x86.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  72. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  73. struct kvm_cpuid_entry2 __user *entries);
  74. struct kvm_x86_ops *kvm_x86_ops;
  75. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  76. int ignore_msrs = 0;
  77. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  78. struct kvm_stats_debugfs_item debugfs_entries[] = {
  79. { "pf_fixed", VCPU_STAT(pf_fixed) },
  80. { "pf_guest", VCPU_STAT(pf_guest) },
  81. { "tlb_flush", VCPU_STAT(tlb_flush) },
  82. { "invlpg", VCPU_STAT(invlpg) },
  83. { "exits", VCPU_STAT(exits) },
  84. { "io_exits", VCPU_STAT(io_exits) },
  85. { "mmio_exits", VCPU_STAT(mmio_exits) },
  86. { "signal_exits", VCPU_STAT(signal_exits) },
  87. { "irq_window", VCPU_STAT(irq_window_exits) },
  88. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  89. { "halt_exits", VCPU_STAT(halt_exits) },
  90. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  91. { "hypercalls", VCPU_STAT(hypercalls) },
  92. { "request_irq", VCPU_STAT(request_irq_exits) },
  93. { "irq_exits", VCPU_STAT(irq_exits) },
  94. { "host_state_reload", VCPU_STAT(host_state_reload) },
  95. { "efer_reload", VCPU_STAT(efer_reload) },
  96. { "fpu_reload", VCPU_STAT(fpu_reload) },
  97. { "insn_emulation", VCPU_STAT(insn_emulation) },
  98. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  99. { "irq_injections", VCPU_STAT(irq_injections) },
  100. { "nmi_injections", VCPU_STAT(nmi_injections) },
  101. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  102. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  103. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  104. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  105. { "mmu_flooded", VM_STAT(mmu_flooded) },
  106. { "mmu_recycled", VM_STAT(mmu_recycled) },
  107. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  108. { "mmu_unsync", VM_STAT(mmu_unsync) },
  109. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  110. { "largepages", VM_STAT(lpages) },
  111. { NULL }
  112. };
  113. unsigned long segment_base(u16 selector)
  114. {
  115. struct descriptor_table gdt;
  116. struct desc_struct *d;
  117. unsigned long table_base;
  118. unsigned long v;
  119. if (selector == 0)
  120. return 0;
  121. kvm_get_gdt(&gdt);
  122. table_base = gdt.base;
  123. if (selector & 4) { /* from ldt */
  124. u16 ldt_selector = kvm_read_ldt();
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = get_desc_base(d);
  129. #ifdef CONFIG_X86_64
  130. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  131. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  132. #endif
  133. return v;
  134. }
  135. EXPORT_SYMBOL_GPL(segment_base);
  136. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  137. {
  138. if (irqchip_in_kernel(vcpu->kvm))
  139. return vcpu->arch.apic_base;
  140. else
  141. return vcpu->arch.apic_base;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  144. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  145. {
  146. /* TODO: reserve bits check */
  147. if (irqchip_in_kernel(vcpu->kvm))
  148. kvm_lapic_set_base(vcpu, data);
  149. else
  150. vcpu->arch.apic_base = data;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  153. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  154. {
  155. WARN_ON(vcpu->arch.exception.pending);
  156. vcpu->arch.exception.pending = true;
  157. vcpu->arch.exception.has_error_code = false;
  158. vcpu->arch.exception.nr = nr;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  161. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  162. u32 error_code)
  163. {
  164. ++vcpu->stat.pf_guest;
  165. if (vcpu->arch.exception.pending) {
  166. switch(vcpu->arch.exception.nr) {
  167. case DF_VECTOR:
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. return;
  171. case PF_VECTOR:
  172. vcpu->arch.exception.nr = DF_VECTOR;
  173. vcpu->arch.exception.error_code = 0;
  174. return;
  175. default:
  176. /* replace previous exception with a new one in a hope
  177. that instruction re-execution will regenerate lost
  178. exception */
  179. vcpu->arch.exception.pending = false;
  180. break;
  181. }
  182. }
  183. vcpu->arch.cr2 = addr;
  184. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  185. }
  186. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  187. {
  188. vcpu->arch.nmi_pending = 1;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  191. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  192. {
  193. WARN_ON(vcpu->arch.exception.pending);
  194. vcpu->arch.exception.pending = true;
  195. vcpu->arch.exception.has_error_code = true;
  196. vcpu->arch.exception.nr = nr;
  197. vcpu->arch.exception.error_code = error_code;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  200. /*
  201. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  202. * a #GP and return false.
  203. */
  204. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  205. {
  206. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  207. return true;
  208. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  209. return false;
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  212. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  213. {
  214. unsigned long rflags;
  215. rflags = kvm_x86_ops->get_rflags(vcpu);
  216. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  217. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  218. return rflags;
  219. }
  220. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  221. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  222. {
  223. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  224. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  225. kvm_x86_ops->set_rflags(vcpu, rflags);
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  228. /*
  229. * Load the pae pdptrs. Return true is they are all valid.
  230. */
  231. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  232. {
  233. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  234. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  235. int i;
  236. int ret;
  237. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  238. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  239. offset * sizeof(u64), sizeof(pdpte));
  240. if (ret < 0) {
  241. ret = 0;
  242. goto out;
  243. }
  244. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  245. if (is_present_gpte(pdpte[i]) &&
  246. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  247. ret = 0;
  248. goto out;
  249. }
  250. }
  251. ret = 1;
  252. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  253. __set_bit(VCPU_EXREG_PDPTR,
  254. (unsigned long *)&vcpu->arch.regs_avail);
  255. __set_bit(VCPU_EXREG_PDPTR,
  256. (unsigned long *)&vcpu->arch.regs_dirty);
  257. out:
  258. return ret;
  259. }
  260. EXPORT_SYMBOL_GPL(load_pdptrs);
  261. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  262. {
  263. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  264. bool changed = true;
  265. int r;
  266. if (is_long_mode(vcpu) || !is_pae(vcpu))
  267. return false;
  268. if (!test_bit(VCPU_EXREG_PDPTR,
  269. (unsigned long *)&vcpu->arch.regs_avail))
  270. return true;
  271. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  272. if (r < 0)
  273. goto out;
  274. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  275. out:
  276. return changed;
  277. }
  278. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  279. {
  280. if (cr0 & CR0_RESERVED_BITS) {
  281. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  282. cr0, vcpu->arch.cr0);
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  287. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  292. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  293. "and a clear PE flag\n");
  294. kvm_inject_gp(vcpu, 0);
  295. return;
  296. }
  297. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  298. #ifdef CONFIG_X86_64
  299. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  300. int cs_db, cs_l;
  301. if (!is_pae(vcpu)) {
  302. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  303. "in long mode while PAE is disabled\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  308. if (cs_l) {
  309. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  310. "in long mode while CS.L == 1\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else
  315. #endif
  316. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  317. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  318. "reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. }
  323. kvm_x86_ops->set_cr0(vcpu, cr0);
  324. vcpu->arch.cr0 = cr0;
  325. kvm_mmu_reset_context(vcpu);
  326. return;
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  329. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  330. {
  331. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_lmsw);
  334. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  335. {
  336. unsigned long old_cr4 = vcpu->arch.cr4;
  337. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  338. if (cr4 & CR4_RESERVED_BITS) {
  339. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. if (is_long_mode(vcpu)) {
  344. if (!(cr4 & X86_CR4_PAE)) {
  345. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  346. "in long mode\n");
  347. kvm_inject_gp(vcpu, 0);
  348. return;
  349. }
  350. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  351. && ((cr4 ^ old_cr4) & pdptr_bits)
  352. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  353. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. if (cr4 & X86_CR4_VMXE) {
  358. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  359. kvm_inject_gp(vcpu, 0);
  360. return;
  361. }
  362. kvm_x86_ops->set_cr4(vcpu, cr4);
  363. vcpu->arch.cr4 = cr4;
  364. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  365. kvm_mmu_reset_context(vcpu);
  366. }
  367. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  368. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  369. {
  370. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  371. kvm_mmu_sync_roots(vcpu);
  372. kvm_mmu_flush_tlb(vcpu);
  373. return;
  374. }
  375. if (is_long_mode(vcpu)) {
  376. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  377. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  378. kvm_inject_gp(vcpu, 0);
  379. return;
  380. }
  381. } else {
  382. if (is_pae(vcpu)) {
  383. if (cr3 & CR3_PAE_RESERVED_BITS) {
  384. printk(KERN_DEBUG
  385. "set_cr3: #GP, reserved bits\n");
  386. kvm_inject_gp(vcpu, 0);
  387. return;
  388. }
  389. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  390. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  391. "reserved bits\n");
  392. kvm_inject_gp(vcpu, 0);
  393. return;
  394. }
  395. }
  396. /*
  397. * We don't check reserved bits in nonpae mode, because
  398. * this isn't enforced, and VMware depends on this.
  399. */
  400. }
  401. /*
  402. * Does the new cr3 value map to physical memory? (Note, we
  403. * catch an invalid cr3 even in real-mode, because it would
  404. * cause trouble later on when we turn on paging anyway.)
  405. *
  406. * A real CPU would silently accept an invalid cr3 and would
  407. * attempt to use it - with largely undefined (and often hard
  408. * to debug) behavior on the guest side.
  409. */
  410. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  411. kvm_inject_gp(vcpu, 0);
  412. else {
  413. vcpu->arch.cr3 = cr3;
  414. vcpu->arch.mmu.new_cr3(vcpu);
  415. }
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  418. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  419. {
  420. if (cr8 & CR8_RESERVED_BITS) {
  421. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  422. kvm_inject_gp(vcpu, 0);
  423. return;
  424. }
  425. if (irqchip_in_kernel(vcpu->kvm))
  426. kvm_lapic_set_tpr(vcpu, cr8);
  427. else
  428. vcpu->arch.cr8 = cr8;
  429. }
  430. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  431. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  432. {
  433. if (irqchip_in_kernel(vcpu->kvm))
  434. return kvm_lapic_get_cr8(vcpu);
  435. else
  436. return vcpu->arch.cr8;
  437. }
  438. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  439. static inline u32 bit(int bitno)
  440. {
  441. return 1 << (bitno & 31);
  442. }
  443. /*
  444. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  445. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  446. *
  447. * This list is modified at module load time to reflect the
  448. * capabilities of the host cpu.
  449. */
  450. static u32 msrs_to_save[] = {
  451. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  452. MSR_K6_STAR,
  453. #ifdef CONFIG_X86_64
  454. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  455. #endif
  456. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  457. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  458. };
  459. static unsigned num_msrs_to_save;
  460. static u32 emulated_msrs[] = {
  461. MSR_IA32_MISC_ENABLE,
  462. };
  463. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  464. {
  465. if (efer & efer_reserved_bits) {
  466. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  467. efer);
  468. kvm_inject_gp(vcpu, 0);
  469. return;
  470. }
  471. if (is_paging(vcpu)
  472. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  473. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  474. kvm_inject_gp(vcpu, 0);
  475. return;
  476. }
  477. if (efer & EFER_FFXSR) {
  478. struct kvm_cpuid_entry2 *feat;
  479. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  480. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  481. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  482. kvm_inject_gp(vcpu, 0);
  483. return;
  484. }
  485. }
  486. if (efer & EFER_SVME) {
  487. struct kvm_cpuid_entry2 *feat;
  488. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  489. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  490. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  491. kvm_inject_gp(vcpu, 0);
  492. return;
  493. }
  494. }
  495. kvm_x86_ops->set_efer(vcpu, efer);
  496. efer &= ~EFER_LMA;
  497. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  498. vcpu->arch.shadow_efer = efer;
  499. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  500. kvm_mmu_reset_context(vcpu);
  501. }
  502. void kvm_enable_efer_bits(u64 mask)
  503. {
  504. efer_reserved_bits &= ~mask;
  505. }
  506. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  507. /*
  508. * Writes msr value into into the appropriate "register".
  509. * Returns 0 on success, non-0 otherwise.
  510. * Assumes vcpu_load() was already called.
  511. */
  512. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  513. {
  514. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  515. }
  516. /*
  517. * Adapt set_msr() to msr_io()'s calling convention
  518. */
  519. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  520. {
  521. return kvm_set_msr(vcpu, index, *data);
  522. }
  523. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  524. {
  525. static int version;
  526. struct pvclock_wall_clock wc;
  527. struct timespec now, sys, boot;
  528. if (!wall_clock)
  529. return;
  530. version++;
  531. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  532. /*
  533. * The guest calculates current wall clock time by adding
  534. * system time (updated by kvm_write_guest_time below) to the
  535. * wall clock specified here. guest system time equals host
  536. * system time for us, thus we must fill in host boot time here.
  537. */
  538. now = current_kernel_time();
  539. ktime_get_ts(&sys);
  540. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  541. wc.sec = boot.tv_sec;
  542. wc.nsec = boot.tv_nsec;
  543. wc.version = version;
  544. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  545. version++;
  546. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  547. }
  548. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  549. {
  550. uint32_t quotient, remainder;
  551. /* Don't try to replace with do_div(), this one calculates
  552. * "(dividend << 32) / divisor" */
  553. __asm__ ( "divl %4"
  554. : "=a" (quotient), "=d" (remainder)
  555. : "0" (0), "1" (dividend), "r" (divisor) );
  556. return quotient;
  557. }
  558. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  559. {
  560. uint64_t nsecs = 1000000000LL;
  561. int32_t shift = 0;
  562. uint64_t tps64;
  563. uint32_t tps32;
  564. tps64 = tsc_khz * 1000LL;
  565. while (tps64 > nsecs*2) {
  566. tps64 >>= 1;
  567. shift--;
  568. }
  569. tps32 = (uint32_t)tps64;
  570. while (tps32 <= (uint32_t)nsecs) {
  571. tps32 <<= 1;
  572. shift++;
  573. }
  574. hv_clock->tsc_shift = shift;
  575. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  576. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  577. __func__, tsc_khz, hv_clock->tsc_shift,
  578. hv_clock->tsc_to_system_mul);
  579. }
  580. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  581. static void kvm_write_guest_time(struct kvm_vcpu *v)
  582. {
  583. struct timespec ts;
  584. unsigned long flags;
  585. struct kvm_vcpu_arch *vcpu = &v->arch;
  586. void *shared_kaddr;
  587. unsigned long this_tsc_khz;
  588. if ((!vcpu->time_page))
  589. return;
  590. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  591. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  592. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  593. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  594. }
  595. put_cpu_var(cpu_tsc_khz);
  596. /* Keep irq disabled to prevent changes to the clock */
  597. local_irq_save(flags);
  598. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  599. ktime_get_ts(&ts);
  600. local_irq_restore(flags);
  601. /* With all the info we got, fill in the values */
  602. vcpu->hv_clock.system_time = ts.tv_nsec +
  603. (NSEC_PER_SEC * (u64)ts.tv_sec);
  604. /*
  605. * The interface expects us to write an even number signaling that the
  606. * update is finished. Since the guest won't see the intermediate
  607. * state, we just increase by 2 at the end.
