dispc.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544
  1. /*
  2. * OMAP2 display controller support
  3. *
  4. * Copyright (C) 2005 Nokia Corporation
  5. * Author: Imre Deak <imre.deak@nokia.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/mm.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/clk.h>
  26. #include <linux/io.h>
  27. #include <plat/sram.h>
  28. #include <plat/board.h>
  29. #include "omapfb.h"
  30. #include "dispc.h"
  31. #define MODULE_NAME "dispc"
  32. #define DSS_BASE 0x48050000
  33. #define DSS_SYSCONFIG 0x0010
  34. #define DISPC_BASE 0x48050400
  35. /* DISPC common */
  36. #define DISPC_REVISION 0x0000
  37. #define DISPC_SYSCONFIG 0x0010
  38. #define DISPC_SYSSTATUS 0x0014
  39. #define DISPC_IRQSTATUS 0x0018
  40. #define DISPC_IRQENABLE 0x001C
  41. #define DISPC_CONTROL 0x0040
  42. #define DISPC_CONFIG 0x0044
  43. #define DISPC_CAPABLE 0x0048
  44. #define DISPC_DEFAULT_COLOR0 0x004C
  45. #define DISPC_DEFAULT_COLOR1 0x0050
  46. #define DISPC_TRANS_COLOR0 0x0054
  47. #define DISPC_TRANS_COLOR1 0x0058
  48. #define DISPC_LINE_STATUS 0x005C
  49. #define DISPC_LINE_NUMBER 0x0060
  50. #define DISPC_TIMING_H 0x0064
  51. #define DISPC_TIMING_V 0x0068
  52. #define DISPC_POL_FREQ 0x006C
  53. #define DISPC_DIVISOR 0x0070
  54. #define DISPC_SIZE_DIG 0x0078
  55. #define DISPC_SIZE_LCD 0x007C
  56. #define DISPC_DATA_CYCLE1 0x01D4
  57. #define DISPC_DATA_CYCLE2 0x01D8
  58. #define DISPC_DATA_CYCLE3 0x01DC
  59. /* DISPC GFX plane */
  60. #define DISPC_GFX_BA0 0x0080
  61. #define DISPC_GFX_BA1 0x0084
  62. #define DISPC_GFX_POSITION 0x0088
  63. #define DISPC_GFX_SIZE 0x008C
  64. #define DISPC_GFX_ATTRIBUTES 0x00A0
  65. #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
  66. #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
  67. #define DISPC_GFX_ROW_INC 0x00AC
  68. #define DISPC_GFX_PIXEL_INC 0x00B0
  69. #define DISPC_GFX_WINDOW_SKIP 0x00B4
  70. #define DISPC_GFX_TABLE_BA 0x00B8
  71. /* DISPC Video plane 1/2 */
  72. #define DISPC_VID1_BASE 0x00BC
  73. #define DISPC_VID2_BASE 0x014C
  74. /* Offsets into DISPC_VID1/2_BASE */
  75. #define DISPC_VID_BA0 0x0000
  76. #define DISPC_VID_BA1 0x0004
  77. #define DISPC_VID_POSITION 0x0008
  78. #define DISPC_VID_SIZE 0x000C
  79. #define DISPC_VID_ATTRIBUTES 0x0010
  80. #define DISPC_VID_FIFO_THRESHOLD 0x0014
  81. #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
  82. #define DISPC_VID_ROW_INC 0x001C
  83. #define DISPC_VID_PIXEL_INC 0x0020
  84. #define DISPC_VID_FIR 0x0024
  85. #define DISPC_VID_PICTURE_SIZE 0x0028
  86. #define DISPC_VID_ACCU0 0x002C
  87. #define DISPC_VID_ACCU1 0x0030
  88. /* 8 elements in 8 byte increments */
  89. #define DISPC_VID_FIR_COEF_H0 0x0034
  90. /* 8 elements in 8 byte increments */
  91. #define DISPC_VID_FIR_COEF_HV0 0x0038
  92. /* 5 elements in 4 byte increments */
  93. #define DISPC_VID_CONV_COEF0 0x0074
  94. #define DISPC_IRQ_FRAMEMASK 0x0001
  95. #define DISPC_IRQ_VSYNC 0x0002
  96. #define DISPC_IRQ_EVSYNC_EVEN 0x0004
  97. #define DISPC_IRQ_EVSYNC_ODD 0x0008
  98. #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
  99. #define DISPC_IRQ_PROG_LINE_NUM 0x0020
  100. #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
  101. #define DISPC_IRQ_GFX_END_WIN 0x0080
  102. #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
  103. #define DISPC_IRQ_OCP_ERR 0x0200
  104. #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
  105. #define DISPC_IRQ_VID1_END_WIN 0x0800
  106. #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
  107. #define DISPC_IRQ_VID2_END_WIN 0x2000
  108. #define DISPC_IRQ_SYNC_LOST 0x4000
  109. #define DISPC_IRQ_MASK_ALL 0x7fff
  110. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  111. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  112. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  113. DISPC_IRQ_SYNC_LOST)
  114. #define RFBI_CONTROL 0x48050040
  115. #define MAX_PALETTE_SIZE (256 * 16)
  116. #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
  117. #define MOD_REG_FLD(reg, mask, val) \
  118. dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
  119. #define OMAP2_SRAM_START 0x40200000
  120. /* Maximum size, in reality this is smaller if SRAM is partially locked. */
  121. #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
  122. /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
  123. #define DISPC_MEMTYPE_NUM 2
  124. #define RESMAP_SIZE(_page_cnt) \
  125. ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
  126. #define RESMAP_PTR(_res_map, _page_nr) \
  127. (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
  128. #define RESMAP_MASK(_page_nr) \
  129. (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
  130. struct resmap {
  131. unsigned long start;
  132. unsigned page_cnt;
  133. unsigned long *map;
  134. };
  135. #define MAX_IRQ_HANDLERS 4
  136. static struct {
  137. void __iomem *base;
  138. struct omapfb_mem_desc mem_desc;
  139. struct resmap *res_map[DISPC_MEMTYPE_NUM];
  140. atomic_t map_count[OMAPFB_PLANE_NUM];
  141. dma_addr_t palette_paddr;
  142. void *palette_vaddr;
  143. int ext_mode;
  144. struct {
  145. u32 irq_mask;
