fork.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/iocontext.h>
  25. #include <linux/key.h>
  26. #include <linux/binfmts.h>
  27. #include <linux/mman.h>
  28. #include <linux/mmu_notifier.h>
  29. #include <linux/fs.h>
  30. #include <linux/nsproxy.h>
  31. #include <linux/capability.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cgroup.h>
  34. #include <linux/security.h>
  35. #include <linux/hugetlb.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/tracehook.h>
  40. #include <linux/futex.h>
  41. #include <linux/compat.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/profile.h>
  50. #include <linux/rmap.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/blkdev.h>
  61. #include <trace/sched.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/pgalloc.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/mmu_context.h>
  66. #include <asm/cacheflush.h>
  67. #include <asm/tlbflush.h>
  68. /*
  69. * Protected counters by write_lock_irq(&tasklist_lock)
  70. */
  71. unsigned long total_forks; /* Handle normal Linux uptimes. */
  72. int nr_threads; /* The idle threads do not count.. */
  73. int max_threads; /* tunable limit on nr_threads */
  74. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  75. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  76. DEFINE_TRACE(sched_process_fork);
  77. int nr_processes(void)
  78. {
  79. int cpu;
  80. int total = 0;
  81. for_each_online_cpu(cpu)
  82. total += per_cpu(process_counts, cpu);
  83. return total;
  84. }
  85. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  86. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  87. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  88. static struct kmem_cache *task_struct_cachep;
  89. #endif
  90. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  91. static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
  92. {
  93. #ifdef CONFIG_DEBUG_STACK_USAGE
  94. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  95. #else
  96. gfp_t mask = GFP_KERNEL;
  97. #endif
  98. return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
  99. }
  100. static inline void free_thread_info(struct thread_info *ti)
  101. {
  102. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  103. }
  104. #endif
  105. /* SLAB cache for signal_struct structures (tsk->signal) */
  106. static struct kmem_cache *signal_cachep;
  107. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  108. struct kmem_cache *sighand_cachep;
  109. /* SLAB cache for files_struct structures (tsk->files) */
  110. struct kmem_cache *files_cachep;
  111. /* SLAB cache for fs_struct structures (tsk->fs) */
  112. struct kmem_cache *fs_cachep;
  113. /* SLAB cache for vm_area_struct structures */
  114. struct kmem_cache *vm_area_cachep;
  115. /* SLAB cache for mm_struct structures (tsk->mm) */
  116. static struct kmem_cache *mm_cachep;
  117. void free_task(struct task_struct *tsk)
  118. {
  119. prop_local_destroy_single(&tsk->dirties);
  120. free_thread_info(tsk->stack);
  121. rt_mutex_debug_task_free(tsk);
  122. ftrace_graph_exit_task(tsk);
  123. free_task_struct(tsk);
  124. }
  125. EXPORT_SYMBOL(free_task);
  126. void __put_task_struct(struct task_struct *tsk)
  127. {
  128. WARN_ON(!tsk->exit_state);
  129. WARN_ON(atomic_read(&tsk->usage));
  130. WARN_ON(tsk == current);
  131. security_task_free(tsk);
  132. free_uid(tsk->user);
  133. put_group_info(tsk->group_info);
  134. delayacct_tsk_free(tsk);
  135. if (!profile_handoff_task(tsk))
  136. free_task(tsk);
  137. }
  138. /*
  139. * macro override instead of weak attribute alias, to workaround
  140. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  141. */
  142. #ifndef arch_task_cache_init
  143. #define arch_task_cache_init()
  144. #endif
  145. void __init fork_init(unsigned long mempages)
  146. {
  147. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  148. #ifndef ARCH_MIN_TASKALIGN
  149. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  150. #endif
  151. /* create a slab on which task_structs can be allocated */
  152. task_struct_cachep =
  153. kmem_cache_create("task_struct", sizeof(struct task_struct),
  154. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  155. #endif
  156. /* do the arch specific task caches init */
  157. arch_task_cache_init();
  158. /*
  159. * The default maximum number of threads is set to a safe
  160. * value: the thread structures can take up at most half
  161. * of memory.
  162. */
  163. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  164. /*
  165. * we need to allow at least 20 threads to boot a system
  166. */
  167. if(max_threads < 20)
  168. max_threads = 20;
  169. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  170. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  171. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  172. init_task.signal->rlim[RLIMIT_NPROC];
  173. }
  174. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  175. struct task_struct *src)
  176. {
  177. *dst = *src;
  178. return 0;
  179. }
  180. static struct task_struct *dup_task_struct(struct task_struct *orig)
  181. {
  182. struct task_struct *tsk;
  183. struct thread_info *ti;
  184. int err;
  185. prepare_to_copy(orig);
  186. tsk = alloc_task_struct();
  187. if (!tsk)
  188. return NULL;
  189. ti = alloc_thread_info(tsk);
  190. if (!ti) {
  191. free_task_struct(tsk);
  192. return NULL;
  193. }
  194. err = arch_dup_task_struct(tsk, orig);
  195. if (err)
  196. goto out;
  197. tsk->stack = ti;
  198. err = prop_local_init_single(&tsk->dirties);
  199. if (err)
  200. goto out;
  201. setup_thread_stack(tsk, orig);
  202. #ifdef CONFIG_CC_STACKPROTECTOR
  203. tsk->stack_canary = get_random_int();
  204. #endif
  205. /* One for us, one for whoever does the "release_task()" (usually parent) */
  206. atomic_set(&tsk->usage,2);
  207. atomic_set(&tsk->fs_excl, 0);
  208. #ifdef CONFIG_BLK_DEV_IO_TRACE
  209. tsk->btrace_seq = 0;