  608. */
  609. vcpu->hv_clock.version += 2;
  610. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  611. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  612. sizeof(vcpu->hv_clock));
  613. kunmap_atomic(shared_kaddr, KM_USER0);
  614. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  615. }
  616. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  617. {
  618. struct kvm_vcpu_arch *vcpu = &v->arch;
  619. if (!vcpu->time_page)
  620. return 0;
  621. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  622. return 1;
  623. }
  624. static bool msr_mtrr_valid(unsigned msr)
  625. {
  626. switch (msr) {
  627. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  628. case MSR_MTRRfix64K_00000:
  629. case MSR_MTRRfix16K_80000:
  630. case MSR_MTRRfix16K_A0000:
  631. case MSR_MTRRfix4K_C0000:
  632. case MSR_MTRRfix4K_C8000:
  633. case MSR_MTRRfix4K_D0000:
  634. case MSR_MTRRfix4K_D8000:
  635. case MSR_MTRRfix4K_E0000:
  636. case MSR_MTRRfix4K_E8000:
  637. case MSR_MTRRfix4K_F0000:
  638. case MSR_MTRRfix4K_F8000:
  639. case MSR_MTRRdefType:
  640. case MSR_IA32_CR_PAT:
  641. return true;
  642. case 0x2f8:
  643. return true;
  644. }
  645. return false;
  646. }
  647. static bool valid_pat_type(unsigned t)
  648. {
  649. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  650. }
  651. static bool valid_mtrr_type(unsigned t)
  652. {
  653. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  654. }
  655. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  656. {
  657. int i;
  658. if (!msr_mtrr_valid(msr))
  659. return false;
  660. if (msr == MSR_IA32_CR_PAT) {
  661. for (i = 0; i < 8; i++)
  662. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  663. return false;
  664. return true;
  665. } else if (msr == MSR_MTRRdefType) {
  666. if (data & ~0xcff)
  667. return false;
  668. return valid_mtrr_type(data & 0xff);
  669. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  670. for (i = 0; i < 8 ; i++)
  671. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  672. return false;
  673. return true;
  674. }
  675. /* variable MTRRs */
  676. return valid_mtrr_type(data & 0xff);
  677. }
  678. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  679. {
  680. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  681. if (!mtrr_valid(vcpu, msr, data))
  682. return 1;
  683. if (msr == MSR_MTRRdefType) {
  684. vcpu->arch.mtrr_state.def_type = data;
  685. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  686. } else if (msr == MSR_MTRRfix64K_00000)
  687. p[0] = data;
  688. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  689. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  690. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  691. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  692. else if (msr == MSR_IA32_CR_PAT)
  693. vcpu->arch.pat = data;
  694. else { /* Variable MTRRs */
  695. int idx, is_mtrr_mask;
  696. u64 *pt;
  697. idx = (msr - 0x200) / 2;
  698. is_mtrr_mask = msr - 0x200 - 2 * idx;
  699. if (!is_mtrr_mask)
  700. pt =
  701. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  702. else
  703. pt =
  704. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  705. *pt = data;
  706. }
  707. kvm_mmu_reset_context(vcpu);
  708. return 0;
  709. }
  710. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  711. {
  712. u64 mcg_cap = vcpu->arch.mcg_cap;
  713. unsigned bank_num = mcg_cap & 0xff;
  714. switch (msr) {
  715. case MSR_IA32_MCG_STATUS:
  716. vcpu->arch.mcg_status = data;
  717. break;
  718. case MSR_IA32_MCG_CTL:
  719. if (!(mcg_cap & MCG_CTL_P))
  720. return 1;
  721. if (data != 0 && data != ~(u64)0)
  722. return -1;
  723. vcpu->arch.mcg_ctl = data;
  724. break;
  725. default:
  726. if (msr >= MSR_IA32_MC0_CTL &&
  727. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  728. u32 offset = msr - MSR_IA32_MC0_CTL;
  729. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  730. if ((offset & 0x3) == 0 &&
  731. data != 0 && data != ~(u64)0)
  732. return -1;
  733. vcpu->arch.mce_banks[offset] = data;
  734. break;
  735. }
  736. return 1;
  737. }
  738. return 0;
  739. }
  740. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  741. {
  742. switch (msr) {
  743. case MSR_EFER:
  744. set_efer(vcpu, data);
  745. break;
  746. case MSR_K7_HWCR:
  747. data &= ~(u64)0x40; /* ignore flush filter disable */
  748. if (data != 0) {
  749. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  750. data);
  751. return 1;
  752. }
  753. break;
  754. case MSR_FAM10H_MMIO_CONF_BASE:
  755. if (data != 0) {
  756. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  757. "0x%llx\n", data);
  758. return 1;
  759. }
  760. break;
  761. case MSR_AMD64_NB_CFG:
  762. break;
  763. case MSR_IA32_DEBUGCTLMSR:
  764. if (!data) {
  765. /* We support the non-activated case already */
  766. break;
  767. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  768. /* Values other than LBR and BTF are vendor-specific,
  769. thus reserved and should throw a #GP */
  770. return 1;
  771. }
  772. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  773. __func__, data);
  774. break;
  775. case MSR_IA32_UCODE_REV:
  776. case MSR_IA32_UCODE_WRITE:
  777. case MSR_VM_HSAVE_PA:
  778. case MSR_AMD64_PATCH_LOADER:
  779. break;
  780. case 0x200 ... 0x2ff:
  781. return set_msr_mtrr(vcpu, msr, data);
  782. case MSR_IA32_APICBASE:
  783. kvm_set_apic_base(vcpu, data);
  784. break;
  785. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  786. return kvm_x2apic_msr_write(vcpu, msr, data);
  787. case MSR_IA32_MISC_ENABLE:
  788. vcpu->arch.ia32_misc_enable_msr = data;
  789. break;
  790. case MSR_KVM_WALL_CLOCK:
  791. vcpu->kvm->arch.wall_clock = data;
  792. kvm_write_wall_clock(vcpu->kvm, data);
  793. break;
  794. case MSR_KVM_SYSTEM_TIME: {
  795. if (vcpu->arch.time_page) {
  796. kvm_release_page_dirty(vcpu->arch.time_page);
  797. vcpu->arch.time_page = NULL;
  798. }
  799. vcpu->arch.time = data;
  800. /* we verify if the enable bit is set... */
  801. if (!(data & 1))
  802. break;
  803. /* ...but clean it before doing the actual write */
  804. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  805. vcpu->arch.time_page =
  806. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  807. if (is_error_page(vcpu->arch.time_page)) {
  808. kvm_release_page_clean(vcpu->arch.time_page);
  809. vcpu->arch.time_page = NULL;
  810. }
  811. kvm_request_guest_time_update(vcpu);
  812. break;
  813. }
  814. case MSR_IA32_MCG_CTL:
  815. case MSR_IA32_MCG_STATUS:
  816. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  817. return set_msr_mce(vcpu, msr, data);
  818. /* Performance counters are not protected by a CPUID bit,
  819. * so we should check all of them in the generic path for the sake of
  820. * cross vendor migration.
  821. * Writing a zero into the event select MSRs disables them,
  822. * which we perfectly emulate ;-). Any other value should be at least
  823. * reported, some guests depend on them.
  824. */
  825. case MSR_P6_EVNTSEL0:
  826. case MSR_P6_EVNTSEL1:
  827. case MSR_K7_EVNTSEL0:
  828. case MSR_K7_EVNTSEL1:
  829. case MSR_K7_EVNTSEL2:
  830. case MSR_K7_EVNTSEL3:
  831. if (data != 0)
  832. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  833. "0x%x data 0x%llx\n", msr, data);
  834. break;
  835. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  836. * so we ignore writes to make it happy.
  837. */
  838. case MSR_P6_PERFCTR0:
  839. case MSR_P6_PERFCTR1:
  840. case MSR_K7_PERFCTR0:
  841. case MSR_K7_PERFCTR1:
  842. case MSR_K7_PERFCTR2:
  843. case MSR_K7_PERFCTR3:
  844. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  845. "0x%x data 0x%llx\n", msr, data);
  846. break;
  847. default:
  848. if (!ignore_msrs) {
  849. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  850. msr, data);
  851. return 1;
  852. } else {
  853. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  854. msr, data);
  855. break;
  856. }
  857. }
  858. return 0;
  859. }
  860. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  861. /*
  862. * Reads an msr value (of 'msr_index') into 'pdata'.
  863. * Returns 0 on success, non-0 otherwise.
  864. * Assumes vcpu_load() was already called.
  865. */
  866. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  867. {
  868. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  869. }
  870. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  871. {
  872. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  873. if (!msr_mtrr_valid(msr))
  874. return 1;
  875. if (msr == MSR_MTRRdefType)
  876. *pdata = vcpu->arch.mtrr_state.def_type +
  877. (vcpu->arch.mtrr_state.enabled << 10);
  878. else if (msr == MSR_MTRRfix64K_00000)
  879. *pdata = p[0];
  880. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  881. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  882. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  883. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  884. else if (msr == MSR_IA32_CR_PAT)
  885. *pdata = vcpu->arch.pat;
  886. else { /* Variable MTRRs */
  887. int idx, is_mtrr_mask;
  888. u64 *pt;
  889. idx = (msr - 0x200) / 2;
  890. is_mtrr_mask = msr - 0x200 - 2 * idx;
  891. if (!is_mtrr_mask)
  892. pt =
  893. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  894. else
  895. pt =
  896. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  897. *pdata = *pt;
  898. }
  899. return 0;
  900. }
  901. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  902. {
  903. u64 data;
  904. u64 mcg_cap = vcpu->arch.mcg_cap;
  905. unsigned bank_num = mcg_cap & 0xff;
  906. switch (msr) {
  907. case MSR_IA32_P5_MC_ADDR:
  908. case MSR_IA32_P5_MC_TYPE:
  909. data = 0;
  910. break;
  911. case MSR_IA32_MCG_CAP:
  912. data = vcpu->arch.mcg_cap;
  913. break;
  914. case MSR_IA32_MCG_CTL:
  915. if (!(mcg_cap & MCG_CTL_P))
  916. return 1;
  917. data = vcpu->arch.mcg_ctl;
  918. break;
  919. case MSR_IA32_MCG_STATUS:
  920. data = vcpu->arch.mcg_status;
  921. break;
  922. default:
  923. if (msr >= MSR_IA32_MC0_CTL &&
  924. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  925. u32 offset = msr - MSR_IA32_MC0_CTL;
  926. data = vcpu->arch.mce_banks[offset];
  927. break;
  928. }
  929. return 1;
  930. }
  931. *pdata = data;
  932. return 0;
  933. }
  934. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  935. {
  936. u64 data;
  937. switch (msr) {
  938. case MSR_IA32_PLATFORM_ID:
  939. case MSR_IA32_UCODE_REV:
  940. case MSR_IA32_EBL_CR_POWERON:
  941. case MSR_IA32_DEBUGCTLMSR:
  942. case MSR_IA32_LASTBRANCHFROMIP:
  943. case MSR_IA32_LASTBRANCHTOIP:
  944. case MSR_IA32_LASTINTFROMIP:
  945. case MSR_IA32_LASTINTTOIP:
  946. case MSR_K8_SYSCFG:
  947. case MSR_K7_HWCR:
  948. case MSR_VM_HSAVE_PA:
  949. case MSR_P6_PERFCTR0:
  950. case MSR_P6_PERFCTR1:
  951. case MSR_P6_EVNTSEL0:
  952. case MSR_P6_EVNTSEL1:
  953. case MSR_K7_EVNTSEL0:
  954. case MSR_K7_PERFCTR0:
  955. case MSR_K8_INT_PENDING_MSG:
  956. case MSR_AMD64_NB_CFG:
  957. case MSR_FAM10H_MMIO_CONF_BASE:
  958. data = 0;
  959. break;
  960. case MSR_MTRRcap:
  961. data = 0x500 | KVM_NR_VAR_MTRR;
  962. break;
  963. case 0x200 ... 0x2ff:
  964. return get_msr_mtrr(vcpu, msr, pdata);
  965. case 0xcd: /* fsb frequency */
  966. data = 3;
  967. break;
  968. case MSR_IA32_APICBASE:
  969. data = kvm_get_apic_base(vcpu);
  970. break;
  971. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  972. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  973. break;
  974. case MSR_IA32_MISC_ENABLE:
  975. data = vcpu->arch.ia32_misc_enable_msr;
  976. break;
  977. case MSR_IA32_PERF_STATUS:
  978. /* TSC increment by tick */
  979. data = 1000ULL;
  980. /* CPU multiplier */
  981. data |= (((uint64_t)4ULL) << 40);
  982. break;
  983. case MSR_EFER:
  984. data = vcpu->arch.shadow_efer;
  985. break;
  986. case MSR_KVM_WALL_CLOCK:
  987. data = vcpu->kvm->arch.wall_clock;
  988. break;
  989. case MSR_KVM_SYSTEM_TIME:
  990. data = vcpu->arch.time;
  991. break;
  992. case MSR_IA32_P5_MC_ADDR:
  993. case MSR_IA32_P5_MC_TYPE:
  994. case MSR_IA32_MCG_CAP:
  995. case MSR_IA32_MCG_CTL:
  996. case MSR_IA32_MCG_STATUS:
  997. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  998. return get_msr_mce(vcpu, msr, pdata);
  999. default:
  1000. if (!ignore_msrs) {
  1001. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1002. return 1;
  1003. } else {
  1004. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1005. data = 0;
  1006. }
  1007. break;
  1008. }
  1009. *pdata = data;
  1010. return 0;
  1011. }
  1012. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1013. /*
  1014. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1015. *
  1016. * @return number of msrs set successfully.
  1017. */
  1018. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1019. struct kvm_msr_entry *entries,
  1020. int (*do_msr)(struct kvm_vcpu *vcpu,
  1021. unsigned index, u64 *data))
  1022. {
  1023. int i;
  1024. vcpu_load(vcpu);
  1025. down_read(&vcpu->kvm->slots_lock);
  1026. for (i = 0; i < msrs->nmsrs; ++i)
  1027. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1028. break;
  1029. up_read(&vcpu->kvm->slots_lock);
  1030. vcpu_put(vcpu);
  1031. return i;
  1032. }
  1033. /*
  1034. * Read or write a bunch of msrs. Parameters are user addresses.
  1035. *
  1036. * @return number of msrs set successfully.
