disk-io.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. static void free_fs_root(struct btrfs_root *root);
  49. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  50. int read_only);
  51. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  52. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  53. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  54. struct btrfs_root *root);
  55. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  56. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  58. struct extent_io_tree *dirty_pages,
  59. int mark);
  60. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  61. struct extent_io_tree *pinned_extents);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. int error;
  98. };
  99. /*
  100. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  101. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  102. * the level the eb occupies in the tree.
  103. *
  104. * Different roots are used for different purposes and may nest inside each
  105. * other and they require separate keysets. As lockdep keys should be
  106. * static, assign keysets according to the purpose of the root as indicated
  107. * by btrfs_root->objectid. This ensures that all special purpose roots
  108. * have separate keysets.
  109. *
  110. * Lock-nesting across peer nodes is always done with the immediate parent
  111. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  112. * subclass to avoid triggering lockdep warning in such cases.
  113. *
  114. * The key is set by the readpage_end_io_hook after the buffer has passed
  115. * csum validation but before the pages are unlocked. It is also set by
  116. * btrfs_init_new_buffer on freshly allocated blocks.
  117. *
  118. * We also add a check to make sure the highest level of the tree is the
  119. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  120. * needs update as well.
  121. */
  122. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  123. # if BTRFS_MAX_LEVEL != 8
  124. # error
  125. # endif
  126. static struct btrfs_lockdep_keyset {
  127. u64 id; /* root objectid */
  128. const char *name_stem; /* lock name stem */
  129. char names[BTRFS_MAX_LEVEL + 1][20];
  130. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  131. } btrfs_lockdep_keysets[] = {
  132. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  133. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  134. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  135. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  136. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  137. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  138. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  139. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  140. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  141. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  142. { .id = 0, .name_stem = "tree" },
  143. };
  144. void __init btrfs_init_lockdep(void)
  145. {
  146. int i, j;
  147. /* initialize lockdep class names */
  148. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  149. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  150. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  151. snprintf(ks->names[j], sizeof(ks->names[j]),
  152. "btrfs-%s-%02d", ks->name_stem, j);
  153. }
  154. }
  155. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  156. int level)
  157. {
  158. struct btrfs_lockdep_keyset *ks;
  159. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  160. /* find the matching keyset, id 0 is the default entry */
  161. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  162. if (ks->id == objectid)
  163. break;
  164. lockdep_set_class_and_name(&eb->lock,
  165. &ks->keys[level], ks->names[level]);
  166. }
  167. #endif
  168. /*
  169. * extents on the btree inode are pretty simple, there's one extent
  170. * that covers the entire device
  171. */
  172. static struct extent_map *btree_get_extent(struct inode *inode,
  173. struct page *page, size_t pg_offset, u64 start, u64 len,
  174. int create)
  175. {
  176. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  177. struct extent_map *em;
  178. int ret;
  179. read_lock(&em_tree->lock);
  180. em = lookup_extent_mapping(em_tree, start, len);
  181. if (em) {
  182. em->bdev =
  183. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  184. read_unlock(&em_tree->lock);
  185. goto out;
  186. }
  187. read_unlock(&em_tree->lock);
  188. em = alloc_extent_map();
  189. if (!em) {
  190. em = ERR_PTR(-ENOMEM);
  191. goto out;
  192. }
  193. em->start = 0;
  194. em->len = (u64)-1;
  195. em->block_len = (u64)-1;
  196. em->block_start = 0;
  197. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  198. write_lock(&em_tree->lock);
  199. ret = add_extent_mapping(em_tree, em);
  200. if (ret == -EEXIST) {
  201. u64 failed_start = em->start;
  202. u64 failed_len = em->len;
  203. free_extent_map(em);
  204. em = lookup_extent_mapping(em_tree, start, len);
  205. if (em) {
  206. ret = 0;
  207. } else {
  208. em = lookup_extent_mapping(em_tree, failed_start,
  209. failed_len);
  210. ret = -EIO;
  211. }
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = NULL;
  215. }
  216. write_unlock(&em_tree->lock);
  217. if (ret)
  218. em = ERR_PTR(ret);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  223. {
  224. return crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret &&
  342. !verify_parent_transid(io_tree, eb, parent_transid))
  343. return ret;
  344. /*
  345. * This buffer's crc is fine, but its contents are corrupted, so
  346. * there is no reason to read the other copies, they won't be
  347. * any less wrong.
  348. */
  349. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  350. return ret;
  351. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  352. eb->start, eb->len);
  353. if (num_copies == 1)
  354. return ret;
  355. mirror_num++;
  356. if (mirror_num > num_copies)
  357. return ret;
  358. }
  359. return -EIO;
  360. }
  361. /*
  362. * checksum a dirty tree block before IO. This has extra checks to make sure
  363. * we only fill in the checksum field in the first page of a multi-page block
  364. */
  365. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  366. {
  367. struct extent_io_tree *tree;
  368. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  369. u64 found_start;
  370. unsigned long len;
  371. struct extent_buffer *eb;
  372. int ret = -EIO;
  373. tree = &BTRFS_I(page->mapping->host)->io_tree;
  374. if (page->private == EXTENT_PAGE_PRIVATE) {
  375. WARN_ON(1);
  376. goto out;
  377. }
  378. if (!page->private) {
  379. WARN_ON(1);
  380. goto out;
  381. }
  382. len = page->private >> 2;
  383. WARN_ON(len == 0);
  384. eb = alloc_extent_buffer(tree, start, len, page);
  385. if (eb == NULL) {
  386. WARN_ON(1);
  387. ret = -ENOMEM;
  388. goto out;
  389. }
  390. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  391. btrfs_header_generation(eb));
  392. if (ret) {
  393. btrfs_printk(root->fs_info, KERN_WARNING
  394. "Failed to checksum dirty buffer @ %llu[%lu]\n",
  395. start, len);
  396. goto err;
  397. }
  398. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  399. ret = -EIO;
  400. found_start = btrfs_header_bytenr(eb);
  401. if (found_start != start) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. if (eb->first_page != page) {
  406. WARN_ON(1);
  407. goto err;
  408. }
  409. if (!PageUptodate(page)) {
  410. WARN_ON(1);
  411. goto err;
  412. }
  413. csum_tree_block(root, eb, 0);
  414. ret = 0;
  415. err:
  416. free_extent_buffer(eb);
  417. out:
  418. return ret;
  419. }
  420. static int check_tree_block_fsid(struct btrfs_root *root,
  421. struct extent_buffer *eb)
  422. {
  423. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  424. u8 fsid[BTRFS_UUID_SIZE];
  425. int ret = 1;
  426. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  427. BTRFS_FSID_SIZE);
  428. while (fs_devices) {
  429. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  430. ret = 0;
  431. break;
  432. }
  433. fs_devices = fs_devices->seed;
  434. }
  435. return ret;
  436. }
  437. #define CORRUPT(reason, eb, root, slot) \
  438. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  439. "root=%llu, slot=%d\n", reason, \
  440. (unsigned long long)btrfs_header_bytenr(eb), \
  441. (unsigned long long)root->objectid, slot)
  442. static noinline int check_leaf(struct btrfs_root *root,
  443. struct extent_buffer *leaf)
  444. {
  445. struct btrfs_key key;
  446. struct btrfs_key leaf_key;
  447. u32 nritems = btrfs_header_nritems(leaf);
  448. int slot;
  449. if (nritems == 0)
  450. return 0;
  451. /* Check the 0 item */
  452. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  453. BTRFS_LEAF_DATA_SIZE(root)) {
  454. CORRUPT("invalid item offset size pair", leaf, root, 0);
  455. return -EIO;
  456. }
  457. /*
  458. * Check to make sure each items keys are in the correct order and their
  459. * offsets make sense. We only have to loop through nritems-1 because
  460. * we check the current slot against the next slot, which verifies the
  461. * next slot's offset+size makes sense and that the current's slot
  462. * offset is correct.
  463. */
  464. for (slot = 0; slot < nritems - 1; slot++) {
  465. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  466. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  467. /* Make sure the keys are in the right order */
  468. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  469. CORRUPT("bad key order", leaf, root, slot);
  470. return -EIO;
  471. }
  472. /*
  473. * Make sure the offset and ends are right, remember that the
  474. * item data starts at the end of the leaf and grows towards the
  475. * front.
  476. */
  477. if (btrfs_item_offset_nr(leaf, slot) !=
  478. btrfs_item_end_nr(leaf, slot + 1)) {
  479. CORRUPT("slot offset bad", leaf, root, slot);
  480. return -EIO;
  481. }
  482. /*
  483. * Check to make sure that we don't point outside of the leaf,
  484. * just incase all the items are consistent to eachother, but
  485. * all point outside of the leaf.
  486. */
  487. if (btrfs_item_end_nr(leaf, slot) >
  488. BTRFS_LEAF_DATA_SIZE(root)) {
  489. CORRUPT("slot end outside of leaf", leaf, root, slot);
  490. return -EIO;
  491. }
  492. }
  493. return 0;
  494. }
  495. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  496. struct extent_state *state)
  497. {
  498. struct extent_io_tree *tree;
  499. u64 found_start;
  500. int found_level;
  501. unsigned long len;
  502. struct extent_buffer *eb;
  503. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  504. int ret = 0;
  505. tree = &BTRFS_I(page->mapping->host)->io_tree;
  506. if (page->private == EXTENT_PAGE_PRIVATE)
  507. goto out;
  508. if (!page->private)
  509. goto out;
  510. len = page->private >> 2;
  511. WARN_ON(len == 0);
  512. eb = alloc_extent_buffer(tree, start, len, page);
  513. if (eb == NULL) {
  514. ret = -EIO;
  515. goto out;
  516. }
  517. found_start = btrfs_header_bytenr(eb);
  518. if (found_start != start) {
  519. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  520. "%llu %llu\n",
  521. (unsigned long long)found_start,
  522. (unsigned long long)eb->start);
  523. ret = -EIO;
  524. goto err;
  525. }
  526. if (eb->first_page != page) {
  527. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  528. eb->first_page->index, page->index);
  529. WARN_ON(1);
  530. ret = -EIO;
  531. goto err;
  532. }
  533. if (check_tree_block_fsid(root, eb)) {
  534. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  535. (unsigned long long)eb->start);
  536. ret = -EIO;
  537. goto err;
  538. }
  539. found_level = btrfs_header_level(eb);
  540. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  541. eb, found_level);
  542. ret = csum_tree_block(root, eb, 1);
  543. if (ret) {
  544. ret = -EIO;
  545. goto err;
  546. }
  547. /*
  548. * If this is a leaf block and it is corrupt, set the corrupt bit so
  549. * that we don't try and read the other copies of this block, just
  550. * return -EIO.