  146. void (*callback)(void *);
  147. void *data;
  148. } irq_handlers[MAX_IRQ_HANDLERS];
  149. struct completion frame_done;
  150. int fir_hinc[OMAPFB_PLANE_NUM];
  151. int fir_vinc[OMAPFB_PLANE_NUM];
  152. struct clk *dss_ick, *dss1_fck;
  153. struct clk *dss_54m_fck;
  154. enum omapfb_update_mode update_mode;
  155. struct omapfb_device *fbdev;
  156. struct omapfb_color_key color_key;
  157. } dispc;
  158. static void enable_lcd_clocks(int enable);
  159. static void inline dispc_write_reg(int idx, u32 val)
  160. {
  161. __raw_writel(val, dispc.base + idx);
  162. }
  163. static u32 inline dispc_read_reg(int idx)
  164. {
  165. u32 l = __raw_readl(dispc.base + idx);
  166. return l;
  167. }
  168. /* Select RFBI or bypass mode */
  169. static void enable_rfbi_mode(int enable)
  170. {
  171. void __iomem *rfbi_control;
  172. u32 l;
  173. l = dispc_read_reg(DISPC_CONTROL);
  174. /* Enable RFBI, GPIO0/1 */
  175. l &= ~((1 << 11) | (1 << 15) | (1 << 16));
  176. l |= enable ? (1 << 11) : 0;
  177. /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
  178. l |= 1 << 15;
  179. l |= enable ? 0 : (1 << 16);
  180. dispc_write_reg(DISPC_CONTROL, l);
  181. /* Set bypass mode in RFBI module */
  182. rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
  183. if (!rfbi_control) {
  184. pr_err("Unable to ioremap rfbi_control\n");
  185. return;
  186. }
  187. l = __raw_readl(rfbi_control);
  188. l |= enable ? 0 : (1 << 1);
  189. __raw_writel(l, rfbi_control);
  190. iounmap(rfbi_control);
  191. }
  192. static void set_lcd_data_lines(int data_lines)
  193. {
  194. u32 l;
  195. int code = 0;
  196. switch (data_lines) {
  197. case 12:
  198. code = 0;
  199. break;
  200. case 16:
  201. code = 1;
  202. break;
  203. case 18:
  204. code = 2;
  205. break;
  206. case 24:
  207. code = 3;
  208. break;
  209. default:
  210. BUG();
  211. }
  212. l = dispc_read_reg(DISPC_CONTROL);
  213. l &= ~(0x03 << 8);
  214. l |= code << 8;
  215. dispc_write_reg(DISPC_CONTROL, l);
  216. }
  217. static void set_load_mode(int mode)
  218. {
  219. BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
  220. DISPC_LOAD_CLUT_ONCE_FRAME));
  221. MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
  222. }
  223. void omap_dispc_set_lcd_size(int x, int y)
  224. {
  225. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  226. enable_lcd_clocks(1);
  227. MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  228. ((y - 1) << 16) | (x - 1));
  229. enable_lcd_clocks(0);
  230. }
  231. EXPORT_SYMBOL(omap_dispc_set_lcd_size);
  232. void omap_dispc_set_digit_size(int x, int y)
  233. {
  234. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  235. enable_lcd_clocks(1);
  236. MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  237. ((y - 1) << 16) | (x - 1));
  238. enable_lcd_clocks(0);
  239. }
  240. EXPORT_SYMBOL(omap_dispc_set_digit_size);
  241. static void setup_plane_fifo(int plane, int ext_mode)
  242. {
  243. const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  244. DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
  245. DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
  246. const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  247. DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
  248. DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
  249. int low, high;
  250. u32 l;
  251. BUG_ON(plane > 2);
  252. l = dispc_read_reg(fsz_reg[plane]);
  253. l &= FLD_MASK(0, 11);
  254. if (ext_mode) {
  255. low = l * 3 / 4;
  256. high = l;
  257. } else {
  258. low = l / 4;
  259. high = l * 3 / 4;
  260. }
  261. MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
  262. (high << 16) | low);
  263. }
  264. void omap_dispc_enable_lcd_out(int enable)
  265. {
  266. enable_lcd_clocks(1);
  267. MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
  268. enable_lcd_clocks(0);
  269. }
  270. EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
  271. void omap_dispc_enable_digit_out(int enable)
  272. {
  273. enable_lcd_clocks(1);
  274. MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
  275. enable_lcd_clocks(0);
  276. }
  277. EXPORT_SYMBOL(omap_dispc_enable_digit_out);
  278. static inline int _setup_plane(int plane, int channel_out,
  279. u32 paddr, int screen_width,
  280. int pos_x, int pos_y, int width, int height,
  281. int color_mode)
  282. {
  283. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  284. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  285. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  286. const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
  287. DISPC_VID2_BASE + DISPC_VID_BA0 };
  288. const u32 ps_reg[] = { DISPC_GFX_POSITION,
  289. DISPC_VID1_BASE + DISPC_VID_POSITION,
  290. DISPC_VID2_BASE + DISPC_VID_POSITION };
  291. const u32 sz_reg[] = { DISPC_GFX_SIZE,
  292. DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
  293. DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
  294. const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
  295. DISPC_VID1_BASE + DISPC_VID_ROW_INC,
  296. DISPC_VID2_BASE + DISPC_VID_ROW_INC };