  1037. */
  1038. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1039. int (*do_msr)(struct kvm_vcpu *vcpu,
  1040. unsigned index, u64 *data),
  1041. int writeback)
  1042. {
  1043. struct kvm_msrs msrs;
  1044. struct kvm_msr_entry *entries;
  1045. int r, n;
  1046. unsigned size;
  1047. r = -EFAULT;
  1048. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1049. goto out;
  1050. r = -E2BIG;
  1051. if (msrs.nmsrs >= MAX_IO_MSRS)
  1052. goto out;
  1053. r = -ENOMEM;
  1054. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1055. entries = vmalloc(size);
  1056. if (!entries)
  1057. goto out;
  1058. r = -EFAULT;
  1059. if (copy_from_user(entries, user_msrs->entries, size))
  1060. goto out_free;
  1061. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1062. if (r < 0)
  1063. goto out_free;
  1064. r = -EFAULT;
  1065. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1066. goto out_free;
  1067. r = n;
  1068. out_free:
  1069. vfree(entries);
  1070. out:
  1071. return r;
  1072. }
  1073. int kvm_dev_ioctl_check_extension(long ext)
  1074. {
  1075. int r;
  1076. switch (ext) {
  1077. case KVM_CAP_IRQCHIP:
  1078. case KVM_CAP_HLT:
  1079. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1080. case KVM_CAP_SET_TSS_ADDR:
  1081. case KVM_CAP_EXT_CPUID:
  1082. case KVM_CAP_CLOCKSOURCE:
  1083. case KVM_CAP_PIT:
  1084. case KVM_CAP_NOP_IO_DELAY:
  1085. case KVM_CAP_MP_STATE:
  1086. case KVM_CAP_SYNC_MMU:
  1087. case KVM_CAP_REINJECT_CONTROL:
  1088. case KVM_CAP_IRQ_INJECT_STATUS:
  1089. case KVM_CAP_ASSIGN_DEV_IRQ:
  1090. case KVM_CAP_IRQFD:
  1091. case KVM_CAP_IOEVENTFD:
  1092. case KVM_CAP_PIT2:
  1093. case KVM_CAP_PIT_STATE2:
  1094. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1095. r = 1;
  1096. break;
  1097. case KVM_CAP_COALESCED_MMIO:
  1098. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1099. break;
  1100. case KVM_CAP_VAPIC:
  1101. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1102. break;
  1103. case KVM_CAP_NR_VCPUS:
  1104. r = KVM_MAX_VCPUS;
  1105. break;
  1106. case KVM_CAP_NR_MEMSLOTS:
  1107. r = KVM_MEMORY_SLOTS;
  1108. break;
  1109. case KVM_CAP_PV_MMU: /* obsolete */
  1110. r = 0;
  1111. break;
  1112. case KVM_CAP_IOMMU:
  1113. r = iommu_found();
  1114. break;
  1115. case KVM_CAP_MCE:
  1116. r = KVM_MAX_MCE_BANKS;
  1117. break;
  1118. default:
  1119. r = 0;
  1120. break;
  1121. }
  1122. return r;
  1123. }
  1124. long kvm_arch_dev_ioctl(struct file *filp,
  1125. unsigned int ioctl, unsigned long arg)
  1126. {
  1127. void __user *argp = (void __user *)arg;
  1128. long r;
  1129. switch (ioctl) {
  1130. case KVM_GET_MSR_INDEX_LIST: {
  1131. struct kvm_msr_list __user *user_msr_list = argp;
  1132. struct kvm_msr_list msr_list;
  1133. unsigned n;
  1134. r = -EFAULT;
  1135. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1136. goto out;
  1137. n = msr_list.nmsrs;
  1138. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1139. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1140. goto out;
  1141. r = -E2BIG;
  1142. if (n < msr_list.nmsrs)
  1143. goto out;
  1144. r = -EFAULT;
  1145. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1146. num_msrs_to_save * sizeof(u32)))
  1147. goto out;
  1148. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1149. &emulated_msrs,
  1150. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1151. goto out;
  1152. r = 0;
  1153. break;
  1154. }
  1155. case KVM_GET_SUPPORTED_CPUID: {
  1156. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1157. struct kvm_cpuid2 cpuid;
  1158. r = -EFAULT;
  1159. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1160. goto out;
  1161. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1162. cpuid_arg->entries);
  1163. if (r)
  1164. goto out;
  1165. r = -EFAULT;
  1166. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1167. goto out;
  1168. r = 0;
  1169. break;
  1170. }
  1171. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1172. u64 mce_cap;
  1173. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1174. r = -EFAULT;
  1175. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1176. goto out;
  1177. r = 0;
  1178. break;
  1179. }
  1180. default:
  1181. r = -EINVAL;
  1182. }
  1183. out:
  1184. return r;
  1185. }
  1186. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1187. {
  1188. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1189. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0))
  1190. per_cpu(cpu_tsc_khz, cpu) = cpufreq_quick_get(cpu);
  1191. kvm_request_guest_time_update(vcpu);
  1192. }
  1193. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1194. {
  1195. kvm_x86_ops->vcpu_put(vcpu);
  1196. kvm_put_guest_fpu(vcpu);
  1197. }
  1198. static int is_efer_nx(void)
  1199. {
  1200. unsigned long long efer = 0;
  1201. rdmsrl_safe(MSR_EFER, &efer);
  1202. return efer & EFER_NX;
  1203. }
  1204. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1205. {
  1206. int i;
  1207. struct kvm_cpuid_entry2 *e, *entry;
  1208. entry = NULL;
  1209. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1210. e = &vcpu->arch.cpuid_entries[i];
  1211. if (e->function == 0x80000001) {
  1212. entry = e;
  1213. break;
  1214. }
  1215. }
  1216. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1217. entry->edx &= ~(1 << 20);
  1218. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1219. }
  1220. }
  1221. /* when an old userspace process fills a new kernel module */
  1222. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1223. struct kvm_cpuid *cpuid,
  1224. struct kvm_cpuid_entry __user *entries)
  1225. {
  1226. int r, i;
  1227. struct kvm_cpuid_entry *cpuid_entries;
  1228. r = -E2BIG;
  1229. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1230. goto out;
  1231. r = -ENOMEM;
  1232. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1233. if (!cpuid_entries)
  1234. goto out;
  1235. r = -EFAULT;
  1236. if (copy_from_user(cpuid_entries, entries,
  1237. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1238. goto out_free;
  1239. for (i = 0; i < cpuid->nent; i++) {
  1240. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1241. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1242. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1243. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1244. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1245. vcpu->arch.cpuid_entries[i].index = 0;
  1246. vcpu->arch.cpuid_entries[i].flags = 0;
  1247. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1248. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1249. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1250. }
  1251. vcpu->arch.cpuid_nent = cpuid->nent;
  1252. cpuid_fix_nx_cap(vcpu);
  1253. r = 0;
  1254. kvm_apic_set_version(vcpu);
  1255. out_free:
  1256. vfree(cpuid_entries);
  1257. out:
  1258. return r;
  1259. }
  1260. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1261. struct kvm_cpuid2 *cpuid,
  1262. struct kvm_cpuid_entry2 __user *entries)
  1263. {
  1264. int r;
  1265. r = -E2BIG;
  1266. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1267. goto out;
  1268. r = -EFAULT;
  1269. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1270. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1271. goto out;
  1272. vcpu->arch.cpuid_nent = cpuid->nent;
  1273. kvm_apic_set_version(vcpu);
  1274. return 0;
  1275. out:
  1276. return r;
  1277. }
  1278. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1279. struct kvm_cpuid2 *cpuid,
  1280. struct kvm_cpuid_entry2 __user *entries)
  1281. {
  1282. int r;
  1283. r = -E2BIG;
  1284. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1285. goto out;
  1286. r = -EFAULT;
  1287. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1288. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1289. goto out;
  1290. return 0;
  1291. out:
  1292. cpuid->nent = vcpu->arch.cpuid_nent;
  1293. return r;
  1294. }
  1295. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1296. u32 index)
  1297. {
  1298. entry->function = function;
  1299. entry->index = index;
  1300. cpuid_count(entry->function, entry->index,
  1301. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1302. entry->flags = 0;
  1303. }
  1304. #define F(x) bit(X86_FEATURE_##x)
  1305. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1306. u32 index, int *nent, int maxnent)
  1307. {
  1308. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1309. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1310. #ifdef CONFIG_X86_64
  1311. unsigned f_lm = F(LM);
  1312. #else
  1313. unsigned f_lm = 0;
  1314. #endif
  1315. /* cpuid 1.edx */
  1316. const u32 kvm_supported_word0_x86_features =
  1317. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1318. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1319. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1320. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1321. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1322. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1323. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1324. 0 /* HTT, TM, Reserved, PBE */;
  1325. /* cpuid 0x80000001.edx */
  1326. const u32 kvm_supported_word1_x86_features =
  1327. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1328. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1329. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1330. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1331. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1332. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1333. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1334. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1335. /* cpuid 1.ecx */
  1336. const u32 kvm_supported_word4_x86_features =
  1337. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1338. 0 /* DS-CPL, VMX, SMX, EST */ |
  1339. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1340. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1341. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1342. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1343. 0 /* Reserved, XSAVE, OSXSAVE */;
  1344. /* cpuid 0x80000001.ecx */
  1345. const u32 kvm_supported_word6_x86_features =
  1346. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1347. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1348. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1349. 0 /* SKINIT */ | 0 /* WDT */;
  1350. /* all calls to cpuid_count() should be made on the same cpu */
  1351. get_cpu();
  1352. do_cpuid_1_ent(entry, function, index);
  1353. ++*nent;
  1354. switch (function) {
  1355. case 0:
  1356. entry->eax = min(entry->eax, (u32)0xb);
  1357. break;
  1358. case 1:
  1359. entry->edx &= kvm_supported_word0_x86_features;
  1360. entry->ecx &= kvm_supported_word4_x86_features;
  1361. /* we support x2apic emulation even if host does not support
  1362. * it since we emulate x2apic in software */
  1363. entry->ecx |= F(X2APIC);
  1364. break;
  1365. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1366. * may return different values. This forces us to get_cpu() before
  1367. * issuing the first command, and also to emulate this annoying behavior
  1368. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1369. case 2: {
  1370. int t, times = entry->eax & 0xff;
  1371. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1372. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1373. for (t = 1; t < times && *nent < maxnent; ++t) {
  1374. do_cpuid_1_ent(&entry[t], function, 0);
  1375. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1376. ++*nent;
  1377. }
  1378. break;
  1379. }
  1380. /* function 4 and 0xb have additional index. */
  1381. case 4: {
  1382. int i, cache_type;
  1383. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1384. /* read more entries until cache_type is zero */
  1385. for (i = 1; *nent < maxnent; ++i) {
  1386. cache_type = entry[i - 1].eax & 0x1f;
  1387. if (!cache_type)
  1388. break;
  1389. do_cpuid_1_ent(&entry[i], function, i);
  1390. entry[i].flags |=
  1391. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1392. ++*nent;
  1393. }
  1394. break;
  1395. }
  1396. case 0xb: {
  1397. int i, level_type;
  1398. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1399. /* read more entries until level_type is zero */
  1400. for (i = 1; *nent < maxnent; ++i) {
  1401. level_type = entry[i - 1].ecx & 0xff00;
  1402. if (!level_type)
  1403. break;
  1404. do_cpuid_1_ent(&entry[i], function, i);
  1405. entry[i].flags |=
  1406. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1407. ++*nent;
  1408. }
  1409. break;
  1410. }
  1411. case 0x80000000:
  1412. entry->eax = min(entry->eax, 0x8000001a);
  1413. break;
  1414. case 0x80000001:
  1415. entry->edx &= kvm_supported_word1_x86_features;
  1416. entry->ecx &= kvm_supported_word6_x86_features;
  1417. break;
  1418. }
  1419. put_cpu();
  1420. }
  1421. #undef F
  1422. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1423. struct kvm_cpuid_entry2 __user *entries)
  1424. {
  1425. struct kvm_cpuid_entry2 *cpuid_entries;
  1426. int limit, nent = 0, r = -E2BIG;
  1427. u32 func;
  1428. if (cpuid->nent < 1)
  1429. goto out;
  1430. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1431. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1432. r = -ENOMEM;
  1433. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1434. if (!cpuid_entries)
  1435. goto out;
  1436. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1437. limit = cpuid_entries[0].eax;
  1438. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1439. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1440. &nent, cpuid->nent);
  1441. r = -E2BIG;
  1442. if (nent >= cpuid->nent)
  1443. goto out_free;
  1444. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1445. limit = cpuid_entries[nent - 1].eax;
  1446. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1447. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1448. &nent, cpuid->nent);
  1449. r = -E2BIG;
  1450. if (nent >= cpuid->nent)
  1451. goto out_free;
  1452. r = -EFAULT;
  1453. if (copy_to_user(entries, cpuid_entries,
  1454. nent * sizeof(struct kvm_cpuid_entry2)))
  1455. goto out_free;
  1456. cpuid->nent = nent;
  1457. r = 0;
  1458. out_free:
  1459. vfree(cpuid_entries);
  1460. out:
  1461. return r;
  1462. }
  1463. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1464. struct kvm_lapic_state *s)
  1465. {
  1466. vcpu_load(vcpu);
  1467. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1468. vcpu_put(vcpu);
  1469. return 0;
  1470. }
  1471. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1472. struct kvm_lapic_state *s)
  1473. {
  1474. vcpu_load(vcpu);
  1475. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1476. kvm_apic_post_state_restore(vcpu);
  1477. update_cr8_intercept(vcpu);
  1478. vcpu_put(vcpu);
  1479. return 0;
  1480. }
  1481. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1482. struct kvm_interrupt *irq)
  1483. {
  1484. if (irq->irq < 0 || irq->irq >= 256)
  1485. return -EINVAL;
  1486. if (irqchip_in_kernel(vcpu->kvm))
  1487. return -ENXIO;
  1488. vcpu_load(vcpu);
  1489. kvm_queue_interrupt(vcpu, irq->irq, false);
  1490. vcpu_put(vcpu);
  1491. return 0;
  1492. }
  1493. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1494. {
  1495. vcpu_load(vcpu);
  1496. kvm_inject_nmi(vcpu);
  1497. vcpu_put(vcpu);
  1498. return 0;
  1499. }
  1500. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1501. struct kvm_tpr_access_ctl *tac)
  1502. {
  1503. if (tac->flags)
  1504. return -EINVAL;
  1505. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1506. return 0;
  1507. }
  1508. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1509. u64 mcg_cap)
  1510. {
  1511. int r;
  1512. unsigned bank_num = mcg_cap & 0xff, bank;
  1513. r = -EINVAL;
  1514. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1515. goto out;
  1516. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1517. goto out;
  1518. r = 0;
  1519. vcpu->arch.mcg_cap = mcg_cap;
  1520. /* Init IA32_MCG_CTL to all 1s */
  1521. if (mcg_cap & MCG_CTL_P)
  1522. vcpu->arch.mcg_ctl = ~(u64)0;
  1523. /* Init IA32_MCi_CTL to all 1s */
  1524. for (bank = 0; bank < bank_num; bank++)
  1525. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1526. out:
  1527. return r;
  1528. }
  1529. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1530. struct kvm_x86_mce *mce)
  1531. {
  1532. u64 mcg_cap = vcpu->arch.mcg_cap;
  1533. unsigned bank_num = mcg_cap & 0xff;
  1534. u64 *banks = vcpu->arch.mce_banks;
  1535. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1536. return -EINVAL;
  1537. /*
  1538. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1539. * reporting is disabled
  1540. */
  1541. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1542. vcpu->arch.mcg_ctl != ~(u64)0)
  1543. return 0;
  1544. banks += 4 * mce->bank;
  1545. /*
  1546. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1547. * reporting is disabled for the bank
  1548. */
  1549. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1550. return 0;
  1551. if (mce->status & MCI_STATUS_UC) {
  1552. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1553. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1554. printk(KERN_DEBUG "kvm: set_mce: "
  1555. "injects mce exception while "
  1556. "previous one is in progress!\n");
  1557. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1558. return 0;
  1559. }
  1560. if (banks[1] & MCI_STATUS_VAL)
  1561. mce->status |= MCI_STATUS_OVER;
  1562. banks[2] = mce->addr;
  1563. banks[3] = mce->misc;
  1564. vcpu->arch.mcg_status = mce->mcg_status;
  1565. banks[1] = mce->status;
  1566. kvm_queue_exception(vcpu, MC_VECTOR);
  1567. } else if (!(banks[1] & MCI_STATUS_VAL)
  1568. || !(banks[1] & MCI_STATUS_UC)) {
  1569. if (banks[1] & MCI_STATUS_VAL)
  1570. mce->status |= MCI_STATUS_OVER;
  1571. banks[2] = mce->addr;
  1572. banks[3] = mce->misc;
  1573. banks[1] = mce->status;
  1574. } else
  1575. banks[1] |= MCI_STATUS_OVER;
  1576. return 0;
  1577. }
  1578. long kvm_arch_vcpu_ioctl(struct file *filp,
  1579. unsigned int ioctl, unsigned long arg)
  1580. {
  1581. struct kvm_vcpu *vcpu = filp->private_data;
  1582. void __user *argp = (void __user *)arg;
  1583. int r;
  1584. struct kvm_lapic_state *lapic = NULL;
  1585. switch (ioctl) {
  1586. case KVM_GET_LAPIC: {
  1587. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1588. r = -ENOMEM;
  1589. if (!lapic)
  1590. goto out;
  1591. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1592. if (r)
  1593. goto out;
  1594. r = -EFAULT;
  1595. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1596. goto out;
  1597. r = 0;
  1598. break;
  1599. }
  1600. case KVM_SET_LAPIC: {
  1601. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1602. r = -ENOMEM;
  1603. if (!lapic)
  1604. goto out;
  1605. r = -EFAULT;
  1606. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1607. goto out;
  1608. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1609. if (r)
  1610. goto out;
  1611. r = 0;
  1612. break;
  1613. }
  1614. case KVM_INTERRUPT: {
  1615. struct kvm_interrupt irq;
  1616. r = -EFAULT;
  1617. if (copy_from_user(&irq, argp, sizeof irq))
  1618. goto out;
  1619. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1620. if (r)
  1621. goto out;
  1622. r = 0;
  1623. break;
  1624. }
  1625. case KVM_NMI: {
  1626. r = kvm_vcpu_ioctl_nmi(vcpu);
  1627. if (r)
  1628. goto out;
  1629. r = 0;
  1630. break;
  1631. }
  1632. case KVM_SET_CPUID: {
  1633. struct kvm_cpuid __user *cpuid_arg = argp;
  1634. struct kvm_cpuid cpuid;
  1635. r = -EFAULT;
  1636. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1637. goto out;
  1638. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1639. if (r)
  1640. goto out;
  1641. break;
  1642. }
  1643. case KVM_SET_CPUID2: {
  1644. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1645. struct kvm_cpuid2 cpuid;
  1646. r = -EFAULT;
  1647. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1648. goto out;
  1649. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1650. cpuid_arg->entries);
  1651. if (r)
  1652. goto out;
  1653. break;
  1654. }
  1655. case KVM_GET_CPUID2: {
  1656. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1657. struct kvm_cpuid2 cpuid;
  1658. r = -EFAULT;
  1659. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1660. goto out;
  1661. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1662. cpuid_arg->entries);
  1663. if (r)
  1664. goto out;
  1665. r = -EFAULT;
  1666. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1667. goto out;
  1668. r = 0;
  1669. break;
  1670. }
  1671. case KVM_GET_MSRS:
  1672. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1673. break;
  1674. case KVM_SET_MSRS:
  1675. r = msr_io(vcpu, argp, do_set_msr, 0);
  1676. break;
  1677. case KVM_TPR_ACCESS_REPORTING: {
  1678. struct kvm_tpr_access_ctl tac;
  1679. r = -EFAULT;
  1680. if (copy_from_user(&tac, argp, sizeof tac))
  1681. goto out;
  1682. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1683. if (r)
  1684. goto out;
  1685. r = -EFAULT;
  1686. if (copy_to_user(argp, &tac, sizeof tac))
  1687. goto out;
  1688. r = 0;
  1689. break;
  1690. };
  1691. case KVM_SET_VAPIC_ADDR: {
  1692. struct kvm_vapic_addr va;
  1693. r = -EINVAL;
  1694. if (!irqchip_in_kernel(vcpu->kvm))
  1695. goto out;
  1696. r = -EFAULT;
  1697. if (copy_from_user(&va, argp, sizeof va))
  1698. goto out;
  1699. r = 0;
  1700. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1701. break;
  1702. }
  1703. case KVM_X86_SETUP_MCE: {
  1704. u64 mcg_cap;
  1705. r = -EFAULT;
  1706. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1707. goto out;
  1708. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1709. break;
  1710. }
  1711. case KVM_X86_SET_MCE: {
  1712. struct kvm_x86_mce mce;
  1713. r = -EFAULT;
  1714. if (copy_from_user(&mce, argp, sizeof mce))
  1715. goto out;
  1716. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1717. break;
  1718. }
  1719. default:
  1720. r = -EINVAL;
  1721. }
  1722. out:
  1723. kfree(lapic);
  1724. return r;
  1725. }
  1726. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1727. {
  1728. int ret;
  1729. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1730. return -1;
  1731. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1732. return ret;
  1733. }
  1734. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1735. u64 ident_addr)
  1736. {
  1737. kvm->arch.ept_identity_map_addr = ident_addr;
  1738. return 0;
  1739. }
  1740. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1741. u32 kvm_nr_mmu_pages)
  1742. {
  1743. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1744. return -EINVAL;
  1745. down_write(&kvm->slots_lock);
  1746. spin_lock(&kvm->mmu_lock);
  1747. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1748. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1749. spin_unlock(&kvm->mmu_lock);
  1750. up_write(&kvm->slots_lock);
  1751. return 0;
  1752. }
  1753. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1754. {
  1755. return kvm->arch.n_alloc_mmu_pages;
  1756. }
  1757. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1758. {
  1759. int i;
  1760. struct kvm_mem_alias *alias;
  1761. for (i = 0; i < kvm->arch.naliases; ++i) {
  1762. alias = &kvm->arch.aliases[i];
  1763. if (gfn >= alias->base_gfn
  1764. && gfn < alias->base_gfn + alias->npages)
  1765. return alias->target_gfn + gfn - alias->base_gfn;
  1766. }
  1767. return gfn;
  1768. }
  1769. /*
  1770. * Set a new alias region. Aliases map a portion of physical memory into
  1771. * another portion. This is useful for memory windows, for example the PC
  1772. * VGA region.