  210. #endif
  211. tsk->splice_pipe = NULL;
  212. return tsk;
  213. out:
  214. free_thread_info(ti);
  215. free_task_struct(tsk);
  216. return NULL;
  217. }
  218. #ifdef CONFIG_MMU
  219. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  220. {
  221. struct vm_area_struct *mpnt, *tmp, **pprev;
  222. struct rb_node **rb_link, *rb_parent;
  223. int retval;
  224. unsigned long charge;
  225. struct mempolicy *pol;
  226. down_write(&oldmm->mmap_sem);
  227. flush_cache_dup_mm(oldmm);
  228. /*
  229. * Not linked in yet - no deadlock potential:
  230. */
  231. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  232. mm->locked_vm = 0;
  233. mm->mmap = NULL;
  234. mm->mmap_cache = NULL;
  235. mm->free_area_cache = oldmm->mmap_base;
  236. mm->cached_hole_size = ~0UL;
  237. mm->map_count = 0;
  238. cpus_clear(mm->cpu_vm_mask);
  239. mm->mm_rb = RB_ROOT;
  240. rb_link = &mm->mm_rb.rb_node;
  241. rb_parent = NULL;
  242. pprev = &mm->mmap;
  243. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  244. struct file *file;
  245. if (mpnt->vm_flags & VM_DONTCOPY) {
  246. long pages = vma_pages(mpnt);
  247. mm->total_vm -= pages;
  248. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  249. -pages);
  250. continue;
  251. }
  252. charge = 0;
  253. if (mpnt->vm_flags & VM_ACCOUNT) {
  254. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  255. if (security_vm_enough_memory(len))
  256. goto fail_nomem;
  257. charge = len;
  258. }
  259. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  260. if (!tmp)
  261. goto fail_nomem;
  262. *tmp = *mpnt;
  263. pol = mpol_dup(vma_policy(mpnt));
  264. retval = PTR_ERR(pol);
  265. if (IS_ERR(pol))
  266. goto fail_nomem_policy;
  267. vma_set_policy(tmp, pol);
  268. tmp->vm_flags &= ~VM_LOCKED;
  269. tmp->vm_mm = mm;
  270. tmp->vm_next = NULL;
  271. anon_vma_link(tmp);
  272. file = tmp->vm_file;
  273. if (file) {
  274. struct inode *inode = file->f_path.dentry->d_inode;
  275. struct address_space *mapping = file->f_mapping;
  276. get_file(file);
  277. if (tmp->vm_flags & VM_DENYWRITE)
  278. atomic_dec(&inode->i_writecount);
  279. spin_lock(&mapping->i_mmap_lock);
  280. if (tmp->vm_flags & VM_SHARED)
  281. mapping->i_mmap_writable++;
  282. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  283. flush_dcache_mmap_lock(mapping);
  284. /* insert tmp into the share list, just after mpnt */
  285. vma_prio_tree_add(tmp, mpnt);
  286. flush_dcache_mmap_unlock(mapping);
  287. spin_unlock(&mapping->i_mmap_lock);
  288. }
  289. /*
  290. * Clear hugetlb-related page reserves for children. This only
  291. * affects MAP_PRIVATE mappings. Faults generated by the child
  292. * are not guaranteed to succeed, even if read-only
  293. */
  294. if (is_vm_hugetlb_page(tmp))
  295. reset_vma_resv_huge_pages(tmp);
  296. /*
  297. * Link in the new vma and copy the page table entries.
  298. */
  299. *pprev = tmp;
  300. pprev = &tmp->vm_next;
  301. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  302. rb_link = &tmp->vm_rb.rb_right;
  303. rb_parent = &tmp->vm_rb;
  304. mm->map_count++;
  305. retval = copy_page_range(mm, oldmm, mpnt);
  306. if (tmp->vm_ops && tmp->vm_ops->open)
  307. tmp->vm_ops->open(tmp);
  308. if (retval)
  309. goto out;
  310. }
  311. /* a new mm has just been created */
  312. arch_dup_mmap(oldmm, mm);
  313. retval = 0;
  314. out:
  315. up_write(&mm->mmap_sem);
  316. flush_tlb_mm(oldmm);
  317. up_write(&oldmm->mmap_sem);
  318. return retval;
  319. fail_nomem_policy:
  320. kmem_cache_free(vm_area_cachep, tmp);
  321. fail_nomem:
  322. retval = -ENOMEM;
  323. vm_unacct_memory(charge);
  324. goto out;
  325. }
  326. static inline int mm_alloc_pgd(struct mm_struct * mm)
  327. {
  328. mm->pgd = pgd_alloc(mm);
  329. if (unlikely(!mm->pgd))
  330. return -ENOMEM;
  331. return 0;
  332. }
  333. static inline void mm_free_pgd(struct mm_struct * mm)
  334. {
  335. pgd_free(mm, mm->pgd);
  336. }
  337. #else
  338. #define dup_mmap(mm, oldmm) (0)
  339. #define mm_alloc_pgd(mm) (0)
  340. #define mm_free_pgd(mm)
  341. #endif /* CONFIG_MMU */
  342. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  343. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  344. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  345. #include <linux/init_task.h>
  346. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  347. {
  348. atomic_set(&mm->mm_users, 1);
  349. atomic_set(&mm->mm_count, 1);
  350. init_rwsem(&mm->mmap_sem);
  351. INIT_LIST_HEAD(&mm->mmlist);
  352. mm->flags = (current->mm) ? current->mm->flags
  353. : MMF_DUMP_FILTER_DEFAULT;
  354. mm->core_state = NULL;
  355. mm->nr_ptes = 0;
  356. set_mm_counter(mm, file_rss, 0);
  357. set_mm_counter(mm, anon_rss, 0);
  358. spin_lock_init(&mm->page_table_lock);
  359. rwlock_init(&mm->ioctx_list_lock);
  360. mm->ioctx_list = NULL;
  361. mm->free_area_cache = TASK_UNMAPPED_BASE;
  362. mm->cached_hole_size = ~0UL;
  363. mm_init_owner(mm, p);
  364. if (likely(!mm_alloc_pgd(mm))) {
  365. mm->def_flags = 0;
  366. mmu_notifier_mm_init(mm);
  367. return mm;
  368. }
  369. free_mm(mm);
  370. return NULL;
  371. }
  372. /*
  373. * Allocate and initialize an mm_struct.
  374. */
  375. struct mm_struct * mm_alloc(void)
  376. {
  377. struct mm_struct * mm;
  378. mm = allocate_mm();
  379. if (mm) {
  380. memset(mm, 0, sizeof(*mm));
  381. mm = mm_init(mm, current);
  382. }
  383. return mm;
  384. }
  385. /*
  386. * Called when the last reference to the mm
  387. * is dropped: either by a lazy thread or by
  388. * mmput. Free the page directory and the mm.
  389. */
  390. void __mmdrop(struct mm_struct *mm)
  391. {
  392. BUG_ON(mm == &init_mm);
  393. mm_free_pgd(mm);
  394. destroy_context(mm);
  395. mmu_notifier_mm_destroy(mm);
  396. free_mm(mm);
  397. }
  398. EXPORT_SYMBOL_GPL(__mmdrop);
  399. /*
  400. * Decrement the use count and release all resources for an mm.