  297. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  298. DISPC_VID2_BASE + DISPC_VID_SIZE };
  299. int chout_shift, burst_shift;
  300. int chout_val;
  301. int color_code;
  302. int bpp;
  303. int cconv_en;
  304. int set_vsize;
  305. u32 l;
  306. #ifdef VERBOSE
  307. dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
  308. " pos_x %d pos_y %d width %d height %d color_mode %d\n",
  309. plane, channel_out, paddr, screen_width, pos_x, pos_y,
  310. width, height, color_mode);
  311. #endif
  312. set_vsize = 0;
  313. switch (plane) {
  314. case OMAPFB_PLANE_GFX:
  315. burst_shift = 6;
  316. chout_shift = 8;
  317. break;
  318. case OMAPFB_PLANE_VID1:
  319. case OMAPFB_PLANE_VID2:
  320. burst_shift = 14;
  321. chout_shift = 16;
  322. set_vsize = 1;
  323. break;
  324. default:
  325. return -EINVAL;
  326. }
  327. switch (channel_out) {
  328. case OMAPFB_CHANNEL_OUT_LCD:
  329. chout_val = 0;
  330. break;
  331. case OMAPFB_CHANNEL_OUT_DIGIT:
  332. chout_val = 1;
  333. break;
  334. default:
  335. return -EINVAL;
  336. }
  337. cconv_en = 0;
  338. switch (color_mode) {
  339. case OMAPFB_COLOR_RGB565:
  340. color_code = DISPC_RGB_16_BPP;
  341. bpp = 16;
  342. break;
  343. case OMAPFB_COLOR_YUV422:
  344. if (plane == 0)
  345. return -EINVAL;
  346. color_code = DISPC_UYVY_422;
  347. cconv_en = 1;
  348. bpp = 16;
  349. break;
  350. case OMAPFB_COLOR_YUY422:
  351. if (plane == 0)
  352. return -EINVAL;
  353. color_code = DISPC_YUV2_422;
  354. cconv_en = 1;
  355. bpp = 16;
  356. break;
  357. default:
  358. return -EINVAL;
  359. }
  360. l = dispc_read_reg(at_reg[plane]);
  361. l &= ~(0x0f << 1);
  362. l |= color_code << 1;
  363. l &= ~(1 << 9);
  364. l |= cconv_en << 9;
  365. l &= ~(0x03 << burst_shift);
  366. l |= DISPC_BURST_8x32 << burst_shift;
  367. l &= ~(1 << chout_shift);
  368. l |= chout_val << chout_shift;
  369. dispc_write_reg(at_reg[plane], l);
  370. dispc_write_reg(ba_reg[plane], paddr);
  371. MOD_REG_FLD(ps_reg[plane],
  372. FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
  373. MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
  374. ((height - 1) << 16) | (width - 1));
  375. if (set_vsize) {
  376. /* Set video size if set_scale hasn't set it */
  377. if (!dispc.fir_vinc[plane])
  378. MOD_REG_FLD(vs_reg[plane],
  379. FLD_MASK(16, 11), (height - 1) << 16);
  380. if (!dispc.fir_hinc[plane])
  381. MOD_REG_FLD(vs_reg[plane],
  382. FLD_MASK(0, 11), width - 1);
  383. }
  384. dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
  385. return height * screen_width * bpp / 8;
  386. }
  387. static int omap_dispc_setup_plane(int plane, int channel_out,
  388. unsigned long offset,
  389. int screen_width,
  390. int pos_x, int pos_y, int width, int height,
  391. int color_mode)
  392. {
  393. u32 paddr;
  394. int r;
  395. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  396. return -EINVAL;
  397. paddr = dispc.mem_desc.region[plane].paddr + offset;
  398. enable_lcd_clocks(1);
  399. r = _setup_plane(plane, channel_out, paddr,
  400. screen_width,
  401. pos_x, pos_y, width, height, color_mode);
  402. enable_lcd_clocks(0);
  403. return r;
  404. }
  405. static void write_firh_reg(int plane, int reg, u32 value)
  406. {
  407. u32 base;
  408. if (plane == 1)
  409. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
  410. else
  411. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
  412. dispc_write_reg(base + reg * 8, value);
  413. }
  414. static void write_firhv_reg(int plane, int reg, u32 value)
  415. {
  416. u32 base;
  417. if (plane == 1)
  418. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
  419. else
  420. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
  421. dispc_write_reg(base + reg * 8, value);
  422. }
  423. static void set_upsampling_coef_table(int plane)
  424. {
  425. const u32 coef[][2] = {
  426. { 0x00800000, 0x00800000 },
  427. { 0x0D7CF800, 0x037B02FF },
  428. { 0x1E70F5FF, 0x0C6F05FE },
  429. { 0x335FF5FE, 0x205907FB },
  430. { 0xF74949F7, 0x00404000 },
  431. { 0xF55F33FB, 0x075920FE },
  432. { 0xF5701EFE, 0x056F0CFF },
  433. { 0xF87C0DFF, 0x027B0300 },
  434. };
  435. int i;
  436. for (i = 0; i < 8; i++) {
  437. write_firh_reg(plane, i, coef[i][0]);
  438. write_firhv_reg(plane, i, coef[i][1]);
  439. }
  440. }
  441. static int omap_dispc_set_scale(int plane,
  442. int orig_width, int orig_height,
  443. int out_width, int out_height)
  444. {
  445. const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  446. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  447. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  448. DISPC_VID2_BASE + DISPC_VID_SIZE };
  449. const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
  450. DISPC_VID2_BASE + DISPC_VID_FIR };
  451. u32 l;
  452. int fir_hinc;
  453. int fir_vinc;
  454. if ((unsigned)plane > OMAPFB_PLANE_NUM)
  455. return -ENODEV;
  456. if (plane == OMAPFB_PLANE_GFX &&
  457. (out_width != orig_width || out_height != orig_height))
  458. return -EINVAL;
  459. enable_lcd_clocks(1);
  460. if (orig_width < out_width) {
  461. /*
  462. * Upsampling.
  463. * Currently you can only scale both dimensions in one way.