  1773. */
  1774. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1775. struct kvm_memory_alias *alias)
  1776. {
  1777. int r, n;
  1778. struct kvm_mem_alias *p;
  1779. r = -EINVAL;
  1780. /* General sanity checks */
  1781. if (alias->memory_size & (PAGE_SIZE - 1))
  1782. goto out;
  1783. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1784. goto out;
  1785. if (alias->slot >= KVM_ALIAS_SLOTS)
  1786. goto out;
  1787. if (alias->guest_phys_addr + alias->memory_size
  1788. < alias->guest_phys_addr)
  1789. goto out;
  1790. if (alias->target_phys_addr + alias->memory_size
  1791. < alias->target_phys_addr)
  1792. goto out;
  1793. down_write(&kvm->slots_lock);
  1794. spin_lock(&kvm->mmu_lock);
  1795. p = &kvm->arch.aliases[alias->slot];
  1796. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1797. p->npages = alias->memory_size >> PAGE_SHIFT;
  1798. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1799. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1800. if (kvm->arch.aliases[n - 1].npages)
  1801. break;
  1802. kvm->arch.naliases = n;
  1803. spin_unlock(&kvm->mmu_lock);
  1804. kvm_mmu_zap_all(kvm);
  1805. up_write(&kvm->slots_lock);
  1806. return 0;
  1807. out:
  1808. return r;
  1809. }
  1810. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1811. {
  1812. int r;
  1813. r = 0;
  1814. switch (chip->chip_id) {
  1815. case KVM_IRQCHIP_PIC_MASTER:
  1816. memcpy(&chip->chip.pic,
  1817. &pic_irqchip(kvm)->pics[0],
  1818. sizeof(struct kvm_pic_state));
  1819. break;
  1820. case KVM_IRQCHIP_PIC_SLAVE:
  1821. memcpy(&chip->chip.pic,
  1822. &pic_irqchip(kvm)->pics[1],
  1823. sizeof(struct kvm_pic_state));
  1824. break;
  1825. case KVM_IRQCHIP_IOAPIC:
  1826. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1827. break;
  1828. default:
  1829. r = -EINVAL;
  1830. break;
  1831. }
  1832. return r;
  1833. }
  1834. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1835. {
  1836. int r;
  1837. r = 0;
  1838. switch (chip->chip_id) {
  1839. case KVM_IRQCHIP_PIC_MASTER:
  1840. spin_lock(&pic_irqchip(kvm)->lock);
  1841. memcpy(&pic_irqchip(kvm)->pics[0],
  1842. &chip->chip.pic,
  1843. sizeof(struct kvm_pic_state));
  1844. spin_unlock(&pic_irqchip(kvm)->lock);
  1845. break;
  1846. case KVM_IRQCHIP_PIC_SLAVE:
  1847. spin_lock(&pic_irqchip(kvm)->lock);
  1848. memcpy(&pic_irqchip(kvm)->pics[1],
  1849. &chip->chip.pic,
  1850. sizeof(struct kvm_pic_state));
  1851. spin_unlock(&pic_irqchip(kvm)->lock);
  1852. break;
  1853. case KVM_IRQCHIP_IOAPIC:
  1854. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1855. break;
  1856. default:
  1857. r = -EINVAL;
  1858. break;
  1859. }
  1860. kvm_pic_update_irq(pic_irqchip(kvm));
  1861. return r;
  1862. }
  1863. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1864. {
  1865. int r = 0;
  1866. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1867. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1868. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1869. return r;
  1870. }
  1871. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1872. {
  1873. int r = 0;
  1874. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1875. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1876. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1877. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1878. return r;
  1879. }
  1880. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1881. {
  1882. int r = 0;
  1883. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1884. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1885. sizeof(ps->channels));
  1886. ps->flags = kvm->arch.vpit->pit_state.flags;
  1887. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1888. return r;
  1889. }
  1890. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1891. {
  1892. int r = 0, start = 0;
  1893. u32 prev_legacy, cur_legacy;
  1894. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1895. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1896. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1897. if (!prev_legacy && cur_legacy)
  1898. start = 1;
  1899. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1900. sizeof(kvm->arch.vpit->pit_state.channels));
  1901. kvm->arch.vpit->pit_state.flags = ps->flags;
  1902. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1903. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1904. return r;
  1905. }
  1906. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1907. struct kvm_reinject_control *control)
  1908. {
  1909. if (!kvm->arch.vpit)
  1910. return -ENXIO;
  1911. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1912. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1913. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1914. return 0;
  1915. }
  1916. /*
  1917. * Get (and clear) the dirty memory log for a memory slot.
  1918. */
  1919. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1920. struct kvm_dirty_log *log)
  1921. {
  1922. int r;
  1923. int n;
  1924. struct kvm_memory_slot *memslot;
  1925. int is_dirty = 0;
  1926. down_write(&kvm->slots_lock);
  1927. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1928. if (r)
  1929. goto out;
  1930. /* If nothing is dirty, don't bother messing with page tables. */
  1931. if (is_dirty) {
  1932. spin_lock(&kvm->mmu_lock);
  1933. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1934. spin_unlock(&kvm->mmu_lock);
  1935. memslot = &kvm->memslots[log->slot];
  1936. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1937. memset(memslot->dirty_bitmap, 0, n);
  1938. }
  1939. r = 0;
  1940. out:
  1941. up_write(&kvm->slots_lock);
  1942. return r;
  1943. }
  1944. long kvm_arch_vm_ioctl(struct file *filp,
  1945. unsigned int ioctl, unsigned long arg)
  1946. {
  1947. struct kvm *kvm = filp->private_data;
  1948. void __user *argp = (void __user *)arg;
  1949. int r = -ENOTTY;
  1950. /*
  1951. * This union makes it completely explicit to gcc-3.x
  1952. * that these two variables' stack usage should be
  1953. * combined, not added together.
  1954. */
  1955. union {
  1956. struct kvm_pit_state ps;
  1957. struct kvm_pit_state2 ps2;
  1958. struct kvm_memory_alias alias;
  1959. struct kvm_pit_config pit_config;
  1960. } u;
  1961. switch (ioctl) {
  1962. case KVM_SET_TSS_ADDR:
  1963. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1964. if (r < 0)
  1965. goto out;
  1966. break;
  1967. case KVM_SET_IDENTITY_MAP_ADDR: {
  1968. u64 ident_addr;
  1969. r = -EFAULT;
  1970. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1971. goto out;
  1972. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1973. if (r < 0)
  1974. goto out;
  1975. break;
  1976. }
  1977. case KVM_SET_MEMORY_REGION: {
  1978. struct kvm_memory_region kvm_mem;
  1979. struct kvm_userspace_memory_region kvm_userspace_mem;
  1980. r = -EFAULT;
  1981. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1982. goto out;
  1983. kvm_userspace_mem.slot = kvm_mem.slot;
  1984. kvm_userspace_mem.flags = kvm_mem.flags;
  1985. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1986. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1987. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1988. if (r)
  1989. goto out;
  1990. break;
  1991. }
  1992. case KVM_SET_NR_MMU_PAGES:
  1993. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1994. if (r)
  1995. goto out;
  1996. break;
  1997. case KVM_GET_NR_MMU_PAGES:
  1998. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1999. break;
  2000. case KVM_SET_MEMORY_ALIAS:
  2001. r = -EFAULT;
  2002. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2003. goto out;
  2004. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2005. if (r)
  2006. goto out;
  2007. break;
  2008. case KVM_CREATE_IRQCHIP:
  2009. r = -ENOMEM;
  2010. kvm->arch.vpic = kvm_create_pic(kvm);
  2011. if (kvm->arch.vpic) {
  2012. r = kvm_ioapic_init(kvm);
  2013. if (r) {
  2014. kfree(kvm->arch.vpic);
  2015. kvm->arch.vpic = NULL;
  2016. goto out;
  2017. }
  2018. } else
  2019. goto out;
  2020. r = kvm_setup_default_irq_routing(kvm);
  2021. if (r) {
  2022. kfree(kvm->arch.vpic);
  2023. kfree(kvm->arch.vioapic);
  2024. goto out;
  2025. }
  2026. break;
  2027. case KVM_CREATE_PIT:
  2028. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2029. goto create_pit;
  2030. case KVM_CREATE_PIT2:
  2031. r = -EFAULT;
  2032. if (copy_from_user(&u.pit_config, argp,
  2033. sizeof(struct kvm_pit_config)))
  2034. goto out;
  2035. create_pit:
  2036. down_write(&kvm->slots_lock);
  2037. r = -EEXIST;
  2038. if (kvm->arch.vpit)
  2039. goto create_pit_unlock;
  2040. r = -ENOMEM;
  2041. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2042. if (kvm->arch.vpit)
  2043. r = 0;
  2044. create_pit_unlock:
  2045. up_write(&kvm->slots_lock);
  2046. break;
  2047. case KVM_IRQ_LINE_STATUS:
  2048. case KVM_IRQ_LINE: {
  2049. struct kvm_irq_level irq_event;
  2050. r = -EFAULT;
  2051. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2052. goto out;
  2053. if (irqchip_in_kernel(kvm)) {
  2054. __s32 status;
  2055. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2056. irq_event.irq, irq_event.level);
  2057. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2058. irq_event.status = status;
  2059. if (copy_to_user(argp, &irq_event,
  2060. sizeof irq_event))
  2061. goto out;
  2062. }
  2063. r = 0;
  2064. }
  2065. break;
  2066. }
  2067. case KVM_GET_IRQCHIP: {
  2068. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2069. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2070. r = -ENOMEM;
  2071. if (!chip)
  2072. goto out;
  2073. r = -EFAULT;
  2074. if (copy_from_user(chip, argp, sizeof *chip))
  2075. goto get_irqchip_out;
  2076. r = -ENXIO;
  2077. if (!irqchip_in_kernel(kvm))
  2078. goto get_irqchip_out;
  2079. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2080. if (r)
  2081. goto get_irqchip_out;
  2082. r = -EFAULT;
  2083. if (copy_to_user(argp, chip, sizeof *chip))
  2084. goto get_irqchip_out;
  2085. r = 0;
  2086. get_irqchip_out:
  2087. kfree(chip);
  2088. if (r)
  2089. goto out;
  2090. break;
  2091. }
  2092. case KVM_SET_IRQCHIP: {
  2093. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2094. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2095. r = -ENOMEM;
  2096. if (!chip)
  2097. goto out;
  2098. r = -EFAULT;
  2099. if (copy_from_user(chip, argp, sizeof *chip))
  2100. goto set_irqchip_out;
  2101. r = -ENXIO;
  2102. if (!irqchip_in_kernel(kvm))
  2103. goto set_irqchip_out;
  2104. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2105. if (r)
  2106. goto set_irqchip_out;
  2107. r = 0;
  2108. set_irqchip_out:
  2109. kfree(chip);
  2110. if (r)
  2111. goto out;
  2112. break;
  2113. }
  2114. case KVM_GET_PIT: {
  2115. r = -EFAULT;
  2116. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2117. goto out;
  2118. r = -ENXIO;
  2119. if (!kvm->arch.vpit)
  2120. goto out;
  2121. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2122. if (r)
  2123. goto out;
  2124. r = -EFAULT;
  2125. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2126. goto out;
  2127. r = 0;
  2128. break;
  2129. }
  2130. case KVM_SET_PIT: {
  2131. r = -EFAULT;
  2132. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2133. goto out;
  2134. r = -ENXIO;
  2135. if (!kvm->arch.vpit)
  2136. goto out;
  2137. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2138. if (r)
  2139. goto out;
  2140. r = 0;
  2141. break;
  2142. }
  2143. case KVM_GET_PIT2: {
  2144. r = -ENXIO;
  2145. if (!kvm->arch.vpit)
  2146. goto out;
  2147. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2148. if (r)
  2149. goto out;
  2150. r = -EFAULT;
  2151. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2152. goto out;
  2153. r = 0;
  2154. break;
  2155. }
  2156. case KVM_SET_PIT2: {
  2157. r = -EFAULT;
  2158. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2159. goto out;
  2160. r = -ENXIO;
  2161. if (!kvm->arch.vpit)
  2162. goto out;
  2163. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2164. if (r)
  2165. goto out;
  2166. r = 0;
  2167. break;
  2168. }
  2169. case KVM_REINJECT_CONTROL: {
  2170. struct kvm_reinject_control control;
  2171. r = -EFAULT;
  2172. if (copy_from_user(&control, argp, sizeof(control)))
  2173. goto out;
  2174. r = kvm_vm_ioctl_reinject(kvm, &control);
  2175. if (r)
  2176. goto out;
  2177. r = 0;
  2178. break;
  2179. }
  2180. default:
  2181. ;
  2182. }
  2183. out:
  2184. return r;
  2185. }
  2186. static void kvm_init_msr_list(void)
  2187. {
  2188. u32 dummy[2];
  2189. unsigned i, j;
  2190. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2191. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2192. continue;
  2193. if (j < i)
  2194. msrs_to_save[j] = msrs_to_save[i];
  2195. j++;
  2196. }
  2197. num_msrs_to_save = j;
  2198. }
  2199. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2200. const void *v)
  2201. {
  2202. if (vcpu->arch.apic &&
  2203. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2204. return 0;
  2205. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2206. }
  2207. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2208. {
  2209. if (vcpu->arch.apic &&
  2210. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2211. return 0;
  2212. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2213. }
  2214. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2215. struct kvm_vcpu *vcpu)
  2216. {
  2217. void *data = val;
  2218. int r = X86EMUL_CONTINUE;
  2219. while (bytes) {
  2220. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2221. unsigned offset = addr & (PAGE_SIZE-1);
  2222. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2223. int ret;
  2224. if (gpa == UNMAPPED_GVA) {
  2225. r = X86EMUL_PROPAGATE_FAULT;
  2226. goto out;
  2227. }
  2228. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2229. if (ret < 0) {
  2230. r = X86EMUL_UNHANDLEABLE;
  2231. goto out;
  2232. }
  2233. bytes -= toread;
  2234. data += toread;
  2235. addr += toread;
  2236. }
  2237. out:
  2238. return r;
  2239. }
  2240. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2241. struct kvm_vcpu *vcpu)
  2242. {
  2243. void *data = val;
  2244. int r = X86EMUL_CONTINUE;
  2245. while (bytes) {
  2246. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2247. unsigned offset = addr & (PAGE_SIZE-1);
  2248. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2249. int ret;
  2250. if (gpa == UNMAPPED_GVA) {
  2251. r = X86EMUL_PROPAGATE_FAULT;
  2252. goto out;
  2253. }
  2254. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2255. if (ret < 0) {
  2256. r = X86EMUL_UNHANDLEABLE;
  2257. goto out;
  2258. }
  2259. bytes -= towrite;
  2260. data += towrite;
  2261. addr += towrite;
  2262. }
  2263. out:
  2264. return r;
  2265. }
  2266. static int emulator_read_emulated(unsigned long addr,
  2267. void *val,
  2268. unsigned int bytes,
  2269. struct kvm_vcpu *vcpu)
  2270. {
  2271. gpa_t gpa;
  2272. if (vcpu->mmio_read_completed) {
  2273. memcpy(val, vcpu->mmio_data, bytes);
  2274. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2275. vcpu->mmio_phys_addr, *(u64 *)val);
  2276. vcpu->mmio_read_completed = 0;
  2277. return X86EMUL_CONTINUE;
  2278. }
  2279. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2280. /* For APIC access vmexit */
  2281. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2282. goto mmio;
  2283. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2284. == X86EMUL_CONTINUE)
  2285. return X86EMUL_CONTINUE;
  2286. if (gpa == UNMAPPED_GVA)
  2287. return X86EMUL_PROPAGATE_FAULT;
  2288. mmio:
  2289. /*
  2290. * Is this MMIO handled locally?