  551. */
  552. if (found_level == 0 && check_leaf(root, eb)) {
  553. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  554. ret = -EIO;
  555. }
  556. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  557. end = eb->start + end - 1;
  558. err:
  559. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  560. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  561. btree_readahead_hook(root, eb, eb->start, ret);
  562. }
  563. free_extent_buffer(eb);
  564. out:
  565. return ret;
  566. }
  567. static int btree_io_failed_hook(struct bio *failed_bio,
  568. struct page *page, u64 start, u64 end,
  569. int mirror_num, struct extent_state *state)
  570. {
  571. struct extent_io_tree *tree;
  572. unsigned long len;
  573. struct extent_buffer *eb;
  574. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  575. tree = &BTRFS_I(page->mapping->host)->io_tree;
  576. if (page->private == EXTENT_PAGE_PRIVATE)
  577. goto out;
  578. if (!page->private)
  579. goto out;
  580. len = page->private >> 2;
  581. WARN_ON(len == 0);
  582. eb = alloc_extent_buffer(tree, start, len, page);
  583. if (eb == NULL)
  584. goto out;
  585. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  586. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  587. btree_readahead_hook(root, eb, eb->start, -EIO);
  588. }
  589. free_extent_buffer(eb);
  590. out:
  591. return -EIO; /* we fixed nothing */
  592. }
  593. static void end_workqueue_bio(struct bio *bio, int err)
  594. {
  595. struct end_io_wq *end_io_wq = bio->bi_private;
  596. struct btrfs_fs_info *fs_info;
  597. fs_info = end_io_wq->info;
  598. end_io_wq->error = err;
  599. end_io_wq->work.func = end_workqueue_fn;
  600. end_io_wq->work.flags = 0;
  601. if (bio->bi_rw & REQ_WRITE) {
  602. if (end_io_wq->metadata == 1)
  603. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  604. &end_io_wq->work);
  605. else if (end_io_wq->metadata == 2)
  606. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  607. &end_io_wq->work);
  608. else
  609. btrfs_queue_worker(&fs_info->endio_write_workers,
  610. &end_io_wq->work);
  611. } else {
  612. if (end_io_wq->metadata)
  613. btrfs_queue_worker(&fs_info->endio_meta_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_worker(&fs_info->endio_workers,
  617. &end_io_wq->work);
  618. }
  619. }
  620. /*
  621. * For the metadata arg you want
  622. *
  623. * 0 - if data
  624. * 1 - if normal metadta
  625. * 2 - if writing to the free space cache area
  626. */
  627. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  628. int metadata)
  629. {
  630. struct end_io_wq *end_io_wq;
  631. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  632. if (!end_io_wq)
  633. return -ENOMEM;
  634. end_io_wq->private = bio->bi_private;
  635. end_io_wq->end_io = bio->bi_end_io;
  636. end_io_wq->info = info;
  637. end_io_wq->error = 0;
  638. end_io_wq->bio = bio;
  639. end_io_wq->metadata = metadata;
  640. bio->bi_private = end_io_wq;
  641. bio->bi_end_io = end_workqueue_bio;
  642. return 0;
  643. }
  644. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  645. {
  646. unsigned long limit = min_t(unsigned long,
  647. info->workers.max_workers,
  648. info->fs_devices->open_devices);
  649. return 256 * limit;
  650. }
  651. static void run_one_async_start(struct btrfs_work *work)
  652. {
  653. struct async_submit_bio *async;
  654. int ret;
  655. async = container_of(work, struct async_submit_bio, work);
  656. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  657. async->mirror_num, async->bio_flags,
  658. async->bio_offset);
  659. if (ret)
  660. async->error = ret;
  661. }
  662. static void run_one_async_done(struct btrfs_work *work)
  663. {
  664. struct btrfs_fs_info *fs_info;
  665. struct async_submit_bio *async;
  666. int limit;
  667. async = container_of(work, struct async_submit_bio, work);
  668. fs_info = BTRFS_I(async->inode)->root->fs_info;
  669. limit = btrfs_async_submit_limit(fs_info);
  670. limit = limit * 2 / 3;
  671. atomic_dec(&fs_info->nr_async_submits);
  672. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  673. waitqueue_active(&fs_info->async_submit_wait))
  674. wake_up(&fs_info->async_submit_wait);
  675. /* If an error occured we just want to clean up the bio and move on */
  676. if (async->error) {
  677. bio_endio(async->bio, async->error);
  678. return;
  679. }
  680. async->submit_bio_done(async->inode, async->rw, async->bio,
  681. async->mirror_num, async->bio_flags,
  682. async->bio_offset);
  683. }
  684. static void run_one_async_free(struct btrfs_work *work)
  685. {
  686. struct async_submit_bio *async;
  687. async = container_of(work, struct async_submit_bio, work);
  688. kfree(async);
  689. }
  690. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  691. int rw, struct bio *bio, int mirror_num,
  692. unsigned long bio_flags,
  693. u64 bio_offset,
  694. extent_submit_bio_hook_t *submit_bio_start,
  695. extent_submit_bio_hook_t *submit_bio_done)
  696. {
  697. struct async_submit_bio *async;
  698. async = kmalloc(sizeof(*async), GFP_NOFS);
  699. if (!async)
  700. return -ENOMEM;
  701. async->inode = inode;
  702. async->rw = rw;
  703. async->bio = bio;
  704. async->mirror_num = mirror_num;
  705. async->submit_bio_start = submit_bio_start;
  706. async->submit_bio_done = submit_bio_done;
  707. async->work.func = run_one_async_start;
  708. async->work.ordered_func = run_one_async_done;
  709. async->work.ordered_free = run_one_async_free;
  710. async->work.flags = 0;
  711. async->bio_flags = bio_flags;
  712. async->bio_offset = bio_offset;
  713. async->error = 0;
  714. atomic_inc(&fs_info->nr_async_submits);
  715. if (rw & REQ_SYNC)
  716. btrfs_set_work_high_prio(&async->work);
  717. btrfs_queue_worker(&fs_info->workers, &async->work);
  718. while (atomic_read(&fs_info->async_submit_draining) &&
  719. atomic_read(&fs_info->nr_async_submits)) {
  720. wait_event(fs_info->async_submit_wait,
  721. (atomic_read(&fs_info->nr_async_submits) == 0));
  722. }
  723. return 0;
  724. }
  725. static int btree_csum_one_bio(struct bio *bio)
  726. {
  727. struct bio_vec *bvec = bio->bi_io_vec;
  728. int bio_index = 0;
  729. struct btrfs_root *root;
  730. int ret = 0;
  731. WARN_ON(bio->bi_vcnt <= 0);
  732. while (bio_index < bio->bi_vcnt) {
  733. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  734. ret = csum_dirty_buffer(root, bvec->bv_page);
  735. if (ret)
  736. break;
  737. bio_index++;
  738. bvec++;
  739. }
  740. return ret;
  741. }
  742. static int __btree_submit_bio_start(struct inode *inode, int rw,
  743. struct bio *bio, int mirror_num,
  744. unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. /*
  748. * when we're called for a write, we're already in the async
  749. * submission context. Just jump into btrfs_map_bio
  750. */
  751. return btree_csum_one_bio(bio);
  752. }
  753. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  754. int mirror_num, unsigned long bio_flags,
  755. u64 bio_offset)
  756. {
  757. /*
  758. * when we're called for a write, we're already in the async
  759. * submission context. Just jump into btrfs_map_bio
  760. */
  761. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  762. }
  763. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  764. int mirror_num, unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. int ret;
  768. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
  769. if (ret)
  770. return ret;
  771. if (!(rw & REQ_WRITE)) {
  772. /*
  773. * called for a read, do the setup so that checksum validation
  774. * can happen in the async kernel threads
  775. */
  776. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  777. mirror_num, 0);
  778. }
  779. /*
  780. * kthread helpers are used to submit writes so that checksumming
  781. * can happen in parallel across all CPUs
  782. */
  783. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  784. inode, rw, bio, mirror_num, 0,
  785. bio_offset,
  786. __btree_submit_bio_start,
  787. __btree_submit_bio_done);
  788. }
  789. #ifdef CONFIG_MIGRATION
  790. static int btree_migratepage(struct address_space *mapping,
  791. struct page *newpage, struct page *page,
  792. enum migrate_mode mode)
  793. {
  794. /*
  795. * we can't safely write a btree page from here,
  796. * we haven't done the locking hook
  797. */
  798. if (PageDirty(page))
  799. return -EAGAIN;
  800. /*
  801. * Buffers may be managed in a filesystem specific way.
  802. * We must have no buffers or drop them.
  803. */
  804. if (page_has_private(page) &&
  805. !try_to_release_page(page, GFP_KERNEL))
  806. return -EAGAIN;
  807. return migrate_page(mapping, newpage, page, mode);
  808. }
  809. #endif
  810. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  811. {
  812. struct extent_io_tree *tree;
  813. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  814. struct extent_buffer *eb;
  815. int was_dirty;
  816. tree = &BTRFS_I(page->mapping->host)->io_tree;
  817. if (!(current->flags & PF_MEMALLOC)) {
  818. return extent_write_full_page(tree, page,
  819. btree_get_extent, wbc);
  820. }
  821. redirty_page_for_writepage(wbc, page);
  822. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  823. WARN_ON(!eb);
  824. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  825. if (!was_dirty) {
  826. spin_lock(&root->fs_info->delalloc_lock);
  827. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  828. spin_unlock(&root->fs_info->delalloc_lock);
  829. }
  830. free_extent_buffer(eb);
  831. unlock_page(page);
  832. return 0;
  833. }
  834. static int btree_writepages(struct address_space *mapping,
  835. struct writeback_control *wbc)
  836. {
  837. struct extent_io_tree *tree;
  838. tree = &BTRFS_I(mapping->host)->io_tree;
  839. if (wbc->sync_mode == WB_SYNC_NONE) {
  840. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  841. u64 num_dirty;
  842. unsigned long thresh = 32 * 1024 * 1024;
  843. if (wbc->for_kupdate)
  844. return 0;
  845. /* this is a bit racy, but that's ok */
  846. num_dirty = root->fs_info->dirty_metadata_bytes;
  847. if (num_dirty < thresh)
  848. return 0;
  849. }
  850. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  851. }
  852. static int btree_readpage(struct file *file, struct page *page)
  853. {
  854. struct extent_io_tree *tree;
  855. tree = &BTRFS_I(page->mapping->host)->io_tree;
  856. return extent_read_full_page(tree, page, btree_get_extent, 0);
  857. }
  858. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  859. {
  860. struct extent_io_tree *tree;
  861. struct extent_map_tree *map;
  862. int ret;
  863. if (PageWriteback(page) || PageDirty(page))
  864. return 0;
  865. tree = &BTRFS_I(page->mapping->host)->io_tree;
  866. map = &BTRFS_I(page->mapping->host)->extent_tree;
  867. /*
  868. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  869. * slab allocation from alloc_extent_state down the callchain where
  870. * it'd hit a BUG_ON as those flags are not allowed.