  464. */
  465. if (orig_height > out_height ||
  466. orig_width * 8 < out_width ||
  467. orig_height * 8 < out_height) {
  468. enable_lcd_clocks(0);
  469. return -EINVAL;
  470. }
  471. set_upsampling_coef_table(plane);
  472. } else if (orig_width > out_width) {
  473. /* Downsampling not yet supported
  474. */
  475. enable_lcd_clocks(0);
  476. return -EINVAL;
  477. }
  478. if (!orig_width || orig_width == out_width)
  479. fir_hinc = 0;
  480. else
  481. fir_hinc = 1024 * orig_width / out_width;
  482. if (!orig_height || orig_height == out_height)
  483. fir_vinc = 0;
  484. else
  485. fir_vinc = 1024 * orig_height / out_height;
  486. dispc.fir_hinc[plane] = fir_hinc;
  487. dispc.fir_vinc[plane] = fir_vinc;
  488. MOD_REG_FLD(fir_reg[plane],
  489. FLD_MASK(16, 12) | FLD_MASK(0, 12),
  490. ((fir_vinc & 4095) << 16) |
  491. (fir_hinc & 4095));
  492. dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
  493. "orig_height %d fir_hinc %d fir_vinc %d\n",
  494. out_width, out_height, orig_width, orig_height,
  495. fir_hinc, fir_vinc);
  496. MOD_REG_FLD(vs_reg[plane],
  497. FLD_MASK(16, 11) | FLD_MASK(0, 11),
  498. ((out_height - 1) << 16) | (out_width - 1));
  499. l = dispc_read_reg(at_reg[plane]);
  500. l &= ~(0x03 << 5);
  501. l |= fir_hinc ? (1 << 5) : 0;
  502. l |= fir_vinc ? (1 << 6) : 0;
  503. dispc_write_reg(at_reg[plane], l);
  504. enable_lcd_clocks(0);
  505. return 0;
  506. }
  507. static int omap_dispc_enable_plane(int plane, int enable)
  508. {
  509. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  510. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  511. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  512. if ((unsigned int)plane > dispc.mem_desc.region_cnt)
  513. return -EINVAL;
  514. enable_lcd_clocks(1);
  515. MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
  516. enable_lcd_clocks(0);
  517. return 0;
  518. }
  519. static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
  520. {
  521. u32 df_reg, tr_reg;
  522. int shift, val;
  523. switch (ck->channel_out) {
  524. case OMAPFB_CHANNEL_OUT_LCD:
  525. df_reg = DISPC_DEFAULT_COLOR0;
  526. tr_reg = DISPC_TRANS_COLOR0;
  527. shift = 10;
  528. break;
  529. case OMAPFB_CHANNEL_OUT_DIGIT:
  530. df_reg = DISPC_DEFAULT_COLOR1;
  531. tr_reg = DISPC_TRANS_COLOR1;
  532. shift = 12;
  533. break;
  534. default:
  535. return -EINVAL;
  536. }
  537. switch (ck->key_type) {
  538. case OMAPFB_COLOR_KEY_DISABLED:
  539. val = 0;
  540. break;
  541. case OMAPFB_COLOR_KEY_GFX_DST:
  542. val = 1;
  543. break;
  544. case OMAPFB_COLOR_KEY_VID_SRC:
  545. val = 3;
  546. break;
  547. default:
  548. return -EINVAL;
  549. }
  550. enable_lcd_clocks(1);
  551. MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
  552. if (val != 0)
  553. dispc_write_reg(tr_reg, ck->trans_key);
  554. dispc_write_reg(df_reg, ck->background);
  555. enable_lcd_clocks(0);
  556. dispc.color_key = *ck;
  557. return 0;
  558. }
  559. static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
  560. {
  561. *ck = dispc.color_key;
  562. return 0;
  563. }
  564. static void load_palette(void)
  565. {
  566. }
  567. static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
  568. {
  569. int r = 0;
  570. if (mode != dispc.update_mode) {
  571. switch (mode) {
  572. case OMAPFB_AUTO_UPDATE:
  573. case OMAPFB_MANUAL_UPDATE:
  574. enable_lcd_clocks(1);
  575. omap_dispc_enable_lcd_out(1);
  576. dispc.update_mode = mode;
  577. break;
  578. case OMAPFB_UPDATE_DISABLED:
  579. init_completion(&dispc.frame_done);
  580. omap_dispc_enable_lcd_out(0);
  581. if (!wait_for_completion_timeout(&dispc.frame_done,
  582. msecs_to_jiffies(500))) {
  583. dev_err(dispc.fbdev->dev,
  584. "timeout waiting for FRAME DONE\n");
  585. }
  586. dispc.update_mode = mode;
  587. enable_lcd_clocks(0);
  588. break;
  589. default:
  590. r = -EINVAL;
  591. }
  592. }
  593. return r;
  594. }
  595. static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
  596. {
  597. caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
  598. if (plane > 0)
  599. caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
  600. caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
  601. (1 << OMAPFB_COLOR_YUV422) |
  602. (1 << OMAPFB_COLOR_YUY422);
  603. if (plane == 0)
  604. caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
  605. (1 << OMAPFB_COLOR_CLUT_4BPP) |
  606. (1 << OMAPFB_COLOR_CLUT_2BPP) |
  607. (1 << OMAPFB_COLOR_CLUT_1BPP) |
  608. (1 << OMAPFB_COLOR_RGB444);
  609. }
  610. static enum omapfb_update_mode omap_dispc_get_update_mode(void)
  611. {
  612. return dispc.update_mode;
  613. }
  614. static void setup_color_conv_coef(void)
  615. {
  616. u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
  617. int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
  618. int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
  619. int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
  620. int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
  621. const struct color_conv_coef {
  622. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  623. int full_range;
  624. } ctbl_bt601_5 = {
  625. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  626. };
  627. const struct color_conv_coef *ct;
  628. #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
  629. ct = &ctbl_bt601_5;
  630. MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
  631. MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  632. MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  633. MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
  634. MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
  635. MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
  636. MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  637. MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  638. MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
  639. MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
  640. #undef CVAL
  641. MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
  642. MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
  643. }
  644. static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
  645. {
  646. unsigned long fck, lck;
  647. *lck_div = 1;
  648. pck = max(1, pck);
  649. fck = clk_get_rate(dispc.dss1_fck);
  650. lck = fck;
  651. *pck_div = (lck + pck - 1) / pck;
  652. if (is_tft)
  653. *pck_div = max(2, *pck_div);
  654. else
  655. *pck_div = max(3, *pck_div);
  656. if (*pck_div > 255) {
  657. *pck_div = 255;
  658. lck = pck * *pck_div;
  659. *lck_div = fck / lck;
  660. BUG_ON(*lck_div < 1);
  661. if (*lck_div > 255) {
  662. *lck_div = 255;
  663. dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