  2291. */
  2292. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2293. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2294. return X86EMUL_CONTINUE;
  2295. }
  2296. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2297. vcpu->mmio_needed = 1;
  2298. vcpu->mmio_phys_addr = gpa;
  2299. vcpu->mmio_size = bytes;
  2300. vcpu->mmio_is_write = 0;
  2301. return X86EMUL_UNHANDLEABLE;
  2302. }
  2303. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2304. const void *val, int bytes)
  2305. {
  2306. int ret;
  2307. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2308. if (ret < 0)
  2309. return 0;
  2310. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2311. return 1;
  2312. }
  2313. static int emulator_write_emulated_onepage(unsigned long addr,
  2314. const void *val,
  2315. unsigned int bytes,
  2316. struct kvm_vcpu *vcpu)
  2317. {
  2318. gpa_t gpa;
  2319. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2320. if (gpa == UNMAPPED_GVA) {
  2321. kvm_inject_page_fault(vcpu, addr, 2);
  2322. return X86EMUL_PROPAGATE_FAULT;
  2323. }
  2324. /* For APIC access vmexit */
  2325. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2326. goto mmio;
  2327. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2328. return X86EMUL_CONTINUE;
  2329. mmio:
  2330. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2331. /*
  2332. * Is this MMIO handled locally?
  2333. */
  2334. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2335. return X86EMUL_CONTINUE;
  2336. vcpu->mmio_needed = 1;
  2337. vcpu->mmio_phys_addr = gpa;
  2338. vcpu->mmio_size = bytes;
  2339. vcpu->mmio_is_write = 1;
  2340. memcpy(vcpu->mmio_data, val, bytes);
  2341. return X86EMUL_CONTINUE;
  2342. }
  2343. int emulator_write_emulated(unsigned long addr,
  2344. const void *val,
  2345. unsigned int bytes,
  2346. struct kvm_vcpu *vcpu)
  2347. {
  2348. /* Crossing a page boundary? */
  2349. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2350. int rc, now;
  2351. now = -addr & ~PAGE_MASK;
  2352. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2353. if (rc != X86EMUL_CONTINUE)
  2354. return rc;
  2355. addr += now;
  2356. val += now;
  2357. bytes -= now;
  2358. }
  2359. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2360. }
  2361. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2362. static int emulator_cmpxchg_emulated(unsigned long addr,
  2363. const void *old,
  2364. const void *new,
  2365. unsigned int bytes,
  2366. struct kvm_vcpu *vcpu)
  2367. {
  2368. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2369. #ifndef CONFIG_X86_64
  2370. /* guests cmpxchg8b have to be emulated atomically */
  2371. if (bytes == 8) {
  2372. gpa_t gpa;
  2373. struct page *page;
  2374. char *kaddr;
  2375. u64 val;
  2376. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2377. if (gpa == UNMAPPED_GVA ||
  2378. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2379. goto emul_write;
  2380. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2381. goto emul_write;
  2382. val = *(u64 *)new;
  2383. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2384. kaddr = kmap_atomic(page, KM_USER0);
  2385. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2386. kunmap_atomic(kaddr, KM_USER0);
  2387. kvm_release_page_dirty(page);
  2388. }
  2389. emul_write:
  2390. #endif
  2391. return emulator_write_emulated(addr, new, bytes, vcpu);
  2392. }
  2393. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2394. {
  2395. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2396. }
  2397. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2398. {
  2399. kvm_mmu_invlpg(vcpu, address);
  2400. return X86EMUL_CONTINUE;
  2401. }
  2402. int emulate_clts(struct kvm_vcpu *vcpu)
  2403. {
  2404. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2405. return X86EMUL_CONTINUE;
  2406. }
  2407. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2408. {
  2409. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2410. switch (dr) {
  2411. case 0 ... 3:
  2412. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2413. return X86EMUL_CONTINUE;
  2414. default:
  2415. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2416. return X86EMUL_UNHANDLEABLE;
  2417. }
  2418. }
  2419. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2420. {
  2421. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2422. int exception;
  2423. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2424. if (exception) {
  2425. /* FIXME: better handling */
  2426. return X86EMUL_UNHANDLEABLE;
  2427. }
  2428. return X86EMUL_CONTINUE;
  2429. }
  2430. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2431. {
  2432. u8 opcodes[4];
  2433. unsigned long rip = kvm_rip_read(vcpu);
  2434. unsigned long rip_linear;
  2435. if (!printk_ratelimit())
  2436. return;
  2437. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2438. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2439. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2440. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2441. }
  2442. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2443. static struct x86_emulate_ops emulate_ops = {
  2444. .read_std = kvm_read_guest_virt,
  2445. .read_emulated = emulator_read_emulated,
  2446. .write_emulated = emulator_write_emulated,
  2447. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2448. };
  2449. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2450. {
  2451. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2452. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2453. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2454. vcpu->arch.regs_dirty = ~0;
  2455. }
  2456. int emulate_instruction(struct kvm_vcpu *vcpu,
  2457. unsigned long cr2,
  2458. u16 error_code,
  2459. int emulation_type)
  2460. {
  2461. int r, shadow_mask;
  2462. struct decode_cache *c;
  2463. struct kvm_run *run = vcpu->run;
  2464. kvm_clear_exception_queue(vcpu);
  2465. vcpu->arch.mmio_fault_cr2 = cr2;
  2466. /*
  2467. * TODO: fix emulate.c to use guest_read/write_register
  2468. * instead of direct ->regs accesses, can save hundred cycles
  2469. * on Intel for instructions that don't read/change RSP, for
  2470. * for example.
  2471. */
  2472. cache_all_regs(vcpu);
  2473. vcpu->mmio_is_write = 0;
  2474. vcpu->arch.pio.string = 0;
  2475. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2476. int cs_db, cs_l;
  2477. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2478. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2479. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2480. vcpu->arch.emulate_ctxt.mode =
  2481. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2482. ? X86EMUL_MODE_REAL : cs_l
  2483. ? X86EMUL_MODE_PROT64 : cs_db
  2484. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2485. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2486. /* Only allow emulation of specific instructions on #UD
  2487. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2488. c = &vcpu->arch.emulate_ctxt.decode;
  2489. if (emulation_type & EMULTYPE_TRAP_UD) {
  2490. if (!c->twobyte)
  2491. return EMULATE_FAIL;
  2492. switch (c->b) {
  2493. case 0x01: /* VMMCALL */
  2494. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2495. return EMULATE_FAIL;
  2496. break;
  2497. case 0x34: /* sysenter */
  2498. case 0x35: /* sysexit */
  2499. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2500. return EMULATE_FAIL;
  2501. break;
  2502. case 0x05: /* syscall */
  2503. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2504. return EMULATE_FAIL;
  2505. break;
  2506. default:
  2507. return EMULATE_FAIL;
  2508. }
  2509. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2510. return EMULATE_FAIL;
  2511. }
  2512. ++vcpu->stat.insn_emulation;
  2513. if (r) {
  2514. ++vcpu->stat.insn_emulation_fail;
  2515. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2516. return EMULATE_DONE;
  2517. return EMULATE_FAIL;
  2518. }
  2519. }
  2520. if (emulation_type & EMULTYPE_SKIP) {
  2521. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2522. return EMULATE_DONE;
  2523. }
  2524. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2525. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2526. if (r == 0)
  2527. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2528. if (vcpu->arch.pio.string)
  2529. return EMULATE_DO_MMIO;
  2530. if ((r || vcpu->mmio_is_write) && run) {
  2531. run->exit_reason = KVM_EXIT_MMIO;
  2532. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2533. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2534. run->mmio.len = vcpu->mmio_size;
  2535. run->mmio.is_write = vcpu->mmio_is_write;
  2536. }
  2537. if (r) {
  2538. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2539. return EMULATE_DONE;
  2540. if (!vcpu->mmio_needed) {
  2541. kvm_report_emulation_failure(vcpu, "mmio");
  2542. return EMULATE_FAIL;
  2543. }
  2544. return EMULATE_DO_MMIO;
  2545. }
  2546. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2547. if (vcpu->mmio_is_write) {
  2548. vcpu->mmio_needed = 0;
  2549. return EMULATE_DO_MMIO;
  2550. }
  2551. return EMULATE_DONE;
  2552. }
  2553. EXPORT_SYMBOL_GPL(emulate_instruction);
  2554. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2555. {
  2556. void *p = vcpu->arch.pio_data;
  2557. gva_t q = vcpu->arch.pio.guest_gva;
  2558. unsigned bytes;
  2559. int ret;
  2560. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2561. if (vcpu->arch.pio.in)
  2562. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2563. else
  2564. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2565. return ret;
  2566. }
  2567. int complete_pio(struct kvm_vcpu *vcpu)
  2568. {
  2569. struct kvm_pio_request *io = &vcpu->arch.pio;
  2570. long delta;
  2571. int r;
  2572. unsigned long val;
  2573. if (!io->string) {
  2574. if (io->in) {
  2575. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2576. memcpy(&val, vcpu->arch.pio_data, io->size);
  2577. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2578. }
  2579. } else {
  2580. if (io->in) {
  2581. r = pio_copy_data(vcpu);
  2582. if (r)
  2583. return r;
  2584. }
  2585. delta = 1;
  2586. if (io->rep) {
  2587. delta *= io->cur_count;
  2588. /*
  2589. * The size of the register should really depend on
  2590. * current address size.
  2591. */
  2592. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2593. val -= delta;
  2594. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2595. }
  2596. if (io->down)
  2597. delta = -delta;
  2598. delta *= io->size;
  2599. if (io->in) {
  2600. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2601. val += delta;
  2602. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2603. } else {
  2604. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2605. val += delta;
  2606. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2607. }
  2608. }
  2609. io->count -= io->cur_count;
  2610. io->cur_count = 0;
  2611. return 0;
  2612. }
  2613. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2614. {
  2615. /* TODO: String I/O for in kernel device */
  2616. int r;
  2617. if (vcpu->arch.pio.in)
  2618. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2619. vcpu->arch.pio.size, pd);
  2620. else
  2621. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2622. vcpu->arch.pio.size, pd);
  2623. return r;
  2624. }
  2625. static int pio_string_write(struct kvm_vcpu *vcpu)
  2626. {
  2627. struct kvm_pio_request *io = &vcpu->arch.pio;
  2628. void *pd = vcpu->arch.pio_data;
  2629. int i, r = 0;
  2630. for (i = 0; i < io->cur_count; i++) {
  2631. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2632. io->port, io->size, pd)) {
  2633. r = -EOPNOTSUPP;
  2634. break;
  2635. }
  2636. pd += io->size;
  2637. }
  2638. return r;
  2639. }
  2640. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2641. {
  2642. unsigned long val;
  2643. vcpu->run->exit_reason = KVM_EXIT_IO;
  2644. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2645. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2646. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2647. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2648. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2649. vcpu->arch.pio.in = in;
  2650. vcpu->arch.pio.string = 0;
  2651. vcpu->arch.pio.down = 0;
  2652. vcpu->arch.pio.rep = 0;
  2653. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2654. size, 1);
  2655. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2656. memcpy(vcpu->arch.pio_data, &val, 4);
  2657. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2658. complete_pio(vcpu);
  2659. return 1;
  2660. }
  2661. return 0;
  2662. }
  2663. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2664. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2665. int size, unsigned long count, int down,
  2666. gva_t address, int rep, unsigned port)
  2667. {
  2668. unsigned now, in_page;
  2669. int ret = 0;
  2670. vcpu->run->exit_reason = KVM_EXIT_IO;
  2671. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2672. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2673. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2674. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2675. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2676. vcpu->arch.pio.in = in;
  2677. vcpu->arch.pio.string = 1;
  2678. vcpu->arch.pio.down = down;
  2679. vcpu->arch.pio.rep = rep;
  2680. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2681. size, count);
  2682. if (!count) {
  2683. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2684. return 1;
  2685. }
  2686. if (!down)
  2687. in_page = PAGE_SIZE - offset_in_page(address);
  2688. else
  2689. in_page = offset_in_page(address) + size;
  2690. now = min(count, (unsigned long)in_page / size);
  2691. if (!now)
  2692. now = 1;
  2693. if (down) {
  2694. /*
  2695. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2696. */
  2697. pr_unimpl(vcpu, "guest string pio down\n");
  2698. kvm_inject_gp(vcpu, 0);
  2699. return 1;
  2700. }
  2701. vcpu->run->io.count = now;
  2702. vcpu->arch.pio.cur_count = now;
  2703. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2704. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2705. vcpu->arch.pio.guest_gva = address;
  2706. if (!vcpu->arch.pio.in) {
  2707. /* string PIO write */
  2708. ret = pio_copy_data(vcpu);
  2709. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2710. kvm_inject_gp(vcpu, 0);
  2711. return 1;
  2712. }
  2713. if (ret == 0 && !pio_string_write(vcpu)) {
  2714. complete_pio(vcpu);
  2715. if (vcpu->arch.pio.count == 0)
  2716. ret = 1;
  2717. }
  2718. }
  2719. /* no string PIO read support yet */
  2720. return ret;
  2721. }
  2722. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2723. static void bounce_off(void *info)
  2724. {
  2725. /* nothing */
  2726. }
  2727. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2728. void *data)
  2729. {
  2730. struct cpufreq_freqs *freq = data;
  2731. struct kvm *kvm;
  2732. struct kvm_vcpu *vcpu;
  2733. int i, send_ipi = 0;
  2734. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2735. return 0;
  2736. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2737. return 0;
  2738. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2739. spin_lock(&kvm_lock);
  2740. list_for_each_entry(kvm, &vm_list, vm_list) {
  2741. kvm_for_each_vcpu(i, vcpu, kvm) {
  2742. if (vcpu->cpu != freq->cpu)
  2743. continue;
  2744. if (!kvm_request_guest_time_update(vcpu))
  2745. continue;
  2746. if (vcpu->cpu != smp_processor_id())
  2747. send_ipi++;
  2748. }
  2749. }
  2750. spin_unlock(&kvm_lock);
  2751. if (freq->old < freq->new && send_ipi) {
  2752. /*
  2753. * We upscale the frequency. Must make the guest
  2754. * doesn't see old kvmclock values while running with
  2755. * the new frequency, otherwise we risk the guest sees
  2756. * time go backwards.