  401. */
  402. void mmput(struct mm_struct *mm)
  403. {
  404. might_sleep();
  405. if (atomic_dec_and_test(&mm->mm_users)) {
  406. exit_aio(mm);
  407. exit_mmap(mm);
  408. set_mm_exe_file(mm, NULL);
  409. if (!list_empty(&mm->mmlist)) {
  410. spin_lock(&mmlist_lock);
  411. list_del(&mm->mmlist);
  412. spin_unlock(&mmlist_lock);
  413. }
  414. put_swap_token(mm);
  415. mmdrop(mm);
  416. }
  417. }
  418. EXPORT_SYMBOL_GPL(mmput);
  419. /**
  420. * get_task_mm - acquire a reference to the task's mm
  421. *
  422. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  423. * this kernel workthread has transiently adopted a user mm with use_mm,
  424. * to do its AIO) is not set and if so returns a reference to it, after
  425. * bumping up the use count. User must release the mm via mmput()
  426. * after use. Typically used by /proc and ptrace.
  427. */
  428. struct mm_struct *get_task_mm(struct task_struct *task)
  429. {
  430. struct mm_struct *mm;
  431. task_lock(task);
  432. mm = task->mm;
  433. if (mm) {
  434. if (task->flags & PF_KTHREAD)
  435. mm = NULL;
  436. else
  437. atomic_inc(&mm->mm_users);
  438. }
  439. task_unlock(task);
  440. return mm;
  441. }
  442. EXPORT_SYMBOL_GPL(get_task_mm);
  443. /* Please note the differences between mmput and mm_release.
  444. * mmput is called whenever we stop holding onto a mm_struct,
  445. * error success whatever.
  446. *
  447. * mm_release is called after a mm_struct has been removed
  448. * from the current process.
  449. *
  450. * This difference is important for error handling, when we
  451. * only half set up a mm_struct for a new process and need to restore
  452. * the old one. Because we mmput the new mm_struct before
  453. * restoring the old one. . .
  454. * Eric Biederman 10 January 1998
  455. */
  456. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  457. {
  458. struct completion *vfork_done = tsk->vfork_done;
  459. /* Get rid of any futexes when releasing the mm */
  460. #ifdef CONFIG_FUTEX
  461. if (unlikely(tsk->robust_list))
  462. exit_robust_list(tsk);
  463. #ifdef CONFIG_COMPAT
  464. if (unlikely(tsk->compat_robust_list))
  465. compat_exit_robust_list(tsk);
  466. #endif
  467. #endif
  468. /* Get rid of any cached register state */
  469. deactivate_mm(tsk, mm);
  470. /* notify parent sleeping on vfork() */
  471. if (vfork_done) {
  472. tsk->vfork_done = NULL;
  473. complete(vfork_done);
  474. }
  475. /*
  476. * If we're exiting normally, clear a user-space tid field if
  477. * requested. We leave this alone when dying by signal, to leave
  478. * the value intact in a core dump, and to save the unnecessary
  479. * trouble otherwise. Userland only wants this done for a sys_exit.
  480. */
  481. if (tsk->clear_child_tid
  482. && !(tsk->flags & PF_SIGNALED)
  483. && atomic_read(&mm->mm_users) > 1) {
  484. u32 __user * tidptr = tsk->clear_child_tid;
  485. tsk->clear_child_tid = NULL;
  486. /*
  487. * We don't check the error code - if userspace has
  488. * not set up a proper pointer then tough luck.
  489. */
  490. put_user(0, tidptr);
  491. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  492. }
  493. }
  494. /*
  495. * Allocate a new mm structure and copy contents from the
  496. * mm structure of the passed in task structure.
  497. */
  498. struct mm_struct *dup_mm(struct task_struct *tsk)
  499. {
  500. struct mm_struct *mm, *oldmm = current->mm;
  501. int err;
  502. if (!oldmm)
  503. return NULL;
  504. mm = allocate_mm();
  505. if (!mm)
  506. goto fail_nomem;
  507. memcpy(mm, oldmm, sizeof(*mm));
  508. /* Initializing for Swap token stuff */
  509. mm->token_priority = 0;
  510. mm->last_interval = 0;
  511. if (!mm_init(mm, tsk))
  512. goto fail_nomem;
  513. if (init_new_context(tsk, mm))
  514. goto fail_nocontext;
  515. dup_mm_exe_file(oldmm, mm);
  516. err = dup_mmap(mm, oldmm);
  517. if (err)
  518. goto free_pt;
  519. mm->hiwater_rss = get_mm_rss(mm);
  520. mm->hiwater_vm = mm->total_vm;
  521. return mm;
  522. free_pt:
  523. mmput(mm);
  524. fail_nomem:
  525. return NULL;
  526. fail_nocontext:
  527. /*
  528. * If init_new_context() failed, we cannot use mmput() to free the mm
  529. * because it calls destroy_context()
  530. */
  531. mm_free_pgd(mm);
  532. free_mm(mm);
  533. return NULL;
  534. }
  535. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  536. {
  537. struct mm_struct * mm, *oldmm;
  538. int retval;
  539. tsk->min_flt = tsk->maj_flt = 0;
  540. tsk->nvcsw = tsk->nivcsw = 0;
  541. tsk->mm = NULL;
  542. tsk->active_mm = NULL;
  543. /*
  544. * Are we cloning a kernel thread?
  545. *
  546. * We need to steal a active VM for that..
  547. */
  548. oldmm = current->mm;
  549. if (!oldmm)
  550. return 0;
  551. if (clone_flags & CLONE_VM) {
  552. atomic_inc(&oldmm->mm_users);
  553. mm = oldmm;
  554. goto good_mm;
  555. }
  556. retval = -ENOMEM;
  557. mm = dup_mm(tsk);
  558. if (!mm)
  559. goto fail_nomem;
  560. good_mm:
  561. /* Initializing for Swap token stuff */
  562. mm->token_priority = 0;
  563. mm->last_interval = 0;
  564. tsk->mm = mm;
  565. tsk->active_mm = mm;
  566. return 0;
  567. fail_nomem:
  568. return retval;
  569. }
  570. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  571. {
  572. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  573. /* We don't need to lock fs - think why ;-) */
  574. if (fs) {
  575. atomic_set(&fs->count, 1);
  576. rwlock_init(&fs->lock);
  577. fs->umask = old->umask;
  578. read_lock(&old->lock);
  579. fs->root = old->root;
  580. path_get(&old->root);
  581. fs->pwd = old->pwd;
  582. path_get(&old->pwd);
  583. read_unlock(&old->lock);
  584. }
  585. return fs;
  586. }
  587. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  588. {
  589. return __copy_fs_struct(old);
  590. }
  591. EXPORT_SYMBOL_GPL(copy_fs_struct);
  592. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  593. {
  594. if (clone_flags & CLONE_FS) {
  595. atomic_inc(&current->fs->count);
  596. return 0;
  597. }
  598. tsk->fs = __copy_fs_struct(current->fs);
  599. if (!tsk->fs)
  600. return -ENOMEM;
  601. return 0;
  602. }
  603. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  604. {
  605. struct files_struct *oldf, *newf;
  606. int error = 0;
  607. /*
  608. * A background process may not have any files ...