  664. pck / 1000);
  665. }
  666. }
  667. }
  668. static void set_lcd_tft_mode(int enable)
  669. {
  670. u32 mask;
  671. mask = 1 << 3;
  672. MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
  673. }
  674. static void set_lcd_timings(void)
  675. {
  676. u32 l;
  677. int lck_div, pck_div;
  678. struct lcd_panel *panel = dispc.fbdev->panel;
  679. int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
  680. unsigned long fck;
  681. l = dispc_read_reg(DISPC_TIMING_H);
  682. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  683. l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
  684. l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
  685. l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
  686. dispc_write_reg(DISPC_TIMING_H, l);
  687. l = dispc_read_reg(DISPC_TIMING_V);
  688. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  689. l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
  690. l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
  691. l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
  692. dispc_write_reg(DISPC_TIMING_V, l);
  693. l = dispc_read_reg(DISPC_POL_FREQ);
  694. l &= ~FLD_MASK(12, 6);
  695. l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
  696. l |= panel->acb & 0xff;
  697. dispc_write_reg(DISPC_POL_FREQ, l);
  698. calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
  699. l = dispc_read_reg(DISPC_DIVISOR);
  700. l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
  701. l |= (lck_div << 16) | (pck_div << 0);
  702. dispc_write_reg(DISPC_DIVISOR, l);
  703. /* update panel info with the exact clock */
  704. fck = clk_get_rate(dispc.dss1_fck);
  705. panel->pixel_clock = fck / lck_div / pck_div / 1000;
  706. }
  707. static void recalc_irq_mask(void)
  708. {
  709. int i;
  710. unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
  711. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  712. if (!dispc.irq_handlers[i].callback)
  713. continue;
  714. irq_mask |= dispc.irq_handlers[i].irq_mask;
  715. }
  716. enable_lcd_clocks(1);
  717. MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
  718. enable_lcd_clocks(0);
  719. }
  720. int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
  721. void *data)
  722. {
  723. int i;
  724. BUG_ON(callback == NULL);
  725. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  726. if (dispc.irq_handlers[i].callback)
  727. continue;
  728. dispc.irq_handlers[i].irq_mask = irq_mask;
  729. dispc.irq_handlers[i].callback = callback;
  730. dispc.irq_handlers[i].data = data;
  731. recalc_irq_mask();
  732. return 0;
  733. }
  734. return -EBUSY;
  735. }
  736. EXPORT_SYMBOL(omap_dispc_request_irq);
  737. void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
  738. void *data)
  739. {
  740. int i;
  741. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  742. if (dispc.irq_handlers[i].callback == callback &&
  743. dispc.irq_handlers[i].data == data) {
  744. dispc.irq_handlers[i].irq_mask = 0;
  745. dispc.irq_handlers[i].callback = NULL;
  746. dispc.irq_handlers[i].data = NULL;
  747. recalc_irq_mask();
  748. return;
  749. }
  750. }
  751. BUG();
  752. }
  753. EXPORT_SYMBOL(omap_dispc_free_irq);
  754. static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
  755. {
  756. u32 stat;
  757. int i = 0;
  758. enable_lcd_clocks(1);
  759. stat = dispc_read_reg(DISPC_IRQSTATUS);
  760. if (stat & DISPC_IRQ_FRAMEMASK)
  761. complete(&dispc.frame_done);
  762. if (stat & DISPC_IRQ_MASK_ERROR) {
  763. if (printk_ratelimit()) {
  764. dev_err(dispc.fbdev->dev, "irq error status %04x\n",
  765. stat & 0x7fff);
  766. }
  767. }
  768. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  769. if (unlikely(dispc.irq_handlers[i].callback &&
  770. (stat & dispc.irq_handlers[i].irq_mask)))
  771. dispc.irq_handlers[i].callback(
  772. dispc.irq_handlers[i].data);
  773. }
  774. dispc_write_reg(DISPC_IRQSTATUS, stat);
  775. enable_lcd_clocks(0);
  776. return IRQ_HANDLED;
  777. }
  778. static int get_dss_clocks(void)
  779. {
  780. dispc.dss_ick = clk_get(dispc.fbdev->dev, "ick");
  781. if (IS_ERR(dispc.dss_ick)) {
  782. dev_err(dispc.fbdev->dev, "can't get ick\n");
  783. return PTR_ERR(dispc.dss_ick);
  784. }
  785. dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck");
  786. if (IS_ERR(dispc.dss1_fck)) {
  787. dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
  788. clk_put(dispc.dss_ick);
  789. return PTR_ERR(dispc.dss1_fck);
  790. }
  791. dispc.dss_54m_fck = clk_get(dispc.fbdev->dev, "tv_fck");
  792. if (IS_ERR(dispc.dss_54m_fck)) {
  793. dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
  794. clk_put(dispc.dss_ick);
  795. clk_put(dispc.dss1_fck);
  796. return PTR_ERR(dispc.dss_54m_fck);
  797. }
  798. return 0;
  799. }
  800. static void put_dss_clocks(void)
  801. {
  802. clk_put(dispc.dss_54m_fck);
  803. clk_put(dispc.dss1_fck);
  804. clk_put(dispc.dss_ick);
  805. }
  806. static void enable_lcd_clocks(int enable)
  807. {
  808. if (enable) {
  809. clk_enable(dispc.dss_ick);
  810. clk_enable(dispc.dss1_fck);
  811. } else {
  812. clk_disable(dispc.dss1_fck);
  813. clk_disable(dispc.dss_ick);
  814. }
  815. }
  816. static void enable_digit_clocks(int enable)
  817. {
  818. if (enable)
  819. clk_enable(dispc.dss_54m_fck);
  820. else
  821. clk_disable(dispc.dss_54m_fck);
  822. }
  823. static void omap_dispc_suspend(void)
  824. {
  825. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  826. init_completion(&dispc.frame_done);
  827. omap_dispc_enable_lcd_out(0);
  828. if (!wait_for_completion_timeout(&dispc.frame_done,
  829. msecs_to_jiffies(500))) {
  830. dev_err(dispc.fbdev->dev,
  831. "timeout waiting for FRAME DONE\n");
  832. }
  833. enable_lcd_clocks(0);
  834. }
  835. }
  836. static void omap_dispc_resume(void)
  837. {
  838. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  839. enable_lcd_clocks(1);
  840. if (!dispc.ext_mode) {
  841. set_lcd_timings();
  842. load_palette();
  843. }
  844. omap_dispc_enable_lcd_out(1);
  845. }
  846. }
  847. static int omap_dispc_update_window(struct fb_info *fbi,
  848. struct omapfb_update_window *win,
  849. void (*complete_callback)(void *arg),
  850. void *complete_callback_data)
  851. {
  852. return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
  853. }
  854. static int mmap_kern(struct omapfb_mem_region *region)
  855. {
  856. struct vm_struct *kvma;
  857. struct vm_area_struct vma;
  858. pgprot_t pgprot;
  859. unsigned long vaddr;
  860. kvma = get_vm_area(region->size, VM_IOREMAP);
  861. if (kvma == NULL) {
  862. dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
  863. return -ENOMEM;
  864. }
