rq_dest = cpu_rq(dest_cpu);
  5277. double_rq_lock(rq_src, rq_dest);
  5278. /* Already moved. */
  5279. if (task_cpu(p) != src_cpu)
  5280. goto done;
  5281. /* Affinity changed (again). */
  5282. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5283. goto fail;
  5284. on_rq = p->se.on_rq;
  5285. if (on_rq)
  5286. deactivate_task(rq_src, p, 0);
  5287. set_task_cpu(p, dest_cpu);
  5288. if (on_rq) {
  5289. activate_task(rq_dest, p, 0);
  5290. check_preempt_curr(rq_dest, p, 0);
  5291. }
  5292. done:
  5293. ret = 1;
  5294. fail:
  5295. double_rq_unlock(rq_src, rq_dest);
  5296. return ret;
  5297. }
  5298. /*
  5299. * migration_thread - this is a highprio system thread that performs
  5300. * thread migration by bumping thread off CPU then 'pushing' onto
  5301. * another runqueue.
  5302. */
  5303. static int migration_thread(void *data)
  5304. {
  5305. int cpu = (long)data;
  5306. struct rq *rq;
  5307. rq = cpu_rq(cpu);
  5308. BUG_ON(rq->migration_thread != current);
  5309. set_current_state(TASK_INTERRUPTIBLE);
  5310. while (!kthread_should_stop()) {
  5311. struct migration_req *req;
  5312. struct list_head *head;
  5313. spin_lock_irq(&rq->lock);
  5314. if (cpu_is_offline(cpu)) {
  5315. spin_unlock_irq(&rq->lock);
  5316. goto wait_to_die;
  5317. }
  5318. if (rq->active_balance) {
  5319. active_load_balance(rq, cpu);
  5320. rq->active_balance = 0;
  5321. }
  5322. head = &rq->migration_queue;
  5323. if (list_empty(head)) {
  5324. spin_unlock_irq(&rq->lock);
  5325. schedule();
  5326. set_current_state(TASK_INTERRUPTIBLE);
  5327. continue;
  5328. }
  5329. req = list_entry(head->next, struct migration_req, list);
  5330. list_del_init(head->next);
  5331. spin_unlock(&rq->lock);
  5332. __migrate_task(req->task, cpu, req->dest_cpu);
  5333. local_irq_enable();
  5334. complete(&req->done);
  5335. }
  5336. __set_current_state(TASK_RUNNING);
  5337. return 0;
  5338. wait_to_die:
  5339. /* Wait for kthread_stop */
  5340. set_current_state(TASK_INTERRUPTIBLE);
  5341. while (!kthread_should_stop()) {
  5342. schedule();
  5343. set_current_state(TASK_INTERRUPTIBLE);
  5344. }
  5345. __set_current_state(TASK_RUNNING);
  5346. return 0;
  5347. }
  5348. #ifdef CONFIG_HOTPLUG_CPU
  5349. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5350. {
  5351. int ret;
  5352. local_irq_disable();
  5353. ret = __migrate_task(p, src_cpu, dest_cpu);
  5354. local_irq_enable();
  5355. return ret;
  5356. }
  5357. /*
  5358. * Figure out where task on dead CPU should go, use force if necessary.
  5359. */
  5360. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5361. {
  5362. int dest_cpu;
  5363. /* FIXME: Use cpumask_of_node here. */
  5364. cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
  5365. const struct cpumask *nodemask = &_nodemask;
  5366. again:
  5367. /* Look for allowed, online CPU in same node. */
  5368. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5369. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5370. goto move;
  5371. /* Any allowed, online CPU? */
  5372. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5373. if (dest_cpu < nr_cpu_ids)
  5374. goto move;
  5375. /* No more Mr. Nice Guy. */
  5376. if (dest_cpu >= nr_cpu_ids) {
  5377. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5378. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5379. /*
  5380. * Don't tell them about moving exiting tasks or
  5381. * kernel threads (both mm NULL), since they never
  5382. * leave kernel.
  5383. */
  5384. if (p->mm && printk_ratelimit()) {
  5385. printk(KERN_INFO "process %d (%s) no "
  5386. "longer affine to cpu%d\n",
  5387. task_pid_nr(p), p->comm, dead_cpu);
  5388. }
  5389. }
  5390. move:
  5391. /* It can have affinity changed while we were choosing. */
  5392. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5393. goto again;
  5394. }
  5395. /*
  5396. * While a dead CPU has no uninterruptible tasks queued at this point,
  5397. * it might still have a nonzero ->nr_uninterruptible counter, because
  5398. * for performance reasons the counter is not stricly tracking tasks to
  5399. * their home CPUs. So we just add the counter to another CPU's counter,
  5400. * to keep the global sum constant after CPU-down:
  5401. */
  5402. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5403. {
  5404. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5405. unsigned long flags;
  5406. local_irq_save(flags);
  5407. double_rq_lock(rq_src, rq_dest);
  5408. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5409. rq_src->nr_uninterruptible = 0;
  5410. double_rq_unlock(rq_src, rq_dest);
  5411. local_irq_restore(flags);
  5412. }
  5413. /* Run through task list and migrate tasks from the dead cpu. */
  5414. static void migrate_live_tasks(int src_cpu)
  5415. {
  5416. struct task_struct *p, *t;
  5417. read_lock(&tasklist_lock);
  5418. do_each_thread(t, p) {
  5419. if (p == current)
  5420. continue;
  5421. if (task_cpu(p) == src_cpu)
  5422. move_task_off_dead_cpu(src_cpu, p);
  5423. } while_each_thread(t, p);
  5424. read_unlock(&tasklist_lock);
  5425. }
  5426. /*
  5427. * Schedules idle task to be the next runnable task on current CPU.
  5428. * It does so by boosting its priority to highest possible.
  5429. * Used by CPU offline code.
  5430. */
  5431. void sched_idle_next(void)
  5432. {
  5433. int this_cpu = smp_processor_id();
  5434. struct rq *rq = cpu_rq(this_cpu);
  5435. struct task_struct *p = rq->idle;
  5436. unsigned long flags;
  5437. /* cpu has to be offline */
  5438. BUG_ON(cpu_online(this_cpu));
  5439. /*
  5440. * Strictly not necessary since rest of the CPUs are stopped by now
  5441. * and interrupts disabled on the current cpu.
  5442. */
  5443. spin_lock_irqsave(&rq->lock, flags);
  5444. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5445. update_rq_clock(rq);
  5446. activate_task(rq, p, 0);
  5447. spin_unlock_irqrestore(&rq->lock, flags);
  5448. }
  5449. /*
  5450. * Ensures that the idle task is using init_mm right before its cpu goes
  5451. * offline.
  5452. */
  5453. void idle_task_exit(void)
  5454. {
  5455. struct mm_struct *mm = current->active_mm;
  5456. BUG_ON(cpu_online(smp_processor_id()));
  5457. if (mm != &init_mm)
  5458. switch_mm(mm, &init_mm, current);
  5459. mmdrop(mm);
  5460. }
  5461. /* called under rq->lock with disabled interrupts */
  5462. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5463. {
  5464. struct rq *rq = cpu_rq(dead_cpu);
  5465. /* Must be exiting, otherwise would be on tasklist. */
  5466. BUG_ON(!p->exit_state);
  5467. /* Cannot have done final schedule yet: would have vanished. */
  5468. BUG_ON(p->state == TASK_DEAD);
  5469. get_task_struct(p);
  5470. /*
  5471. * Drop lock around migration; if someone else moves it,
  5472. * that's OK. No task can be added to this CPU, so iteration is
  5473. * fine.
  5474. */
  5475. spin_unlock_irq(&rq->lock);
  5476. move_task_off_dead_cpu(dead_cpu, p);
  5477. spin_lock_irq(&rq->lock);
  5478. put_task_struct(p);
  5479. }
  5480. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5481. static void migrate_dead_tasks(unsigned int dead_cpu)
  5482. {
  5483. struct rq *rq = cpu_rq(dead_cpu);
  5484. struct task_struct *next;
  5485. for ( ; ; ) {
  5486. if (!rq->nr_running)
  5487. break;
  5488. update_rq_clock(rq);
  5489. next = pick_next_task(rq, rq->curr);
  5490. if (!next)
  5491. break;
  5492. next->sched_class->put_prev_task(rq, next);
  5493. migrate_dead(dead_cpu, next);
  5494. }
  5495. }
  5496. #endif /* CONFIG_HOTPLUG_CPU */
  5497. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5498. static struct ctl_table sd_ctl_dir[] = {
  5499. {
  5500. .procname = "sched_domain",
  5501. .mode = 0555,
  5502. },
  5503. {0, },
  5504. };
  5505. static struct ctl_table sd_ctl_root[] = {
  5506. {
  5507. .ctl_name = CTL_KERN,
  5508. .procname = "kernel",
  5509. .mode = 0555,
  5510. .child = sd_ctl_dir,
  5511. },
  5512. {0, },
  5513. };
  5514. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5515. {
  5516. struct ctl_table *entry =
  5517. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5518. return entry;
  5519. }
  5520. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5521. {
  5522. struct ctl_table *entry;
  5523. /*
  5524. * In the intermediate directories, both the child directory and
  5525. * procname are dynamically allocated and could fail but the mode
  5526. * will always be set. In the lowest directory the names are
  5527. * static strings and all have proc handlers.
  5528. */
  5529. for (entry = *tablep; entry->mode; entry++) {
  5530. if (entry->child)
  5531. sd_free_ctl_entry(&entry->child);
  5532. if (entry->proc_handler == NULL)
  5533. kfree(entry->procname);
  5534. }
  5535. kfree(*tablep);
  5536. *tablep = NULL;
  5537. }
  5538. static void
  5539. set_table_entry(struct ctl_table *entry,
  5540. const char *procname, void *data, int maxlen,
  5541. mode_t mode, proc_handler *proc_handler)
  5542. {
  5543. entry->procname = procname;
  5544. entry->data = data;
  5545. entry->maxlen = maxlen;
  5546. entry->mode = mode;
  5547. entry->proc_handler = proc_handler;
  5548. }
  5549. static struct ctl_table *
  5550. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5551. {
  5552. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5553. if (table == NULL)
  5554. return NULL;
  5555. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5556. sizeof(long), 0644, proc_doulongvec_minmax);
  5557. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5558. sizeof(long), 0644, proc_doulongvec_minmax);
  5559. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5560. sizeof(int), 0644, proc_dointvec_minmax);
  5561. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5562. sizeof(int), 0644, proc_dointvec_minmax);
  5563. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5564. sizeof(int), 0644, proc_dointvec_minmax);
  5565. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5566. sizeof(int), 0644, proc_dointvec_minmax);
  5567. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5568. sizeof(int), 0644, proc_dointvec_minmax);
  5569. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5570. sizeof(int), 0644, proc_dointvec_minmax);
  5571. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5572. sizeof(int), 0644, proc_dointvec_minmax);
  5573. set_table_entry(&table[9], "cache_nice_tries",
  5574. &sd->cache_nice_tries,
  5575. sizeof(int), 0644, proc_dointvec_minmax);
  5576. set_table_entry(&table[10], "flags", &sd->flags,
  5577. sizeof(int), 0644, proc_dointvec_minmax);
  5578. set_table_entry(&table[11], "name", sd->name,
  5579. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5580. /* &table[12] is terminator */
  5581. return table;
  5582. }
  5583. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5584. {
  5585. struct ctl_table *entry, *table;
  5586. struct sched_domain *sd;
  5587. int domain_num = 0, i;
  5588. char buf[32];
  5589. for_each_domain(cpu, sd)
  5590. domain_num++;
  5591. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5592. if (table == NULL)
  5593. return NULL;
  5594. i = 0;
  5595. for_each_domain(cpu, sd) {
  5596. snprintf(buf, 32, "domain%d", i);
  5597. entry->procname = kstrdup(buf, GFP_KERNEL);
  5598. entry->mode = 0555;
  5599. entry->child = sd_alloc_ctl_domain_table(sd);
  5600. entry++;
  5601. i++;
  5602. }
  5603. return table;
  5604. }
  5605. static struct ctl_table_header *sd_sysctl_header;
  5606. static void register_sched_domain_sysctl(void)
  5607. {
  5608. int i, cpu_num = num_online_cpus();
  5609. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5610. char buf[32];
  5611. WARN_ON(sd_ctl_dir[0].child);
  5612. sd_ctl_dir[0].child = entry;
  5613. if (entry == NULL)
  5614. return;
  5615. for_each_online_cpu(i) {
  5616. snprintf(buf, 32, "cpu%d", i);
  5617. entry->procname = kstrdup(buf, GFP_KERNEL);
  5618. entry->mode = 0555;
  5619. entry->child = sd_alloc_ctl_cpu_table(i);
  5620. entry++;
  5621. }
  5622. WARN_ON(sd_sysctl_header);
  5623. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5624. }
  5625. /* may be called multiple times per register */
  5626. static void unregister_sched_domain_sysctl(void)
  5627. {
  5628. if (sd_sysctl_header)
  5629. unregister_sysctl_table(sd_sysctl_header);
  5630. sd_sysctl_header = NULL;
  5631. if (sd_ctl_dir[0].child)
  5632. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5633. }
  5634. #else
  5635. static void register_sched_domain_sysctl(void)
  5636. {
  5637. }
  5638. static void unregister_sched_domain_sysctl(void)
  5639. {
  5640. }
  5641. #endif
  5642. static void set_rq_online(struct rq *rq)
  5643. {
  5644. if (!rq->online) {
  5645. const struct sched_class *class;
  5646. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5647. rq->online = 1;
  5648. for_each_class(class) {
  5649. if (class->rq_online)
  5650. class->rq_online(rq);
  5651. }
  5652. }
  5653. }
  5654. static void set_rq_offline(struct rq *rq)
  5655. {
  5656. if (rq->online) {
  5657. const struct sched_class *class;
  5658. for_each_class(class) {
  5659. if (class->rq_offline)
  5660. class->rq_offline(rq);
  5661. }
  5662. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5663. rq->online = 0;
  5664. }
  5665. }
  5666. /*
  5667. * migration_call - callback that gets triggered when a CPU is added.