  2757. *
  2758. * In case we update the frequency for another cpu
  2759. * (which might be in guest context) send an interrupt
  2760. * to kick the cpu out of guest context. Next time
  2761. * guest context is entered kvmclock will be updated,
  2762. * so the guest will not see stale values.
  2763. */
  2764. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2765. }
  2766. return 0;
  2767. }
  2768. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2769. .notifier_call = kvmclock_cpufreq_notifier
  2770. };
  2771. static void kvm_timer_init(void)
  2772. {
  2773. int cpu;
  2774. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2775. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2776. CPUFREQ_TRANSITION_NOTIFIER);
  2777. for_each_online_cpu(cpu)
  2778. per_cpu(cpu_tsc_khz, cpu) = cpufreq_get(cpu);
  2779. } else {
  2780. for_each_possible_cpu(cpu)
  2781. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2782. }
  2783. }
  2784. int kvm_arch_init(void *opaque)
  2785. {
  2786. int r;
  2787. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2788. if (kvm_x86_ops) {
  2789. printk(KERN_ERR "kvm: already loaded the other module\n");
  2790. r = -EEXIST;
  2791. goto out;
  2792. }
  2793. if (!ops->cpu_has_kvm_support()) {
  2794. printk(KERN_ERR "kvm: no hardware support\n");
  2795. r = -EOPNOTSUPP;
  2796. goto out;
  2797. }
  2798. if (ops->disabled_by_bios()) {
  2799. printk(KERN_ERR "kvm: disabled by bios\n");
  2800. r = -EOPNOTSUPP;
  2801. goto out;
  2802. }
  2803. r = kvm_mmu_module_init();
  2804. if (r)
  2805. goto out;
  2806. kvm_init_msr_list();
  2807. kvm_x86_ops = ops;
  2808. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2809. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2810. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2811. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2812. kvm_timer_init();
  2813. return 0;
  2814. out:
  2815. return r;
  2816. }
  2817. void kvm_arch_exit(void)
  2818. {
  2819. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2820. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2821. CPUFREQ_TRANSITION_NOTIFIER);
  2822. kvm_x86_ops = NULL;
  2823. kvm_mmu_module_exit();
  2824. }
  2825. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2826. {
  2827. ++vcpu->stat.halt_exits;
  2828. if (irqchip_in_kernel(vcpu->kvm)) {
  2829. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2830. return 1;
  2831. } else {
  2832. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2833. return 0;
  2834. }
  2835. }
  2836. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2837. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2838. unsigned long a1)
  2839. {
  2840. if (is_long_mode(vcpu))
  2841. return a0;
  2842. else
  2843. return a0 | ((gpa_t)a1 << 32);
  2844. }
  2845. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2846. {
  2847. unsigned long nr, a0, a1, a2, a3, ret;
  2848. int r = 1;
  2849. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2850. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2851. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2852. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2853. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2854. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2855. if (!is_long_mode(vcpu)) {
  2856. nr &= 0xFFFFFFFF;
  2857. a0 &= 0xFFFFFFFF;
  2858. a1 &= 0xFFFFFFFF;
  2859. a2 &= 0xFFFFFFFF;
  2860. a3 &= 0xFFFFFFFF;
  2861. }
  2862. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2863. ret = -KVM_EPERM;
  2864. goto out;
  2865. }
  2866. switch (nr) {
  2867. case KVM_HC_VAPIC_POLL_IRQ:
  2868. ret = 0;
  2869. break;
  2870. case KVM_HC_MMU_OP:
  2871. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2872. break;
  2873. default:
  2874. ret = -KVM_ENOSYS;
  2875. break;
  2876. }
  2877. out:
  2878. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2879. ++vcpu->stat.hypercalls;
  2880. return r;
  2881. }
  2882. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2883. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2884. {
  2885. char instruction[3];
  2886. int ret = 0;
  2887. unsigned long rip = kvm_rip_read(vcpu);
  2888. /*
  2889. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2890. * to ensure that the updated hypercall appears atomically across all
  2891. * VCPUs.
  2892. */
  2893. kvm_mmu_zap_all(vcpu->kvm);
  2894. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2895. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2896. != X86EMUL_CONTINUE)
  2897. ret = -EFAULT;
  2898. return ret;
  2899. }
  2900. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2901. {
  2902. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2903. }
  2904. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2905. {
  2906. struct descriptor_table dt = { limit, base };
  2907. kvm_x86_ops->set_gdt(vcpu, &dt);
  2908. }
  2909. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2910. {
  2911. struct descriptor_table dt = { limit, base };
  2912. kvm_x86_ops->set_idt(vcpu, &dt);
  2913. }
  2914. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2915. unsigned long *rflags)
  2916. {
  2917. kvm_lmsw(vcpu, msw);
  2918. *rflags = kvm_get_rflags(vcpu);
  2919. }
  2920. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2921. {
  2922. unsigned long value;
  2923. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2924. switch (cr) {
  2925. case 0:
  2926. value = vcpu->arch.cr0;
  2927. break;
  2928. case 2:
  2929. value = vcpu->arch.cr2;
  2930. break;
  2931. case 3:
  2932. value = vcpu->arch.cr3;
  2933. break;
  2934. case 4:
  2935. value = vcpu->arch.cr4;
  2936. break;
  2937. case 8:
  2938. value = kvm_get_cr8(vcpu);
  2939. break;
  2940. default:
  2941. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2942. return 0;
  2943. }
  2944. return value;
  2945. }
  2946. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2947. unsigned long *rflags)
  2948. {
  2949. switch (cr) {
  2950. case 0:
  2951. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2952. *rflags = kvm_get_rflags(vcpu);
  2953. break;
  2954. case 2:
  2955. vcpu->arch.cr2 = val;
  2956. break;
  2957. case 3:
  2958. kvm_set_cr3(vcpu, val);
  2959. break;
  2960. case 4:
  2961. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2962. break;
  2963. case 8:
  2964. kvm_set_cr8(vcpu, val & 0xfUL);
  2965. break;
  2966. default:
  2967. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2968. }
  2969. }
  2970. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2971. {
  2972. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2973. int j, nent = vcpu->arch.cpuid_nent;
  2974. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2975. /* when no next entry is found, the current entry[i] is reselected */
  2976. for (j = i + 1; ; j = (j + 1) % nent) {
  2977. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2978. if (ej->function == e->function) {
  2979. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2980. return j;
  2981. }
  2982. }
  2983. return 0; /* silence gcc, even though control never reaches here */
  2984. }
  2985. /* find an entry with matching function, matching index (if needed), and that
  2986. * should be read next (if it's stateful) */
  2987. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2988. u32 function, u32 index)
  2989. {
  2990. if (e->function != function)
  2991. return 0;
  2992. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2993. return 0;
  2994. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2995. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2996. return 0;
  2997. return 1;
  2998. }
  2999. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3000. u32 function, u32 index)
  3001. {
  3002. int i;
  3003. struct kvm_cpuid_entry2 *best = NULL;
  3004. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3005. struct kvm_cpuid_entry2 *e;
  3006. e = &vcpu->arch.cpuid_entries[i];
  3007. if (is_matching_cpuid_entry(e, function, index)) {
  3008. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3009. move_to_next_stateful_cpuid_entry(vcpu, i);
  3010. best = e;
  3011. break;
  3012. }
  3013. /*
  3014. * Both basic or both extended?
  3015. */
  3016. if (((e->function ^ function) & 0x80000000) == 0)
  3017. if (!best || e->function > best->function)
  3018. best = e;
  3019. }
  3020. return best;
  3021. }
  3022. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3023. {
  3024. struct kvm_cpuid_entry2 *best;
  3025. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3026. if (best)
  3027. return best->eax & 0xff;
  3028. return 36;
  3029. }
  3030. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3031. {
  3032. u32 function, index;
  3033. struct kvm_cpuid_entry2 *best;
  3034. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3035. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3036. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3037. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3038. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3039. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3040. best = kvm_find_cpuid_entry(vcpu, function, index);
  3041. if (best) {
  3042. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3043. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3044. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3045. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3046. }
  3047. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3048. trace_kvm_cpuid(function,
  3049. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3050. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3051. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3052. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3053. }
  3054. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3055. /*
  3056. * Check if userspace requested an interrupt window, and that the
  3057. * interrupt window is open.
  3058. *
  3059. * No need to exit to userspace if we already have an interrupt queued.
  3060. */
  3061. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3062. {
  3063. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3064. vcpu->run->request_interrupt_window &&
  3065. kvm_arch_interrupt_allowed(vcpu));
  3066. }
  3067. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3068. {
  3069. struct kvm_run *kvm_run = vcpu->run;
  3070. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3071. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3072. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3073. if (irqchip_in_kernel(vcpu->kvm))
  3074. kvm_run->ready_for_interrupt_injection = 1;
  3075. else
  3076. kvm_run->ready_for_interrupt_injection =
  3077. kvm_arch_interrupt_allowed(vcpu) &&
  3078. !kvm_cpu_has_interrupt(vcpu) &&
  3079. !kvm_event_needs_reinjection(vcpu);
  3080. }
  3081. static void vapic_enter(struct kvm_vcpu *vcpu)
  3082. {
  3083. struct kvm_lapic *apic = vcpu->arch.apic;
  3084. struct page *page;
  3085. if (!apic || !apic->vapic_addr)
  3086. return;
  3087. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3088. vcpu->arch.apic->vapic_page = page;
  3089. }
  3090. static void vapic_exit(struct kvm_vcpu *vcpu)
  3091. {
  3092. struct kvm_lapic *apic = vcpu->arch.apic;
  3093. if (!apic || !apic->vapic_addr)
  3094. return;
  3095. down_read(&vcpu->kvm->slots_lock);
  3096. kvm_release_page_dirty(apic->vapic_page);
  3097. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3098. up_read(&vcpu->kvm->slots_lock);
  3099. }
  3100. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3101. {
  3102. int max_irr, tpr;
  3103. if (!kvm_x86_ops->update_cr8_intercept)
  3104. return;
  3105. if (!vcpu->arch.apic)
  3106. return;
  3107. if (!vcpu->arch.apic->vapic_addr)
  3108. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3109. else
  3110. max_irr = -1;
  3111. if (max_irr != -1)
  3112. max_irr >>= 4;
  3113. tpr = kvm_lapic_get_cr8(vcpu);
  3114. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3115. }
  3116. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3117. {
  3118. /* try to reinject previous events if any */
  3119. if (vcpu->arch.exception.pending) {
  3120. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3121. vcpu->arch.exception.has_error_code,
  3122. vcpu->arch.exception.error_code);
  3123. return;
  3124. }
  3125. if (vcpu->arch.nmi_injected) {
  3126. kvm_x86_ops->set_nmi(vcpu);
  3127. return;
  3128. }
  3129. if (vcpu->arch.interrupt.pending) {
  3130. kvm_x86_ops->set_irq(vcpu);
  3131. return;
  3132. }
  3133. /* try to inject new event if pending */
  3134. if (vcpu->arch.nmi_pending) {
  3135. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3136. vcpu->arch.nmi_pending = false;
  3137. vcpu->arch.nmi_injected = true;
  3138. kvm_x86_ops->set_nmi(vcpu);
  3139. }
  3140. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3141. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3142. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3143. false);
  3144. kvm_x86_ops->set_irq(vcpu);
  3145. }
  3146. }
  3147. }
  3148. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3149. {
  3150. int r;
  3151. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3152. vcpu->run->request_interrupt_window;
  3153. if (vcpu->requests)
  3154. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3155. kvm_mmu_unload(vcpu);
  3156. r = kvm_mmu_reload(vcpu);
  3157. if (unlikely(r))
  3158. goto out;
  3159. if (vcpu->requests) {
  3160. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3161. __kvm_migrate_timers(vcpu);
  3162. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3163. kvm_write_guest_time(vcpu);
  3164. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3165. kvm_mmu_sync_roots(vcpu);
  3166. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3167. kvm_x86_ops->tlb_flush(vcpu);
  3168. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3169. &vcpu->requests)) {
  3170. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3171. r = 0;
  3172. goto out;
  3173. }
  3174. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3175. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3176. r = 0;
  3177. goto out;
  3178. }
  3179. }
  3180. preempt_disable();
  3181. kvm_x86_ops->prepare_guest_switch(vcpu);
  3182. kvm_load_guest_fpu(vcpu);
  3183. local_irq_disable();
  3184. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3185. smp_mb__after_clear_bit();
  3186. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3187. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3188. local_irq_enable();
  3189. preempt_enable();
  3190. r = 1;
  3191. goto out;
  3192. }
  3193. inject_pending_event(vcpu);
  3194. /* enable NMI/IRQ window open exits if needed */
  3195. if (vcpu->arch.nmi_pending)
  3196. kvm_x86_ops->enable_nmi_window(vcpu);
  3197. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3198. kvm_x86_ops->enable_irq_window(vcpu);
  3199. if (kvm_lapic_enabled(vcpu)) {
  3200. update_cr8_intercept(vcpu);
  3201. kvm_lapic_sync_to_vapic(vcpu);
  3202. }
  3203. up_read(&vcpu->kvm->slots_lock);
  3204. kvm_guest_enter();
  3205. if (unlikely(vcpu->arch.switch_db_regs)) {
  3206. set_debugreg(0, 7);
  3207. set_debugreg(vcpu->arch.eff_db[0], 0);
  3208. set_debugreg(vcpu->arch.eff_db[1], 1);
  3209. set_debugreg(vcpu->arch.eff_db[2], 2);
  3210. set_debugreg(vcpu->arch.eff_db[3], 3);
  3211. }
  3212. trace_kvm_entry(vcpu->vcpu_id);
  3213. kvm_x86_ops->run(vcpu);
  3214. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3215. set_debugreg(current->thread.debugreg0, 0);
  3216. set_debugreg(current->thread.debugreg1, 1);
  3217. set_debugreg(current->thread.debugreg2, 2);
  3218. set_debugreg(current->thread.debugreg3, 3);
  3219. set_debugreg(current->thread.debugreg6, 6);
  3220. set_debugreg(current->thread.debugreg7, 7);
  3221. }
  3222. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3223. local_irq_enable();
  3224. ++vcpu->stat.exits;
  3225. /*
  3226. * We must have an instruction between local_irq_enable() and
  3227. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3228. * the interrupt shadow. The stat.exits increment will do nicely.