  865. vma.vm_mm = &init_mm;
  866. vaddr = (unsigned long)kvma->addr;
  867. pgprot = pgprot_writecombine(pgprot_kernel);
  868. vma.vm_start = vaddr;
  869. vma.vm_end = vaddr + region->size;
  870. if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
  871. region->size, pgprot) < 0) {
  872. dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
  873. return -EAGAIN;
  874. }
  875. region->vaddr = (void *)vaddr;
  876. return 0;
  877. }
  878. static void mmap_user_open(struct vm_area_struct *vma)
  879. {
  880. int plane = (int)vma->vm_private_data;
  881. atomic_inc(&dispc.map_count[plane]);
  882. }
  883. static void mmap_user_close(struct vm_area_struct *vma)
  884. {
  885. int plane = (int)vma->vm_private_data;
  886. atomic_dec(&dispc.map_count[plane]);
  887. }
  888. static const struct vm_operations_struct mmap_user_ops = {
  889. .open = mmap_user_open,
  890. .close = mmap_user_close,
  891. };
  892. static int omap_dispc_mmap_user(struct fb_info *info,
  893. struct vm_area_struct *vma)
  894. {
  895. struct omapfb_plane_struct *plane = info->par;
  896. unsigned long off;
  897. unsigned long start;
  898. u32 len;
  899. if (vma->vm_end - vma->vm_start == 0)
  900. return 0;
  901. if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
  902. return -EINVAL;
  903. off = vma->vm_pgoff << PAGE_SHIFT;
  904. start = info->fix.smem_start;
  905. len = info->fix.smem_len;
  906. if (off >= len)
  907. return -EINVAL;
  908. if ((vma->vm_end - vma->vm_start + off) > len)
  909. return -EINVAL;
  910. off += start;
  911. vma->vm_pgoff = off >> PAGE_SHIFT;
  912. vma->vm_flags |= VM_IO | VM_RESERVED;
  913. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  914. vma->vm_ops = &mmap_user_ops;
  915. vma->vm_private_data = (void *)plane->idx;
  916. if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
  917. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  918. return -EAGAIN;
  919. /* vm_ops.open won't be called for mmap itself. */
  920. atomic_inc(&dispc.map_count[plane->idx]);
  921. return 0;
  922. }
  923. static void unmap_kern(struct omapfb_mem_region *region)
  924. {
  925. vunmap(region->vaddr);
  926. }
  927. static int alloc_palette_ram(void)
  928. {
  929. dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  930. MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
  931. if (dispc.palette_vaddr == NULL) {
  932. dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
  933. return -ENOMEM;
  934. }
  935. return 0;
  936. }
  937. static void free_palette_ram(void)
  938. {
  939. dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
  940. dispc.palette_vaddr, dispc.palette_paddr);
  941. }
  942. static int alloc_fbmem(struct omapfb_mem_region *region)
  943. {
  944. region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  945. region->size, &region->paddr, GFP_KERNEL);
  946. if (region->vaddr == NULL) {
  947. dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
  948. return -ENOMEM;
  949. }
  950. return 0;
  951. }
  952. static void free_fbmem(struct omapfb_mem_region *region)
  953. {
  954. dma_free_writecombine(dispc.fbdev->dev, region->size,
  955. region->vaddr, region->paddr);
  956. }
  957. static struct resmap *init_resmap(unsigned long start, size_t size)
  958. {
  959. unsigned page_cnt;
  960. struct resmap *res_map;
  961. page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
  962. res_map =
  963. kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
  964. if (res_map == NULL)
  965. return NULL;
  966. res_map->start = start;
  967. res_map->page_cnt = page_cnt;
  968. res_map->map = (unsigned long *)(res_map + 1);
  969. return res_map;
  970. }
  971. static void cleanup_resmap(struct resmap *res_map)
  972. {
  973. kfree(res_map);
  974. }
  975. static inline int resmap_mem_type(unsigned long start)
  976. {
  977. if (start >= OMAP2_SRAM_START &&
  978. start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
  979. return OMAPFB_MEMTYPE_SRAM;
  980. else
  981. return OMAPFB_MEMTYPE_SDRAM;
  982. }
  983. static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
  984. {
  985. return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
  986. }
  987. static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
  988. {
  989. BUG_ON(resmap_page_reserved(res_map, page_nr));
  990. *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
  991. }
  992. static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
  993. {
  994. BUG_ON(!resmap_page_reserved(res_map, page_nr));
  995. *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
  996. }
  997. static void resmap_reserve_region(unsigned long start, size_t size)
  998. {
  999. struct resmap *res_map;
  1000. unsigned start_page;
  1001. unsigned end_page;
  1002. int mtype;
  1003. unsigned i;
  1004. mtype = resmap_mem_type(start);
  1005. res_map = dispc.res_map[mtype];
  1006. dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
  1007. mtype, start, size);
  1008. start_page = (start - res_map->start) / PAGE_SIZE;
  1009. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1010. for (i = start_page; i < end_page; i++)
  1011. resmap_reserve_page(res_map, i);
  1012. }
  1013. static void resmap_free_region(unsigned long start, size_t size)
  1014. {
  1015. struct resmap *res_map;
  1016. unsigned start_page;
  1017. unsigned end_page;
  1018. unsigned i;
  1019. int mtype;
  1020. mtype = resmap_mem_type(start);
  1021. res_map = dispc.res_map[mtype];
  1022. dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
  1023. mtype, start, size);
  1024. start_page = (start - res_map->start) / PAGE_SIZE;
  1025. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1026. for (i = start_page; i < end_page; i++)
  1027. resmap_free_page(res_map, i);
  1028. }
  1029. static unsigned long resmap_alloc_region(int mtype, size_t size)
  1030. {
  1031. unsigned i;
  1032. unsigned total;
  1033. unsigned start_page;
  1034. unsigned long start;
  1035. struct resmap *res_map = dispc.res_map[mtype];
  1036. BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
  1037. size = PAGE_ALIGN(size) / PAGE_SIZE;
  1038. start_page = 0;
  1039. total = 0;
  1040. for (i = 0; i < res_map->page_cnt; i++) {
  1041. if (resmap_page_reserved(res_map, i)) {
  1042. start_page = i + 1;
  1043. total = 0;
  1044. } else if (++total == size)
  1045. break;
  1046. }
  1047. if (total < size)
  1048. return 0;
  1049. start = res_map->start + start_page * PAGE_SIZE;
  1050. resmap_reserve_region(start, size * PAGE_SIZE);
  1051. return start;
  1052. }
  1053. /* Note that this will only work for user mappings, we don't deal with
  1054. * kernel mappings here, so fbcon will keep using the old region.