  5668. * Here we can start up the necessary migration thread for the new CPU.
  5669. */
  5670. static int __cpuinit
  5671. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5672. {
  5673. struct task_struct *p;
  5674. int cpu = (long)hcpu;
  5675. unsigned long flags;
  5676. struct rq *rq;
  5677. switch (action) {
  5678. case CPU_UP_PREPARE:
  5679. case CPU_UP_PREPARE_FROZEN:
  5680. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5681. if (IS_ERR(p))
  5682. return NOTIFY_BAD;
  5683. kthread_bind(p, cpu);
  5684. /* Must be high prio: stop_machine expects to yield to it. */
  5685. rq = task_rq_lock(p, &flags);
  5686. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5687. task_rq_unlock(rq, &flags);
  5688. cpu_rq(cpu)->migration_thread = p;
  5689. break;
  5690. case CPU_ONLINE:
  5691. case CPU_ONLINE_FROZEN:
  5692. /* Strictly unnecessary, as first user will wake it. */
  5693. wake_up_process(cpu_rq(cpu)->migration_thread);
  5694. /* Update our root-domain */
  5695. rq = cpu_rq(cpu);
  5696. spin_lock_irqsave(&rq->lock, flags);
  5697. if (rq->rd) {
  5698. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5699. set_rq_online(rq);
  5700. }
  5701. spin_unlock_irqrestore(&rq->lock, flags);
  5702. break;
  5703. #ifdef CONFIG_HOTPLUG_CPU
  5704. case CPU_UP_CANCELED:
  5705. case CPU_UP_CANCELED_FROZEN:
  5706. if (!cpu_rq(cpu)->migration_thread)
  5707. break;
  5708. /* Unbind it from offline cpu so it can run. Fall thru. */
  5709. kthread_bind(cpu_rq(cpu)->migration_thread,
  5710. cpumask_any(cpu_online_mask));
  5711. kthread_stop(cpu_rq(cpu)->migration_thread);
  5712. cpu_rq(cpu)->migration_thread = NULL;
  5713. break;
  5714. case CPU_DEAD:
  5715. case CPU_DEAD_FROZEN:
  5716. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5717. migrate_live_tasks(cpu);
  5718. rq = cpu_rq(cpu);
  5719. kthread_stop(rq->migration_thread);
  5720. rq->migration_thread = NULL;
  5721. /* Idle task back to normal (off runqueue, low prio) */
  5722. spin_lock_irq(&rq->lock);
  5723. update_rq_clock(rq);
  5724. deactivate_task(rq, rq->idle, 0);
  5725. rq->idle->static_prio = MAX_PRIO;
  5726. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5727. rq->idle->sched_class = &idle_sched_class;
  5728. migrate_dead_tasks(cpu);
  5729. spin_unlock_irq(&rq->lock);
  5730. cpuset_unlock();
  5731. migrate_nr_uninterruptible(rq);
  5732. BUG_ON(rq->nr_running != 0);
  5733. /*
  5734. * No need to migrate the tasks: it was best-effort if
  5735. * they didn't take sched_hotcpu_mutex. Just wake up
  5736. * the requestors.
  5737. */
  5738. spin_lock_irq(&rq->lock);
  5739. while (!list_empty(&rq->migration_queue)) {
  5740. struct migration_req *req;
  5741. req = list_entry(rq->migration_queue.next,
  5742. struct migration_req, list);
  5743. list_del_init(&req->list);
  5744. spin_unlock_irq(&rq->lock);
  5745. complete(&req->done);
  5746. spin_lock_irq(&rq->lock);
  5747. }
  5748. spin_unlock_irq(&rq->lock);
  5749. break;
  5750. case CPU_DYING:
  5751. case CPU_DYING_FROZEN:
  5752. /* Update our root-domain */
  5753. rq = cpu_rq(cpu);
  5754. spin_lock_irqsave(&rq->lock, flags);
  5755. if (rq->rd) {
  5756. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5757. set_rq_offline(rq);
  5758. }
  5759. spin_unlock_irqrestore(&rq->lock, flags);
  5760. break;
  5761. #endif
  5762. }
  5763. return NOTIFY_OK;
  5764. }
  5765. /* Register at highest priority so that task migration (migrate_all_tasks)
  5766. * happens before everything else.
  5767. */
  5768. static struct notifier_block __cpuinitdata migration_notifier = {
  5769. .notifier_call = migration_call,
  5770. .priority = 10
  5771. };
  5772. static int __init migration_init(void)
  5773. {
  5774. void *cpu = (void *)(long)smp_processor_id();
  5775. int err;
  5776. /* Start one for the boot CPU: */
  5777. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5778. BUG_ON(err == NOTIFY_BAD);
  5779. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5780. register_cpu_notifier(&migration_notifier);
  5781. return err;
  5782. }
  5783. early_initcall(migration_init);
  5784. #endif
  5785. #ifdef CONFIG_SMP
  5786. #ifdef CONFIG_SCHED_DEBUG
  5787. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5788. struct cpumask *groupmask)
  5789. {
  5790. struct sched_group *group = sd->groups;
  5791. char str[256];
  5792. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5793. cpumask_clear(groupmask);
  5794. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5795. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5796. printk("does not load-balance\n");
  5797. if (sd->parent)
  5798. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5799. " has parent");
  5800. return -1;
  5801. }
  5802. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5803. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5804. printk(KERN_ERR "ERROR: domain->span does not contain "
  5805. "CPU%d\n", cpu);
  5806. }
  5807. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5808. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5809. " CPU%d\n", cpu);
  5810. }
  5811. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5812. do {
  5813. if (!group) {
  5814. printk("\n");
  5815. printk(KERN_ERR "ERROR: group is NULL\n");
  5816. break;
  5817. }
  5818. if (!group->__cpu_power) {
  5819. printk(KERN_CONT "\n");
  5820. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5821. "set\n");
  5822. break;
  5823. }
  5824. if (!cpumask_weight(sched_group_cpus(group))) {
  5825. printk(KERN_CONT "\n");
  5826. printk(KERN_ERR "ERROR: empty group\n");
  5827. break;
  5828. }
  5829. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5830. printk(KERN_CONT "\n");
  5831. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5832. break;
  5833. }
  5834. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5835. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5836. printk(KERN_CONT " %s", str);
  5837. group = group->next;
  5838. } while (group != sd->groups);
  5839. printk(KERN_CONT "\n");
  5840. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5841. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5842. if (sd->parent &&
  5843. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5844. printk(KERN_ERR "ERROR: parent span is not a superset "
  5845. "of domain->span\n");
  5846. return 0;
  5847. }
  5848. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5849. {
  5850. cpumask_var_t groupmask;
  5851. int level = 0;
  5852. if (!sd) {
  5853. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5854. return;
  5855. }
  5856. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5857. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5858. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5859. return;
  5860. }
  5861. for (;;) {
  5862. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5863. break;
  5864. level++;
  5865. sd = sd->parent;
  5866. if (!sd)
  5867. break;
  5868. }
  5869. free_cpumask_var(groupmask);
  5870. }
  5871. #else /* !CONFIG_SCHED_DEBUG */
  5872. # define sched_domain_debug(sd, cpu) do { } while (0)
  5873. #endif /* CONFIG_SCHED_DEBUG */
  5874. static int sd_degenerate(struct sched_domain *sd)
  5875. {
  5876. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5877. return 1;
  5878. /* Following flags need at least 2 groups */
  5879. if (sd->flags & (SD_LOAD_BALANCE |
  5880. SD_BALANCE_NEWIDLE |
  5881. SD_BALANCE_FORK |
  5882. SD_BALANCE_EXEC |
  5883. SD_SHARE_CPUPOWER |
  5884. SD_SHARE_PKG_RESOURCES)) {
  5885. if (sd->groups != sd->groups->next)
  5886. return 0;
  5887. }
  5888. /* Following flags don't use groups */
  5889. if (sd->flags & (SD_WAKE_IDLE |
  5890. SD_WAKE_AFFINE |
  5891. SD_WAKE_BALANCE))
  5892. return 0;
  5893. return 1;
  5894. }
  5895. static int
  5896. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5897. {
  5898. unsigned long cflags = sd->flags, pflags = parent->flags;
  5899. if (sd_degenerate(parent))
  5900. return 1;
  5901. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5902. return 0;
  5903. /* Does parent contain flags not in child? */
  5904. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5905. if (cflags & SD_WAKE_AFFINE)
  5906. pflags &= ~SD_WAKE_BALANCE;
  5907. /* Flags needing groups don't count if only 1 group in parent */
  5908. if (parent->groups == parent->groups->next) {
  5909. pflags &= ~(SD_LOAD_BALANCE |
  5910. SD_BALANCE_NEWIDLE |
  5911. SD_BALANCE_FORK |
  5912. SD_BALANCE_EXEC |
  5913. SD_SHARE_CPUPOWER |
  5914. SD_SHARE_PKG_RESOURCES);
  5915. if (nr_node_ids == 1)
  5916. pflags &= ~SD_SERIALIZE;
  5917. }
  5918. if (~cflags & pflags)
  5919. return 0;
  5920. return 1;
  5921. }
  5922. static void free_rootdomain(struct root_domain *rd)
  5923. {
  5924. cpupri_cleanup(&rd->cpupri);
  5925. free_cpumask_var(rd->rto_mask);
  5926. free_cpumask_var(rd->online);
  5927. free_cpumask_var(rd->span);
  5928. kfree(rd);
  5929. }
  5930. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5931. {
  5932. unsigned long flags;
  5933. spin_lock_irqsave(&rq->lock, flags);
  5934. if (rq->rd) {
  5935. struct root_domain *old_rd = rq->rd;
  5936. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5937. set_rq_offline(rq);
  5938. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5939. if (atomic_dec_and_test(&old_rd->refcount))
  5940. free_rootdomain(old_rd);
  5941. }
  5942. atomic_inc(&rd->refcount);
  5943. rq->rd = rd;
  5944. cpumask_set_cpu(rq->cpu, rd->span);
  5945. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  5946. set_rq_online(rq);
  5947. spin_unlock_irqrestore(&rq->lock, flags);
  5948. }
  5949. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5950. {
  5951. memset(rd, 0, sizeof(*rd));
  5952. if (bootmem) {
  5953. alloc_bootmem_cpumask_var(&def_root_domain.span);
  5954. alloc_bootmem_cpumask_var(&def_root_domain.online);
  5955. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  5956. cpupri_init(&rd->cpupri, true);
  5957. return 0;
  5958. }
  5959. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5960. goto free_rd;
  5961. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5962. goto free_span;
  5963. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5964. goto free_online;
  5965. if (cpupri_init(&rd->cpupri, false) != 0)
  5966. goto free_rto_mask;
  5967. return 0;
  5968. free_rto_mask:
  5969. free_cpumask_var(rd->rto_mask);
  5970. free_online:
  5971. free_cpumask_var(rd->online);
  5972. free_span:
  5973. free_cpumask_var(rd->span);
  5974. free_rd:
  5975. kfree(rd);
  5976. return -ENOMEM;
  5977. }
  5978. static void init_defrootdomain(void)
  5979. {
  5980. init_rootdomain(&def_root_domain, true);
  5981. atomic_set(&def_root_domain.refcount, 1);
  5982. }
  5983. static struct root_domain *alloc_rootdomain(void)
  5984. {
  5985. struct root_domain *rd;
  5986. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5987. if (!rd)
  5988. return NULL;
  5989. if (init_rootdomain(rd, false) != 0) {
  5990. kfree(rd);
  5991. return NULL;
  5992. }
  5993. return rd;
  5994. }
  5995. /*
  5996. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5997. * hold the hotplug lock.