  609. */
  610. oldf = current->files;
  611. if (!oldf)
  612. goto out;
  613. if (clone_flags & CLONE_FILES) {
  614. atomic_inc(&oldf->count);
  615. goto out;
  616. }
  617. newf = dup_fd(oldf, &error);
  618. if (!newf)
  619. goto out;
  620. tsk->files = newf;
  621. error = 0;
  622. out:
  623. return error;
  624. }
  625. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  626. {
  627. #ifdef CONFIG_BLOCK
  628. struct io_context *ioc = current->io_context;
  629. if (!ioc)
  630. return 0;
  631. /*
  632. * Share io context with parent, if CLONE_IO is set
  633. */
  634. if (clone_flags & CLONE_IO) {
  635. tsk->io_context = ioc_task_link(ioc);
  636. if (unlikely(!tsk->io_context))
  637. return -ENOMEM;
  638. } else if (ioprio_valid(ioc->ioprio)) {
  639. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  640. if (unlikely(!tsk->io_context))
  641. return -ENOMEM;
  642. tsk->io_context->ioprio = ioc->ioprio;
  643. }
  644. #endif
  645. return 0;
  646. }
  647. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  648. {
  649. struct sighand_struct *sig;
  650. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  651. atomic_inc(&current->sighand->count);
  652. return 0;
  653. }
  654. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  655. rcu_assign_pointer(tsk->sighand, sig);
  656. if (!sig)
  657. return -ENOMEM;
  658. atomic_set(&sig->count, 1);
  659. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  660. return 0;
  661. }
  662. void __cleanup_sighand(struct sighand_struct *sighand)
  663. {
  664. if (atomic_dec_and_test(&sighand->count))
  665. kmem_cache_free(sighand_cachep, sighand);
  666. }
  667. /*
  668. * Initialize POSIX timer handling for a thread group.
  669. */
  670. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  671. {
  672. /* Thread group counters. */
  673. thread_group_cputime_init(sig);
  674. /* Expiration times and increments. */
  675. sig->it_virt_expires = cputime_zero;
  676. sig->it_virt_incr = cputime_zero;
  677. sig->it_prof_expires = cputime_zero;
  678. sig->it_prof_incr = cputime_zero;
  679. /* Cached expiration times. */
  680. sig->cputime_expires.prof_exp = cputime_zero;
  681. sig->cputime_expires.virt_exp = cputime_zero;
  682. sig->cputime_expires.sched_exp = 0;
  683. /* The timer lists. */
  684. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  685. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  686. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  687. }
  688. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  689. {
  690. struct signal_struct *sig;
  691. int ret;
  692. if (clone_flags & CLONE_THREAD) {
  693. ret = thread_group_cputime_clone_thread(current);
  694. if (likely(!ret)) {
  695. atomic_inc(&current->signal->count);
  696. atomic_inc(&current->signal->live);
  697. }
  698. return ret;
  699. }
  700. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  701. tsk->signal = sig;
  702. if (!sig)
  703. return -ENOMEM;
  704. ret = copy_thread_group_keys(tsk);
  705. if (ret < 0) {
  706. kmem_cache_free(signal_cachep, sig);
  707. return ret;
  708. }
  709. atomic_set(&sig->count, 1);
  710. atomic_set(&sig->live, 1);
  711. init_waitqueue_head(&sig->wait_chldexit);
  712. sig->flags = 0;
  713. sig->group_exit_code = 0;
  714. sig->group_exit_task = NULL;
  715. sig->group_stop_count = 0;
  716. sig->curr_target = tsk;
  717. init_sigpending(&sig->shared_pending);
  718. INIT_LIST_HEAD(&sig->posix_timers);
  719. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  720. sig->it_real_incr.tv64 = 0;
  721. sig->real_timer.function = it_real_fn;
  722. sig->leader = 0; /* session leadership doesn't inherit */
  723. sig->tty_old_pgrp = NULL;
  724. sig->tty = NULL;
  725. sig->cutime = sig->cstime = cputime_zero;
  726. sig->gtime = cputime_zero;
  727. sig->cgtime = cputime_zero;
  728. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  729. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  730. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  731. task_io_accounting_init(&sig->ioac);
  732. taskstats_tgid_init(sig);
  733. task_lock(current->group_leader);
  734. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  735. task_unlock(current->group_leader);
  736. posix_cpu_timers_init_group(sig);
  737. acct_init_pacct(&sig->pacct);
  738. tty_audit_fork(sig);
  739. return 0;
  740. }
  741. void __cleanup_signal(struct signal_struct *sig)
  742. {
  743. thread_group_cputime_free(sig);
  744. exit_thread_group_keys(sig);
  745. tty_kref_put(sig->tty);
  746. kmem_cache_free(signal_cachep, sig);
  747. }
  748. static void cleanup_signal(struct task_struct *tsk)
  749. {
  750. struct signal_struct *sig = tsk->signal;
  751. atomic_dec(&sig->live);
  752. if (atomic_dec_and_test(&sig->count))
  753. __cleanup_signal(sig);
  754. }
  755. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  756. {
  757. unsigned long new_flags = p->flags;
  758. new_flags &= ~PF_SUPERPRIV;
  759. new_flags |= PF_FORKNOEXEC;
  760. new_flags |= PF_STARTING;
  761. p->flags = new_flags;
  762. clear_freeze_flag(p);
  763. }
  764. asmlinkage long sys_set_tid_address(int __user *tidptr)
  765. {
  766. current->clear_child_tid = tidptr;
  767. return task_pid_vnr(current);
  768. }
  769. static void rt_mutex_init_task(struct task_struct *p)
  770. {
  771. spin_lock_init(&p->pi_lock);
  772. #ifdef CONFIG_RT_MUTEXES
  773. plist_head_init(&p->pi_waiters, &p->pi_lock);
  774. p->pi_blocked_on = NULL;
  775. #endif
  776. }
  777. #ifdef CONFIG_MM_OWNER
  778. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  779. {
  780. mm->owner = p;
  781. }
  782. #endif /* CONFIG_MM_OWNER */
  783. /*
  784. * Initialize POSIX timer handling for a single task.
  785. */
  786. static void posix_cpu_timers_init(struct task_struct *tsk)
  787. {
  788. tsk->cputime_expires.prof_exp = cputime_zero;
  789. tsk->cputime_expires.virt_exp = cputime_zero;
  790. tsk->cputime_expires.sched_exp = 0;
  791. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  792. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  793. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  794. }
  795. /*
  796. * This creates a new process as a copy of the old one,
  797. * but does not actually start it yet.