  1055. */
  1056. static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
  1057. unsigned long *paddr)
  1058. {
  1059. struct omapfb_mem_region *rg;
  1060. unsigned long new_addr = 0;
  1061. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  1062. return -EINVAL;
  1063. if (mem_type >= DISPC_MEMTYPE_NUM)
  1064. return -EINVAL;
  1065. if (dispc.res_map[mem_type] == NULL)
  1066. return -ENOMEM;
  1067. rg = &dispc.mem_desc.region[plane];
  1068. if (size == rg->size && mem_type == rg->type)
  1069. return 0;
  1070. if (atomic_read(&dispc.map_count[plane]))
  1071. return -EBUSY;
  1072. if (rg->size != 0)
  1073. resmap_free_region(rg->paddr, rg->size);
  1074. if (size != 0) {
  1075. new_addr = resmap_alloc_region(mem_type, size);
  1076. if (!new_addr) {
  1077. /* Reallocate old region. */
  1078. resmap_reserve_region(rg->paddr, rg->size);
  1079. return -ENOMEM;
  1080. }
  1081. }
  1082. rg->paddr = new_addr;
  1083. rg->size = size;
  1084. rg->type = mem_type;
  1085. *paddr = new_addr;
  1086. return 0;
  1087. }
  1088. static int setup_fbmem(struct omapfb_mem_desc *req_md)
  1089. {
  1090. struct omapfb_mem_region *rg;
  1091. int i;
  1092. int r;
  1093. unsigned long mem_start[DISPC_MEMTYPE_NUM];
  1094. unsigned long mem_end[DISPC_MEMTYPE_NUM];
  1095. if (!req_md->region_cnt) {
  1096. dev_err(dispc.fbdev->dev, "no memory regions defined\n");
  1097. return -ENOENT;
  1098. }
  1099. rg = &req_md->region[0];
  1100. memset(mem_start, 0xff, sizeof(mem_start));
  1101. memset(mem_end, 0, sizeof(mem_end));
  1102. for (i = 0; i < req_md->region_cnt; i++, rg++) {
  1103. int mtype;
  1104. if (rg->paddr) {
  1105. rg->alloc = 0;
  1106. if (rg->vaddr == NULL) {
  1107. rg->map = 1;
  1108. if ((r = mmap_kern(rg)) < 0)
  1109. return r;
  1110. }
  1111. } else {
  1112. if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
  1113. dev_err(dispc.fbdev->dev,
  1114. "unsupported memory type\n");
  1115. return -EINVAL;
  1116. }
  1117. rg->alloc = rg->map = 1;
  1118. if ((r = alloc_fbmem(rg)) < 0)
  1119. return r;
  1120. }
  1121. mtype = rg->type;
  1122. if (rg->paddr < mem_start[mtype])
  1123. mem_start[mtype] = rg->paddr;
  1124. if (rg->paddr + rg->size > mem_end[mtype])
  1125. mem_end[mtype] = rg->paddr + rg->size;
  1126. }
  1127. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1128. unsigned long start;
  1129. size_t size;
  1130. if (mem_end[i] == 0)
  1131. continue;
  1132. start = mem_start[i];
  1133. size = mem_end[i] - start;
  1134. dispc.res_map[i] = init_resmap(start, size);
  1135. r = -ENOMEM;
  1136. if (dispc.res_map[i] == NULL)
  1137. goto fail;
  1138. /* Initial state is that everything is reserved. This
  1139. * includes possible holes as well, which will never be
  1140. * freed.