  5998. */
  5999. static void
  6000. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6001. {
  6002. struct rq *rq = cpu_rq(cpu);
  6003. struct sched_domain *tmp;
  6004. /* Remove the sched domains which do not contribute to scheduling. */
  6005. for (tmp = sd; tmp; ) {
  6006. struct sched_domain *parent = tmp->parent;
  6007. if (!parent)
  6008. break;
  6009. if (sd_parent_degenerate(tmp, parent)) {
  6010. tmp->parent = parent->parent;
  6011. if (parent->parent)
  6012. parent->parent->child = tmp;
  6013. } else
  6014. tmp = tmp->parent;
  6015. }
  6016. if (sd && sd_degenerate(sd)) {
  6017. sd = sd->parent;
  6018. if (sd)
  6019. sd->child = NULL;
  6020. }
  6021. sched_domain_debug(sd, cpu);
  6022. rq_attach_root(rq, rd);
  6023. rcu_assign_pointer(rq->sd, sd);
  6024. }
  6025. /* cpus with isolated domains */
  6026. static cpumask_var_t cpu_isolated_map;
  6027. /* Setup the mask of cpus configured for isolated domains */
  6028. static int __init isolated_cpu_setup(char *str)
  6029. {
  6030. cpulist_parse(str, cpu_isolated_map);
  6031. return 1;
  6032. }
  6033. __setup("isolcpus=", isolated_cpu_setup);
  6034. /*
  6035. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6036. * to a function which identifies what group(along with sched group) a CPU
  6037. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6038. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6039. *
  6040. * init_sched_build_groups will build a circular linked list of the groups
  6041. * covered by the given span, and will set each group's ->cpumask correctly,
  6042. * and ->cpu_power to 0.
  6043. */
  6044. static void
  6045. init_sched_build_groups(const struct cpumask *span,
  6046. const struct cpumask *cpu_map,
  6047. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6048. struct sched_group **sg,
  6049. struct cpumask *tmpmask),
  6050. struct cpumask *covered, struct cpumask *tmpmask)
  6051. {
  6052. struct sched_group *first = NULL, *last = NULL;
  6053. int i;
  6054. cpumask_clear(covered);
  6055. for_each_cpu(i, span) {
  6056. struct sched_group *sg;
  6057. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6058. int j;
  6059. if (cpumask_test_cpu(i, covered))
  6060. continue;
  6061. cpumask_clear(sched_group_cpus(sg));
  6062. sg->__cpu_power = 0;
  6063. for_each_cpu(j, span) {
  6064. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6065. continue;
  6066. cpumask_set_cpu(j, covered);
  6067. cpumask_set_cpu(j, sched_group_cpus(sg));
  6068. }
  6069. if (!first)
  6070. first = sg;
  6071. if (last)
  6072. last->next = sg;
  6073. last = sg;
  6074. }
  6075. last->next = first;
  6076. }
  6077. #define SD_NODES_PER_DOMAIN 16
  6078. #ifdef CONFIG_NUMA
  6079. /**
  6080. * find_next_best_node - find the next node to include in a sched_domain
  6081. * @node: node whose sched_domain we're building
  6082. * @used_nodes: nodes already in the sched_domain
  6083. *
  6084. * Find the next node to include in a given scheduling domain. Simply
  6085. * finds the closest node not already in the @used_nodes map.
  6086. *
  6087. * Should use nodemask_t.
  6088. */
  6089. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6090. {
  6091. int i, n, val, min_val, best_node = 0;
  6092. min_val = INT_MAX;
  6093. for (i = 0; i < nr_node_ids; i++) {
  6094. /* Start at @node */
  6095. n = (node + i) % nr_node_ids;
  6096. if (!nr_cpus_node(n))
  6097. continue;
  6098. /* Skip already used nodes */
  6099. if (node_isset(n, *used_nodes))
  6100. continue;
  6101. /* Simple min distance search */
  6102. val = node_distance(node, n);
  6103. if (val < min_val) {
  6104. min_val = val;
  6105. best_node = n;
  6106. }
  6107. }
  6108. node_set(best_node, *used_nodes);
  6109. return best_node;
  6110. }
  6111. /**
  6112. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6113. * @node: node whose cpumask we're constructing
  6114. * @span: resulting cpumask
  6115. *
  6116. * Given a node, construct a good cpumask for its sched_domain to span. It
  6117. * should be one that prevents unnecessary balancing, but also spreads tasks
  6118. * out optimally.
  6119. */
  6120. static void sched_domain_node_span(int node, struct cpumask *span)
  6121. {
  6122. nodemask_t used_nodes;
  6123. /* FIXME: use cpumask_of_node() */
  6124. node_to_cpumask_ptr(nodemask, node);
  6125. int i;
  6126. cpus_clear(*span);
  6127. nodes_clear(used_nodes);
  6128. cpus_or(*span, *span, *nodemask);
  6129. node_set(node, used_nodes);
  6130. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6131. int next_node = find_next_best_node(node, &used_nodes);
  6132. node_to_cpumask_ptr_next(nodemask, next_node);
  6133. cpus_or(*span, *span, *nodemask);
  6134. }
  6135. }
  6136. #endif /* CONFIG_NUMA */
  6137. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6138. /*
  6139. * The cpus mask in sched_group and sched_domain hangs off the end.
  6140. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6141. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6142. */
  6143. struct static_sched_group {
  6144. struct sched_group sg;
  6145. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6146. };
  6147. struct static_sched_domain {
  6148. struct sched_domain sd;
  6149. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6150. };
  6151. /*
  6152. * SMT sched-domains:
  6153. */
  6154. #ifdef CONFIG_SCHED_SMT
  6155. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6156. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6157. static int
  6158. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6159. struct sched_group **sg, struct cpumask *unused)
  6160. {
  6161. if (sg)
  6162. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6163. return cpu;
  6164. }
  6165. #endif /* CONFIG_SCHED_SMT */
  6166. /*
  6167. * multi-core sched-domains:
  6168. */
  6169. #ifdef CONFIG_SCHED_MC
  6170. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6171. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6172. #endif /* CONFIG_SCHED_MC */
  6173. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6174. static int
  6175. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6176. struct sched_group **sg, struct cpumask *mask)
  6177. {
  6178. int group;
  6179. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6180. group = cpumask_first(mask);
  6181. if (sg)
  6182. *sg = &per_cpu(sched_group_core, group).sg;
  6183. return group;
  6184. }
  6185. #elif defined(CONFIG_SCHED_MC)
  6186. static int
  6187. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6188. struct sched_group **sg, struct cpumask *unused)
  6189. {
  6190. if (sg)
  6191. *sg = &per_cpu(sched_group_core, cpu).sg;
  6192. return cpu;
  6193. }
  6194. #endif
  6195. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6196. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6197. static int
  6198. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6199. struct sched_group **sg, struct cpumask *mask)
  6200. {
  6201. int group;
  6202. #ifdef CONFIG_SCHED_MC
  6203. /* FIXME: Use cpu_coregroup_mask. */
  6204. *mask = cpu_coregroup_map(cpu);
  6205. cpus_and(*mask, *mask, *cpu_map);
  6206. group = cpumask_first(mask);
  6207. #elif defined(CONFIG_SCHED_SMT)
  6208. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6209. group = cpumask_first(mask);
  6210. #else
  6211. group = cpu;
  6212. #endif
  6213. if (sg)
  6214. *sg = &per_cpu(sched_group_phys, group).sg;
  6215. return group;
  6216. }
  6217. #ifdef CONFIG_NUMA
  6218. /*
  6219. * The init_sched_build_groups can't handle what we want to do with node
  6220. * groups, so roll our own. Now each node has its own list of groups which
  6221. * gets dynamically allocated.
  6222. */
  6223. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6224. static struct sched_group ***sched_group_nodes_bycpu;
  6225. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6226. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6227. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6228. struct sched_group **sg,
  6229. struct cpumask *nodemask)
  6230. {
  6231. int group;
  6232. /* FIXME: use cpumask_of_node */
  6233. node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
  6234. cpumask_and(nodemask, pnodemask, cpu_map);
  6235. group = cpumask_first(nodemask);
  6236. if (sg)
  6237. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6238. return group;
  6239. }
  6240. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6241. {
  6242. struct sched_group *sg = group_head;
  6243. int j;
  6244. if (!sg)
  6245. return;
  6246. do {
  6247. for_each_cpu(j, sched_group_cpus(sg)) {
  6248. struct sched_domain *sd;
  6249. sd = &per_cpu(phys_domains, j).sd;
  6250. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6251. /*
  6252. * Only add "power" once for each
  6253. * physical package.
  6254. */
  6255. continue;
  6256. }
  6257. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6258. }
  6259. sg = sg->next;
  6260. } while (sg != group_head);
  6261. }
  6262. #endif /* CONFIG_NUMA */
  6263. #ifdef CONFIG_NUMA
  6264. /* Free memory allocated for various sched_group structures */
  6265. static void free_sched_groups(const struct cpumask *cpu_map,
  6266. struct cpumask *nodemask)
  6267. {
  6268. int cpu, i;
  6269. for_each_cpu(cpu, cpu_map) {
  6270. struct sched_group **sched_group_nodes
  6271. = sched_group_nodes_bycpu[cpu];
  6272. if (!sched_group_nodes)
  6273. continue;
  6274. for (i = 0; i < nr_node_ids; i++) {
  6275. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6276. /* FIXME: Use cpumask_of_node */
  6277. node_to_cpumask_ptr(pnodemask, i);
  6278. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6279. if (cpumask_empty(nodemask))
  6280. continue;
  6281. if (sg == NULL)
  6282. continue;
  6283. sg = sg->next;
  6284. next_sg:
  6285. oldsg = sg;
  6286. sg = sg->next;
  6287. kfree(oldsg);
  6288. if (oldsg != sched_group_nodes[i])
  6289. goto next_sg;
  6290. }
  6291. kfree(sched_group_nodes);
  6292. sched_group_nodes_bycpu[cpu] = NULL;
  6293. }
  6294. }
  6295. #else /* !CONFIG_NUMA */
  6296. static void free_sched_groups(const struct cpumask *cpu_map,
  6297. struct cpumask *nodemask)
  6298. {
  6299. }
  6300. #endif /* CONFIG_NUMA */
  6301. /*
  6302. * Initialize sched groups cpu_power.
  6303. *
  6304. * cpu_power indicates the capacity of sched group, which is used while
  6305. * distributing the load between different sched groups in a sched domain.
  6306. * Typically cpu_power for all the groups in a sched domain will be same unless
  6307. * there are asymmetries in the topology. If there are asymmetries, group
  6308. * having more cpu_power will pickup more load compared to the group having
  6309. * less cpu_power.
  6310. *
  6311. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6312. * the maximum number of tasks a group can handle in the presence of other idle
  6313. * or lightly loaded groups in the same sched domain.
  6314. */
  6315. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6316. {
  6317. struct sched_domain *child;
  6318. struct sched_group *group;
  6319. WARN_ON(!sd || !sd->groups);
  6320. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6321. return;
  6322. child = sd->child;
  6323. sd->groups->__cpu_power = 0;
  6324. /*
  6325. * For perf policy, if the groups in child domain share resources
  6326. * (for example cores sharing some portions of the cache hierarchy
  6327. * or SMT), then set this domain groups cpu_power such that each group
  6328. * can handle only one task, when there are other idle groups in the
  6329. * same sched domain.