  798. *
  799. * It copies the registers, and all the appropriate
  800. * parts of the process environment (as per the clone
  801. * flags). The actual kick-off is left to the caller.
  802. */
  803. static struct task_struct *copy_process(unsigned long clone_flags,
  804. unsigned long stack_start,
  805. struct pt_regs *regs,
  806. unsigned long stack_size,
  807. int __user *child_tidptr,
  808. struct pid *pid,
  809. int trace)
  810. {
  811. int retval;
  812. struct task_struct *p;
  813. int cgroup_callbacks_done = 0;
  814. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  815. return ERR_PTR(-EINVAL);
  816. /*
  817. * Thread groups must share signals as well, and detached threads
  818. * can only be started up within the thread group.
  819. */
  820. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  821. return ERR_PTR(-EINVAL);
  822. /*
  823. * Shared signal handlers imply shared VM. By way of the above,
  824. * thread groups also imply shared VM. Blocking this case allows
  825. * for various simplifications in other code.
  826. */
  827. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  828. return ERR_PTR(-EINVAL);
  829. retval = security_task_create(clone_flags);
  830. if (retval)
  831. goto fork_out;
  832. retval = -ENOMEM;
  833. p = dup_task_struct(current);
  834. if (!p)
  835. goto fork_out;
  836. rt_mutex_init_task(p);
  837. #ifdef CONFIG_PROVE_LOCKING
  838. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  839. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  840. #endif
  841. retval = -EAGAIN;
  842. if (atomic_read(&p->user->processes) >=
  843. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  844. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  845. p->user != current->nsproxy->user_ns->root_user)
  846. goto bad_fork_free;
  847. }
  848. atomic_inc(&p->user->__count);
  849. atomic_inc(&p->user->processes);
  850. get_group_info(p->group_info);
  851. /*
  852. * If multiple threads are within copy_process(), then this check
  853. * triggers too late. This doesn't hurt, the check is only there
  854. * to stop root fork bombs.
  855. */
  856. if (nr_threads >= max_threads)
  857. goto bad_fork_cleanup_count;
  858. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  859. goto bad_fork_cleanup_count;
  860. if (p->binfmt && !try_module_get(p->binfmt->module))
  861. goto bad_fork_cleanup_put_domain;
  862. p->did_exec = 0;
  863. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  864. copy_flags(clone_flags, p);
  865. INIT_LIST_HEAD(&p->children);
  866. INIT_LIST_HEAD(&p->sibling);
  867. #ifdef CONFIG_PREEMPT_RCU
  868. p->rcu_read_lock_nesting = 0;
  869. p->rcu_flipctr_idx = 0;
  870. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  871. p->vfork_done = NULL;
  872. spin_lock_init(&p->alloc_lock);
  873. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  874. init_sigpending(&p->pending);
  875. p->utime = cputime_zero;
  876. p->stime = cputime_zero;
  877. p->gtime = cputime_zero;
  878. p->utimescaled = cputime_zero;
  879. p->stimescaled = cputime_zero;
  880. p->prev_utime = cputime_zero;
  881. p->prev_stime = cputime_zero;
  882. p->default_timer_slack_ns = current->timer_slack_ns;
  883. #ifdef CONFIG_DETECT_SOFTLOCKUP
  884. p->last_switch_count = 0;
  885. p->last_switch_timestamp = 0;
  886. #endif
  887. task_io_accounting_init(&p->ioac);
  888. acct_clear_integrals(p);
  889. posix_cpu_timers_init(p);
  890. p->lock_depth = -1; /* -1 = no lock */
  891. do_posix_clock_monotonic_gettime(&p->start_time);
  892. p->real_start_time = p->start_time;
  893. monotonic_to_bootbased(&p->real_start_time);
  894. #ifdef CONFIG_SECURITY
  895. p->security = NULL;
  896. #endif
  897. p->cap_bset = current->cap_bset;
  898. p->io_context = NULL;
  899. p->audit_context = NULL;
  900. cgroup_fork(p);
  901. #ifdef CONFIG_NUMA
  902. p->mempolicy = mpol_dup(p->mempolicy);
  903. if (IS_ERR(p->mempolicy)) {
  904. retval = PTR_ERR(p->mempolicy);
  905. p->mempolicy = NULL;
  906. goto bad_fork_cleanup_cgroup;
  907. }
  908. mpol_fix_fork_child_flag(p);
  909. #endif
  910. #ifdef CONFIG_TRACE_IRQFLAGS
  911. p->irq_events = 0;
  912. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  913. p->hardirqs_enabled = 1;
  914. #else
  915. p->hardirqs_enabled = 0;
  916. #endif
  917. p->hardirq_enable_ip = 0;
  918. p->hardirq_enable_event = 0;
  919. p->hardirq_disable_ip = _THIS_IP_;
  920. p->hardirq_disable_event = 0;
  921. p->softirqs_enabled = 1;
  922. p->softirq_enable_ip = _THIS_IP_;
  923. p->softirq_enable_event = 0;
  924. p->softirq_disable_ip = 0;
  925. p->softirq_disable_event = 0;
  926. p->hardirq_context = 0;
  927. p->softirq_context = 0;
  928. #endif
  929. #ifdef CONFIG_LOCKDEP
  930. p->lockdep_depth = 0; /* no locks held yet */
  931. p->curr_chain_key = 0;
  932. p->lockdep_recursion = 0;
  933. #endif
  934. #ifdef CONFIG_DEBUG_MUTEXES
  935. p->blocked_on = NULL; /* not blocked yet */
  936. #endif
  937. /* Perform scheduler related setup. Assign this task to a CPU. */
  938. sched_fork(p, clone_flags);
  939. if ((retval = security_task_alloc(p)))
  940. goto bad_fork_cleanup_policy;
  941. if ((retval = audit_alloc(p)))
  942. goto bad_fork_cleanup_security;
  943. /* copy all the process information */
  944. if ((retval = copy_semundo(clone_flags, p)))
  945. goto bad_fork_cleanup_audit;
  946. if ((retval = copy_files(clone_flags, p)))
  947. goto bad_fork_cleanup_semundo;
  948. if ((retval = copy_fs(clone_flags, p)))
  949. goto bad_fork_cleanup_files;
  950. if ((retval = copy_sighand(clone_flags, p)))
  951. goto bad_fork_cleanup_fs;
  952. if ((retval = copy_signal(clone_flags, p)))
  953. goto bad_fork_cleanup_sighand;
  954. if ((retval = copy_mm(clone_flags, p)))
  955. goto bad_fork_cleanup_signal;
  956. if ((retval = copy_keys(clone_flags, p)))
  957. goto bad_fork_cleanup_mm;
  958. if ((retval = copy_namespaces(clone_flags, p)))
  959. goto bad_fork_cleanup_keys;
  960. if ((retval = copy_io(clone_flags, p)))
  961. goto bad_fork_cleanup_namespaces;
  962. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  963. if (retval)
  964. goto bad_fork_cleanup_io;
  965. if (pid != &init_struct_pid) {
  966. retval = -ENOMEM;
  967. pid = alloc_pid(task_active_pid_ns(p));
  968. if (!pid)
  969. goto bad_fork_cleanup_io;
  970. if (clone_flags & CLONE_NEWPID) {
  971. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  972. if (retval < 0)
  973. goto bad_fork_free_pid;
  974. }
  975. }
  976. ftrace_graph_init_task(p);
  977. p->pid = pid_nr(pid);
  978. p->tgid = p->pid;
  979. if (clone_flags & CLONE_THREAD)
  980. p->tgid = current->tgid;
  981. if (current->nsproxy != p->nsproxy) {
  982. retval = ns_cgroup_clone(p, pid);
  983. if (retval)
  984. goto bad_fork_free_graph;
  985. }
  986. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  987. /*
  988. * Clear TID on mm_release()?