  871. */
  872. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  873. ret = try_release_extent_state(map, tree, page, gfp_flags);
  874. if (!ret)
  875. return 0;
  876. ret = try_release_extent_buffer(tree, page);
  877. if (ret == 1) {
  878. ClearPagePrivate(page);
  879. set_page_private(page, 0);
  880. page_cache_release(page);
  881. }
  882. return ret;
  883. }
  884. static void btree_invalidatepage(struct page *page, unsigned long offset)
  885. {
  886. struct extent_io_tree *tree;
  887. tree = &BTRFS_I(page->mapping->host)->io_tree;
  888. extent_invalidatepage(tree, page, offset);
  889. btree_releasepage(page, GFP_NOFS);
  890. if (PagePrivate(page)) {
  891. printk(KERN_WARNING "btrfs warning page private not zero "
  892. "on page %llu\n", (unsigned long long)page_offset(page));
  893. ClearPagePrivate(page);
  894. set_page_private(page, 0);
  895. page_cache_release(page);
  896. }
  897. }
  898. static const struct address_space_operations btree_aops = {
  899. .readpage = btree_readpage,
  900. .writepage = btree_writepage,
  901. .writepages = btree_writepages,
  902. .releasepage = btree_releasepage,
  903. .invalidatepage = btree_invalidatepage,
  904. #ifdef CONFIG_MIGRATION
  905. .migratepage = btree_migratepage,
  906. #endif
  907. };
  908. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  909. u64 parent_transid)
  910. {
  911. struct extent_buffer *buf = NULL;
  912. struct inode *btree_inode = root->fs_info->btree_inode;
  913. int ret = 0;
  914. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  915. if (!buf)
  916. return 0;
  917. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  918. buf, 0, WAIT_NONE, btree_get_extent, 0);
  919. free_extent_buffer(buf);
  920. return ret;
  921. }
  922. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  923. int mirror_num, struct extent_buffer **eb)
  924. {
  925. struct extent_buffer *buf = NULL;
  926. struct inode *btree_inode = root->fs_info->btree_inode;
  927. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  928. int ret;
  929. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  930. if (!buf)
  931. return 0;
  932. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  933. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  934. btree_get_extent, mirror_num);
  935. if (ret) {
  936. free_extent_buffer(buf);
  937. return ret;
  938. }
  939. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  940. free_extent_buffer(buf);
  941. return -EIO;
  942. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  943. *eb = buf;
  944. } else {
  945. free_extent_buffer(buf);
  946. }
  947. return 0;
  948. }
  949. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  950. u64 bytenr, u32 blocksize)
  951. {
  952. struct inode *btree_inode = root->fs_info->btree_inode;
  953. struct extent_buffer *eb;
  954. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  955. bytenr, blocksize);
  956. return eb;
  957. }
  958. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  959. u64 bytenr, u32 blocksize)
  960. {
  961. struct inode *btree_inode = root->fs_info->btree_inode;
  962. struct extent_buffer *eb;
  963. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  964. bytenr, blocksize, NULL);
  965. return eb;
  966. }
  967. int btrfs_write_tree_block(struct extent_buffer *buf)
  968. {
  969. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  970. buf->start + buf->len - 1);
  971. }
  972. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  973. {
  974. return filemap_fdatawait_range(buf->first_page->mapping,
  975. buf->start, buf->start + buf->len - 1);
  976. }
  977. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  978. u32 blocksize, u64 parent_transid)
  979. {
  980. struct extent_buffer *buf = NULL;
  981. int ret;
  982. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  983. if (!buf)
  984. return NULL;
  985. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  986. if (ret == 0)
  987. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  988. return buf;
  989. }
  990. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  991. struct extent_buffer *buf)
  992. {
  993. struct inode *btree_inode = root->fs_info->btree_inode;
  994. if (btrfs_header_generation(buf) ==
  995. root->fs_info->running_transaction->transid) {
  996. btrfs_assert_tree_locked(buf);
  997. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  998. spin_lock(&root->fs_info->delalloc_lock);
  999. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  1000. root->fs_info->dirty_metadata_bytes -= buf->len;
  1001. else {
  1002. spin_unlock(&root->fs_info->delalloc_lock);
  1003. btrfs_panic(root->fs_info, -EOVERFLOW,
  1004. "Can't clear %lu bytes from "
  1005. " dirty_mdatadata_bytes (%lu)",
  1006. buf->len,
  1007. root->fs_info->dirty_metadata_bytes);
  1008. }
  1009. spin_unlock(&root->fs_info->delalloc_lock);
  1010. }
  1011. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1012. btrfs_set_lock_blocking(buf);
  1013. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  1014. buf);
  1015. }
  1016. }
  1017. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1018. u32 stripesize, struct btrfs_root *root,
  1019. struct btrfs_fs_info *fs_info,
  1020. u64 objectid)
  1021. {
  1022. root->node = NULL;
  1023. root->commit_root = NULL;
  1024. root->sectorsize = sectorsize;
  1025. root->nodesize = nodesize;
  1026. root->leafsize = leafsize;
  1027. root->stripesize = stripesize;
  1028. root->ref_cows = 0;
  1029. root->track_dirty = 0;
  1030. root->in_radix = 0;
  1031. root->orphan_item_inserted = 0;
  1032. root->orphan_cleanup_state = 0;
  1033. root->objectid = objectid;
  1034. root->last_trans = 0;
  1035. root->highest_objectid = 0;
  1036. root->name = NULL;
  1037. root->inode_tree = RB_ROOT;
  1038. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1039. root->block_rsv = NULL;
  1040. root->orphan_block_rsv = NULL;
  1041. INIT_LIST_HEAD(&root->dirty_list);
  1042. INIT_LIST_HEAD(&root->orphan_list);
  1043. INIT_LIST_HEAD(&root->root_list);
  1044. spin_lock_init(&root->orphan_lock);
  1045. spin_lock_init(&root->inode_lock);
  1046. spin_lock_init(&root->accounting_lock);
  1047. mutex_init(&root->objectid_mutex);
  1048. mutex_init(&root->log_mutex);
  1049. init_waitqueue_head(&root->log_writer_wait);
  1050. init_waitqueue_head(&root->log_commit_wait[0]);
  1051. init_waitqueue_head(&root->log_commit_wait[1]);
  1052. atomic_set(&root->log_commit[0], 0);
  1053. atomic_set(&root->log_commit[1], 0);
  1054. atomic_set(&root->log_writers, 0);
  1055. root->log_batch = 0;
  1056. root->log_transid = 0;
  1057. root->last_log_commit = 0;
  1058. extent_io_tree_init(&root->dirty_log_pages,
  1059. fs_info->btree_inode->i_mapping);
  1060. memset(&root->root_key, 0, sizeof(root->root_key));
  1061. memset(&root->root_item, 0, sizeof(root->root_item));
  1062. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1063. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1064. root->defrag_trans_start = fs_info->generation;
  1065. init_completion(&root->kobj_unregister);
  1066. root->defrag_running = 0;
  1067. root->root_key.objectid = objectid;
  1068. root->anon_dev = 0;
  1069. }
  1070. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1071. struct btrfs_fs_info *fs_info,
  1072. u64 objectid,
  1073. struct btrfs_root *root)
  1074. {
  1075. int ret;
  1076. u32 blocksize;
  1077. u64 generation;
  1078. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1079. tree_root->sectorsize, tree_root->stripesize,
  1080. root, fs_info, objectid);
  1081. ret = btrfs_find_last_root(tree_root, objectid,
  1082. &root->root_item, &root->root_key);
  1083. if (ret > 0)
  1084. return -ENOENT;
  1085. else if (ret < 0)
  1086. return ret;
  1087. generation = btrfs_root_generation(&root->root_item);
  1088. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1089. root->commit_root = NULL;
  1090. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1091. blocksize, generation);
  1092. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1093. free_extent_buffer(root->node);
  1094. root->node = NULL;
  1095. return -EIO;
  1096. }
  1097. root->commit_root = btrfs_root_node(root);
  1098. return 0;
  1099. }
  1100. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1101. {
  1102. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1103. if (root)
  1104. root->fs_info = fs_info;
  1105. return root;
  1106. }
  1107. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1108. struct btrfs_fs_info *fs_info)
  1109. {
  1110. struct btrfs_root *root;
  1111. struct btrfs_root *tree_root = fs_info->tree_root;
  1112. struct extent_buffer *leaf;
  1113. root = btrfs_alloc_root(fs_info);
  1114. if (!root)
  1115. return ERR_PTR(-ENOMEM);
  1116. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1117. tree_root->sectorsize, tree_root->stripesize,
  1118. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1119. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1120. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1121. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1122. /*
  1123. * log trees do not get reference counted because they go away
  1124. * before a real commit is actually done. They do store pointers
  1125. * to file data extents, and those reference counts still get
  1126. * updated (along with back refs to the log tree).