  6330. */
  6331. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6332. (child->flags &
  6333. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6334. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6335. return;
  6336. }
  6337. /*
  6338. * add cpu_power of each child group to this groups cpu_power
  6339. */
  6340. group = child->groups;
  6341. do {
  6342. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6343. group = group->next;
  6344. } while (group != child->groups);
  6345. }
  6346. /*
  6347. * Initializers for schedule domains
  6348. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6349. */
  6350. #ifdef CONFIG_SCHED_DEBUG
  6351. # define SD_INIT_NAME(sd, type) sd->name = #type
  6352. #else
  6353. # define SD_INIT_NAME(sd, type) do { } while (0)
  6354. #endif
  6355. #define SD_INIT(sd, type) sd_init_##type(sd)
  6356. #define SD_INIT_FUNC(type) \
  6357. static noinline void sd_init_##type(struct sched_domain *sd) \
  6358. { \
  6359. memset(sd, 0, sizeof(*sd)); \
  6360. *sd = SD_##type##_INIT; \
  6361. sd->level = SD_LV_##type; \
  6362. SD_INIT_NAME(sd, type); \
  6363. }
  6364. SD_INIT_FUNC(CPU)
  6365. #ifdef CONFIG_NUMA
  6366. SD_INIT_FUNC(ALLNODES)
  6367. SD_INIT_FUNC(NODE)
  6368. #endif
  6369. #ifdef CONFIG_SCHED_SMT
  6370. SD_INIT_FUNC(SIBLING)
  6371. #endif
  6372. #ifdef CONFIG_SCHED_MC
  6373. SD_INIT_FUNC(MC)
  6374. #endif
  6375. static int default_relax_domain_level = -1;
  6376. static int __init setup_relax_domain_level(char *str)
  6377. {
  6378. unsigned long val;
  6379. val = simple_strtoul(str, NULL, 0);
  6380. if (val < SD_LV_MAX)
  6381. default_relax_domain_level = val;
  6382. return 1;
  6383. }
  6384. __setup("relax_domain_level=", setup_relax_domain_level);
  6385. static void set_domain_attribute(struct sched_domain *sd,
  6386. struct sched_domain_attr *attr)
  6387. {
  6388. int request;
  6389. if (!attr || attr->relax_domain_level < 0) {
  6390. if (default_relax_domain_level < 0)
  6391. return;
  6392. else
  6393. request = default_relax_domain_level;
  6394. } else
  6395. request = attr->relax_domain_level;
  6396. if (request < sd->level) {
  6397. /* turn off idle balance on this domain */
  6398. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6399. } else {
  6400. /* turn on idle balance on this domain */
  6401. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6402. }
  6403. }
  6404. /*
  6405. * Build sched domains for a given set of cpus and attach the sched domains
  6406. * to the individual cpus
  6407. */
  6408. static int __build_sched_domains(const struct cpumask *cpu_map,
  6409. struct sched_domain_attr *attr)
  6410. {
  6411. int i, err = -ENOMEM;
  6412. struct root_domain *rd;
  6413. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6414. tmpmask;
  6415. #ifdef CONFIG_NUMA
  6416. cpumask_var_t domainspan, covered, notcovered;
  6417. struct sched_group **sched_group_nodes = NULL;
  6418. int sd_allnodes = 0;
  6419. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6420. goto out;
  6421. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6422. goto free_domainspan;
  6423. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6424. goto free_covered;
  6425. #endif
  6426. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6427. goto free_notcovered;
  6428. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6429. goto free_nodemask;
  6430. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6431. goto free_this_sibling_map;
  6432. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6433. goto free_this_core_map;
  6434. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6435. goto free_send_covered;
  6436. #ifdef CONFIG_NUMA
  6437. /*
  6438. * Allocate the per-node list of sched groups
  6439. */
  6440. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6441. GFP_KERNEL);
  6442. if (!sched_group_nodes) {
  6443. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6444. goto free_tmpmask;
  6445. }
  6446. #endif
  6447. rd = alloc_rootdomain();
  6448. if (!rd) {
  6449. printk(KERN_WARNING "Cannot alloc root domain\n");
  6450. goto free_sched_groups;
  6451. }
  6452. #ifdef CONFIG_NUMA
  6453. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6454. #endif
  6455. /*
  6456. * Set up domains for cpus specified by the cpu_map.
  6457. */
  6458. for_each_cpu(i, cpu_map) {
  6459. struct sched_domain *sd = NULL, *p;
  6460. /* FIXME: use cpumask_of_node */
  6461. *nodemask = node_to_cpumask(cpu_to_node(i));
  6462. cpus_and(*nodemask, *nodemask, *cpu_map);
  6463. #ifdef CONFIG_NUMA
  6464. if (cpumask_weight(cpu_map) >
  6465. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6466. sd = &per_cpu(allnodes_domains, i);
  6467. SD_INIT(sd, ALLNODES);
  6468. set_domain_attribute(sd, attr);
  6469. cpumask_copy(sched_domain_span(sd), cpu_map);
  6470. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6471. p = sd;
  6472. sd_allnodes = 1;
  6473. } else
  6474. p = NULL;
  6475. sd = &per_cpu(node_domains, i);
  6476. SD_INIT(sd, NODE);
  6477. set_domain_attribute(sd, attr);
  6478. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6479. sd->parent = p;
  6480. if (p)
  6481. p->child = sd;
  6482. cpumask_and(sched_domain_span(sd),
  6483. sched_domain_span(sd), cpu_map);
  6484. #endif
  6485. p = sd;
  6486. sd = &per_cpu(phys_domains, i).sd;
  6487. SD_INIT(sd, CPU);
  6488. set_domain_attribute(sd, attr);
  6489. cpumask_copy(sched_domain_span(sd), nodemask);
  6490. sd->parent = p;
  6491. if (p)
  6492. p->child = sd;
  6493. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6494. #ifdef CONFIG_SCHED_MC
  6495. p = sd;
  6496. sd = &per_cpu(core_domains, i).sd;
  6497. SD_INIT(sd, MC);
  6498. set_domain_attribute(sd, attr);
  6499. *sched_domain_span(sd) = cpu_coregroup_map(i);
  6500. cpumask_and(sched_domain_span(sd),
  6501. sched_domain_span(sd), cpu_map);
  6502. sd->parent = p;
  6503. p->child = sd;
  6504. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6505. #endif
  6506. #ifdef CONFIG_SCHED_SMT
  6507. p = sd;
  6508. sd = &per_cpu(cpu_domains, i).sd;
  6509. SD_INIT(sd, SIBLING);
  6510. set_domain_attribute(sd, attr);
  6511. cpumask_and(sched_domain_span(sd),
  6512. &per_cpu(cpu_sibling_map, i), cpu_map);
  6513. sd->parent = p;
  6514. p->child = sd;
  6515. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6516. #endif
  6517. }
  6518. #ifdef CONFIG_SCHED_SMT
  6519. /* Set up CPU (sibling) groups */
  6520. for_each_cpu(i, cpu_map) {
  6521. cpumask_and(this_sibling_map,
  6522. &per_cpu(cpu_sibling_map, i), cpu_map);
  6523. if (i != cpumask_first(this_sibling_map))
  6524. continue;
  6525. init_sched_build_groups(this_sibling_map, cpu_map,
  6526. &cpu_to_cpu_group,
  6527. send_covered, tmpmask);
  6528. }
  6529. #endif
  6530. #ifdef CONFIG_SCHED_MC
  6531. /* Set up multi-core groups */
  6532. for_each_cpu(i, cpu_map) {
  6533. /* FIXME: Use cpu_coregroup_mask */
  6534. *this_core_map = cpu_coregroup_map(i);
  6535. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6536. if (i != cpumask_first(this_core_map))
  6537. continue;
  6538. init_sched_build_groups(this_core_map, cpu_map,
  6539. &cpu_to_core_group,
  6540. send_covered, tmpmask);
  6541. }
  6542. #endif
  6543. /* Set up physical groups */
  6544. for (i = 0; i < nr_node_ids; i++) {
  6545. /* FIXME: Use cpumask_of_node */
  6546. *nodemask = node_to_cpumask(i);
  6547. cpus_and(*nodemask, *nodemask, *cpu_map);
  6548. if (cpumask_empty(nodemask))
  6549. continue;
  6550. init_sched_build_groups(nodemask, cpu_map,
  6551. &cpu_to_phys_group,
  6552. send_covered, tmpmask);
  6553. }
  6554. #ifdef CONFIG_NUMA
  6555. /* Set up node groups */
  6556. if (sd_allnodes) {
  6557. init_sched_build_groups(cpu_map, cpu_map,
  6558. &cpu_to_allnodes_group,
  6559. send_covered, tmpmask);
  6560. }
  6561. for (i = 0; i < nr_node_ids; i++) {
  6562. /* Set up node groups */
  6563. struct sched_group *sg, *prev;
  6564. int j;
  6565. /* FIXME: Use cpumask_of_node */
  6566. *nodemask = node_to_cpumask(i);
  6567. cpumask_clear(covered);
  6568. cpus_and(*nodemask, *nodemask, *cpu_map);
  6569. if (cpumask_empty(nodemask)) {
  6570. sched_group_nodes[i] = NULL;
  6571. continue;
  6572. }
  6573. sched_domain_node_span(i, domainspan);
  6574. cpumask_and(domainspan, domainspan, cpu_map);
  6575. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6576. GFP_KERNEL, i);
  6577. if (!sg) {
  6578. printk(KERN_WARNING "Can not alloc domain group for "
  6579. "node %d\n", i);
  6580. goto error;
  6581. }
  6582. sched_group_nodes[i] = sg;
  6583. for_each_cpu(j, nodemask) {
  6584. struct sched_domain *sd;
  6585. sd = &per_cpu(node_domains, j);
  6586. sd->groups = sg;
  6587. }
  6588. sg->__cpu_power = 0;
  6589. cpumask_copy(sched_group_cpus(sg), nodemask);
  6590. sg->next = sg;
  6591. cpumask_or(covered, covered, nodemask);
  6592. prev = sg;
  6593. for (j = 0; j < nr_node_ids; j++) {
  6594. int n = (i + j) % nr_node_ids;
  6595. /* FIXME: Use cpumask_of_node */
  6596. node_to_cpumask_ptr(pnodemask, n);
  6597. cpumask_complement(notcovered, covered);
  6598. cpumask_and(tmpmask, notcovered, cpu_map);
  6599. cpumask_and(tmpmask, tmpmask, domainspan);
  6600. if (cpumask_empty(tmpmask))
  6601. break;
  6602. cpumask_and(tmpmask, tmpmask, pnodemask);
  6603. if (cpumask_empty(tmpmask))
  6604. continue;
  6605. sg = kmalloc_node(sizeof(struct sched_group) +
  6606. cpumask_size(),
  6607. GFP_KERNEL, i);
  6608. if (!sg) {
  6609. printk(KERN_WARNING
  6610. "Can not alloc domain group for node %d\n", j);
  6611. goto error;
  6612. }
  6613. sg->__cpu_power = 0;
  6614. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6615. sg->next = prev->next;
  6616. cpumask_or(covered, covered, tmpmask);
  6617. prev->next = sg;
  6618. prev = sg;
  6619. }
  6620. }
  6621. #endif
  6622. /* Calculate CPU power for physical packages and nodes */
  6623. #ifdef CONFIG_SCHED_SMT
  6624. for_each_cpu(i, cpu_map) {
  6625. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6626. init_sched_groups_power(i, sd);
  6627. }
  6628. #endif
  6629. #ifdef CONFIG_SCHED_MC
  6630. for_each_cpu(i, cpu_map) {
  6631. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6632. init_sched_groups_power(i, sd);
  6633. }
  6634. #endif
  6635. for_each_cpu(i, cpu_map) {
  6636. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6637. init_sched_groups_power(i, sd);
  6638. }
  6639. #ifdef CONFIG_NUMA
  6640. for (i = 0; i < nr_node_ids; i++)
  6641. init_numa_sched_groups_power(sched_group_nodes[i]);
  6642. if (sd_allnodes) {
  6643. struct sched_group *sg;
  6644. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6645. tmpmask);
  6646. init_numa_sched_groups_power(sg);
  6647. }
  6648. #endif
  6649. /* Attach the domains */
  6650. for_each_cpu(i, cpu_map) {
  6651. struct sched_domain *sd;
  6652. #ifdef CONFIG_SCHED_SMT
  6653. sd = &per_cpu(cpu_domains, i).sd;
  6654. #elif defined(CONFIG_SCHED_MC)
  6655. sd = &per_cpu(core_domains, i).sd;
  6656. #else
  6657. sd = &per_cpu(phys_domains, i).sd;
  6658. #endif
  6659. cpu_attach_domain(sd, rd, i);
  6660. }
  6661. err = 0;
  6662. free_tmpmask:
  6663. free_cpumask_var(tmpmask);
  6664. free_send_covered:
  6665. free_cpumask_var(send_covered);
  6666. free_this_core_map:
  6667. free_cpumask_var(this_core_map);
  6668. free_this_sibling_map:
  6669. free_cpumask_var(this_sibling_map);
  6670. free_nodemask:
  6671. free_cpumask_var(nodemask);
  6672. free_notcovered:
  6673. #ifdef CONFIG_NUMA
  6674. free_cpumask_var(notcovered);
  6675. free_covered:
  6676. free_cpumask_var(covered);
  6677. free_domainspan:
  6678. free_cpumask_var(domainspan);
  6679. out:
  6680. #endif
  6681. return err;
  6682. free_sched_groups:
  6683. #ifdef CONFIG_NUMA
  6684. kfree(sched_group_nodes);
  6685. #endif
  6686. goto free_tmpmask;
  6687. #ifdef CONFIG_NUMA
  6688. error:
  6689. free_sched_groups(cpu_map, tmpmask);
  6690. free_rootdomain(rd);
  6691. goto free_tmpmask;
  6692. #endif
  6693. }
  6694. static int build_sched_domains(const struct cpumask *cpu_map)
  6695. {
  6696. return __build_sched_domains(cpu_map, NULL);
  6697. }
  6698. static struct cpumask *doms_cur; /* current sched domains */
  6699. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6700. static struct sched_domain_attr *dattr_cur;
  6701. /* attribues of custom domains in 'doms_cur' */
  6702. /*
  6703. * Special case: If a kmalloc of a doms_cur partition (array of
  6704. * cpumask) fails, then fallback to a single sched domain,
  6705. * as determined by the single cpumask fallback_doms.