  989. */
  990. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  991. #ifdef CONFIG_FUTEX
  992. p->robust_list = NULL;
  993. #ifdef CONFIG_COMPAT
  994. p->compat_robust_list = NULL;
  995. #endif
  996. INIT_LIST_HEAD(&p->pi_state_list);
  997. p->pi_state_cache = NULL;
  998. #endif
  999. /*
  1000. * sigaltstack should be cleared when sharing the same VM
  1001. */
  1002. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1003. p->sas_ss_sp = p->sas_ss_size = 0;
  1004. /*
  1005. * Syscall tracing should be turned off in the child regardless
  1006. * of CLONE_PTRACE.
  1007. */
  1008. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1009. #ifdef TIF_SYSCALL_EMU
  1010. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1011. #endif
  1012. clear_all_latency_tracing(p);
  1013. /* Our parent execution domain becomes current domain
  1014. These must match for thread signalling to apply */
  1015. p->parent_exec_id = p->self_exec_id;
  1016. /* ok, now we should be set up.. */
  1017. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1018. p->pdeath_signal = 0;
  1019. p->exit_state = 0;
  1020. /*
  1021. * Ok, make it visible to the rest of the system.
  1022. * We dont wake it up yet.
  1023. */
  1024. p->group_leader = p;
  1025. INIT_LIST_HEAD(&p->thread_group);
  1026. /* Now that the task is set up, run cgroup callbacks if
  1027. * necessary. We need to run them before the task is visible
  1028. * on the tasklist. */
  1029. cgroup_fork_callbacks(p);
  1030. cgroup_callbacks_done = 1;
  1031. /* Need tasklist lock for parent etc handling! */
  1032. write_lock_irq(&tasklist_lock);
  1033. /*
  1034. * The task hasn't been attached yet, so its cpus_allowed mask will
  1035. * not be changed, nor will its assigned CPU.
  1036. *
  1037. * The cpus_allowed mask of the parent may have changed after it was
  1038. * copied first time - so re-copy it here, then check the child's CPU
  1039. * to ensure it is on a valid CPU (and if not, just force it back to
  1040. * parent's CPU). This avoids alot of nasty races.
  1041. */
  1042. p->cpus_allowed = current->cpus_allowed;
  1043. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1044. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1045. !cpu_online(task_cpu(p))))
  1046. set_task_cpu(p, smp_processor_id());
  1047. /* CLONE_PARENT re-uses the old parent */
  1048. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1049. p->real_parent = current->real_parent;
  1050. else
  1051. p->real_parent = current;
  1052. spin_lock(&current->sighand->siglock);
  1053. /*
  1054. * Process group and session signals need to be delivered to just the
  1055. * parent before the fork or both the parent and the child after the
  1056. * fork. Restart if a signal comes in before we add the new process to
  1057. * it's process group.
  1058. * A fatal signal pending means that current will exit, so the new
  1059. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1060. */
  1061. recalc_sigpending();
  1062. if (signal_pending(current)) {
  1063. spin_unlock(&current->sighand->siglock);
  1064. write_unlock_irq(&tasklist_lock);
  1065. retval = -ERESTARTNOINTR;
  1066. goto bad_fork_free_graph;
  1067. }
  1068. if (clone_flags & CLONE_THREAD) {
  1069. p->group_leader = current->group_leader;
  1070. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1071. }
  1072. if (likely(p->pid)) {
  1073. list_add_tail(&p->sibling, &p->real_parent->children);
  1074. tracehook_finish_clone(p, clone_flags, trace);
  1075. if (thread_group_leader(p)) {
  1076. if (clone_flags & CLONE_NEWPID)
  1077. p->nsproxy->pid_ns->child_reaper = p;
  1078. p->signal->leader_pid = pid;
  1079. tty_kref_put(p->signal->tty);
  1080. p->signal->tty = tty_kref_get(current->signal->tty);
  1081. set_task_pgrp(p, task_pgrp_nr(current));
  1082. set_task_session(p, task_session_nr(current));
  1083. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1084. attach_pid(p, PIDTYPE_SID, task_session(current));
  1085. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1086. __get_cpu_var(process_counts)++;
  1087. }
  1088. attach_pid(p, PIDTYPE_PID, pid);
  1089. nr_threads++;
  1090. }
  1091. total_forks++;
  1092. spin_unlock(&current->sighand->siglock);
  1093. write_unlock_irq(&tasklist_lock);
  1094. proc_fork_connector(p);
  1095. cgroup_post_fork(p);
  1096. return p;
  1097. bad_fork_free_graph:
  1098. ftrace_graph_exit_task(p);
  1099. bad_fork_free_pid:
  1100. if (pid != &init_struct_pid)
  1101. free_pid(pid);
  1102. bad_fork_cleanup_io:
  1103. put_io_context(p->io_context);
  1104. bad_fork_cleanup_namespaces:
  1105. exit_task_namespaces(p);
  1106. bad_fork_cleanup_keys:
  1107. exit_keys(p);
  1108. bad_fork_cleanup_mm:
  1109. if (p->mm)
  1110. mmput(p->mm);
  1111. bad_fork_cleanup_signal:
  1112. cleanup_signal(p);
  1113. bad_fork_cleanup_sighand:
  1114. __cleanup_sighand(p->sighand);
  1115. bad_fork_cleanup_fs:
  1116. exit_fs(p); /* blocking */
  1117. bad_fork_cleanup_files:
  1118. exit_files(p); /* blocking */
  1119. bad_fork_cleanup_semundo:
  1120. exit_sem(p);
  1121. bad_fork_cleanup_audit:
  1122. audit_free(p);
  1123. bad_fork_cleanup_security:
  1124. security_task_free(p);
  1125. bad_fork_cleanup_policy:
  1126. #ifdef CONFIG_NUMA
  1127. mpol_put(p->mempolicy);
  1128. bad_fork_cleanup_cgroup:
  1129. #endif
  1130. cgroup_exit(p, cgroup_callbacks_done);
  1131. delayacct_tsk_free(p);
  1132. if (p->binfmt)
  1133. module_put(p->binfmt->module);
  1134. bad_fork_cleanup_put_domain:
  1135. module_put(task_thread_info(p)->exec_domain->module);
  1136. bad_fork_cleanup_count:
  1137. put_group_info(p->group_info);
  1138. atomic_dec(&p->user->processes);
  1139. free_uid(p->user);
  1140. bad_fork_free:
  1141. free_task(p);
  1142. fork_out:
  1143. return ERR_PTR(retval);
  1144. }
  1145. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1146. {
  1147. memset(regs, 0, sizeof(struct pt_regs));
  1148. return regs;
  1149. }
  1150. struct task_struct * __cpuinit fork_idle(int cpu)
  1151. {
  1152. struct task_struct *task;
  1153. struct pt_regs regs;
  1154. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1155. &init_struct_pid, 0);
  1156. if (!IS_ERR(task))
  1157. init_idle(task, cpu);
  1158. return task;
  1159. }
  1160. /*
  1161. * Ok, this is the main fork-routine.