  3229. * But we need to prevent reordering, hence this barrier():
  3230. */
  3231. barrier();
  3232. kvm_guest_exit();
  3233. preempt_enable();
  3234. down_read(&vcpu->kvm->slots_lock);
  3235. /*
  3236. * Profile KVM exit RIPs:
  3237. */
  3238. if (unlikely(prof_on == KVM_PROFILING)) {
  3239. unsigned long rip = kvm_rip_read(vcpu);
  3240. profile_hit(KVM_PROFILING, (void *)rip);
  3241. }
  3242. kvm_lapic_sync_from_vapic(vcpu);
  3243. r = kvm_x86_ops->handle_exit(vcpu);
  3244. out:
  3245. return r;
  3246. }
  3247. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3248. {
  3249. int r;
  3250. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3251. pr_debug("vcpu %d received sipi with vector # %x\n",
  3252. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3253. kvm_lapic_reset(vcpu);
  3254. r = kvm_arch_vcpu_reset(vcpu);
  3255. if (r)
  3256. return r;
  3257. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3258. }
  3259. down_read(&vcpu->kvm->slots_lock);
  3260. vapic_enter(vcpu);
  3261. r = 1;
  3262. while (r > 0) {
  3263. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3264. r = vcpu_enter_guest(vcpu);
  3265. else {
  3266. up_read(&vcpu->kvm->slots_lock);
  3267. kvm_vcpu_block(vcpu);
  3268. down_read(&vcpu->kvm->slots_lock);
  3269. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3270. {
  3271. switch(vcpu->arch.mp_state) {
  3272. case KVM_MP_STATE_HALTED:
  3273. vcpu->arch.mp_state =
  3274. KVM_MP_STATE_RUNNABLE;
  3275. case KVM_MP_STATE_RUNNABLE:
  3276. break;
  3277. case KVM_MP_STATE_SIPI_RECEIVED:
  3278. default:
  3279. r = -EINTR;
  3280. break;
  3281. }
  3282. }
  3283. }
  3284. if (r <= 0)
  3285. break;
  3286. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3287. if (kvm_cpu_has_pending_timer(vcpu))
  3288. kvm_inject_pending_timer_irqs(vcpu);
  3289. if (dm_request_for_irq_injection(vcpu)) {
  3290. r = -EINTR;
  3291. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3292. ++vcpu->stat.request_irq_exits;
  3293. }
  3294. if (signal_pending(current)) {
  3295. r = -EINTR;
  3296. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3297. ++vcpu->stat.signal_exits;
  3298. }
  3299. if (need_resched()) {
  3300. up_read(&vcpu->kvm->slots_lock);
  3301. kvm_resched(vcpu);
  3302. down_read(&vcpu->kvm->slots_lock);
  3303. }
  3304. }
  3305. up_read(&vcpu->kvm->slots_lock);
  3306. post_kvm_run_save(vcpu);
  3307. vapic_exit(vcpu);
  3308. return r;
  3309. }
  3310. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3311. {
  3312. int r;
  3313. sigset_t sigsaved;
  3314. vcpu_load(vcpu);
  3315. if (vcpu->sigset_active)
  3316. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3317. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3318. kvm_vcpu_block(vcpu);
  3319. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3320. r = -EAGAIN;
  3321. goto out;
  3322. }
  3323. /* re-sync apic's tpr */
  3324. if (!irqchip_in_kernel(vcpu->kvm))
  3325. kvm_set_cr8(vcpu, kvm_run->cr8);
  3326. if (vcpu->arch.pio.cur_count) {
  3327. r = complete_pio(vcpu);
  3328. if (r)
  3329. goto out;
  3330. }
  3331. #if CONFIG_HAS_IOMEM
  3332. if (vcpu->mmio_needed) {
  3333. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3334. vcpu->mmio_read_completed = 1;
  3335. vcpu->mmio_needed = 0;
  3336. down_read(&vcpu->kvm->slots_lock);
  3337. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3338. EMULTYPE_NO_DECODE);
  3339. up_read(&vcpu->kvm->slots_lock);
  3340. if (r == EMULATE_DO_MMIO) {
  3341. /*
  3342. * Read-modify-write. Back to userspace.
  3343. */
  3344. r = 0;
  3345. goto out;
  3346. }
  3347. }
  3348. #endif
  3349. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3350. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3351. kvm_run->hypercall.ret);
  3352. r = __vcpu_run(vcpu);
  3353. out:
  3354. if (vcpu->sigset_active)
  3355. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3356. vcpu_put(vcpu);
  3357. return r;
  3358. }
  3359. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3360. {
  3361. vcpu_load(vcpu);
  3362. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3363. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3364. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3365. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3366. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3367. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3368. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3369. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3370. #ifdef CONFIG_X86_64
  3371. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3372. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3373. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3374. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3375. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3376. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3377. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3378. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3379. #endif
  3380. regs->rip = kvm_rip_read(vcpu);
  3381. regs->rflags = kvm_get_rflags(vcpu);
  3382. vcpu_put(vcpu);
  3383. return 0;
  3384. }
  3385. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3386. {
  3387. vcpu_load(vcpu);
  3388. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3389. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3390. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3391. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3392. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3393. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3394. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3395. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3396. #ifdef CONFIG_X86_64
  3397. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3398. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3399. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3400. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3401. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3402. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3403. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3404. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3405. #endif
  3406. kvm_rip_write(vcpu, regs->rip);
  3407. kvm_set_rflags(vcpu, regs->rflags);
  3408. vcpu->arch.exception.pending = false;
  3409. vcpu_put(vcpu);
  3410. return 0;
  3411. }
  3412. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3413. struct kvm_segment *var, int seg)
  3414. {
  3415. kvm_x86_ops->get_segment(vcpu, var, seg);
  3416. }
  3417. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3418. {
  3419. struct kvm_segment cs;
  3420. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3421. *db = cs.db;
  3422. *l = cs.l;
  3423. }
  3424. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3425. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3426. struct kvm_sregs *sregs)
  3427. {
  3428. struct descriptor_table dt;
  3429. vcpu_load(vcpu);
  3430. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3431. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3432. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3433. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3434. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3435. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3436. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3437. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3438. kvm_x86_ops->get_idt(vcpu, &dt);
  3439. sregs->idt.limit = dt.limit;
  3440. sregs->idt.base = dt.base;
  3441. kvm_x86_ops->get_gdt(vcpu, &dt);
  3442. sregs->gdt.limit = dt.limit;
  3443. sregs->gdt.base = dt.base;
  3444. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3445. sregs->cr0 = vcpu->arch.cr0;
  3446. sregs->cr2 = vcpu->arch.cr2;
  3447. sregs->cr3 = vcpu->arch.cr3;
  3448. sregs->cr4 = vcpu->arch.cr4;
  3449. sregs->cr8 = kvm_get_cr8(vcpu);
  3450. sregs->efer = vcpu->arch.shadow_efer;
  3451. sregs->apic_base = kvm_get_apic_base(vcpu);
  3452. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3453. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3454. set_bit(vcpu->arch.interrupt.nr,
  3455. (unsigned long *)sregs->interrupt_bitmap);
  3456. vcpu_put(vcpu);
  3457. return 0;
  3458. }
  3459. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3460. struct kvm_mp_state *mp_state)
  3461. {
  3462. vcpu_load(vcpu);
  3463. mp_state->mp_state = vcpu->arch.mp_state;
  3464. vcpu_put(vcpu);
  3465. return 0;
  3466. }
  3467. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3468. struct kvm_mp_state *mp_state)
  3469. {
  3470. vcpu_load(vcpu);
  3471. vcpu->arch.mp_state = mp_state->mp_state;
  3472. vcpu_put(vcpu);
  3473. return 0;
  3474. }
  3475. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3476. struct kvm_segment *var, int seg)
  3477. {
  3478. kvm_x86_ops->set_segment(vcpu, var, seg);
  3479. }
  3480. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3481. struct kvm_segment *kvm_desct)
  3482. {
  3483. kvm_desct->base = get_desc_base(seg_desc);
  3484. kvm_desct->limit = get_desc_limit(seg_desc);
  3485. if (seg_desc->g) {
  3486. kvm_desct->limit <<= 12;
  3487. kvm_desct->limit |= 0xfff;
  3488. }
  3489. kvm_desct->selector = selector;
  3490. kvm_desct->type = seg_desc->type;
  3491. kvm_desct->present = seg_desc->p;
  3492. kvm_desct->dpl = seg_desc->dpl;
  3493. kvm_desct->db = seg_desc->d;
  3494. kvm_desct->s = seg_desc->s;
  3495. kvm_desct->l = seg_desc->l;
  3496. kvm_desct->g = seg_desc->g;
  3497. kvm_desct->avl = seg_desc->avl;
  3498. if (!selector)
  3499. kvm_desct->unusable = 1;
  3500. else
  3501. kvm_desct->unusable = 0;
  3502. kvm_desct->padding = 0;
  3503. }
  3504. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3505. u16 selector,
  3506. struct descriptor_table *dtable)
  3507. {
  3508. if (selector & 1 << 2) {
  3509. struct kvm_segment kvm_seg;
  3510. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3511. if (kvm_seg.unusable)
  3512. dtable->limit = 0;
  3513. else
  3514. dtable->limit = kvm_seg.limit;
  3515. dtable->base = kvm_seg.base;
  3516. }
  3517. else
  3518. kvm_x86_ops->get_gdt(vcpu, dtable);
  3519. }
  3520. /* allowed just for 8 bytes segments */
  3521. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3522. struct desc_struct *seg_desc)
  3523. {
  3524. struct descriptor_table dtable;
  3525. u16 index = selector >> 3;
  3526. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3527. if (dtable.limit < index * 8 + 7) {
  3528. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3529. return 1;
  3530. }
  3531. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3532. }
  3533. /* allowed just for 8 bytes segments */
  3534. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3535. struct desc_struct *seg_desc)
  3536. {
  3537. struct descriptor_table dtable;
  3538. u16 index = selector >> 3;
  3539. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3540. if (dtable.limit < index * 8 + 7)
  3541. return 1;
  3542. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3543. }
  3544. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3545. struct desc_struct *seg_desc)
  3546. {
  3547. u32 base_addr = get_desc_base(seg_desc);
  3548. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3549. }
  3550. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3551. {
  3552. struct kvm_segment kvm_seg;
  3553. kvm_get_segment(vcpu, &kvm_seg, seg);
  3554. return kvm_seg.selector;
  3555. }
  3556. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3557. u16 selector,
  3558. struct kvm_segment *kvm_seg)
  3559. {
  3560. struct desc_struct seg_desc;
  3561. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3562. return 1;
  3563. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3564. return 0;
  3565. }
  3566. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3567. {
  3568. struct kvm_segment segvar = {
  3569. .base = selector << 4,
  3570. .limit = 0xffff,
  3571. .selector = selector,
  3572. .type = 3,
  3573. .present = 1,
  3574. .dpl = 3,
  3575. .db = 0,
  3576. .s = 1,
  3577. .l = 0,
  3578. .g = 0,
  3579. .avl = 0,
  3580. .unusable = 0,
  3581. };
  3582. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3583. return 0;
  3584. }
  3585. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3586. {
  3587. return (seg != VCPU_SREG_LDTR) &&
  3588. (seg != VCPU_SREG_TR) &&
  3589. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3590. }
  3591. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3592. int type_bits, int seg)
  3593. {
  3594. struct kvm_segment kvm_seg;
  3595. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3596. return kvm_load_realmode_segment(vcpu, selector, seg);
  3597. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3598. return 1;
  3599. kvm_seg.type |= type_bits;
  3600. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3601. seg != VCPU_SREG_LDTR)
  3602. if (!kvm_seg.s)
  3603. kvm_seg.unusable = 1;
  3604. kvm_set_segment(vcpu, &kvm_seg, seg);
  3605. return 0;
  3606. }
  3607. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3608. struct tss_segment_32 *tss)
  3609. {
  3610. tss->cr3 = vcpu->arch.cr3;
  3611. tss->eip = kvm_rip_read(vcpu);
  3612. tss->eflags = kvm_get_rflags(vcpu);
  3613. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3614. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3615. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3616. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3617. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3618. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3619. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3620. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3621. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3622. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3623. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3624. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3625. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3626. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3627. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3628. }
  3629. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3630. struct tss_segment_32 *tss)
  3631. {
  3632. kvm_set_cr3(vcpu, tss->cr3);
  3633. kvm_rip_write(vcpu, tss->eip);
  3634. kvm_set_rflags(vcpu, tss->eflags | 2);
  3635. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3636. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3637. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3638. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3639. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3640. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3641. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3642. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3643. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3644. return 1;
  3645. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3646. return 1;
  3647. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3648. return 1;
  3649. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3650. return 1;
  3651. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3652. return 1;
  3653. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3654. return 1;
  3655. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3656. return 1;
  3657. return 0;
  3658. }
  3659. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3660. struct tss_segment_16 *tss)
  3661. {
  3662. tss->ip = kvm_rip_read(vcpu);
  3663. tss->flag = kvm_get_rflags(vcpu);
  3664. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3665. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3666. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3667. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3668. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3669. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3670. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3671. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3672. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3673. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3674. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3675. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3676. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3677. }
  3678. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3679. struct tss_segment_16 *tss)
  3680. {
  3681. kvm_rip_write(vcpu, tss->ip);
  3682. kvm_set_rflags(vcpu, tss->flag | 2);
  3683. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3684. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3685. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3686. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3687. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3688. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3689. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3690. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3691. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3692. return 1;
  3693. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3694. return 1;
  3695. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3696. return 1;
  3697. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3698. return 1;
  3699. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3700. return 1;
  3701. return 0;
  3702. }
  3703. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3704. u16 old_tss_sel, u32 old_tss_base,
  3705. struct desc_struct *nseg_desc)
  3706. {
  3707. struct tss_segment_16 tss_segment_16;
  3708. int ret = 0;
  3709. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3710. sizeof tss_segment_16))
  3711. goto out;
  3712. save_state_to_tss16(vcpu, &tss_segment_16);
  3713. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3714. sizeof tss_segment_16))
  3715. goto out;
  3716. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3717. &tss_segment_16, sizeof tss_segment_16))
  3718. goto out;
  3719. if (old_tss_sel != 0xffff) {
  3720. tss_segment_16.prev_task_link = old_tss_sel;
  3721. if (kvm_write_guest(vcpu->kvm,
  3722. get_tss_base_addr(vcpu, nseg_desc),
  3723. &tss_segment_16.prev_task_link,
  3724. sizeof tss_segment_16.prev_task_link))
  3725. goto out;
  3726. }
  3727. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3728. goto out;
  3729. ret = 1;
  3730. out:
  3731. return ret;
  3732. }
  3733. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3734. u16 old_tss_sel, u32 old_tss_base,
  3735. struct desc_struct *nseg_desc)
  3736. {
  3737. struct tss_segment_32 tss_segment_32;
  3738. int ret = 0;
  3739. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3740. sizeof tss_segment_32))
  3741. goto out;
  3742. save_state_to_tss32(vcpu, &tss_segment_32);
  3743. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3744. sizeof tss_segment_32))
  3745. goto out;
  3746. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3747. &tss_segment_32, sizeof tss_segment_32))
  3748. goto out;
  3749. if (old_tss_sel != 0xffff) {
  3750. tss_segment_32.prev_task_link = old_tss_sel;
  3751. if (kvm_write_guest(vcpu->kvm,
  3752. get_tss_base_addr(vcpu, nseg_desc),
  3753. &tss_segment_32.prev_task_link,
  3754. sizeof tss_segment_32.prev_task_link))
  3755. goto out;
  3756. }
  3757. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3758. goto out;
  3759. ret = 1;
  3760. out:
  3761. return ret;
  3762. }
  3763. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3764. {
  3765. struct kvm_segment tr_seg;
  3766. struct desc_struct cseg_desc;
  3767. struct desc_struct nseg_desc;
  3768. int ret = 0;
  3769. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3770. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3771. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3772. /* FIXME: Handle errors. Failure to read either TSS or their
  3773. * descriptors should generate a pagefault.