  6706. */
  6707. static cpumask_var_t fallback_doms;
  6708. /*
  6709. * arch_update_cpu_topology lets virtualized architectures update the
  6710. * cpu core maps. It is supposed to return 1 if the topology changed
  6711. * or 0 if it stayed the same.
  6712. */
  6713. int __attribute__((weak)) arch_update_cpu_topology(void)
  6714. {
  6715. return 0;
  6716. }
  6717. /*
  6718. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6719. * For now this just excludes isolated cpus, but could be used to
  6720. * exclude other special cases in the future.
  6721. */
  6722. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6723. {
  6724. int err;
  6725. arch_update_cpu_topology();
  6726. ndoms_cur = 1;
  6727. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6728. if (!doms_cur)
  6729. doms_cur = fallback_doms;
  6730. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6731. dattr_cur = NULL;
  6732. err = build_sched_domains(doms_cur);
  6733. register_sched_domain_sysctl();
  6734. return err;
  6735. }
  6736. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6737. struct cpumask *tmpmask)
  6738. {
  6739. free_sched_groups(cpu_map, tmpmask);
  6740. }
  6741. /*
  6742. * Detach sched domains from a group of cpus specified in cpu_map
  6743. * These cpus will now be attached to the NULL domain
  6744. */
  6745. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6746. {
  6747. /* Save because hotplug lock held. */
  6748. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6749. int i;
  6750. for_each_cpu(i, cpu_map)
  6751. cpu_attach_domain(NULL, &def_root_domain, i);
  6752. synchronize_sched();
  6753. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6754. }
  6755. /* handle null as "default" */
  6756. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6757. struct sched_domain_attr *new, int idx_new)
  6758. {
  6759. struct sched_domain_attr tmp;
  6760. /* fast path */
  6761. if (!new && !cur)
  6762. return 1;
  6763. tmp = SD_ATTR_INIT;
  6764. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6765. new ? (new + idx_new) : &tmp,
  6766. sizeof(struct sched_domain_attr));
  6767. }
  6768. /*
  6769. * Partition sched domains as specified by the 'ndoms_new'
  6770. * cpumasks in the array doms_new[] of cpumasks. This compares
  6771. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6772. * It destroys each deleted domain and builds each new domain.
  6773. *
  6774. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6775. * The masks don't intersect (don't overlap.) We should setup one
  6776. * sched domain for each mask. CPUs not in any of the cpumasks will
  6777. * not be load balanced. If the same cpumask appears both in the
  6778. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6779. * it as it is.
  6780. *
  6781. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6782. * ownership of it and will kfree it when done with it. If the caller
  6783. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6784. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6785. * the single partition 'fallback_doms', it also forces the domains
  6786. * to be rebuilt.
  6787. *
  6788. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6789. * ndoms_new == 0 is a special case for destroying existing domains,
  6790. * and it will not create the default domain.
  6791. *
  6792. * Call with hotplug lock held
  6793. */
  6794. /* FIXME: Change to struct cpumask *doms_new[] */
  6795. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6796. struct sched_domain_attr *dattr_new)
  6797. {
  6798. int i, j, n;
  6799. int new_topology;
  6800. mutex_lock(&sched_domains_mutex);
  6801. /* always unregister in case we don't destroy any domains */
  6802. unregister_sched_domain_sysctl();
  6803. /* Let architecture update cpu core mappings. */
  6804. new_topology = arch_update_cpu_topology();
  6805. n = doms_new ? ndoms_new : 0;
  6806. /* Destroy deleted domains */
  6807. for (i = 0; i < ndoms_cur; i++) {
  6808. for (j = 0; j < n && !new_topology; j++) {
  6809. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6810. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6811. goto match1;
  6812. }
  6813. /* no match - a current sched domain not in new doms_new[] */
  6814. detach_destroy_domains(doms_cur + i);
  6815. match1:
  6816. ;
  6817. }
  6818. if (doms_new == NULL) {
  6819. ndoms_cur = 0;
  6820. doms_new = fallback_doms;
  6821. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6822. WARN_ON_ONCE(dattr_new);
  6823. }
  6824. /* Build new domains */
  6825. for (i = 0; i < ndoms_new; i++) {
  6826. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6827. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6828. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6829. goto match2;
  6830. }
  6831. /* no match - add a new doms_new */
  6832. __build_sched_domains(doms_new + i,
  6833. dattr_new ? dattr_new + i : NULL);
  6834. match2:
  6835. ;
  6836. }
  6837. /* Remember the new sched domains */
  6838. if (doms_cur != fallback_doms)
  6839. kfree(doms_cur);
  6840. kfree(dattr_cur); /* kfree(NULL) is safe */
  6841. doms_cur = doms_new;
  6842. dattr_cur = dattr_new;
  6843. ndoms_cur = ndoms_new;
  6844. register_sched_domain_sysctl();
  6845. mutex_unlock(&sched_domains_mutex);
  6846. }
  6847. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6848. int arch_reinit_sched_domains(void)
  6849. {
  6850. get_online_cpus();
  6851. /* Destroy domains first to force the rebuild */
  6852. partition_sched_domains(0, NULL, NULL);
  6853. rebuild_sched_domains();
  6854. put_online_cpus();
  6855. return 0;
  6856. }
  6857. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6858. {
  6859. int ret;
  6860. unsigned int level = 0;
  6861. if (sscanf(buf, "%u", &level) != 1)
  6862. return -EINVAL;
  6863. /*
  6864. * level is always be positive so don't check for
  6865. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6866. * What happens on 0 or 1 byte write,
  6867. * need to check for count as well?
  6868. */
  6869. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6870. return -EINVAL;
  6871. if (smt)
  6872. sched_smt_power_savings = level;
  6873. else
  6874. sched_mc_power_savings = level;
  6875. ret = arch_reinit_sched_domains();
  6876. return ret ? ret : count;
  6877. }
  6878. #ifdef CONFIG_SCHED_MC
  6879. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6880. char *page)
  6881. {
  6882. return sprintf(page, "%u\n", sched_mc_power_savings);
  6883. }
  6884. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6885. const char *buf, size_t count)
  6886. {
  6887. return sched_power_savings_store(buf, count, 0);
  6888. }
  6889. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6890. sched_mc_power_savings_show,
  6891. sched_mc_power_savings_store);
  6892. #endif
  6893. #ifdef CONFIG_SCHED_SMT
  6894. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6895. char *page)
  6896. {
  6897. return sprintf(page, "%u\n", sched_smt_power_savings);
  6898. }
  6899. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6900. const char *buf, size_t count)
  6901. {
  6902. return sched_power_savings_store(buf, count, 1);
  6903. }
  6904. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6905. sched_smt_power_savings_show,
  6906. sched_smt_power_savings_store);
  6907. #endif
  6908. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6909. {
  6910. int err = 0;
  6911. #ifdef CONFIG_SCHED_SMT
  6912. if (smt_capable())
  6913. err = sysfs_create_file(&cls->kset.kobj,
  6914. &attr_sched_smt_power_savings.attr);
  6915. #endif
  6916. #ifdef CONFIG_SCHED_MC
  6917. if (!err && mc_capable())
  6918. err = sysfs_create_file(&cls->kset.kobj,
  6919. &attr_sched_mc_power_savings.attr);
  6920. #endif
  6921. return err;
  6922. }
  6923. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6924. #ifndef CONFIG_CPUSETS
  6925. /*
  6926. * Add online and remove offline CPUs from the scheduler domains.
  6927. * When cpusets are enabled they take over this function.
  6928. */
  6929. static int update_sched_domains(struct notifier_block *nfb,
  6930. unsigned long action, void *hcpu)
  6931. {
  6932. switch (action) {
  6933. case CPU_ONLINE:
  6934. case CPU_ONLINE_FROZEN:
  6935. case CPU_DEAD:
  6936. case CPU_DEAD_FROZEN:
  6937. partition_sched_domains(1, NULL, NULL);
  6938. return NOTIFY_OK;
  6939. default:
  6940. return NOTIFY_DONE;
  6941. }
  6942. }
  6943. #endif
  6944. static int update_runtime(struct notifier_block *nfb,
  6945. unsigned long action, void *hcpu)
  6946. {
  6947. int cpu = (int)(long)hcpu;
  6948. switch (action) {
  6949. case CPU_DOWN_PREPARE:
  6950. case CPU_DOWN_PREPARE_FROZEN:
  6951. disable_runtime(cpu_rq(cpu));
  6952. return NOTIFY_OK;
  6953. case CPU_DOWN_FAILED:
  6954. case CPU_DOWN_FAILED_FROZEN:
  6955. case CPU_ONLINE:
  6956. case CPU_ONLINE_FROZEN:
  6957. enable_runtime(cpu_rq(cpu));
  6958. return NOTIFY_OK;
  6959. default:
  6960. return NOTIFY_DONE;
  6961. }
  6962. }
  6963. void __init sched_init_smp(void)
  6964. {
  6965. cpumask_var_t non_isolated_cpus;
  6966. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6967. #if defined(CONFIG_NUMA)
  6968. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6969. GFP_KERNEL);
  6970. BUG_ON(sched_group_nodes_bycpu == NULL);
  6971. #endif
  6972. get_online_cpus();
  6973. mutex_lock(&sched_domains_mutex);
  6974. arch_init_sched_domains(cpu_online_mask);
  6975. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6976. if (cpumask_empty(non_isolated_cpus))
  6977. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6978. mutex_unlock(&sched_domains_mutex);
  6979. put_online_cpus();
  6980. #ifndef CONFIG_CPUSETS
  6981. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6982. hotcpu_notifier(update_sched_domains, 0);
  6983. #endif
  6984. /* RT runtime code needs to handle some hotplug events */
  6985. hotcpu_notifier(update_runtime, 0);
  6986. init_hrtick();
  6987. /* Move init over to a non-isolated CPU */
  6988. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6989. BUG();
  6990. sched_init_granularity();
  6991. free_cpumask_var(non_isolated_cpus);
  6992. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6993. init_sched_rt_class();
  6994. }
  6995. #else
  6996. void __init sched_init_smp(void)
  6997. {
  6998. sched_init_granularity();
  6999. }
  7000. #endif /* CONFIG_SMP */
  7001. int in_sched_functions(unsigned long addr)
  7002. {
  7003. return in_lock_functions(addr) ||
  7004. (addr >= (unsigned long)__sched_text_start
  7005. && addr < (unsigned long)__sched_text_end);
  7006. }
  7007. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7008. {
  7009. cfs_rq->tasks_timeline = RB_ROOT;
  7010. INIT_LIST_HEAD(&cfs_rq->tasks);
  7011. #ifdef CONFIG_FAIR_GROUP_SCHED
  7012. cfs_rq->rq = rq;
  7013. #endif
  7014. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7015. }
  7016. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7017. {
  7018. struct rt_prio_array *array;
  7019. int i;
  7020. array = &rt_rq->active;
  7021. for (i = 0; i < MAX_RT_PRIO; i++) {
  7022. INIT_LIST_HEAD(array->queue + i);
  7023. __clear_bit(i, array->bitmap);
  7024. }
  7025. /* delimiter for bitsearch: */
  7026. __set_bit(MAX_RT_PRIO, array->bitmap);
  7027. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7028. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7029. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7030. #endif
  7031. #ifdef CONFIG_SMP
  7032. rt_rq->rt_nr_migratory = 0;
  7033. rt_rq->overloaded = 0;
  7034. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7035. #endif
  7036. rt_rq->rt_time = 0;
  7037. rt_rq->rt_throttled = 0;
  7038. rt_rq->rt_runtime = 0;
  7039. spin_lock_init(&rt_rq->rt_runtime_lock);
  7040. #ifdef CONFIG_RT_GROUP_SCHED
  7041. rt_rq->rt_nr_boosted = 0;
  7042. rt_rq->rq = rq;
  7043. #endif
  7044. }
  7045. #ifdef CONFIG_FAIR_GROUP_SCHED
  7046. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7047. struct sched_entity *se, int cpu, int add,
  7048. struct sched_entity *parent)
  7049. {
  7050. struct rq *rq = cpu_rq(cpu);
  7051. tg->cfs_rq[cpu] = cfs_rq;
  7052. init_cfs_rq(cfs_rq, rq);
  7053. cfs_rq->tg = tg;
  7054. if (add)
  7055. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7056. tg->se[cpu] = se;
  7057. /* se could be NULL for init_task_group */
  7058. if (!se)
  7059. return;
  7060. if (!parent)
  7061. se->cfs_rq = &rq->cfs;
  7062. else
  7063. se->cfs_rq = parent->my_q;
  7064. se->my_q = cfs_rq;
  7065. se->load.weight = tg->shares;
  7066. se->load.inv_weight = 0;
  7067. se->parent = parent;
  7068. }
  7069. #endif
  7070. #ifdef CONFIG_RT_GROUP_SCHED
  7071. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7072. struct sched_rt_entity *rt_se, int cpu, int add,
  7073. struct sched_rt_entity *parent)
  7074. {
  7075. struct rq *rq = cpu_rq(cpu);
  7076. tg->rt_rq[cpu] = rt_rq;
  7077. init_rt_rq(rt_rq, rq);
  7078. rt_rq->tg = tg;
  7079. rt_rq->rt_se = rt_se;
  7080. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7081. if (add)
  7082. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7083. tg->rt_se[cpu] = rt_se;
  7084. if (!rt_se)
  7085. return;
  7086. if (!parent)
  7087. rt_se->rt_rq = &rq->rt;
  7088. else
  7089. rt_se->rt_rq = parent->my_q;
  7090. rt_se->my_q = rt_rq;
  7091. rt_se->parent = parent;
  7092. INIT_LIST_HEAD(&rt_se->run_list);
  7093. }
  7094. #endif
  7095. void __init sched_init(void)
  7096. {
  7097. int i, j;
  7098. unsigned long alloc_size = 0, ptr;
  7099. #ifdef CONFIG_FAIR_GROUP_SCHED
  7100. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7101. #endif
  7102. #ifdef CONFIG_RT_GROUP_SCHED
  7103. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7104. #endif
  7105. #ifdef CONFIG_USER_SCHED
  7106. alloc_size *= 2;
  7107. #endif
  7108. /*
  7109. * As sched_init() is called before page_alloc is setup,
  7110. * we use alloc_bootmem().