  1127. */
  1128. root->ref_cows = 0;
  1129. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1130. BTRFS_TREE_LOG_OBJECTID, NULL,
  1131. 0, 0, 0, 0);
  1132. if (IS_ERR(leaf)) {
  1133. kfree(root);
  1134. return ERR_CAST(leaf);
  1135. }
  1136. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1137. btrfs_set_header_bytenr(leaf, leaf->start);
  1138. btrfs_set_header_generation(leaf, trans->transid);
  1139. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1140. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1141. root->node = leaf;
  1142. write_extent_buffer(root->node, root->fs_info->fsid,
  1143. (unsigned long)btrfs_header_fsid(root->node),
  1144. BTRFS_FSID_SIZE);
  1145. btrfs_mark_buffer_dirty(root->node);
  1146. btrfs_tree_unlock(root->node);
  1147. return root;
  1148. }
  1149. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1150. struct btrfs_fs_info *fs_info)
  1151. {
  1152. struct btrfs_root *log_root;
  1153. log_root = alloc_log_tree(trans, fs_info);
  1154. if (IS_ERR(log_root))
  1155. return PTR_ERR(log_root);
  1156. WARN_ON(fs_info->log_root_tree);
  1157. fs_info->log_root_tree = log_root;
  1158. return 0;
  1159. }
  1160. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1161. struct btrfs_root *root)
  1162. {
  1163. struct btrfs_root *log_root;
  1164. struct btrfs_inode_item *inode_item;
  1165. log_root = alloc_log_tree(trans, root->fs_info);
  1166. if (IS_ERR(log_root))
  1167. return PTR_ERR(log_root);
  1168. log_root->last_trans = trans->transid;
  1169. log_root->root_key.offset = root->root_key.objectid;
  1170. inode_item = &log_root->root_item.inode;
  1171. inode_item->generation = cpu_to_le64(1);
  1172. inode_item->size = cpu_to_le64(3);
  1173. inode_item->nlink = cpu_to_le32(1);
  1174. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1175. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1176. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1177. WARN_ON(root->log_root);
  1178. root->log_root = log_root;
  1179. root->log_transid = 0;
  1180. root->last_log_commit = 0;
  1181. return 0;
  1182. }
  1183. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1184. struct btrfs_key *location)
  1185. {
  1186. struct btrfs_root *root;
  1187. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1188. struct btrfs_path *path;
  1189. struct extent_buffer *l;
  1190. u64 generation;
  1191. u32 blocksize;
  1192. int ret = 0;
  1193. root = btrfs_alloc_root(fs_info);
  1194. if (!root)
  1195. return ERR_PTR(-ENOMEM);
  1196. if (location->offset == (u64)-1) {
  1197. ret = find_and_setup_root(tree_root, fs_info,
  1198. location->objectid, root);
  1199. if (ret) {
  1200. kfree(root);
  1201. return ERR_PTR(ret);
  1202. }
  1203. goto out;
  1204. }
  1205. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1206. tree_root->sectorsize, tree_root->stripesize,
  1207. root, fs_info, location->objectid);
  1208. path = btrfs_alloc_path();
  1209. if (!path) {
  1210. kfree(root);
  1211. return ERR_PTR(-ENOMEM);
  1212. }
  1213. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1214. if (ret == 0) {
  1215. l = path->nodes[0];
  1216. read_extent_buffer(l, &root->root_item,
  1217. btrfs_item_ptr_offset(l, path->slots[0]),
  1218. sizeof(root->root_item));
  1219. memcpy(&root->root_key, location, sizeof(*location));
  1220. }
  1221. btrfs_free_path(path);
  1222. if (ret) {
  1223. kfree(root);
  1224. if (ret > 0)
  1225. ret = -ENOENT;
  1226. return ERR_PTR(ret);
  1227. }
  1228. generation = btrfs_root_generation(&root->root_item);
  1229. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1230. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1231. blocksize, generation);
  1232. root->commit_root = btrfs_root_node(root);
  1233. BUG_ON(!root->node); /* -ENOMEM */
  1234. out:
  1235. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1236. root->ref_cows = 1;
  1237. btrfs_check_and_init_root_item(&root->root_item);
  1238. }
  1239. return root;
  1240. }
  1241. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1242. struct btrfs_key *location)
  1243. {
  1244. struct btrfs_root *root;
  1245. int ret;
  1246. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1247. return fs_info->tree_root;
  1248. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1249. return fs_info->extent_root;
  1250. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1251. return fs_info->chunk_root;
  1252. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1253. return fs_info->dev_root;
  1254. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1255. return fs_info->csum_root;
  1256. again:
  1257. spin_lock(&fs_info->fs_roots_radix_lock);
  1258. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1259. (unsigned long)location->objectid);
  1260. spin_unlock(&fs_info->fs_roots_radix_lock);
  1261. if (root)
  1262. return root;
  1263. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1264. if (IS_ERR(root))
  1265. return root;
  1266. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1267. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1268. GFP_NOFS);
  1269. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1270. ret = -ENOMEM;
  1271. goto fail;
  1272. }
  1273. btrfs_init_free_ino_ctl(root);
  1274. mutex_init(&root->fs_commit_mutex);
  1275. spin_lock_init(&root->cache_lock);
  1276. init_waitqueue_head(&root->cache_wait);
  1277. ret = get_anon_bdev(&root->anon_dev);
  1278. if (ret)
  1279. goto fail;
  1280. if (btrfs_root_refs(&root->root_item) == 0) {
  1281. ret = -ENOENT;
  1282. goto fail;
  1283. }
  1284. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1285. if (ret < 0)
  1286. goto fail;
  1287. if (ret == 0)
  1288. root->orphan_item_inserted = 1;
  1289. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1290. if (ret)
  1291. goto fail;
  1292. spin_lock(&fs_info->fs_roots_radix_lock);
  1293. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1294. (unsigned long)root->root_key.objectid,
  1295. root);
  1296. if (ret == 0)
  1297. root->in_radix = 1;
  1298. spin_unlock(&fs_info->fs_roots_radix_lock);
  1299. radix_tree_preload_end();
  1300. if (ret) {
  1301. if (ret == -EEXIST) {
  1302. free_fs_root(root);
  1303. goto again;
  1304. }
  1305. goto fail;
  1306. }
  1307. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1308. root->root_key.objectid);
  1309. WARN_ON(ret);
  1310. return root;
  1311. fail:
  1312. free_fs_root(root);
  1313. return ERR_PTR(ret);
  1314. }
  1315. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1316. {
  1317. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1318. int ret = 0;
  1319. struct btrfs_device *device;
  1320. struct backing_dev_info *bdi;
  1321. rcu_read_lock();
  1322. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1323. if (!device->bdev)
  1324. continue;
  1325. bdi = blk_get_backing_dev_info(device->bdev);
  1326. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1327. ret = 1;
  1328. break;
  1329. }
  1330. }
  1331. rcu_read_unlock();
  1332. return ret;
  1333. }
  1334. /*
  1335. * If this fails, caller must call bdi_destroy() to get rid of the
  1336. * bdi again.
  1337. */
  1338. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1339. {
  1340. int err;
  1341. bdi->capabilities = BDI_CAP_MAP_COPY;
  1342. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1343. if (err)
  1344. return err;
  1345. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1346. bdi->congested_fn = btrfs_congested_fn;
  1347. bdi->congested_data = info;
  1348. return 0;
  1349. }
  1350. static int bio_ready_for_csum(struct bio *bio)
  1351. {
  1352. u64 length = 0;
  1353. u64 buf_len = 0;
  1354. u64 start = 0;
  1355. struct page *page;
  1356. struct extent_io_tree *io_tree = NULL;
  1357. struct bio_vec *bvec;
  1358. int i;
  1359. int ret;
  1360. bio_for_each_segment(bvec, bio, i) {
  1361. page = bvec->bv_page;
  1362. if (page->private == EXTENT_PAGE_PRIVATE) {
  1363. length += bvec->bv_len;
  1364. continue;
  1365. }
  1366. if (!page->private) {
  1367. length += bvec->bv_len;
  1368. continue;
  1369. }
  1370. length = bvec->bv_len;
  1371. buf_len = page->private >> 2;
  1372. start = page_offset(page) + bvec->bv_offset;
  1373. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1374. }
  1375. /* are we fully contained in this bio? */
  1376. if (buf_len <= length)
  1377. return 1;
  1378. ret = extent_range_uptodate(io_tree, start + length,
  1379. start + buf_len - 1);
  1380. return ret;
  1381. }
  1382. /*
  1383. * called by the kthread helper functions to finally call the bio end_io
  1384. * functions. This is where read checksum verification actually happens
  1385. */
  1386. static void end_workqueue_fn(struct btrfs_work *work)
  1387. {
  1388. struct bio *bio;
  1389. struct end_io_wq *end_io_wq;
  1390. struct btrfs_fs_info *fs_info;
  1391. int error;
  1392. end_io_wq = container_of(work, struct end_io_wq, work);
  1393. bio = end_io_wq->bio;
  1394. fs_info = end_io_wq->info;
  1395. /* metadata bio reads are special because the whole tree block must
  1396. * be checksummed at once. This makes sure the entire block is in
  1397. * ram and up to date before trying to verify things. For
  1398. * blocksize <= pagesize, it is basically a noop
  1399. */
  1400. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1401. !bio_ready_for_csum(bio)) {
  1402. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1403. &end_io_wq->work);
  1404. return;
  1405. }
  1406. error = end_io_wq->error;
  1407. bio->bi_private = end_io_wq->private;
  1408. bio->bi_end_io = end_io_wq->end_io;
  1409. kfree(end_io_wq);
  1410. bio_endio(bio, error);
  1411. }
  1412. static int cleaner_kthread(void *arg)
  1413. {
  1414. struct btrfs_root *root = arg;
  1415. do {
  1416. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1417. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1418. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1419. btrfs_run_delayed_iputs(root);
  1420. btrfs_clean_old_snapshots(root);
  1421. mutex_unlock(&root->fs_info->cleaner_mutex);
  1422. btrfs_run_defrag_inodes(root->fs_info);
  1423. }
  1424. if (!try_to_freeze()) {
  1425. set_current_state(TASK_INTERRUPTIBLE);
  1426. if (!kthread_should_stop())
  1427. schedule();
  1428. __set_current_state(TASK_RUNNING);
  1429. }
  1430. } while (!kthread_should_stop());
  1431. return 0;
  1432. }
  1433. static int transaction_kthread(void *arg)
  1434. {
  1435. struct btrfs_root *root = arg;
  1436. struct btrfs_trans_handle *trans;
  1437. struct btrfs_transaction *cur;
  1438. u64 transid;
  1439. unsigned long now;
  1440. unsigned long delay;
  1441. bool cannot_commit;
  1442. do {
  1443. cannot_commit = false;
  1444. delay = HZ * 30;
  1445. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1446. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1447. spin_lock(&root->fs_info->trans_lock);
  1448. cur = root->fs_info->running_transaction;
  1449. if (!cur) {
  1450. spin_unlock(&root->fs_info->trans_lock);
  1451. goto sleep;
  1452. }
  1453. now = get_seconds();
  1454. if (!cur->blocked &&
  1455. (now < cur->start_time || now - cur->start_time < 30)) {
  1456. spin_unlock(&root->fs_info->trans_lock);
  1457. delay = HZ * 5;
  1458. goto sleep;
  1459. }
  1460. transid = cur->transid;
  1461. spin_unlock(&root->fs_info->trans_lock);
  1462. /* If the file system is aborted, this will always fail. */
  1463. trans = btrfs_join_transaction(root);
  1464. if (IS_ERR(trans)) {
  1465. cannot_commit = true;
  1466. goto sleep;
  1467. }
  1468. if (transid == trans->transid) {
  1469. btrfs_commit_transaction(trans, root);
  1470. } else {
  1471. btrfs_end_transaction(trans, root);
  1472. }
  1473. sleep:
  1474. wake_up_process(root->fs_info->cleaner_kthread);
  1475. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1476. if (!try_to_freeze()) {
  1477. set_current_state(TASK_INTERRUPTIBLE);
  1478. if (!kthread_should_stop() &&
  1479. (!btrfs_transaction_blocked(root->fs_info) ||
  1480. cannot_commit))
  1481. schedule_timeout(delay);
  1482. __set_current_state(TASK_RUNNING);
  1483. }
  1484. } while (!kthread_should_stop());
  1485. return 0;
  1486. }
  1487. /*
  1488. * this will find the highest generation in the array of
  1489. * root backups. The index of the highest array is returned,
  1490. * or -1 if we can't find anything.
  1491. *
  1492. * We check to make sure the array is valid by comparing the
  1493. * generation of the latest root in the array with the generation
  1494. * in the super block. If they don't match we pitch it.
  1495. */
  1496. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1497. {
  1498. u64 cur;
  1499. int newest_index = -1;
  1500. struct btrfs_root_backup *root_backup;
  1501. int i;
  1502. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1503. root_backup = info->super_copy->super_roots + i;
  1504. cur = btrfs_backup_tree_root_gen(root_backup);
  1505. if (cur == newest_gen)
  1506. newest_index = i;
  1507. }
  1508. /* check to see if we actually wrapped around */
  1509. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1510. root_backup = info->super_copy->super_roots;
  1511. cur = btrfs_backup_tree_root_gen(root_backup);
  1512. if (cur == newest_gen)
  1513. newest_index = 0;
  1514. }
  1515. return newest_index;
  1516. }
  1517. /*
  1518. * find the oldest backup so we know where to store new entries
  1519. * in the backup array. This will set the backup_root_index
  1520. * field in the fs_info struct
  1521. */
  1522. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1523. u64 newest_gen)
  1524. {
  1525. int newest_index = -1;
  1526. newest_index = find_newest_super_backup(info, newest_gen);
  1527. /* if there was garbage in there, just move along */
  1528. if (newest_index == -1) {
  1529. info->backup_root_index = 0;
  1530. } else {
  1531. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1532. }
  1533. }
  1534. /*
  1535. * copy all the root pointers into the super backup array.