  1141. */
  1142. resmap_reserve_region(start, size);
  1143. }
  1144. dispc.mem_desc = *req_md;
  1145. return 0;
  1146. fail:
  1147. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1148. if (dispc.res_map[i] != NULL)
  1149. cleanup_resmap(dispc.res_map[i]);
  1150. }
  1151. return r;
  1152. }
  1153. static void cleanup_fbmem(void)
  1154. {
  1155. struct omapfb_mem_region *rg;
  1156. int i;
  1157. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1158. if (dispc.res_map[i] != NULL)
  1159. cleanup_resmap(dispc.res_map[i]);
  1160. }
  1161. rg = &dispc.mem_desc.region[0];
  1162. for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
  1163. if (rg->alloc)
  1164. free_fbmem(rg);
  1165. else {
  1166. if (rg->map)
  1167. unmap_kern(rg);
  1168. }
  1169. }
  1170. }
  1171. static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
  1172. struct omapfb_mem_desc *req_vram)
  1173. {
  1174. int r;
  1175. u32 l;
  1176. struct lcd_panel *panel = fbdev->panel;
  1177. void __iomem *ram_fw_base;
  1178. int tmo = 10000;
  1179. int skip_init = 0;
  1180. int i;
  1181. memset(&dispc, 0, sizeof(dispc));
  1182. dispc.base = ioremap(DISPC_BASE, SZ_1K);
  1183. if (!dispc.base) {
  1184. dev_err(fbdev->dev, "can't ioremap DISPC\n");
  1185. return -ENOMEM;
  1186. }
  1187. dispc.fbdev = fbdev;
  1188. dispc.ext_mode = ext_mode;
  1189. init_completion(&dispc.frame_done);
  1190. if ((r = get_dss_clocks()) < 0)
  1191. goto fail0;
  1192. enable_lcd_clocks(1);
  1193. #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
  1194. l = dispc_read_reg(DISPC_CONTROL);
  1195. /* LCD enabled ? */
  1196. if (l & 1) {
  1197. pr_info("omapfb: skipping hardware initialization\n");
  1198. skip_init = 1;
  1199. }
  1200. #endif
  1201. if (!skip_init) {
  1202. /* Reset monitoring works only w/ the 54M clk */
  1203. enable_digit_clocks(1);
  1204. /* Soft reset */
  1205. MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
  1206. while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
  1207. if (!--tmo) {
  1208. dev_err(dispc.fbdev->dev, "soft reset failed\n");
  1209. r = -ENODEV;
  1210. enable_digit_clocks(0);
  1211. goto fail1;
  1212. }
  1213. }
  1214. enable_digit_clocks(0);
  1215. }
  1216. /* Enable smart standby/idle, autoidle and wakeup */
  1217. l = dispc_read_reg(DISPC_SYSCONFIG);
  1218. l &= ~((3 << 12) | (3 << 3));
  1219. l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
  1220. dispc_write_reg(DISPC_SYSCONFIG, l);
  1221. omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
  1222. /* Set functional clock autogating */
  1223. l = dispc_read_reg(DISPC_CONFIG);
  1224. l |= 1 << 9;
  1225. dispc_write_reg(DISPC_CONFIG, l);
  1226. l = dispc_read_reg(DISPC_IRQSTATUS);
  1227. dispc_write_reg(DISPC_IRQSTATUS, l);
  1228. recalc_irq_mask();
  1229. if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
  1230. 0, MODULE_NAME, fbdev)) < 0) {
  1231. dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
  1232. goto fail1;
  1233. }
  1234. /* L3 firewall setting: enable access to OCM RAM */
  1235. ram_fw_base = ioremap(0x68005000, SZ_1K);
  1236. if (!ram_fw_base) {
  1237. dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
  1238. goto fail1;
  1239. }
  1240. __raw_writel(0x402000b0, ram_fw_base + 0xa0);
  1241. iounmap(ram_fw_base);
  1242. if ((r = alloc_palette_ram()) < 0)
  1243. goto fail2;
  1244. if ((r = setup_fbmem(req_vram)) < 0)
  1245. goto fail3;
  1246. if (!skip_init) {
  1247. for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
  1248. memset(dispc.mem_desc.region[i].vaddr, 0,
  1249. dispc.mem_desc.region[i].size);
  1250. }
  1251. /* Set logic clock to fck, pixel clock to fck/2 for now */
  1252. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
  1253. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
  1254. setup_plane_fifo(0, ext_mode);
  1255. setup_plane_fifo(1, ext_mode);
  1256. setup_plane_fifo(2, ext_mode);
  1257. setup_color_conv_coef();
  1258. set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
  1259. set_load_mode(DISPC_LOAD_FRAME_ONLY);
  1260. if (!ext_mode) {
  1261. set_lcd_data_lines(panel->data_lines);
  1262. omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
  1263. set_lcd_timings();
  1264. } else
  1265. set_lcd_data_lines(panel->bpp);
  1266. enable_rfbi_mode(ext_mode);
  1267. }
  1268. l = dispc_read_reg(DISPC_REVISION);
  1269. pr_info("omapfb: DISPC version %d.%d initialized\n",
  1270. l >> 4 & 0x0f, l & 0x0f);
  1271. enable_lcd_clocks(0);
  1272. return 0;
  1273. fail3:
  1274. free_palette_ram();
  1275. fail2:
  1276. free_irq(INT_24XX_DSS_IRQ, fbdev);
  1277. fail1:
  1278. enable_lcd_clocks(0);
  1279. put_dss_clocks();
  1280. fail0:
  1281. iounmap(dispc.base);
  1282. return r;
  1283. }
  1284. static void omap_dispc_cleanup(void)
  1285. {
  1286. int i;
  1287. omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
  1288. /* This will also disable clocks that are on */
  1289. for (i = 0; i < dispc.mem_desc.region_cnt; i++)
  1290. omap_dispc_enable_plane(i, 0);
  1291. cleanup_fbmem();
  1292. free_palette_ram();
  1293. free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
  1294. put_dss_clocks();
  1295. iounmap(dispc.base);
  1296. }
  1297. const struct lcd_ctrl omap2_int_ctrl = {
  1298. .name = "internal",
  1299. .init = omap_dispc_init,
  1300. .cleanup = omap_dispc_cleanup,
  1301. .get_caps = omap_dispc_get_caps,
  1302. .set_update_mode = omap_dispc_set_update_mode,
  1303. .get_update_mode = omap_dispc_get_update_mode,
  1304. .update_window = omap_dispc_update_window,
  1305. .suspend = omap_dispc_suspend,
  1306. .resume = omap_dispc_resume,
  1307. .setup_plane = omap_dispc_setup_plane,
  1308. .setup_mem = omap_dispc_setup_mem,
  1309. .set_scale = omap_dispc_set_scale,
  1310. .enable_plane = omap_dispc_enable_plane,
  1311. .set_color_key = omap_dispc_set_color_key,
  1312. .get_color_key = omap_dispc_get_color_key,
  1313. .mmap = omap_dispc_mmap_user,
  1314. };