  7111. */
  7112. if (alloc_size) {
  7113. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7114. #ifdef CONFIG_FAIR_GROUP_SCHED
  7115. init_task_group.se = (struct sched_entity **)ptr;
  7116. ptr += nr_cpu_ids * sizeof(void **);
  7117. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7118. ptr += nr_cpu_ids * sizeof(void **);
  7119. #ifdef CONFIG_USER_SCHED
  7120. root_task_group.se = (struct sched_entity **)ptr;
  7121. ptr += nr_cpu_ids * sizeof(void **);
  7122. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7123. ptr += nr_cpu_ids * sizeof(void **);
  7124. #endif /* CONFIG_USER_SCHED */
  7125. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7126. #ifdef CONFIG_RT_GROUP_SCHED
  7127. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7128. ptr += nr_cpu_ids * sizeof(void **);
  7129. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7130. ptr += nr_cpu_ids * sizeof(void **);
  7131. #ifdef CONFIG_USER_SCHED
  7132. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7133. ptr += nr_cpu_ids * sizeof(void **);
  7134. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7135. ptr += nr_cpu_ids * sizeof(void **);
  7136. #endif /* CONFIG_USER_SCHED */
  7137. #endif /* CONFIG_RT_GROUP_SCHED */
  7138. }
  7139. #ifdef CONFIG_SMP
  7140. init_defrootdomain();
  7141. #endif
  7142. init_rt_bandwidth(&def_rt_bandwidth,
  7143. global_rt_period(), global_rt_runtime());
  7144. #ifdef CONFIG_RT_GROUP_SCHED
  7145. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7146. global_rt_period(), global_rt_runtime());
  7147. #ifdef CONFIG_USER_SCHED
  7148. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7149. global_rt_period(), RUNTIME_INF);
  7150. #endif /* CONFIG_USER_SCHED */
  7151. #endif /* CONFIG_RT_GROUP_SCHED */
  7152. #ifdef CONFIG_GROUP_SCHED
  7153. list_add(&init_task_group.list, &task_groups);
  7154. INIT_LIST_HEAD(&init_task_group.children);
  7155. #ifdef CONFIG_USER_SCHED
  7156. INIT_LIST_HEAD(&root_task_group.children);
  7157. init_task_group.parent = &root_task_group;
  7158. list_add(&init_task_group.siblings, &root_task_group.children);
  7159. #endif /* CONFIG_USER_SCHED */
  7160. #endif /* CONFIG_GROUP_SCHED */
  7161. for_each_possible_cpu(i) {
  7162. struct rq *rq;
  7163. rq = cpu_rq(i);
  7164. spin_lock_init(&rq->lock);
  7165. rq->nr_running = 0;
  7166. init_cfs_rq(&rq->cfs, rq);
  7167. init_rt_rq(&rq->rt, rq);
  7168. #ifdef CONFIG_FAIR_GROUP_SCHED
  7169. init_task_group.shares = init_task_group_load;
  7170. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7171. #ifdef CONFIG_CGROUP_SCHED
  7172. /*
  7173. * How much cpu bandwidth does init_task_group get?
  7174. *
  7175. * In case of task-groups formed thr' the cgroup filesystem, it
  7176. * gets 100% of the cpu resources in the system. This overall
  7177. * system cpu resource is divided among the tasks of
  7178. * init_task_group and its child task-groups in a fair manner,
  7179. * based on each entity's (task or task-group's) weight
  7180. * (se->load.weight).
  7181. *
  7182. * In other words, if init_task_group has 10 tasks of weight
  7183. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7184. * then A0's share of the cpu resource is:
  7185. *
  7186. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7187. *
  7188. * We achieve this by letting init_task_group's tasks sit
  7189. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7190. */
  7191. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7192. #elif defined CONFIG_USER_SCHED
  7193. root_task_group.shares = NICE_0_LOAD;
  7194. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7195. /*
  7196. * In case of task-groups formed thr' the user id of tasks,
  7197. * init_task_group represents tasks belonging to root user.
  7198. * Hence it forms a sibling of all subsequent groups formed.
  7199. * In this case, init_task_group gets only a fraction of overall
  7200. * system cpu resource, based on the weight assigned to root
  7201. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7202. * by letting tasks of init_task_group sit in a separate cfs_rq
  7203. * (init_cfs_rq) and having one entity represent this group of
  7204. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7205. */
  7206. init_tg_cfs_entry(&init_task_group,
  7207. &per_cpu(init_cfs_rq, i),
  7208. &per_cpu(init_sched_entity, i), i, 1,
  7209. root_task_group.se[i]);
  7210. #endif
  7211. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7212. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7213. #ifdef CONFIG_RT_GROUP_SCHED
  7214. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7215. #ifdef CONFIG_CGROUP_SCHED
  7216. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7217. #elif defined CONFIG_USER_SCHED
  7218. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7219. init_tg_rt_entry(&init_task_group,
  7220. &per_cpu(init_rt_rq, i),
  7221. &per_cpu(init_sched_rt_entity, i), i, 1,
  7222. root_task_group.rt_se[i]);
  7223. #endif
  7224. #endif
  7225. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7226. rq->cpu_load[j] = 0;
  7227. #ifdef CONFIG_SMP
  7228. rq->sd = NULL;
  7229. rq->rd = NULL;
  7230. rq->active_balance = 0;
  7231. rq->next_balance = jiffies;
  7232. rq->push_cpu = 0;
  7233. rq->cpu = i;
  7234. rq->online = 0;
  7235. rq->migration_thread = NULL;
  7236. INIT_LIST_HEAD(&rq->migration_queue);
  7237. rq_attach_root(rq, &def_root_domain);
  7238. #endif
  7239. init_rq_hrtick(rq);
  7240. atomic_set(&rq->nr_iowait, 0);
  7241. }
  7242. set_load_weight(&init_task);
  7243. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7244. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7245. #endif
  7246. #ifdef CONFIG_SMP
  7247. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7248. #endif
  7249. #ifdef CONFIG_RT_MUTEXES
  7250. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7251. #endif
  7252. /*
  7253. * The boot idle thread does lazy MMU switching as well:
  7254. */
  7255. atomic_inc(&init_mm.mm_count);
  7256. enter_lazy_tlb(&init_mm, current);
  7257. /*
  7258. * Make us the idle thread. Technically, schedule() should not be
  7259. * called from this thread, however somewhere below it might be,
  7260. * but because we are the idle thread, we just pick up running again
  7261. * when this runqueue becomes "idle".
  7262. */
  7263. init_idle(current, smp_processor_id());
  7264. /*
  7265. * During early bootup we pretend to be a normal task:
  7266. */
  7267. current->sched_class = &fair_sched_class;
  7268. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7269. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7270. #ifdef CONFIG_SMP
  7271. #ifdef CONFIG_NO_HZ
  7272. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7273. #endif
  7274. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7275. #endif /* SMP */
  7276. scheduler_running = 1;
  7277. }
  7278. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7279. void __might_sleep(char *file, int line)
  7280. {
  7281. #ifdef in_atomic
  7282. static unsigned long prev_jiffy; /* ratelimiting */
  7283. if ((!in_atomic() && !irqs_disabled()) ||
  7284. system_state != SYSTEM_RUNNING || oops_in_progress)
  7285. return;
  7286. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7287. return;
  7288. prev_jiffy = jiffies;
  7289. printk(KERN_ERR
  7290. "BUG: sleeping function called from invalid context at %s:%d\n",
  7291. file, line);
  7292. printk(KERN_ERR
  7293. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7294. in_atomic(), irqs_disabled(),
  7295. current->pid, current->comm);
  7296. debug_show_held_locks(current);
  7297. if (irqs_disabled())
  7298. print_irqtrace_events(current);
  7299. dump_stack();
  7300. #endif
  7301. }
  7302. EXPORT_SYMBOL(__might_sleep);
  7303. #endif
  7304. #ifdef CONFIG_MAGIC_SYSRQ
  7305. static void normalize_task(struct rq *rq, struct task_struct *p)
  7306. {
  7307. int on_rq;
  7308. update_rq_clock(rq);
  7309. on_rq = p->se.on_rq;
  7310. if (on_rq)
  7311. deactivate_task(rq, p, 0);
  7312. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7313. if (on_rq) {
  7314. activate_task(rq, p, 0);
  7315. resched_task(rq->curr);
  7316. }
  7317. }
  7318. void normalize_rt_tasks(void)
  7319. {
  7320. struct task_struct *g, *p;
  7321. unsigned long flags;
  7322. struct rq *rq;
  7323. read_lock_irqsave(&tasklist_lock, flags);
  7324. do_each_thread(g, p) {
  7325. /*
  7326. * Only normalize user tasks:
  7327. */
  7328. if (!p->mm)
  7329. continue;
  7330. p->se.exec_start = 0;
  7331. #ifdef CONFIG_SCHEDSTATS
  7332. p->se.wait_start = 0;
  7333. p->se.sleep_start = 0;
  7334. p->se.block_start = 0;
  7335. #endif
  7336. if (!rt_task(p)) {
  7337. /*
  7338. * Renice negative nice level userspace
  7339. * tasks back to 0:
  7340. */
  7341. if (TASK_NICE(p) < 0 && p->mm)
  7342. set_user_nice(p, 0);
  7343. continue;
  7344. }
  7345. spin_lock(&p->pi_lock);
  7346. rq = __task_rq_lock(p);
  7347. normalize_task(rq, p);
  7348. __task_rq_unlock(rq);
  7349. spin_unlock(&p->pi_lock);
  7350. } while_each_thread(g, p);
  7351. read_unlock_irqrestore(&tasklist_lock, flags);
  7352. }
  7353. #endif /* CONFIG_MAGIC_SYSRQ */
  7354. #ifdef CONFIG_IA64
  7355. /*
  7356. * These functions are only useful for the IA64 MCA handling.
  7357. *
  7358. * They can only be called when the whole system has been
  7359. * stopped - every CPU needs to be quiescent, and no scheduling
  7360. * activity can take place. Using them for anything else would
  7361. * be a serious bug, and as a result, they aren't even visible
  7362. * under any other configuration.
  7363. */
  7364. /**
  7365. * curr_task - return the current task for a given cpu.
  7366. * @cpu: the processor in question.
  7367. *
  7368. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7369. */
  7370. struct task_struct *curr_task(int cpu)
  7371. {
  7372. return cpu_curr(cpu);
  7373. }
  7374. /**
  7375. * set_curr_task - set the current task for a given cpu.
  7376. * @cpu: the processor in question.
  7377. * @p: the task pointer to set.