  1536. * this will bump the backup pointer by one when it is
  1537. * done
  1538. */
  1539. static void backup_super_roots(struct btrfs_fs_info *info)
  1540. {
  1541. int next_backup;
  1542. struct btrfs_root_backup *root_backup;
  1543. int last_backup;
  1544. next_backup = info->backup_root_index;
  1545. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1546. BTRFS_NUM_BACKUP_ROOTS;
  1547. /*
  1548. * just overwrite the last backup if we're at the same generation
  1549. * this happens only at umount
  1550. */
  1551. root_backup = info->super_for_commit->super_roots + last_backup;
  1552. if (btrfs_backup_tree_root_gen(root_backup) ==
  1553. btrfs_header_generation(info->tree_root->node))
  1554. next_backup = last_backup;
  1555. root_backup = info->super_for_commit->super_roots + next_backup;
  1556. /*
  1557. * make sure all of our padding and empty slots get zero filled
  1558. * regardless of which ones we use today
  1559. */
  1560. memset(root_backup, 0, sizeof(*root_backup));
  1561. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1562. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1563. btrfs_set_backup_tree_root_gen(root_backup,
  1564. btrfs_header_generation(info->tree_root->node));
  1565. btrfs_set_backup_tree_root_level(root_backup,
  1566. btrfs_header_level(info->tree_root->node));
  1567. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1568. btrfs_set_backup_chunk_root_gen(root_backup,
  1569. btrfs_header_generation(info->chunk_root->node));
  1570. btrfs_set_backup_chunk_root_level(root_backup,
  1571. btrfs_header_level(info->chunk_root->node));
  1572. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1573. btrfs_set_backup_extent_root_gen(root_backup,
  1574. btrfs_header_generation(info->extent_root->node));
  1575. btrfs_set_backup_extent_root_level(root_backup,
  1576. btrfs_header_level(info->extent_root->node));
  1577. /*
  1578. * we might commit during log recovery, which happens before we set
  1579. * the fs_root. Make sure it is valid before we fill it in.
  1580. */
  1581. if (info->fs_root && info->fs_root->node) {
  1582. btrfs_set_backup_fs_root(root_backup,
  1583. info->fs_root->node->start);
  1584. btrfs_set_backup_fs_root_gen(root_backup,
  1585. btrfs_header_generation(info->fs_root->node));
  1586. btrfs_set_backup_fs_root_level(root_backup,
  1587. btrfs_header_level(info->fs_root->node));
  1588. }
  1589. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1590. btrfs_set_backup_dev_root_gen(root_backup,
  1591. btrfs_header_generation(info->dev_root->node));
  1592. btrfs_set_backup_dev_root_level(root_backup,
  1593. btrfs_header_level(info->dev_root->node));
  1594. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1595. btrfs_set_backup_csum_root_gen(root_backup,
  1596. btrfs_header_generation(info->csum_root->node));
  1597. btrfs_set_backup_csum_root_level(root_backup,
  1598. btrfs_header_level(info->csum_root->node));
  1599. btrfs_set_backup_total_bytes(root_backup,
  1600. btrfs_super_total_bytes(info->super_copy));
  1601. btrfs_set_backup_bytes_used(root_backup,
  1602. btrfs_super_bytes_used(info->super_copy));
  1603. btrfs_set_backup_num_devices(root_backup,
  1604. btrfs_super_num_devices(info->super_copy));
  1605. /*
  1606. * if we don't copy this out to the super_copy, it won't get remembered
  1607. * for the next commit
  1608. */
  1609. memcpy(&info->super_copy->super_roots,
  1610. &info->super_for_commit->super_roots,
  1611. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1612. }
  1613. /*
  1614. * this copies info out of the root backup array and back into
  1615. * the in-memory super block. It is meant to help iterate through
  1616. * the array, so you send it the number of backups you've already
  1617. * tried and the last backup index you used.
  1618. *
  1619. * this returns -1 when it has tried all the backups
  1620. */
  1621. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1622. struct btrfs_super_block *super,
  1623. int *num_backups_tried, int *backup_index)
  1624. {
  1625. struct btrfs_root_backup *root_backup;
  1626. int newest = *backup_index;
  1627. if (*num_backups_tried == 0) {
  1628. u64 gen = btrfs_super_generation(super);
  1629. newest = find_newest_super_backup(info, gen);
  1630. if (newest == -1)
  1631. return -1;
  1632. *backup_index = newest;
  1633. *num_backups_tried = 1;
  1634. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1635. /* we've tried all the backups, all done */
  1636. return -1;
  1637. } else {
  1638. /* jump to the next oldest backup */
  1639. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1640. BTRFS_NUM_BACKUP_ROOTS;
  1641. *backup_index = newest;
  1642. *num_backups_tried += 1;
  1643. }
  1644. root_backup = super->super_roots + newest;
  1645. btrfs_set_super_generation(super,
  1646. btrfs_backup_tree_root_gen(root_backup));
  1647. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1648. btrfs_set_super_root_level(super,
  1649. btrfs_backup_tree_root_level(root_backup));
  1650. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1651. /*
  1652. * fixme: the total bytes and num_devices need to match or we should
  1653. * need a fsck
  1654. */
  1655. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1656. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1657. return 0;
  1658. }
  1659. /* helper to cleanup tree roots */
  1660. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1661. {
  1662. free_extent_buffer(info->tree_root->node);
  1663. free_extent_buffer(info->tree_root->commit_root);
  1664. free_extent_buffer(info->dev_root->node);
  1665. free_extent_buffer(info->dev_root->commit_root);
  1666. free_extent_buffer(info->extent_root->node);
  1667. free_extent_buffer(info->extent_root->commit_root);
  1668. free_extent_buffer(info->csum_root->node);
  1669. free_extent_buffer(info->csum_root->commit_root);
  1670. info->tree_root->node = NULL;
  1671. info->tree_root->commit_root = NULL;
  1672. info->dev_root->node = NULL;
  1673. info->dev_root->commit_root = NULL;
  1674. info->extent_root->node = NULL;
  1675. info->extent_root->commit_root = NULL;
  1676. info->csum_root->node = NULL;
  1677. info->csum_root->commit_root = NULL;
  1678. if (chunk_root) {
  1679. free_extent_buffer(info->chunk_root->node);
  1680. free_extent_buffer(info->chunk_root->commit_root);
  1681. info->chunk_root->node = NULL;
  1682. info->chunk_root->commit_root = NULL;
  1683. }
  1684. }
  1685. int open_ctree(struct super_block *sb,
  1686. struct btrfs_fs_devices *fs_devices,
  1687. char *options)
  1688. {
  1689. u32 sectorsize;
  1690. u32 nodesize;
  1691. u32 leafsize;
  1692. u32 blocksize;
  1693. u32 stripesize;
  1694. u64 generation;
  1695. u64 features;
  1696. struct btrfs_key location;
  1697. struct buffer_head *bh;
  1698. struct btrfs_super_block *disk_super;
  1699. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1700. struct btrfs_root *tree_root;
  1701. struct btrfs_root *extent_root;
  1702. struct btrfs_root *csum_root;
  1703. struct btrfs_root *chunk_root;
  1704. struct btrfs_root *dev_root;
  1705. struct btrfs_root *log_tree_root;
  1706. int ret;
  1707. int err = -EINVAL;
  1708. int num_backups_tried = 0;
  1709. int backup_index = 0;
  1710. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1711. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1712. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1713. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1714. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1715. if (!tree_root || !extent_root || !csum_root ||
  1716. !chunk_root || !dev_root) {
  1717. err = -ENOMEM;
  1718. goto fail;
  1719. }
  1720. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1721. if (ret) {
  1722. err = ret;
  1723. goto fail;
  1724. }
  1725. ret = setup_bdi(fs_info, &fs_info->bdi);
  1726. if (ret) {
  1727. err = ret;
  1728. goto fail_srcu;
  1729. }
  1730. fs_info->btree_inode = new_inode(sb);
  1731. if (!fs_info->btree_inode) {
  1732. err = -ENOMEM;
  1733. goto fail_bdi;
  1734. }
  1735. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1736. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1737. INIT_LIST_HEAD(&fs_info->trans_list);
  1738. INIT_LIST_HEAD(&fs_info->dead_roots);
  1739. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1740. INIT_LIST_HEAD(&fs_info->hashers);
  1741. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1742. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1743. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1744. spin_lock_init(&fs_info->delalloc_lock);
  1745. spin_lock_init(&fs_info->trans_lock);
  1746. spin_lock_init(&fs_info->ref_cache_lock);
  1747. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1748. spin_lock_init(&fs_info->delayed_iput_lock);
  1749. spin_lock_init(&fs_info->defrag_inodes_lock);
  1750. spin_lock_init(&fs_info->free_chunk_lock);
  1751. mutex_init(&fs_info->reloc_mutex);
  1752. init_completion(&fs_info->kobj_unregister);
  1753. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1754. INIT_LIST_HEAD(&fs_info->space_info);
  1755. btrfs_mapping_init(&fs_info->mapping_tree);
  1756. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1757. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1758. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1759. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1760. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1761. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1762. atomic_set(&fs_info->nr_async_submits, 0);
  1763. atomic_set(&fs_info->async_delalloc_pages, 0);
  1764. atomic_set(&fs_info->async_submit_draining, 0);
  1765. atomic_set(&fs_info->nr_async_bios, 0);
  1766. atomic_set(&fs_info->defrag_running, 0);
  1767. fs_info->sb = sb;
  1768. fs_info->max_inline = 8192 * 1024;
  1769. fs_info->metadata_ratio = 0;
  1770. fs_info->defrag_inodes = RB_ROOT;
  1771. fs_info->trans_no_join = 0;
  1772. fs_info->free_chunk_space = 0;
  1773. /* readahead state */
  1774. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1775. spin_lock_init(&fs_info->reada_lock);
  1776. fs_info->thread_pool_size = min_t(unsigned long,
  1777. num_online_cpus() + 2, 8);
  1778. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1779. spin_lock_init(&fs_info->ordered_extent_lock);
  1780. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1781. GFP_NOFS);
  1782. if (!fs_info->delayed_root) {
  1783. err = -ENOMEM;
  1784. goto fail_iput;
  1785. }
  1786. btrfs_init_delayed_root(fs_info->delayed_root);
  1787. mutex_init(&fs_info->scrub_lock);
  1788. atomic_set(&fs_info->scrubs_running, 0);
  1789. atomic_set(&fs_info->scrub_pause_req, 0);
  1790. atomic_set(&fs_info->scrubs_paused, 0);
  1791. atomic_set(&fs_info->scrub_cancel_req, 0);
  1792. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1793. init_rwsem(&fs_info->scrub_super_lock);
  1794. fs_info->scrub_workers_refcnt = 0;
  1795. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1796. fs_info->check_integrity_print_mask = 0;
  1797. #endif
  1798. spin_lock_init(&fs_info->balance_lock);
  1799. mutex_init(&fs_info->balance_mutex);
  1800. atomic_set(&fs_info->balance_running, 0);
  1801. atomic_set(&fs_info->balance_pause_req, 0);
  1802. atomic_set(&fs_info->balance_cancel_req, 0);
  1803. fs_info->balance_ctl = NULL;
  1804. init_waitqueue_head(&fs_info->balance_wait_q);
  1805. sb->s_blocksize = 4096;
  1806. sb->s_blocksize_bits = blksize_bits(4096);
  1807. sb->s_bdi = &fs_info->bdi;
  1808. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1809. set_nlink(fs_info->btree_inode, 1);
  1810. /*
  1811. * we set the i_size on the btree inode to the max possible int.