  1162. *
  1163. * It copies the process, and if successful kick-starts
  1164. * it and waits for it to finish using the VM if required.
  1165. */
  1166. long do_fork(unsigned long clone_flags,
  1167. unsigned long stack_start,
  1168. struct pt_regs *regs,
  1169. unsigned long stack_size,
  1170. int __user *parent_tidptr,
  1171. int __user *child_tidptr)
  1172. {
  1173. struct task_struct *p;
  1174. int trace = 0;
  1175. long nr;
  1176. /*
  1177. * We hope to recycle these flags after 2.6.26
  1178. */
  1179. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1180. static int __read_mostly count = 100;
  1181. if (count > 0 && printk_ratelimit()) {
  1182. char comm[TASK_COMM_LEN];
  1183. count--;
  1184. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1185. "clone flags 0x%lx\n",
  1186. get_task_comm(comm, current),
  1187. clone_flags & CLONE_STOPPED);
  1188. }
  1189. }
  1190. /*
  1191. * When called from kernel_thread, don't do user tracing stuff.
  1192. */
  1193. if (likely(user_mode(regs)))
  1194. trace = tracehook_prepare_clone(clone_flags);
  1195. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1196. child_tidptr, NULL, trace);
  1197. /*
  1198. * Do this prior waking up the new thread - the thread pointer
  1199. * might get invalid after that point, if the thread exits quickly.
  1200. */
  1201. if (!IS_ERR(p)) {
  1202. struct completion vfork;
  1203. trace_sched_process_fork(current, p);
  1204. nr = task_pid_vnr(p);
  1205. if (clone_flags & CLONE_PARENT_SETTID)
  1206. put_user(nr, parent_tidptr);
  1207. if (clone_flags & CLONE_VFORK) {
  1208. p->vfork_done = &vfork;
  1209. init_completion(&vfork);
  1210. }
  1211. audit_finish_fork(p);
  1212. tracehook_report_clone(trace, regs, clone_flags, nr, p);
  1213. /*
  1214. * We set PF_STARTING at creation in case tracing wants to
  1215. * use this to distinguish a fully live task from one that
  1216. * hasn't gotten to tracehook_report_clone() yet. Now we
  1217. * clear it and set the child going.
  1218. */
  1219. p->flags &= ~PF_STARTING;
  1220. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1221. /*
  1222. * We'll start up with an immediate SIGSTOP.
  1223. */
  1224. sigaddset(&p->pending.signal, SIGSTOP);
  1225. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1226. __set_task_state(p, TASK_STOPPED);
  1227. } else {
  1228. wake_up_new_task(p, clone_flags);
  1229. }
  1230. tracehook_report_clone_complete(trace, regs,
  1231. clone_flags, nr, p);
  1232. if (clone_flags & CLONE_VFORK) {
  1233. freezer_do_not_count();
  1234. wait_for_completion(&vfork);
  1235. freezer_count();
  1236. tracehook_report_vfork_done(p, nr);
  1237. }
  1238. } else {
  1239. nr = PTR_ERR(p);
  1240. }
  1241. return nr;
  1242. }
  1243. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1244. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1245. #endif
  1246. static void sighand_ctor(void *data)
  1247. {
  1248. struct sighand_struct *sighand = data;
  1249. spin_lock_init(&sighand->siglock);
  1250. init_waitqueue_head(&sighand->signalfd_wqh);
  1251. }
  1252. void __init proc_caches_init(void)
  1253. {
  1254. sighand_cachep = kmem_cache_create("sighand_cache",
  1255. sizeof(struct sighand_struct), 0,
  1256. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1257. sighand_ctor);
  1258. signal_cachep = kmem_cache_create("signal_cache",
  1259. sizeof(struct signal_struct), 0,
  1260. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1261. files_cachep = kmem_cache_create("files_cache",
  1262. sizeof(struct files_struct), 0,
  1263. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1264. fs_cachep = kmem_cache_create("fs_cache",
  1265. sizeof(struct fs_struct), 0,
  1266. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1267. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1268. sizeof(struct vm_area_struct), 0,
  1269. SLAB_PANIC, NULL);
  1270. mm_cachep = kmem_cache_create("mm_struct",
  1271. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1272. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1273. }
  1274. /*
  1275. * Check constraints on flags passed to the unshare system call and
  1276. * force unsharing of additional process context as appropriate.
  1277. */
  1278. static void check_unshare_flags(unsigned long *flags_ptr)
  1279. {
  1280. /*
  1281. * If unsharing a thread from a thread group, must also
  1282. * unshare vm.
  1283. */
  1284. if (*flags_ptr & CLONE_THREAD)
  1285. *flags_ptr |= CLONE_VM;
  1286. /*
  1287. * If unsharing vm, must also unshare signal handlers.