  7378. *
  7379. * Description: This function must only be used when non-maskable interrupts
  7380. * are serviced on a separate stack. It allows the architecture to switch the
  7381. * notion of the current task on a cpu in a non-blocking manner. This function
  7382. * must be called with all CPU's synchronized, and interrupts disabled, the
  7383. * and caller must save the original value of the current task (see
  7384. * curr_task() above) and restore that value before reenabling interrupts and
  7385. * re-starting the system.
  7386. *
  7387. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7388. */
  7389. void set_curr_task(int cpu, struct task_struct *p)
  7390. {
  7391. cpu_curr(cpu) = p;
  7392. }
  7393. #endif
  7394. #ifdef CONFIG_FAIR_GROUP_SCHED
  7395. static void free_fair_sched_group(struct task_group *tg)
  7396. {
  7397. int i;
  7398. for_each_possible_cpu(i) {
  7399. if (tg->cfs_rq)
  7400. kfree(tg->cfs_rq[i]);
  7401. if (tg->se)
  7402. kfree(tg->se[i]);
  7403. }
  7404. kfree(tg->cfs_rq);
  7405. kfree(tg->se);
  7406. }
  7407. static
  7408. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7409. {
  7410. struct cfs_rq *cfs_rq;
  7411. struct sched_entity *se;
  7412. struct rq *rq;
  7413. int i;
  7414. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7415. if (!tg->cfs_rq)
  7416. goto err;
  7417. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7418. if (!tg->se)
  7419. goto err;
  7420. tg->shares = NICE_0_LOAD;
  7421. for_each_possible_cpu(i) {
  7422. rq = cpu_rq(i);
  7423. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7424. GFP_KERNEL, cpu_to_node(i));
  7425. if (!cfs_rq)
  7426. goto err;
  7427. se = kzalloc_node(sizeof(struct sched_entity),
  7428. GFP_KERNEL, cpu_to_node(i));
  7429. if (!se)
  7430. goto err;
  7431. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7432. }
  7433. return 1;
  7434. err:
  7435. return 0;
  7436. }
  7437. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7438. {
  7439. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7440. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7441. }
  7442. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7443. {
  7444. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7445. }
  7446. #else /* !CONFG_FAIR_GROUP_SCHED */
  7447. static inline void free_fair_sched_group(struct task_group *tg)
  7448. {
  7449. }
  7450. static inline
  7451. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7452. {
  7453. return 1;
  7454. }
  7455. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7456. {
  7457. }
  7458. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7459. {
  7460. }
  7461. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7462. #ifdef CONFIG_RT_GROUP_SCHED
  7463. static void free_rt_sched_group(struct task_group *tg)
  7464. {
  7465. int i;
  7466. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7467. for_each_possible_cpu(i) {
  7468. if (tg->rt_rq)
  7469. kfree(tg->rt_rq[i]);
  7470. if (tg->rt_se)
  7471. kfree(tg->rt_se[i]);
  7472. }
  7473. kfree(tg->rt_rq);
  7474. kfree(tg->rt_se);
  7475. }
  7476. static
  7477. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7478. {
  7479. struct rt_rq *rt_rq;
  7480. struct sched_rt_entity *rt_se;
  7481. struct rq *rq;
  7482. int i;
  7483. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7484. if (!tg->rt_rq)
  7485. goto err;
  7486. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7487. if (!tg->rt_se)
  7488. goto err;
  7489. init_rt_bandwidth(&tg->rt_bandwidth,
  7490. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7491. for_each_possible_cpu(i) {
  7492. rq = cpu_rq(i);
  7493. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7494. GFP_KERNEL, cpu_to_node(i));
  7495. if (!rt_rq)
  7496. goto err;
  7497. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7498. GFP_KERNEL, cpu_to_node(i));
  7499. if (!rt_se)
  7500. goto err;
  7501. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7502. }
  7503. return 1;
  7504. err:
  7505. return 0;
  7506. }
  7507. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7508. {
  7509. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7510. &cpu_rq(cpu)->leaf_rt_rq_list);
  7511. }
  7512. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7513. {
  7514. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7515. }
  7516. #else /* !CONFIG_RT_GROUP_SCHED */
  7517. static inline void free_rt_sched_group(struct task_group *tg)
  7518. {
  7519. }
  7520. static inline
  7521. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7522. {
  7523. return 1;
  7524. }
  7525. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7526. {
  7527. }
  7528. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7529. {
  7530. }
  7531. #endif /* CONFIG_RT_GROUP_SCHED */
  7532. #ifdef CONFIG_GROUP_SCHED
  7533. static void free_sched_group(struct task_group *tg)
  7534. {
  7535. free_fair_sched_group(tg);
  7536. free_rt_sched_group(tg);
  7537. kfree(tg);
  7538. }
  7539. /* allocate runqueue etc for a new task group */
  7540. struct task_group *sched_create_group(struct task_group *parent)
  7541. {
  7542. struct task_group *tg;
  7543. unsigned long flags;
  7544. int i;
  7545. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7546. if (!tg)
  7547. return ERR_PTR(-ENOMEM);
  7548. if (!alloc_fair_sched_group(tg, parent))
  7549. goto err;
  7550. if (!alloc_rt_sched_group(tg, parent))
  7551. goto err;
  7552. spin_lock_irqsave(&task_group_lock, flags);
  7553. for_each_possible_cpu(i) {
  7554. register_fair_sched_group(tg, i);
  7555. register_rt_sched_group(tg, i);
  7556. }
  7557. list_add_rcu(&tg->list, &task_groups);
  7558. WARN_ON(!parent); /* root should already exist */
  7559. tg->parent = parent;
  7560. INIT_LIST_HEAD(&tg->children);
  7561. list_add_rcu(&tg->siblings, &parent->children);
  7562. spin_unlock_irqrestore(&task_group_lock, flags);
  7563. return tg;
  7564. err:
  7565. free_sched_group(tg);
  7566. return ERR_PTR(-ENOMEM);
  7567. }
  7568. /* rcu callback to free various structures associated with a task group */
  7569. static void free_sched_group_rcu(struct rcu_head *rhp)
  7570. {
  7571. /* now it should be safe to free those cfs_rqs */
  7572. free_sched_group(container_of(rhp, struct task_group, rcu));
  7573. }
  7574. /* Destroy runqueue etc associated with a task group */
  7575. void sched_destroy_group(struct task_group *tg)
  7576. {
  7577. unsigned long flags;
  7578. int i;
  7579. spin_lock_irqsave(&task_group_lock, flags);
  7580. for_each_possible_cpu(i) {
  7581. unregister_fair_sched_group(tg, i);
  7582. unregister_rt_sched_group(tg, i);
  7583. }
  7584. list_del_rcu(&tg->list);
  7585. list_del_rcu(&tg->siblings);
  7586. spin_unlock_irqrestore(&task_group_lock, flags);
  7587. /* wait for possible concurrent references to cfs_rqs complete */
  7588. call_rcu(&tg->rcu, free_sched_group_rcu);
  7589. }
  7590. /* change task's runqueue when it moves between groups.
  7591. * The caller of this function should have put the task in its new group
  7592. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7593. * reflect its new group.
  7594. */
  7595. void sched_move_task(struct task_struct *tsk)
  7596. {
  7597. int on_rq, running;
  7598. unsigned long flags;
  7599. struct rq *rq;
  7600. rq = task_rq_lock(tsk, &flags);
  7601. update_rq_clock(rq);
  7602. running = task_current(rq, tsk);
  7603. on_rq = tsk->se.on_rq;
  7604. if (on_rq)
  7605. dequeue_task(rq, tsk, 0);
  7606. if (unlikely(running))
  7607. tsk->sched_class->put_prev_task(rq, tsk);
  7608. set_task_rq(tsk, task_cpu(tsk));
  7609. #ifdef CONFIG_FAIR_GROUP_SCHED
  7610. if (tsk->sched_class->moved_group)
  7611. tsk->sched_class->moved_group(tsk);
  7612. #endif
  7613. if (unlikely(running))
  7614. tsk->sched_class->set_curr_task(rq);
  7615. if (on_rq)
  7616. enqueue_task(rq, tsk, 0);
  7617. task_rq_unlock(rq, &flags);
  7618. }
  7619. #endif /* CONFIG_GROUP_SCHED */
  7620. #ifdef CONFIG_FAIR_GROUP_SCHED
  7621. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7622. {
  7623. struct cfs_rq *cfs_rq = se->cfs_rq;
  7624. int on_rq;
  7625. on_rq = se->on_rq;
  7626. if (on_rq)
  7627. dequeue_entity(cfs_rq, se, 0);
  7628. se->load.weight = shares;
  7629. se->load.inv_weight = 0;
  7630. if (on_rq)
  7631. enqueue_entity(cfs_rq, se, 0);
  7632. }
  7633. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7634. {
  7635. struct cfs_rq *cfs_rq = se->cfs_rq;
  7636. struct rq *rq = cfs_rq->rq;
  7637. unsigned long flags;
  7638. spin_lock_irqsave(&rq->lock, flags);
  7639. __set_se_shares(se, shares);
  7640. spin_unlock_irqrestore(&rq->lock, flags);
  7641. }
  7642. static DEFINE_MUTEX(shares_mutex);
  7643. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7644. {
  7645. int i;
  7646. unsigned long flags;
  7647. /*
  7648. * We can't change the weight of the root cgroup.
  7649. */
  7650. if (!tg->se[0])
  7651. return -EINVAL;
  7652. if (shares < MIN_SHARES)
  7653. shares = MIN_SHARES;
  7654. else if (shares > MAX_SHARES)
  7655. shares = MAX_SHARES;
  7656. mutex_lock(&shares_mutex);
  7657. if (tg->shares == shares)
  7658. goto done;
  7659. spin_lock_irqsave(&task_group_lock, flags);
  7660. for_each_possible_cpu(i)
  7661. unregister_fair_sched_group(tg, i);
  7662. list_del_rcu(&tg->siblings);
  7663. spin_unlock_irqrestore(&task_group_lock, flags);
  7664. /* wait for any ongoing reference to this group to finish */
  7665. synchronize_sched();
  7666. /*
  7667. * Now we are free to modify the group's share on each cpu
  7668. * w/o tripping rebalance_share or load_balance_fair.
  7669. */
  7670. tg->shares = shares;
  7671. for_each_possible_cpu(i) {
  7672. /*
  7673. * force a rebalance
  7674. */
  7675. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7676. set_se_shares(tg->se[i], shares);
  7677. }
  7678. /*
  7679. * Enable load balance activity on this group, by inserting it back on
  7680. * each cpu's rq->leaf_cfs_rq_list.
  7681. */
  7682. spin_lock_irqsave(&task_group_lock, flags);
  7683. for_each_possible_cpu(i)
  7684. register_fair_sched_group(tg, i);
  7685. list_add_rcu(&tg->siblings, &tg->parent->children);
  7686. spin_unlock_irqrestore(&task_group_lock, flags);
  7687. done:
  7688. mutex_unlock(&shares_mutex);
  7689. return 0;
  7690. }
  7691. unsigned long sched_group_shares(struct task_group *tg)
  7692. {
  7693. return tg->shares;
  7694. }
  7695. #endif
  7696. #ifdef CONFIG_RT_GROUP_SCHED
  7697. /*
  7698. * Ensure that the real time constraints are schedulable.
  7699. */
  7700. static DEFINE_MUTEX(rt_constraints_mutex);
  7701. static unsigned long to_ratio(u64 period, u64 runtime)
  7702. {
  7703. if (runtime == RUNTIME_INF)
  7704. return 1ULL << 20;
  7705. return div64_u64(runtime << 20, period);
  7706. }
  7707. /* Must be called with tasklist_lock held */
  7708. static inline int tg_has_rt_tasks(struct task_group *tg)
  7709. {
  7710. struct task_struct *g, *p;
  7711. do_each_thread(g, p) {
  7712. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7713. return 1;
  7714. } while_each_thread(g, p);
  7715. return 0;
  7716. }
  7717. struct rt_schedulable_data {
  7718. struct task_group *tg;
  7719. u64 rt_period;
  7720. u64 rt_runtime;
  7721. };
  7722. static int tg_schedulable(struct task_group *tg, void *data)
  7723. {
  7724. struct rt_schedulable_data *d = data;
  7725. struct task_group *child;
  7726. unsigned long total, sum = 0;
  7727. u64 period, runtime;
  7728. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7729. runtime = tg->rt_bandwidth.rt_runtime;
  7730. if (tg == d->tg) {
  7731. period = d->rt_period;
  7732. runtime = d->rt_runtime;
  7733. }
  7734. /*
  7735. * Cannot have more runtime than the period.
  7736. */
  7737. if (runtime > period && runtime != RUNTIME_INF)
  7738. return -EINVAL;
  7739. /*
  7740. * Ensure we don't starve existing RT tasks.
  7741. */
  7742. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7743. return -EBUSY;
  7744. total = to_ratio(period, runtime);
  7745. /*
  7746. * Nobody can have more than the global setting allows.