  3774. */
  3775. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3776. goto out;
  3777. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3778. goto out;
  3779. if (reason != TASK_SWITCH_IRET) {
  3780. int cpl;
  3781. cpl = kvm_x86_ops->get_cpl(vcpu);
  3782. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3783. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3784. return 1;
  3785. }
  3786. }
  3787. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3788. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3789. return 1;
  3790. }
  3791. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3792. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3793. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3794. }
  3795. if (reason == TASK_SWITCH_IRET) {
  3796. u32 eflags = kvm_get_rflags(vcpu);
  3797. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3798. }
  3799. /* set back link to prev task only if NT bit is set in eflags
  3800. note that old_tss_sel is not used afetr this point */
  3801. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3802. old_tss_sel = 0xffff;
  3803. /* set back link to prev task only if NT bit is set in eflags
  3804. note that old_tss_sel is not used afetr this point */
  3805. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3806. old_tss_sel = 0xffff;
  3807. if (nseg_desc.type & 8)
  3808. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3809. old_tss_base, &nseg_desc);
  3810. else
  3811. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3812. old_tss_base, &nseg_desc);
  3813. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3814. u32 eflags = kvm_get_rflags(vcpu);
  3815. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3816. }
  3817. if (reason != TASK_SWITCH_IRET) {
  3818. nseg_desc.type |= (1 << 1);
  3819. save_guest_segment_descriptor(vcpu, tss_selector,
  3820. &nseg_desc);
  3821. }
  3822. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3823. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3824. tr_seg.type = 11;
  3825. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3826. out:
  3827. return ret;
  3828. }
  3829. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3830. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3831. struct kvm_sregs *sregs)
  3832. {
  3833. int mmu_reset_needed = 0;
  3834. int pending_vec, max_bits;
  3835. struct descriptor_table dt;
  3836. vcpu_load(vcpu);
  3837. dt.limit = sregs->idt.limit;
  3838. dt.base = sregs->idt.base;
  3839. kvm_x86_ops->set_idt(vcpu, &dt);
  3840. dt.limit = sregs->gdt.limit;
  3841. dt.base = sregs->gdt.base;
  3842. kvm_x86_ops->set_gdt(vcpu, &dt);
  3843. vcpu->arch.cr2 = sregs->cr2;
  3844. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3845. vcpu->arch.cr3 = sregs->cr3;
  3846. kvm_set_cr8(vcpu, sregs->cr8);
  3847. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3848. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3849. kvm_set_apic_base(vcpu, sregs->apic_base);
  3850. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3851. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3852. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3853. vcpu->arch.cr0 = sregs->cr0;
  3854. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3855. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3856. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3857. load_pdptrs(vcpu, vcpu->arch.cr3);
  3858. if (mmu_reset_needed)
  3859. kvm_mmu_reset_context(vcpu);
  3860. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3861. pending_vec = find_first_bit(
  3862. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3863. if (pending_vec < max_bits) {
  3864. kvm_queue_interrupt(vcpu, pending_vec, false);
  3865. pr_debug("Set back pending irq %d\n", pending_vec);
  3866. if (irqchip_in_kernel(vcpu->kvm))
  3867. kvm_pic_clear_isr_ack(vcpu->kvm);
  3868. }
  3869. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3870. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3871. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3872. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3873. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3874. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3875. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3876. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3877. update_cr8_intercept(vcpu);
  3878. /* Older userspace won't unhalt the vcpu on reset. */
  3879. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3880. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3881. !(vcpu->arch.cr0 & X86_CR0_PE))
  3882. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3883. vcpu_put(vcpu);
  3884. return 0;
  3885. }
  3886. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3887. struct kvm_guest_debug *dbg)
  3888. {
  3889. unsigned long rflags;
  3890. int i;
  3891. vcpu_load(vcpu);
  3892. /*
  3893. * Read rflags as long as potentially injected trace flags are still
  3894. * filtered out.
  3895. */
  3896. rflags = kvm_get_rflags(vcpu);
  3897. vcpu->guest_debug = dbg->control;
  3898. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  3899. vcpu->guest_debug = 0;
  3900. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3901. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3902. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3903. vcpu->arch.switch_db_regs =
  3904. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3905. } else {
  3906. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3907. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3908. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3909. }
  3910. /*
  3911. * Trigger an rflags update that will inject or remove the trace
  3912. * flags.
  3913. */
  3914. kvm_set_rflags(vcpu, rflags);
  3915. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3916. if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
  3917. kvm_queue_exception(vcpu, DB_VECTOR);
  3918. else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
  3919. kvm_queue_exception(vcpu, BP_VECTOR);
  3920. vcpu_put(vcpu);
  3921. return 0;
  3922. }
  3923. /*
  3924. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3925. * we have asm/x86/processor.h
  3926. */
  3927. struct fxsave {
  3928. u16 cwd;
  3929. u16 swd;
  3930. u16 twd;
  3931. u16 fop;
  3932. u64 rip;
  3933. u64 rdp;
  3934. u32 mxcsr;
  3935. u32 mxcsr_mask;
  3936. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3937. #ifdef CONFIG_X86_64
  3938. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3939. #else
  3940. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3941. #endif
  3942. };
  3943. /*
  3944. * Translate a guest virtual address to a guest physical address.
  3945. */
  3946. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3947. struct kvm_translation *tr)
  3948. {
  3949. unsigned long vaddr = tr->linear_address;
  3950. gpa_t gpa;
  3951. vcpu_load(vcpu);
  3952. down_read(&vcpu->kvm->slots_lock);
  3953. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3954. up_read(&vcpu->kvm->slots_lock);
  3955. tr->physical_address = gpa;
  3956. tr->valid = gpa != UNMAPPED_GVA;
  3957. tr->writeable = 1;
  3958. tr->usermode = 0;
  3959. vcpu_put(vcpu);
  3960. return 0;
  3961. }
  3962. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3963. {
  3964. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3965. vcpu_load(vcpu);
  3966. memcpy(fpu->fpr, fxsave->st_space, 128);
  3967. fpu->fcw = fxsave->cwd;
  3968. fpu->fsw = fxsave->swd;
  3969. fpu->ftwx = fxsave->twd;
  3970. fpu->last_opcode = fxsave->fop;
  3971. fpu->last_ip = fxsave->rip;
  3972. fpu->last_dp = fxsave->rdp;
  3973. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3974. vcpu_put(vcpu);
  3975. return 0;
  3976. }
  3977. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3978. {
  3979. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3980. vcpu_load(vcpu);
  3981. memcpy(fxsave->st_space, fpu->fpr, 128);
  3982. fxsave->cwd = fpu->fcw;
  3983. fxsave->swd = fpu->fsw;
  3984. fxsave->twd = fpu->ftwx;
  3985. fxsave->fop = fpu->last_opcode;
  3986. fxsave->rip = fpu->last_ip;
  3987. fxsave->rdp = fpu->last_dp;
  3988. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3989. vcpu_put(vcpu);
  3990. return 0;
  3991. }
  3992. void fx_init(struct kvm_vcpu *vcpu)
  3993. {
  3994. unsigned after_mxcsr_mask;
  3995. /*
  3996. * Touch the fpu the first time in non atomic context as if
  3997. * this is the first fpu instruction the exception handler
  3998. * will fire before the instruction returns and it'll have to
  3999. * allocate ram with GFP_KERNEL.
  4000. */
  4001. if (!used_math())
  4002. kvm_fx_save(&vcpu->arch.host_fx_image);
  4003. /* Initialize guest FPU by resetting ours and saving into guest's */
  4004. preempt_disable();
  4005. kvm_fx_save(&vcpu->arch.host_fx_image);
  4006. kvm_fx_finit();
  4007. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4008. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4009. preempt_enable();
  4010. vcpu->arch.cr0 |= X86_CR0_ET;
  4011. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4012. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4013. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4014. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4015. }
  4016. EXPORT_SYMBOL_GPL(fx_init);
  4017. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4018. {
  4019. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4020. return;
  4021. vcpu->guest_fpu_loaded = 1;
  4022. kvm_fx_save(&vcpu->arch.host_fx_image);
  4023. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4024. }
  4025. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4026. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4027. {
  4028. if (!vcpu->guest_fpu_loaded)
  4029. return;
  4030. vcpu->guest_fpu_loaded = 0;
  4031. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4032. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4033. ++vcpu->stat.fpu_reload;
  4034. }
  4035. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4036. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4037. {
  4038. if (vcpu->arch.time_page) {
  4039. kvm_release_page_dirty(vcpu->arch.time_page);
  4040. vcpu->arch.time_page = NULL;
  4041. }
  4042. kvm_x86_ops->vcpu_free(vcpu);
  4043. }
  4044. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4045. unsigned int id)
  4046. {
  4047. return kvm_x86_ops->vcpu_create(kvm, id);
  4048. }
  4049. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4050. {
  4051. int r;
  4052. /* We do fxsave: this must be aligned. */
  4053. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4054. vcpu->arch.mtrr_state.have_fixed = 1;
  4055. vcpu_load(vcpu);
  4056. r = kvm_arch_vcpu_reset(vcpu);
  4057. if (r == 0)
  4058. r = kvm_mmu_setup(vcpu);
  4059. vcpu_put(vcpu);
  4060. if (r < 0)
  4061. goto free_vcpu;
  4062. return 0;
  4063. free_vcpu:
  4064. kvm_x86_ops->vcpu_free(vcpu);
  4065. return r;
  4066. }
  4067. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4068. {
  4069. vcpu_load(vcpu);
  4070. kvm_mmu_unload(vcpu);
  4071. vcpu_put(vcpu);
  4072. kvm_x86_ops->vcpu_free(vcpu);
  4073. }
  4074. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4075. {
  4076. vcpu->arch.nmi_pending = false;
  4077. vcpu->arch.nmi_injected = false;
  4078. vcpu->arch.switch_db_regs = 0;
  4079. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4080. vcpu->arch.dr6 = DR6_FIXED_1;
  4081. vcpu->arch.dr7 = DR7_FIXED_1;
  4082. return kvm_x86_ops->vcpu_reset(vcpu);
  4083. }
  4084. int kvm_arch_hardware_enable(void *garbage)
  4085. {
  4086. /*
  4087. * Since this may be called from a hotplug notifcation,
  4088. * we can't get the CPU frequency directly.
  4089. */
  4090. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4091. int cpu = raw_smp_processor_id();
  4092. per_cpu(cpu_tsc_khz, cpu) = 0;
  4093. }
  4094. return kvm_x86_ops->hardware_enable(garbage);
  4095. }
  4096. void kvm_arch_hardware_disable(void *garbage)
  4097. {
  4098. kvm_x86_ops->hardware_disable(garbage);
  4099. }
  4100. int kvm_arch_hardware_setup(void)
  4101. {
  4102. return kvm_x86_ops->hardware_setup();
  4103. }
  4104. void kvm_arch_hardware_unsetup(void)
  4105. {
  4106. kvm_x86_ops->hardware_unsetup();
  4107. }
  4108. void kvm_arch_check_processor_compat(void *rtn)
  4109. {
  4110. kvm_x86_ops->check_processor_compatibility(rtn);
  4111. }
  4112. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4113. {
  4114. struct page *page;
  4115. struct kvm *kvm;
  4116. int r;
  4117. BUG_ON(vcpu->kvm == NULL);
  4118. kvm = vcpu->kvm;
  4119. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4120. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4121. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4122. else
  4123. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4124. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4125. if (!page) {
  4126. r = -ENOMEM;
  4127. goto fail;
  4128. }
  4129. vcpu->arch.pio_data = page_address(page);
  4130. r = kvm_mmu_create(vcpu);
  4131. if (r < 0)
  4132. goto fail_free_pio_data;
  4133. if (irqchip_in_kernel(kvm)) {
  4134. r = kvm_create_lapic(vcpu);
  4135. if (r < 0)
  4136. goto fail_mmu_destroy;
  4137. }
  4138. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4139. GFP_KERNEL);
  4140. if (!vcpu->arch.mce_banks) {
  4141. r = -ENOMEM;
  4142. goto fail_mmu_destroy;
  4143. }
  4144. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4145. return 0;
  4146. fail_mmu_destroy:
  4147. kvm_mmu_destroy(vcpu);
  4148. fail_free_pio_data:
  4149. free_page((unsigned long)vcpu->arch.pio_data);
  4150. fail:
  4151. return r;
  4152. }
  4153. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4154. {
  4155. kvm_free_lapic(vcpu);
  4156. down_read(&vcpu->kvm->slots_lock);
  4157. kvm_mmu_destroy(vcpu);
  4158. up_read(&vcpu->kvm->slots_lock);
  4159. free_page((unsigned long)vcpu->arch.pio_data);
  4160. }
  4161. struct kvm *kvm_arch_create_vm(void)
  4162. {
  4163. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4164. if (!kvm)
  4165. return ERR_PTR(-ENOMEM);
  4166. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4167. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4168. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4169. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4170. rdtscll(kvm->arch.vm_init_tsc);
  4171. return kvm;
  4172. }
  4173. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4174. {
  4175. vcpu_load(vcpu);
  4176. kvm_mmu_unload(vcpu);
  4177. vcpu_put(vcpu);
  4178. }
  4179. static void kvm_free_vcpus(struct kvm *kvm)
  4180. {
  4181. unsigned int i;
  4182. struct kvm_vcpu *vcpu;
  4183. /*
  4184. * Unpin any mmu pages first.
  4185. */
  4186. kvm_for_each_vcpu(i, vcpu, kvm)
  4187. kvm_unload_vcpu_mmu(vcpu);
  4188. kvm_for_each_vcpu(i, vcpu, kvm)
  4189. kvm_arch_vcpu_free(vcpu);
  4190. mutex_lock(&kvm->lock);
  4191. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4192. kvm->vcpus[i] = NULL;
  4193. atomic_set(&kvm->online_vcpus, 0);
  4194. mutex_unlock(&kvm->lock);
  4195. }
  4196. void kvm_arch_sync_events(struct kvm *kvm)
  4197. {
  4198. kvm_free_all_assigned_devices(kvm);
  4199. }
  4200. void kvm_arch_destroy_vm(struct kvm *kvm)
  4201. {
  4202. kvm_iommu_unmap_guest(kvm);
  4203. kvm_free_pit(kvm);
  4204. kfree(kvm->arch.vpic);
  4205. kfree(kvm->arch.vioapic);
  4206. kvm_free_vcpus(kvm);
  4207. kvm_free_physmem(kvm);
  4208. if (kvm->arch.apic_access_page)
  4209. put_page(kvm->arch.apic_access_page);
  4210. if (kvm->arch.ept_identity_pagetable)
  4211. put_page(kvm->arch.ept_identity_pagetable);
  4212. kfree(kvm);
  4213. }
  4214. int kvm_arch_set_memory_region(struct kvm *kvm,
  4215. struct kvm_userspace_memory_region *mem,
  4216. struct kvm_memory_slot old,
  4217. int user_alloc)
  4218. {
  4219. int npages = mem->memory_size >> PAGE_SHIFT;
  4220. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4221. /*To keep backward compatibility with older userspace,
  4222. *x86 needs to hanlde !user_alloc case.
  4223. */
  4224. if (!user_alloc) {
  4225. if (npages && !old.rmap) {
  4226. unsigned long userspace_addr;
  4227. down_write(&current->mm->mmap_sem);
  4228. userspace_addr = do_mmap(NULL, 0,
  4229. npages * PAGE_SIZE,
  4230. PROT_READ | PROT_WRITE,
  4231. MAP_PRIVATE | MAP_ANONYMOUS,
  4232. 0);
  4233. up_write(&current->mm->mmap_sem);
  4234. if (IS_ERR((void *)userspace_addr))
  4235. return PTR_ERR((void *)userspace_addr);
  4236. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4237. spin_lock(&kvm->mmu_lock);
  4238. memslot->userspace_addr = userspace_addr;
  4239. spin_unlock(&kvm->mmu_lock);
  4240. } else {
  4241. if (!old.user_alloc && old.rmap) {
  4242. int ret;
  4243. down_write(&current->mm->mmap_sem);
  4244. ret = do_munmap(current->mm, old.userspace_addr,
  4245. old.npages * PAGE_SIZE);
  4246. up_write(&current->mm->mmap_sem);
  4247. if (ret < 0)
  4248. printk(KERN_WARNING
  4249. "kvm_vm_ioctl_set_memory_region: "
  4250. "failed to munmap memory\n");
  4251. }
  4252. }
  4253. }
  4254. spin_lock(&kvm->mmu_lock);
  4255. if (!kvm->arch.n_requested_mmu_pages) {
  4256. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4257. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4258. }
  4259. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4260. spin_unlock(&kvm->mmu_lock);
  4261. return 0;
  4262. }
  4263. void kvm_arch_flush_shadow(struct kvm *kvm)
  4264. {
  4265. kvm_mmu_zap_all(kvm);
  4266. kvm_reload_remote_mmus(kvm);
  4267. }
  4268. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4269. {
  4270. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4271. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4272. || vcpu->arch.nmi_pending ||
  4273. (kvm_arch_interrupt_allowed(vcpu) &&
  4274. kvm_cpu_has_interrupt(vcpu));
  4275. }
  4276. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4277. {
  4278. int me;
  4279. int cpu = vcpu->cpu;
  4280. if (waitqueue_active(&vcpu->wq)) {
  4281. wake_up_interruptible(&vcpu->wq);
  4282. ++vcpu->stat.halt_wakeup;
  4283. }
  4284. me = get_cpu();
  4285. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4286. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4287. smp_send_reschedule(cpu);
  4288. put_cpu();
  4289. }
  4290. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4291. {
  4292. return kvm_x86_ops->interrupt_allowed(vcpu);
  4293. }
  4294. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4295. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4296. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4297. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4298. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);