  1288. */
  1289. if (*flags_ptr & CLONE_VM)
  1290. *flags_ptr |= CLONE_SIGHAND;
  1291. /*
  1292. * If unsharing signal handlers and the task was created
  1293. * using CLONE_THREAD, then must unshare the thread
  1294. */
  1295. if ((*flags_ptr & CLONE_SIGHAND) &&
  1296. (atomic_read(&current->signal->count) > 1))
  1297. *flags_ptr |= CLONE_THREAD;
  1298. /*
  1299. * If unsharing namespace, must also unshare filesystem information.
  1300. */
  1301. if (*flags_ptr & CLONE_NEWNS)
  1302. *flags_ptr |= CLONE_FS;
  1303. }
  1304. /*
  1305. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1306. */
  1307. static int unshare_thread(unsigned long unshare_flags)
  1308. {
  1309. if (unshare_flags & CLONE_THREAD)
  1310. return -EINVAL;
  1311. return 0;
  1312. }
  1313. /*
  1314. * Unshare the filesystem structure if it is being shared
  1315. */
  1316. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1317. {
  1318. struct fs_struct *fs = current->fs;
  1319. if ((unshare_flags & CLONE_FS) &&
  1320. (fs && atomic_read(&fs->count) > 1)) {
  1321. *new_fsp = __copy_fs_struct(current->fs);
  1322. if (!*new_fsp)
  1323. return -ENOMEM;
  1324. }
  1325. return 0;
  1326. }
  1327. /*
  1328. * Unsharing of sighand is not supported yet
  1329. */
  1330. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1331. {
  1332. struct sighand_struct *sigh = current->sighand;
  1333. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1334. return -EINVAL;
  1335. else
  1336. return 0;
  1337. }
  1338. /*
  1339. * Unshare vm if it is being shared
  1340. */
  1341. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1342. {
  1343. struct mm_struct *mm = current->mm;
  1344. if ((unshare_flags & CLONE_VM) &&
  1345. (mm && atomic_read(&mm->mm_users) > 1)) {
  1346. return -EINVAL;
  1347. }
  1348. return 0;
  1349. }
  1350. /*
  1351. * Unshare file descriptor table if it is being shared
  1352. */
  1353. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1354. {
  1355. struct files_struct *fd = current->files;
  1356. int error = 0;
  1357. if ((unshare_flags & CLONE_FILES) &&
  1358. (fd && atomic_read(&fd->count) > 1)) {
  1359. *new_fdp = dup_fd(fd, &error);
  1360. if (!*new_fdp)
  1361. return error;
  1362. }
  1363. return 0;
  1364. }
  1365. /*
  1366. * unshare allows a process to 'unshare' part of the process
  1367. * context which was originally shared using clone. copy_*
  1368. * functions used by do_fork() cannot be used here directly
  1369. * because they modify an inactive task_struct that is being
  1370. * constructed. Here we are modifying the current, active,
  1371. * task_struct.
  1372. */
  1373. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1374. {
  1375. int err = 0;
  1376. struct fs_struct *fs, *new_fs = NULL;
  1377. struct sighand_struct *new_sigh = NULL;
  1378. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1379. struct files_struct *fd, *new_fd = NULL;
  1380. struct nsproxy *new_nsproxy = NULL;
  1381. int do_sysvsem = 0;
  1382. check_unshare_flags(&unshare_flags);
  1383. /* Return -EINVAL for all unsupported flags */
  1384. err = -EINVAL;
  1385. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1386. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1387. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1388. CLONE_NEWNET))
  1389. goto bad_unshare_out;
  1390. /*
  1391. * CLONE_NEWIPC must also detach from the undolist: after switching
  1392. * to a new ipc namespace, the semaphore arrays from the old
  1393. * namespace are unreachable.
  1394. */
  1395. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1396. do_sysvsem = 1;
  1397. if ((err = unshare_thread(unshare_flags)))
  1398. goto bad_unshare_out;
  1399. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1400. goto bad_unshare_cleanup_thread;
  1401. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1402. goto bad_unshare_cleanup_fs;
  1403. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1404. goto bad_unshare_cleanup_sigh;
  1405. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1406. goto bad_unshare_cleanup_vm;
  1407. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1408. new_fs)))
  1409. goto bad_unshare_cleanup_fd;
  1410. if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
  1411. if (do_sysvsem) {
  1412. /*
  1413. * CLONE_SYSVSEM is equivalent to sys_exit().
  1414. */
  1415. exit_sem(current);
  1416. }
  1417. if (new_nsproxy) {
  1418. switch_task_namespaces(current, new_nsproxy);
  1419. new_nsproxy = NULL;
  1420. }
  1421. task_lock(current);
  1422. if (new_fs) {
  1423. fs = current->fs;
  1424. current->fs = new_fs;
  1425. new_fs = fs;
  1426. }
  1427. if (new_mm) {
  1428. mm = current->mm;
  1429. active_mm = current->active_mm;
  1430. current->mm = new_mm;
  1431. current->active_mm = new_mm;
  1432. activate_mm(active_mm, new_mm);
  1433. new_mm = mm;
  1434. }
  1435. if (new_fd) {
  1436. fd = current->files;
  1437. current->files = new_fd;
  1438. new_fd = fd;
  1439. }
  1440. task_unlock(current);
  1441. }
  1442. if (new_nsproxy)
  1443. put_nsproxy(new_nsproxy);
  1444. bad_unshare_cleanup_fd:
  1445. if (new_fd)
  1446. put_files_struct(new_fd);
  1447. bad_unshare_cleanup_vm:
  1448. if (new_mm)
  1449. mmput(new_mm);
  1450. bad_unshare_cleanup_sigh:
  1451. if (new_sigh)
  1452. if (atomic_dec_and_test(&new_sigh->count))
  1453. kmem_cache_free(sighand_cachep, new_sigh);
  1454. bad_unshare_cleanup_fs:
  1455. if (new_fs)
  1456. put_fs_struct(new_fs);
  1457. bad_unshare_cleanup_thread:
  1458. bad_unshare_out:
  1459. return err;
  1460. }
  1461. /*
  1462. * Helper to unshare the files of the current task.
  1463. * We don't want to expose copy_files internals to
  1464. * the exec layer of the kernel.
  1465. */
  1466. int unshare_files(struct files_struct **displaced)
  1467. {
  1468. struct task_struct *task = current;
  1469. struct files_struct *copy = NULL;
  1470. int error;
  1471. error = unshare_fd(CLONE_FILES, &copy);
  1472. if (error || !copy) {
  1473. *displaced = NULL;
  1474. return error;
  1475. }
  1476. *displaced = task->files;
  1477. task_lock(task);
  1478. task->files = copy;
  1479. task_unlock(task);
  1480. return 0;
  1481. }