pgtable.h 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. /*
  2. * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Copyright 2003 PathScale, Inc.
  4. * Derived from include/asm-i386/pgtable.h
  5. * Licensed under the GPL
  6. */
  7. #ifndef __UM_PGTABLE_H
  8. #define __UM_PGTABLE_H
  9. #include "linux/sched.h"
  10. #include <asm/fixmap.h>
  11. #define _PAGE_PRESENT 0x001
  12. #define _PAGE_NEWPAGE 0x002
  13. #define _PAGE_NEWPROT 0x004
  14. #define _PAGE_RW 0x020
  15. #define _PAGE_USER 0x040
  16. #define _PAGE_ACCESSED 0x080
  17. #define _PAGE_DIRTY 0x100
  18. /* If _PAGE_PRESENT is clear, we use these: */
  19. #define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
  20. #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
  21. pte_present gives true */
  22. #ifdef CONFIG_3_LEVEL_PGTABLES
  23. #include "asm/pgtable-3level.h"
  24. #else
  25. #include "asm/pgtable-2level.h"
  26. #endif
  27. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  28. /* zero page used for uninitialized stuff */
  29. extern unsigned long *empty_zero_page;
  30. #define pgtable_cache_init() do ; while (0)
  31. /* Just any arbitrary offset to the start of the vmalloc VM area: the
  32. * current 8MB value just means that there will be a 8MB "hole" after the
  33. * physical memory until the kernel virtual memory starts. That means that
  34. * any out-of-bounds memory accesses will hopefully be caught.
  35. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  36. * area for the same reason. ;)
  37. */
  38. extern unsigned long end_iomem;
  39. #define VMALLOC_OFFSET (__va_space)
  40. #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  41. #ifdef CONFIG_HIGHMEM
  42. # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
  43. #else
  44. # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
  45. #endif
  46. #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
  47. #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
  48. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  49. #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
  50. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
  51. #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  52. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  53. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  54. /*
  55. * The i386 can't do page protection for execute, and considers that the same
  56. * are read.
  57. * Also, write permissions imply read permissions. This is the closest we can
  58. * get..
  59. */
  60. #define __P000 PAGE_NONE
  61. #define __P001 PAGE_READONLY
  62. #define __P010 PAGE_COPY
  63. #define __P011 PAGE_COPY
  64. #define __P100 PAGE_READONLY
  65. #define __P101 PAGE_READONLY
  66. #define __P110 PAGE_COPY
  67. #define __P111 PAGE_COPY
  68. #define __S000 PAGE_NONE
  69. #define __S001 PAGE_READONLY
  70. #define __S010 PAGE_SHARED
  71. #define __S011 PAGE_SHARED
  72. #define __S100 PAGE_READONLY
  73. #define __S101 PAGE_READONLY
  74. #define __S110 PAGE_SHARED
  75. #define __S111 PAGE_SHARED
  76. /*
  77. * ZERO_PAGE is a global shared page that is always zero: used
  78. * for zero-mapped memory areas etc..
  79. */
  80. #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
  81. #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
  82. #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
  83. #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  84. #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
  85. #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
  86. #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
  87. #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
  88. #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
  89. #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
  90. #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
  91. #define pte_page(x) pfn_to_page(pte_pfn(x))
  92. #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
  93. /*
  94. * =================================
  95. * Flags checking section.
  96. * =================================
  97. */
  98. static inline int pte_none(pte_t pte)
  99. {
  100. return pte_is_zero(pte);
  101. }
  102. /*
  103. * The following only work if pte_present() is true.
  104. * Undefined behaviour if not..
  105. */
  106. static inline int pte_read(pte_t pte)
  107. {
  108. return((pte_get_bits(pte, _PAGE_USER)) &&
  109. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  110. }
  111. static inline int pte_exec(pte_t pte){
  112. return((pte_get_bits(pte, _PAGE_USER)) &&
  113. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  114. }
  115. static inline int pte_write(pte_t pte)
  116. {
  117. return((pte_get_bits(pte, _PAGE_RW)) &&
  118. !(pte_get_bits(pte, _PAGE_PROTNONE)));
  119. }
  120. /*
  121. * The following only works if pte_present() is not true.
  122. */
  123. static inline int pte_file(pte_t pte)
  124. {
  125. return pte_get_bits(pte, _PAGE_FILE);
  126. }
  127. static inline int pte_dirty(pte_t pte)
  128. {
  129. return pte_get_bits(pte, _PAGE_DIRTY);
  130. }
  131. static inline int pte_young(pte_t pte)
  132. {
  133. return pte_get_bits(pte, _PAGE_ACCESSED);
  134. }
  135. static inline int pte_newpage(pte_t pte)
  136. {
  137. return pte_get_bits(pte, _PAGE_NEWPAGE);
  138. }
  139. static inline int pte_newprot(pte_t pte)
  140. {
  141. return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
  142. }
  143. /*
  144. * =================================
  145. * Flags setting section.