  1812. * the real end of the address space is determined by all of
  1813. * the devices in the system
  1814. */
  1815. fs_info->btree_inode->i_size = OFFSET_MAX;
  1816. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1817. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1818. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1819. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1820. fs_info->btree_inode->i_mapping);
  1821. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1822. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1823. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1824. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1825. sizeof(struct btrfs_key));
  1826. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1827. insert_inode_hash(fs_info->btree_inode);
  1828. spin_lock_init(&fs_info->block_group_cache_lock);
  1829. fs_info->block_group_cache_tree = RB_ROOT;
  1830. extent_io_tree_init(&fs_info->freed_extents[0],
  1831. fs_info->btree_inode->i_mapping);
  1832. extent_io_tree_init(&fs_info->freed_extents[1],
  1833. fs_info->btree_inode->i_mapping);
  1834. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1835. fs_info->do_barriers = 1;
  1836. mutex_init(&fs_info->ordered_operations_mutex);
  1837. mutex_init(&fs_info->tree_log_mutex);
  1838. mutex_init(&fs_info->chunk_mutex);
  1839. mutex_init(&fs_info->transaction_kthread_mutex);
  1840. mutex_init(&fs_info->cleaner_mutex);
  1841. mutex_init(&fs_info->volume_mutex);
  1842. init_rwsem(&fs_info->extent_commit_sem);
  1843. init_rwsem(&fs_info->cleanup_work_sem);
  1844. init_rwsem(&fs_info->subvol_sem);
  1845. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1846. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1847. init_waitqueue_head(&fs_info->transaction_throttle);
  1848. init_waitqueue_head(&fs_info->transaction_wait);
  1849. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1850. init_waitqueue_head(&fs_info->async_submit_wait);
  1851. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1852. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1853. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1854. if (!bh) {
  1855. err = -EINVAL;
  1856. goto fail_alloc;
  1857. }
  1858. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1859. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1860. sizeof(*fs_info->super_for_commit));
  1861. brelse(bh);
  1862. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1863. disk_super = fs_info->super_copy;
  1864. if (!btrfs_super_root(disk_super))
  1865. goto fail_alloc;
  1866. /* check FS state, whether FS is broken. */
  1867. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1868. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1869. /*
  1870. * run through our array of backup supers and setup
  1871. * our ring pointer to the oldest one
  1872. */
  1873. generation = btrfs_super_generation(disk_super);
  1874. find_oldest_super_backup(fs_info, generation);
  1875. /*
  1876. * In the long term, we'll store the compression type in the super
  1877. * block, and it'll be used for per file compression control.
  1878. */
  1879. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1880. ret = btrfs_parse_options(tree_root, options);
  1881. if (ret) {
  1882. err = ret;
  1883. goto fail_alloc;
  1884. }
  1885. features = btrfs_super_incompat_flags(disk_super) &
  1886. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1887. if (features) {
  1888. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1889. "unsupported optional features (%Lx).\n",
  1890. (unsigned long long)features);
  1891. err = -EINVAL;
  1892. goto fail_alloc;
  1893. }
  1894. features = btrfs_super_incompat_flags(disk_super);
  1895. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1896. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1897. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1898. btrfs_set_super_incompat_flags(disk_super, features);
  1899. features = btrfs_super_compat_ro_flags(disk_super) &
  1900. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1901. if (!(sb->s_flags & MS_RDONLY) && features) {
  1902. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1903. "unsupported option features (%Lx).\n",
  1904. (unsigned long long)features);
  1905. err = -EINVAL;
  1906. goto fail_alloc;
  1907. }
  1908. btrfs_init_workers(&fs_info->generic_worker,
  1909. "genwork", 1, NULL);
  1910. btrfs_init_workers(&fs_info->workers, "worker",
  1911. fs_info->thread_pool_size,
  1912. &fs_info->generic_worker);
  1913. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1914. fs_info->thread_pool_size,
  1915. &fs_info->generic_worker);
  1916. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1917. min_t(u64, fs_devices->num_devices,
  1918. fs_info->thread_pool_size),
  1919. &fs_info->generic_worker);
  1920. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1921. 2, &fs_info->generic_worker);
  1922. /* a higher idle thresh on the submit workers makes it much more
  1923. * likely that bios will be send down in a sane order to the
  1924. * devices
  1925. */
  1926. fs_info->submit_workers.idle_thresh = 64;
  1927. fs_info->workers.idle_thresh = 16;
  1928. fs_info->workers.ordered = 1;
  1929. fs_info->delalloc_workers.idle_thresh = 2;
  1930. fs_info->delalloc_workers.ordered = 1;
  1931. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1932. &fs_info->generic_worker);
  1933. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1934. fs_info->thread_pool_size,
  1935. &fs_info->generic_worker);
  1936. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1937. fs_info->thread_pool_size,
  1938. &fs_info->generic_worker);
  1939. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1940. "endio-meta-write", fs_info->thread_pool_size,
  1941. &fs_info->generic_worker);
  1942. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1943. fs_info->thread_pool_size,
  1944. &fs_info->generic_worker);
  1945. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1946. 1, &fs_info->generic_worker);
  1947. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1948. fs_info->thread_pool_size,
  1949. &fs_info->generic_worker);
  1950. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1951. fs_info->thread_pool_size,
  1952. &fs_info->generic_worker);
  1953. /*
  1954. * endios are largely parallel and should have a very
  1955. * low idle thresh
  1956. */
  1957. fs_info->endio_workers.idle_thresh = 4;
  1958. fs_info->endio_meta_workers.idle_thresh = 4;
  1959. fs_info->endio_write_workers.idle_thresh = 2;
  1960. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1961. fs_info->readahead_workers.idle_thresh = 2;
  1962. /*
  1963. * btrfs_start_workers can really only fail because of ENOMEM so just
  1964. * return -ENOMEM if any of these fail.
  1965. */
  1966. ret = btrfs_start_workers(&fs_info->workers);
  1967. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1968. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1969. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1970. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1971. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1972. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1973. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1974. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1975. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1976. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1977. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1978. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1979. if (ret) {
  1980. ret = -ENOMEM;
  1981. goto fail_sb_buffer;
  1982. }
  1983. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1984. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1985. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1986. nodesize = btrfs_super_nodesize(disk_super);
  1987. leafsize = btrfs_super_leafsize(disk_super);
  1988. sectorsize = btrfs_super_sectorsize(disk_super);
  1989. stripesize = btrfs_super_stripesize(disk_super);
  1990. tree_root->nodesize = nodesize;
  1991. tree_root->leafsize = leafsize;
  1992. tree_root->sectorsize = sectorsize;
  1993. tree_root->stripesize = stripesize;
  1994. sb->s_blocksize = sectorsize;
  1995. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1996. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1997. sizeof(disk_super->magic))) {
  1998. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1999. goto fail_sb_buffer;
  2000. }
  2001. if (sectorsize < PAGE_SIZE) {
  2002. printk(KERN_WARNING "btrfs: Incompatible sector size "
  2003. "found on %s\n", sb->s_id);
  2004. goto fail_sb_buffer;
  2005. }
  2006. mutex_lock(&fs_info->chunk_mutex);
  2007. ret = btrfs_read_sys_array(tree_root);
  2008. mutex_unlock(&fs_info->chunk_mutex);
  2009. if (ret) {
  2010. printk(KERN_WARNING "btrfs: failed to read the system "
  2011. "array on %s\n", sb->s_id);
  2012. goto fail_sb_buffer;
  2013. }
  2014. blocksize = btrfs_level_size(tree_root,
  2015. btrfs_super_chunk_root_level(disk_super));
  2016. generation = btrfs_super_chunk_root_generation(disk_super);
  2017. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2018. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2019. chunk_root->node = read_tree_block(chunk_root,
  2020. btrfs_super_chunk_root(disk_super),
  2021. blocksize, generation);
  2022. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2023. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2024. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2025. sb->s_id);
  2026. goto fail_tree_roots;
  2027. }
  2028. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2029. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2030. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2031. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2032. BTRFS_UUID_SIZE);
  2033. ret = btrfs_read_chunk_tree(chunk_root);
  2034. if (ret) {
  2035. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2036. sb->s_id);
  2037. goto fail_tree_roots;
  2038. }
  2039. btrfs_close_extra_devices(fs_devices);
  2040. if (!fs_devices->latest_bdev) {
  2041. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2042. sb->s_id);
  2043. goto fail_tree_roots;
  2044. }
  2045. retry_root_backup:
  2046. blocksize = btrfs_level_size(tree_root,
  2047. btrfs_super_root_level(disk_super));
  2048. generation = btrfs_super_generation(disk_super);
  2049. tree_root->node = read_tree_block(tree_root,
  2050. btrfs_super_root(disk_super),
  2051. blocksize, generation);
  2052. if (!tree_root->node ||
  2053. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2054. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2055. sb->s_id);
  2056. goto recovery_tree_root;
  2057. }
  2058. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2059. tree_root->commit_root = btrfs_root_node(tree_root);
  2060. ret = find_and_setup_root(tree_root, fs_info,
  2061. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2062. if (ret)
  2063. goto recovery_tree_root;
  2064. extent_root->track_dirty = 1;
  2065. ret = find_and_setup_root(tree_root, fs_info,
  2066. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2067. if (ret)
  2068. goto recovery_tree_root;