  7747. */
  7748. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7749. return -EINVAL;
  7750. /*
  7751. * The sum of our children's runtime should not exceed our own.
  7752. */
  7753. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7754. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7755. runtime = child->rt_bandwidth.rt_runtime;
  7756. if (child == d->tg) {
  7757. period = d->rt_period;
  7758. runtime = d->rt_runtime;
  7759. }
  7760. sum += to_ratio(period, runtime);
  7761. }
  7762. if (sum > total)
  7763. return -EINVAL;
  7764. return 0;
  7765. }
  7766. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7767. {
  7768. struct rt_schedulable_data data = {
  7769. .tg = tg,
  7770. .rt_period = period,
  7771. .rt_runtime = runtime,
  7772. };
  7773. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7774. }
  7775. static int tg_set_bandwidth(struct task_group *tg,
  7776. u64 rt_period, u64 rt_runtime)
  7777. {
  7778. int i, err = 0;
  7779. mutex_lock(&rt_constraints_mutex);
  7780. read_lock(&tasklist_lock);
  7781. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7782. if (err)
  7783. goto unlock;
  7784. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7785. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7786. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7787. for_each_possible_cpu(i) {
  7788. struct rt_rq *rt_rq = tg->rt_rq[i];
  7789. spin_lock(&rt_rq->rt_runtime_lock);
  7790. rt_rq->rt_runtime = rt_runtime;
  7791. spin_unlock(&rt_rq->rt_runtime_lock);
  7792. }
  7793. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7794. unlock:
  7795. read_unlock(&tasklist_lock);
  7796. mutex_unlock(&rt_constraints_mutex);
  7797. return err;
  7798. }
  7799. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7800. {
  7801. u64 rt_runtime, rt_period;
  7802. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7803. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7804. if (rt_runtime_us < 0)
  7805. rt_runtime = RUNTIME_INF;
  7806. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7807. }
  7808. long sched_group_rt_runtime(struct task_group *tg)
  7809. {
  7810. u64 rt_runtime_us;
  7811. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7812. return -1;
  7813. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7814. do_div(rt_runtime_us, NSEC_PER_USEC);
  7815. return rt_runtime_us;
  7816. }
  7817. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7818. {
  7819. u64 rt_runtime, rt_period;
  7820. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7821. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7822. if (rt_period == 0)
  7823. return -EINVAL;
  7824. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7825. }
  7826. long sched_group_rt_period(struct task_group *tg)
  7827. {
  7828. u64 rt_period_us;
  7829. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7830. do_div(rt_period_us, NSEC_PER_USEC);
  7831. return rt_period_us;
  7832. }
  7833. static int sched_rt_global_constraints(void)
  7834. {
  7835. u64 runtime, period;
  7836. int ret = 0;
  7837. if (sysctl_sched_rt_period <= 0)
  7838. return -EINVAL;
  7839. runtime = global_rt_runtime();
  7840. period = global_rt_period();
  7841. /*
  7842. * Sanity check on the sysctl variables.
  7843. */
  7844. if (runtime > period && runtime != RUNTIME_INF)
  7845. return -EINVAL;
  7846. mutex_lock(&rt_constraints_mutex);
  7847. read_lock(&tasklist_lock);
  7848. ret = __rt_schedulable(NULL, 0, 0);
  7849. read_unlock(&tasklist_lock);
  7850. mutex_unlock(&rt_constraints_mutex);
  7851. return ret;
  7852. }
  7853. #else /* !CONFIG_RT_GROUP_SCHED */
  7854. static int sched_rt_global_constraints(void)
  7855. {
  7856. unsigned long flags;
  7857. int i;
  7858. if (sysctl_sched_rt_period <= 0)
  7859. return -EINVAL;
  7860. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7861. for_each_possible_cpu(i) {
  7862. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7863. spin_lock(&rt_rq->rt_runtime_lock);
  7864. rt_rq->rt_runtime = global_rt_runtime();
  7865. spin_unlock(&rt_rq->rt_runtime_lock);
  7866. }
  7867. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7868. return 0;
  7869. }
  7870. #endif /* CONFIG_RT_GROUP_SCHED */
  7871. int sched_rt_handler(struct ctl_table *table, int write,
  7872. struct file *filp, void __user *buffer, size_t *lenp,
  7873. loff_t *ppos)
  7874. {
  7875. int ret;
  7876. int old_period, old_runtime;
  7877. static DEFINE_MUTEX(mutex);
  7878. mutex_lock(&mutex);
  7879. old_period = sysctl_sched_rt_period;
  7880. old_runtime = sysctl_sched_rt_runtime;
  7881. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7882. if (!ret && write) {
  7883. ret = sched_rt_global_constraints();
  7884. if (ret) {
  7885. sysctl_sched_rt_period = old_period;
  7886. sysctl_sched_rt_runtime = old_runtime;
  7887. } else {
  7888. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7889. def_rt_bandwidth.rt_period =
  7890. ns_to_ktime(global_rt_period());
  7891. }
  7892. }
  7893. mutex_unlock(&mutex);
  7894. return ret;
  7895. }
  7896. #ifdef CONFIG_CGROUP_SCHED
  7897. /* return corresponding task_group object of a cgroup */
  7898. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7899. {
  7900. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7901. struct task_group, css);
  7902. }
  7903. static struct cgroup_subsys_state *
  7904. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7905. {
  7906. struct task_group *tg, *parent;
  7907. if (!cgrp->parent) {
  7908. /* This is early initialization for the top cgroup */
  7909. return &init_task_group.css;
  7910. }
  7911. parent = cgroup_tg(cgrp->parent);
  7912. tg = sched_create_group(parent);
  7913. if (IS_ERR(tg))
  7914. return ERR_PTR(-ENOMEM);
  7915. return &tg->css;
  7916. }
  7917. static void
  7918. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7919. {
  7920. struct task_group *tg = cgroup_tg(cgrp);
  7921. sched_destroy_group(tg);
  7922. }
  7923. static int
  7924. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7925. struct task_struct *tsk)
  7926. {
  7927. #ifdef CONFIG_RT_GROUP_SCHED
  7928. /* Don't accept realtime tasks when there is no way for them to run */
  7929. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7930. return -EINVAL;
  7931. #else
  7932. /* We don't support RT-tasks being in separate groups */
  7933. if (tsk->sched_class != &fair_sched_class)
  7934. return -EINVAL;
  7935. #endif
  7936. return 0;
  7937. }
  7938. static void
  7939. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7940. struct cgroup *old_cont, struct task_struct *tsk)
  7941. {
  7942. sched_move_task(tsk);
  7943. }
  7944. #ifdef CONFIG_FAIR_GROUP_SCHED
  7945. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7946. u64 shareval)
  7947. {
  7948. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7949. }
  7950. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7951. {
  7952. struct task_group *tg = cgroup_tg(cgrp);
  7953. return (u64) tg->shares;
  7954. }
  7955. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7956. #ifdef CONFIG_RT_GROUP_SCHED
  7957. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7958. s64 val)
  7959. {
  7960. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7961. }
  7962. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7963. {
  7964. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7965. }
  7966. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7967. u64 rt_period_us)
  7968. {
  7969. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7970. }
  7971. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7972. {
  7973. return sched_group_rt_period(cgroup_tg(cgrp));
  7974. }
  7975. #endif /* CONFIG_RT_GROUP_SCHED */
  7976. static struct cftype cpu_files[] = {
  7977. #ifdef CONFIG_FAIR_GROUP_SCHED
  7978. {
  7979. .name = "shares",
  7980. .read_u64 = cpu_shares_read_u64,
  7981. .write_u64 = cpu_shares_write_u64,
  7982. },
  7983. #endif
  7984. #ifdef CONFIG_RT_GROUP_SCHED
  7985. {
  7986. .name = "rt_runtime_us",
  7987. .read_s64 = cpu_rt_runtime_read,
  7988. .write_s64 = cpu_rt_runtime_write,
  7989. },
  7990. {
  7991. .name = "rt_period_us",
  7992. .read_u64 = cpu_rt_period_read_uint,
  7993. .write_u64 = cpu_rt_period_write_uint,
  7994. },
  7995. #endif
  7996. };
  7997. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7998. {
  7999. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8000. }
  8001. struct cgroup_subsys cpu_cgroup_subsys = {
  8002. .name = "cpu",
  8003. .create = cpu_cgroup_create,
  8004. .destroy = cpu_cgroup_destroy,
  8005. .can_attach = cpu_cgroup_can_attach,
  8006. .attach = cpu_cgroup_attach,
  8007. .populate = cpu_cgroup_populate,
  8008. .subsys_id = cpu_cgroup_subsys_id,
  8009. .early_init = 1,
  8010. };
  8011. #endif /* CONFIG_CGROUP_SCHED */
  8012. #ifdef CONFIG_CGROUP_CPUACCT
  8013. /*
  8014. * CPU accounting code for task groups.
  8015. *
  8016. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8017. * (balbir@in.ibm.com).
  8018. */
  8019. /* track cpu usage of a group of tasks and its child groups */
  8020. struct cpuacct {
  8021. struct cgroup_subsys_state css;
  8022. /* cpuusage holds pointer to a u64-type object on every cpu */
  8023. u64 *cpuusage;
  8024. struct cpuacct *parent;
  8025. };
  8026. struct cgroup_subsys cpuacct_subsys;
  8027. /* return cpu accounting group corresponding to this container */
  8028. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8029. {
  8030. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8031. struct cpuacct, css);
  8032. }
  8033. /* return cpu accounting group to which this task belongs */
  8034. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8035. {
  8036. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8037. struct cpuacct, css);
  8038. }
  8039. /* create a new cpu accounting group */
  8040. static struct cgroup_subsys_state *cpuacct_create(
  8041. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8042. {
  8043. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8044. if (!ca)
  8045. return ERR_PTR(-ENOMEM);
  8046. ca->cpuusage = alloc_percpu(u64);
  8047. if (!ca->cpuusage) {
  8048. kfree(ca);
  8049. return ERR_PTR(-ENOMEM);
  8050. }
  8051. if (cgrp->parent)
  8052. ca->parent = cgroup_ca(cgrp->parent);
  8053. return &ca->css;
  8054. }
  8055. /* destroy an existing cpu accounting group */
  8056. static void
  8057. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8058. {
  8059. struct cpuacct *ca = cgroup_ca(cgrp);
  8060. free_percpu(ca->cpuusage);
  8061. kfree(ca);
  8062. }
  8063. /* return total cpu usage (in nanoseconds) of a group */
  8064. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8065. {
  8066. struct cpuacct *ca = cgroup_ca(cgrp);
  8067. u64 totalcpuusage = 0;
  8068. int i;
  8069. for_each_possible_cpu(i) {
  8070. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  8071. /*
  8072. * Take rq->lock to make 64-bit addition safe on 32-bit
  8073. * platforms.
  8074. */
  8075. spin_lock_irq(&cpu_rq(i)->lock);
  8076. totalcpuusage += *cpuusage;
  8077. spin_unlock_irq(&cpu_rq(i)->lock);
  8078. }
  8079. return totalcpuusage;
  8080. }
  8081. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8082. u64 reset)
  8083. {
  8084. struct cpuacct *ca = cgroup_ca(cgrp);
  8085. int err = 0;
  8086. int i;
  8087. if (reset) {
  8088. err = -EINVAL;
  8089. goto out;
  8090. }
  8091. for_each_possible_cpu(i) {
  8092. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  8093. spin_lock_irq(&cpu_rq(i)->lock);
  8094. *cpuusage = 0;
  8095. spin_unlock_irq(&cpu_rq(i)->lock);
  8096. }
  8097. out:
  8098. return err;
  8099. }
  8100. static struct cftype files[] = {
  8101. {
  8102. .name = "usage",
  8103. .read_u64 = cpuusage_read,
  8104. .write_u64 = cpuusage_write,
  8105. },
  8106. };
  8107. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8108. {
  8109. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8110. }
  8111. /*
  8112. * charge this task's execution time to its accounting group.
  8113. *
  8114. * called with rq->lock held.
  8115. */
  8116. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8117. {
  8118. struct cpuacct *ca;
  8119. int cpu;
  8120. if (!cpuacct_subsys.active)
  8121. return;
  8122. cpu = task_cpu(tsk);
  8123. ca = task_ca(tsk);
  8124. for (; ca; ca = ca->parent) {
  8125. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8126. *cpuusage += cputime;
  8127. }
  8128. }
  8129. struct cgroup_subsys cpuacct_subsys = {
  8130. .name = "cpuacct",
  8131. .create = cpuacct_create,
  8132. .destroy = cpuacct_destroy,
  8133. .populate = cpuacct_populate,
  8134. .subsys_id = cpuacct_subsys_id,
  8135. };
  8136. #endif /* CONFIG_CGROUP_CPUACCT */