  146. * =================================
  147. */
  148. static inline pte_t pte_mknewprot(pte_t pte)
  149. {
  150. pte_set_bits(pte, _PAGE_NEWPROT);
  151. return(pte);
  152. }
  153. static inline pte_t pte_mkclean(pte_t pte)
  154. {
  155. pte_clear_bits(pte, _PAGE_DIRTY);
  156. return(pte);
  157. }
  158. static inline pte_t pte_mkold(pte_t pte)
  159. {
  160. pte_clear_bits(pte, _PAGE_ACCESSED);
  161. return(pte);
  162. }
  163. static inline pte_t pte_wrprotect(pte_t pte)
  164. {
  165. pte_clear_bits(pte, _PAGE_RW);
  166. return(pte_mknewprot(pte));
  167. }
  168. static inline pte_t pte_mkread(pte_t pte)
  169. {
  170. pte_set_bits(pte, _PAGE_USER);
  171. return(pte_mknewprot(pte));
  172. }
  173. static inline pte_t pte_mkdirty(pte_t pte)
  174. {
  175. pte_set_bits(pte, _PAGE_DIRTY);
  176. return(pte);
  177. }
  178. static inline pte_t pte_mkyoung(pte_t pte)
  179. {
  180. pte_set_bits(pte, _PAGE_ACCESSED);
  181. return(pte);
  182. }
  183. static inline pte_t pte_mkwrite(pte_t pte)
  184. {
  185. pte_set_bits(pte, _PAGE_RW);
  186. return(pte_mknewprot(pte));
  187. }
  188. static inline pte_t pte_mkuptodate(pte_t pte)
  189. {
  190. pte_clear_bits(pte, _PAGE_NEWPAGE);
  191. if(pte_present(pte))
  192. pte_clear_bits(pte, _PAGE_NEWPROT);
  193. return(pte);
  194. }
  195. static inline pte_t pte_mknewpage(pte_t pte)
  196. {
  197. pte_set_bits(pte, _PAGE_NEWPAGE);
  198. return(pte);
  199. }
  200. static inline void set_pte(pte_t *pteptr, pte_t pteval)
  201. {
  202. pte_copy(*pteptr, pteval);
  203. /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
  204. * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
  205. * mapped pages.
  206. */
  207. *pteptr = pte_mknewpage(*pteptr);
  208. if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
  209. }
  210. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  211. /*
  212. * Conversion functions: convert a page and protection to a page entry,
  213. * and a page entry and page directory to the page they refer to.
  214. */
  215. #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
  216. #define __virt_to_page(virt) phys_to_page(__pa(virt))
  217. #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
  218. #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
  219. #define mk_pte(page, pgprot) \
  220. ({ pte_t pte; \
  221. \
  222. pte_set_val(pte, page_to_phys(page), (pgprot)); \
  223. if (pte_present(pte)) \
  224. pte_mknewprot(pte_mknewpage(pte)); \
  225. pte;})
  226. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  227. {
  228. pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
  229. return pte;
  230. }
  231. /*
  232. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  233. *
  234. * this macro returns the index of the entry in the pgd page which would
  235. * control the given virtual address
  236. */
  237. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  238. /*
  239. * pgd_offset() returns a (pgd_t *)
  240. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  241. */
  242. #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
  243. /*
  244. * a shortcut which implies the use of the kernel's pgd, instead
  245. * of a process's
  246. */
  247. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  248. /*
  249. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  250. *
  251. * this macro returns the index of the entry in the pmd page which would
  252. * control the given virtual address
  253. */
  254. #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  255. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  256. /*
  257. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  258. *
  259. * this macro returns the index of the entry in the pte page which would
  260. * control the given virtual address
  261. */
  262. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  263. #define pte_offset_kernel(dir, address) \
  264. ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
  265. #define pte_offset_map(dir, address) \
  266. ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
  267. #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
  268. #define pte_unmap(pte) do { } while (0)
  269. #define pte_unmap_nested(pte) do { } while (0)
  270. #define update_mmu_cache(vma,address,pte) do ; while (0)
  271. /* Encode and de-code a swap entry */
  272. #define __swp_type(x) (((x).val >> 4) & 0x3f)
  273. #define __swp_offset(x) ((x).val >> 11)
  274. #define __swp_entry(type, offset) \
  275. ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
  276. #define __pte_to_swp_entry(pte) \
  277. ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
  278. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  279. #define kern_addr_valid(addr) (1)
  280. #include <asm-generic/pgtable.h>
  281. #endif