  2069. dev_root->track_dirty = 1;
  2070. ret = find_and_setup_root(tree_root, fs_info,
  2071. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2072. if (ret)
  2073. goto recovery_tree_root;
  2074. csum_root->track_dirty = 1;
  2075. fs_info->generation = generation;
  2076. fs_info->last_trans_committed = generation;
  2077. ret = btrfs_init_space_info(fs_info);
  2078. if (ret) {
  2079. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2080. goto fail_block_groups;
  2081. }
  2082. ret = btrfs_read_block_groups(extent_root);
  2083. if (ret) {
  2084. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2085. goto fail_block_groups;
  2086. }
  2087. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2088. "btrfs-cleaner");
  2089. if (IS_ERR(fs_info->cleaner_kthread))
  2090. goto fail_block_groups;
  2091. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2092. tree_root,
  2093. "btrfs-transaction");
  2094. if (IS_ERR(fs_info->transaction_kthread))
  2095. goto fail_cleaner;
  2096. if (!btrfs_test_opt(tree_root, SSD) &&
  2097. !btrfs_test_opt(tree_root, NOSSD) &&
  2098. !fs_info->fs_devices->rotating) {
  2099. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2100. "mode\n");
  2101. btrfs_set_opt(fs_info->mount_opt, SSD);
  2102. }
  2103. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2104. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2105. ret = btrfsic_mount(tree_root, fs_devices,
  2106. btrfs_test_opt(tree_root,
  2107. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2108. 1 : 0,
  2109. fs_info->check_integrity_print_mask);
  2110. if (ret)
  2111. printk(KERN_WARNING "btrfs: failed to initialize"
  2112. " integrity check module %s\n", sb->s_id);
  2113. }
  2114. #endif
  2115. /* do not make disk changes in broken FS */
  2116. if (btrfs_super_log_root(disk_super) != 0 &&
  2117. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2118. u64 bytenr = btrfs_super_log_root(disk_super);
  2119. if (fs_devices->rw_devices == 0) {
  2120. printk(KERN_WARNING "Btrfs log replay required "
  2121. "on RO media\n");
  2122. err = -EIO;
  2123. goto fail_trans_kthread;
  2124. }
  2125. blocksize =
  2126. btrfs_level_size(tree_root,
  2127. btrfs_super_log_root_level(disk_super));
  2128. log_tree_root = btrfs_alloc_root(fs_info);
  2129. if (!log_tree_root) {
  2130. err = -ENOMEM;
  2131. goto fail_trans_kthread;
  2132. }
  2133. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2134. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2135. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2136. blocksize,
  2137. generation + 1);
  2138. /* returns with log_tree_root freed on success */
  2139. ret = btrfs_recover_log_trees(log_tree_root);
  2140. if (ret) {
  2141. btrfs_error(tree_root->fs_info, ret,
  2142. "Failed to recover log tree");
  2143. free_extent_buffer(log_tree_root->node);
  2144. kfree(log_tree_root);
  2145. goto fail_trans_kthread;
  2146. }
  2147. if (sb->s_flags & MS_RDONLY) {
  2148. ret = btrfs_commit_super(tree_root);
  2149. if (ret)
  2150. goto fail_trans_kthread;
  2151. }
  2152. }
  2153. ret = btrfs_find_orphan_roots(tree_root);
  2154. if (ret)
  2155. goto fail_trans_kthread;
  2156. if (!(sb->s_flags & MS_RDONLY)) {
  2157. ret = btrfs_cleanup_fs_roots(fs_info);
  2158. if (ret) {
  2159. }
  2160. ret = btrfs_recover_relocation(tree_root);
  2161. if (ret < 0) {
  2162. printk(KERN_WARNING
  2163. "btrfs: failed to recover relocation\n");
  2164. err = -EINVAL;
  2165. goto fail_trans_kthread;
  2166. }
  2167. }
  2168. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2169. location.type = BTRFS_ROOT_ITEM_KEY;
  2170. location.offset = (u64)-1;
  2171. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2172. if (!fs_info->fs_root)
  2173. goto fail_trans_kthread;
  2174. if (IS_ERR(fs_info->fs_root)) {
  2175. err = PTR_ERR(fs_info->fs_root);
  2176. goto fail_trans_kthread;
  2177. }
  2178. if (!(sb->s_flags & MS_RDONLY)) {
  2179. down_read(&fs_info->cleanup_work_sem);
  2180. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2181. if (!err)
  2182. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2183. up_read(&fs_info->cleanup_work_sem);
  2184. if (!err)
  2185. err = btrfs_recover_balance(fs_info->tree_root);
  2186. if (err) {
  2187. close_ctree(tree_root);
  2188. return err;
  2189. }
  2190. }
  2191. return 0;
  2192. fail_trans_kthread:
  2193. kthread_stop(fs_info->transaction_kthread);
  2194. fail_cleaner:
  2195. kthread_stop(fs_info->cleaner_kthread);
  2196. /*
  2197. * make sure we're done with the btree inode before we stop our
  2198. * kthreads
  2199. */
  2200. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2201. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2202. fail_block_groups:
  2203. btrfs_free_block_groups(fs_info);
  2204. fail_tree_roots:
  2205. free_root_pointers(fs_info, 1);
  2206. fail_sb_buffer:
  2207. btrfs_stop_workers(&fs_info->generic_worker);
  2208. btrfs_stop_workers(&fs_info->readahead_workers);
  2209. btrfs_stop_workers(&fs_info->fixup_workers);
  2210. btrfs_stop_workers(&fs_info->delalloc_workers);
  2211. btrfs_stop_workers(&fs_info->workers);
  2212. btrfs_stop_workers(&fs_info->endio_workers);
  2213. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2214. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2215. btrfs_stop_workers(&fs_info->endio_write_workers);
  2216. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2217. btrfs_stop_workers(&fs_info->submit_workers);
  2218. btrfs_stop_workers(&fs_info->delayed_workers);
  2219. btrfs_stop_workers(&fs_info->caching_workers);
  2220. fail_alloc:
  2221. fail_iput:
  2222. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2223. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2224. iput(fs_info->btree_inode);
  2225. fail_bdi:
  2226. bdi_destroy(&fs_info->bdi);
  2227. fail_srcu:
  2228. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2229. fail:
  2230. btrfs_close_devices(fs_info->fs_devices);
  2231. return err;
  2232. recovery_tree_root:
  2233. if (!btrfs_test_opt(tree_root, RECOVERY))
  2234. goto fail_tree_roots;
  2235. free_root_pointers(fs_info, 0);
  2236. /* don't use the log in recovery mode, it won't be valid */
  2237. btrfs_set_super_log_root(disk_super, 0);
  2238. /* we can't trust the free space cache either */
  2239. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2240. ret = next_root_backup(fs_info, fs_info->super_copy,
  2241. &num_backups_tried, &backup_index);
  2242. if (ret == -1)
  2243. goto fail_block_groups;
  2244. goto retry_root_backup;
  2245. }
  2246. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2247. {
  2248. char b[BDEVNAME_SIZE];
  2249. if (uptodate) {
  2250. set_buffer_uptodate(bh);
  2251. } else {
  2252. printk_ratelimited(KERN_WARNING "lost page write due to "
  2253. "I/O error on %s\n",
  2254. bdevname(bh->b_bdev, b));
  2255. /* note, we dont' set_buffer_write_io_error because we have
  2256. * our own ways of dealing with the IO errors
  2257. */
  2258. clear_buffer_uptodate(bh);
  2259. }
  2260. unlock_buffer(bh);
  2261. put_bh(bh);
  2262. }
  2263. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2264. {
  2265. struct buffer_head *bh;
  2266. struct buffer_head *latest = NULL;
  2267. struct btrfs_super_block *super;
  2268. int i;
  2269. u64 transid = 0;
  2270. u64 bytenr;
  2271. /* we would like to check all the supers, but that would make
  2272. * a btrfs mount succeed after a mkfs from a different FS.
  2273. * So, we need to add a special mount option to scan for
  2274. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2275. */
  2276. for (i = 0; i < 1; i++) {
  2277. bytenr = btrfs_sb_offset(i);
  2278. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2279. break;
  2280. bh = __bread(bdev, bytenr / 4096, 4096);
  2281. if (!bh)
  2282. continue;
  2283. super = (struct btrfs_super_block *)bh->b_data;
  2284. if (btrfs_super_bytenr(super) != bytenr ||
  2285. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2286. sizeof(super->magic))) {
  2287. brelse(bh);
  2288. continue;
  2289. }
  2290. if (!latest || btrfs_super_generation(super) > transid) {
  2291. brelse(latest);
  2292. latest = bh;
  2293. transid = btrfs_super_generation(super);
  2294. } else {
  2295. brelse(bh);
  2296. }
  2297. }
  2298. return latest;
  2299. }
  2300. /*
  2301. * this should be called twice, once with wait == 0 and
  2302. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2303. * we write are pinned.
  2304. *
  2305. * They are released when wait == 1 is done.
  2306. * max_mirrors must be the same for both runs, and it indicates how
  2307. * many supers on this one device should be written.
  2308. *
  2309. * max_mirrors == 0 means to write them all.
  2310. */
  2311. static int write_dev_supers(struct btrfs_device *device,
  2312. struct btrfs_super_block *sb,
  2313. int do_barriers, int wait, int max_mirrors)
  2314. {
  2315. struct buffer_head *bh;
  2316. int i;
  2317. int ret;
  2318. int errors = 0;
  2319. u32 crc;
  2320. u64 bytenr;
  2321. if (max_mirrors == 0)
  2322. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2323. for (i = 0; i < max_mirrors; i++) {
  2324. bytenr = btrfs_sb_offset(i);
  2325. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2326. break;
  2327. if (wait) {
  2328. bh = __find_get_block(device->bdev, bytenr / 4096,
  2329. BTRFS_SUPER_INFO_SIZE);
  2330. BUG_ON(!bh);
  2331. wait_on_buffer(bh);
  2332. if (!buffer_uptodate(bh))
  2333. errors++;
  2334. /* drop our reference */
  2335. brelse(bh);
  2336. /* drop the reference from the wait == 0 run */
  2337. brelse(bh);
  2338. continue;
  2339. } else {
  2340. btrfs_set_super_bytenr(sb, bytenr);
  2341. crc = ~(u32)0;
  2342. crc = btrfs_csum_data(NULL, (char *)sb +
  2343. BTRFS_CSUM_SIZE, crc,
  2344. BTRFS_SUPER_INFO_SIZE -
  2345. BTRFS_CSUM_SIZE);
  2346. btrfs_csum_final(crc, sb->csum);
  2347. /*
  2348. * one reference for us, and we leave it for the
  2349. * caller
  2350. */
  2351. bh = __getblk(device->bdev, bytenr / 4096,
  2352. BTRFS_SUPER_INFO_SIZE);
  2353. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2354. /* one reference for submit_bh */
  2355. get_bh(bh);
  2356. set_buffer_uptodate(bh);
  2357. lock_buffer(bh);
  2358. bh->b_end_io = btrfs_end_buffer_write_sync;
  2359. }
  2360. /*
  2361. * we fua the first super. The others we allow
  2362. * to go down lazy.
  2363. */
  2364. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2365. if (ret)
  2366. errors++;
  2367. }
  2368. return errors < i ? 0 : -1;
  2369. }
  2370. /*
  2371. * endio for the write_dev_flush, this will wake anyone waiting
  2372. * for the barrier when it is done
  2373. */
  2374. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2375. {
  2376. if (err) {
  2377. if (err == -EOPNOTSUPP)
  2378. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2379. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2380. }
  2381. if (bio->bi_private)
  2382. complete(bio->bi_private);
  2383. bio_put(bio);
  2384. }
  2385. /*
  2386. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2387. * sent down. With wait == 1, it waits for the previous flush.
  2388. *
  2389. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2390. * capable
  2391. */
  2392. static int write_dev_flush(struct btrfs_device *device, int wait)
  2393. {
  2394. struct bio *bio;
  2395. int ret = 0;
  2396. if (device->nobarriers)
  2397. return 0;
  2398. if (wait) {
  2399. bio = device->flush_bio;
  2400. if (!bio)
  2401. return 0;
  2402. wait_for_completion(&device->flush_wait);
  2403. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2404. printk("btrfs: disabling barriers on dev %s\n",
  2405. device->name);
  2406. device->nobarriers = 1;
  2407. }
  2408. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2409. ret = -EIO;
  2410. }
  2411. /* drop the reference from the wait == 0 run */
  2412. bio_put(bio);
  2413. device->flush_bio = NULL;
  2414. return ret;
  2415. }
  2416. /*
  2417. * one reference for us, and we leave it for the
  2418. * caller
  2419. */
  2420. device->flush_bio = NULL;;
  2421. bio = bio_alloc(GFP_NOFS, 0);
  2422. if (!bio)
  2423. return -ENOMEM;
  2424. bio->bi_end_io = btrfs_end_empty_barrier;
  2425. bio->bi_bdev = device->bdev;
  2426. init_completion(&device->flush_wait);
  2427. bio->bi_private = &device->flush_wait;
  2428. device->flush_bio = bio;
  2429. bio_get(bio);
  2430. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2431. return 0;
  2432. }
  2433. /*
  2434. * send an empty flush down to each device in parallel,
  2435. * then wait for them
  2436. */
  2437. static int barrier_all_devices(struct btrfs_fs_info *info)
  2438. {
  2439. struct list_head *head;
  2440. struct btrfs_device *dev;
  2441. int errors = 0;
  2442. int ret;
  2443. /* send down all the barriers */
  2444. head = &info->fs_devices->devices;
  2445. list_for_each_entry_rcu(dev, head, dev_list) {
  2446. if (!dev->bdev) {
  2447. errors++;
  2448. continue;
  2449. }
  2450. if (!dev->in_fs_metadata || !dev->writeable)
  2451. continue;
  2452. ret = write_dev_flush(dev, 0);
  2453. if (ret)
  2454. errors++;
  2455. }
  2456. /* wait for all the barriers */
  2457. list_for_each_entry_rcu(dev, head, dev_list) {
  2458. if (!dev->bdev) {
  2459. errors++;
  2460. continue;
  2461. }
  2462. if (!dev->in_fs_metadata || !dev->writeable)
  2463. continue;
  2464. ret = write_dev_flush(dev, 1);
  2465. if (ret)
  2466. errors++;
  2467. }
  2468. if (errors)
  2469. return -EIO;
  2470. return 0;
  2471. }
  2472. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2473. {
  2474. struct list_head *head;
  2475. struct btrfs_device *dev;
  2476. struct btrfs_super_block *sb;
  2477. struct btrfs_dev_item *dev_item;
  2478. int ret;
  2479. int do_barriers;
  2480. int max_errors;
  2481. int total_errors = 0;
  2482. u64 flags;
  2483. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2484. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2485. backup_super_roots(root->fs_info);
  2486. sb = root->fs_info->super_for_commit;
  2487. dev_item = &sb->dev_item;
  2488. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2489. head = &root->fs_info->fs_devices->devices;
  2490. if (do_barriers)
  2491. barrier_all_devices(root->fs_info);
  2492. list_for_each_entry_rcu(dev, head, dev_list) {
  2493. if (!dev->bdev) {
  2494. total_errors++;
  2495. continue;
  2496. }
  2497. if (!dev->in_fs_metadata || !dev->writeable)
  2498. continue;
  2499. btrfs_set_stack_device_generation(dev_item, 0);
  2500. btrfs_set_stack_device_type(dev_item, dev->type);
  2501. btrfs_set_stack_device_id(dev_item, dev->devid);
  2502. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2503. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2504. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2505. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2506. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2507. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2508. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2509. flags = btrfs_super_flags(sb);
  2510. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2511. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2512. if (ret)
  2513. total_errors++;
  2514. }
  2515. if (total_errors > max_errors) {
  2516. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2517. total_errors);
  2518. /* This shouldn't happen. FUA is masked off if unsupported */
  2519. BUG();
  2520. }
  2521. total_errors = 0;
  2522. list_for_each_entry_rcu(dev, head, dev_list) {
  2523. if (!dev->bdev)
  2524. continue;
  2525. if (!dev->in_fs_metadata || !dev->writeable)
  2526. continue;
  2527. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2528. if (ret)
  2529. total_errors++;
  2530. }
  2531. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2532. if (total_errors > max_errors) {
  2533. btrfs_error(root->fs_info, -EIO,
  2534. "%d errors while writing supers", total_errors);
  2535. return -EIO;
  2536. }
  2537. return 0;
  2538. }
  2539. int write_ctree_super(struct btrfs_trans_handle *trans,
  2540. struct btrfs_root *root, int max_mirrors)
  2541. {
  2542. int ret;
  2543. ret = write_all_supers(root, max_mirrors);
  2544. return ret;
  2545. }
  2546. /* Kill all outstanding I/O */
  2547. void btrfs_abort_devices(struct btrfs_root *root)
  2548. {
  2549. struct list_head *head;
  2550. struct btrfs_device *dev;
  2551. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2552. head = &root->fs_info->fs_devices->devices;
  2553. list_for_each_entry_rcu(dev, head, dev_list) {
  2554. blk_abort_queue(dev->bdev->bd_disk->queue);
  2555. }
  2556. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2557. }
  2558. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2559. {
  2560. spin_lock(&fs_info->fs_roots_radix_lock);
  2561. radix_tree_delete(&fs_info->fs_roots_radix,
  2562. (unsigned long)root->root_key.objectid);
  2563. spin_unlock(&fs_info->fs_roots_radix_lock);
  2564. if (btrfs_root_refs(&root->root_item) == 0)
  2565. synchronize_srcu(&fs_info->subvol_srcu);
  2566. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2567. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2568. free_fs_root(root);
  2569. }
  2570. static void free_fs_root(struct btrfs_root *root)
  2571. {
  2572. iput(root->cache_inode);
  2573. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2574. if (root->anon_dev)
  2575. free_anon_bdev(root->anon_dev);
  2576. free_extent_buffer(root->node);
  2577. free_extent_buffer(root->commit_root);
  2578. kfree(root->free_ino_ctl);
  2579. kfree(root->free_ino_pinned);
  2580. kfree(root->name);
  2581. kfree(root);
  2582. }
  2583. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2584. {
  2585. int ret;
  2586. struct btrfs_root *gang[8];
  2587. int i;
  2588. while (!list_empty(&fs_info->dead_roots)) {
  2589. gang[0] = list_entry(fs_info->dead_roots.next,
  2590. struct btrfs_root, root_list);
  2591. list_del(&gang[0]->root_list);
  2592. if (gang[0]->in_radix) {
  2593. btrfs_free_fs_root(fs_info, gang[0]);
  2594. } else {
  2595. free_extent_buffer(gang[0]->node);
  2596. free_extent_buffer(gang[0]->commit_root);
  2597. kfree(gang[0]);
  2598. }
  2599. }
  2600. while (1) {
  2601. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2602. (void **)gang, 0,
  2603. ARRAY_SIZE(gang));
  2604. if (!ret)
  2605. break;
  2606. for (i = 0; i < ret; i++)
  2607. btrfs_free_fs_root(fs_info, gang[i]);
  2608. }
  2609. }
  2610. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2611. {
  2612. u64 root_objectid = 0;
  2613. struct btrfs_root *gang[8];
  2614. int i;
  2615. int ret;
  2616. while (1) {
  2617. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2618. (void **)gang, root_objectid,
  2619. ARRAY_SIZE(gang));
  2620. if (!ret)
  2621. break;
  2622. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2623. for (i = 0; i < ret; i++) {
  2624. int err;
  2625. root_objectid = gang[i]->root_key.objectid;
  2626. err = btrfs_orphan_cleanup(gang[i]);
  2627. if (err)
  2628. return err;
  2629. }
  2630. root_objectid++;
  2631. }
  2632. return 0;
  2633. }
  2634. int btrfs_commit_super(struct btrfs_root *root)
  2635. {
  2636. struct btrfs_trans_handle *trans;
  2637. int ret;
  2638. mutex_lock(&root->fs_info->cleaner_mutex);
  2639. btrfs_run_delayed_iputs(root);
  2640. btrfs_clean_old_snapshots(root);
  2641. mutex_unlock(&root->fs_info->cleaner_mutex);
  2642. /* wait until ongoing cleanup work done */
  2643. down_write(&root->fs_info->cleanup_work_sem);
  2644. up_write(&root->fs_info->cleanup_work_sem);
  2645. trans = btrfs_join_transaction(root);
  2646. if (IS_ERR(trans))
  2647. return PTR_ERR(trans);
  2648. ret = btrfs_commit_transaction(trans, root);
  2649. if (ret)
  2650. return ret;
  2651. /* run commit again to drop the original snapshot */
  2652. trans = btrfs_join_transaction(root);
  2653. if (IS_ERR(trans))
  2654. return PTR_ERR(trans);
  2655. ret = btrfs_commit_transaction(trans, root);
  2656. if (ret)
  2657. return ret;
  2658. ret = btrfs_write_and_wait_transaction(NULL, root);
  2659. if (ret) {
  2660. btrfs_error(root->fs_info, ret,
  2661. "Failed to sync btree inode to disk.");
  2662. return ret;
  2663. }
  2664. ret = write_ctree_super(NULL, root, 0);
  2665. return ret;
  2666. }
  2667. int close_ctree(struct btrfs_root *root)
  2668. {
  2669. struct btrfs_fs_info *fs_info = root->fs_info;
  2670. int ret;
  2671. fs_info->closing = 1;
  2672. smp_mb();
  2673. /* pause restriper - we want to resume on mount */
  2674. btrfs_pause_balance(root->fs_info);
  2675. btrfs_scrub_cancel(root);
  2676. /* wait for any defraggers to finish */
  2677. wait_event(fs_info->transaction_wait,
  2678. (atomic_read(&fs_info->defrag_running) == 0));
  2679. /* clear out the rbtree of defraggable inodes */
  2680. btrfs_run_defrag_inodes(fs_info);
  2681. /*
  2682. * Here come 2 situations when btrfs is broken to flip readonly:
  2683. *
  2684. * 1. when btrfs flips readonly somewhere else before
  2685. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2686. * and btrfs will skip to write sb directly to keep
  2687. * ERROR state on disk.
  2688. *
  2689. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2690. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2691. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2692. * btrfs will cleanup all FS resources first and write sb then.
  2693. */
  2694. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2695. ret = btrfs_commit_super(root);
  2696. if (ret)
  2697. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2698. }
  2699. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2700. ret = btrfs_error_commit_super(root);
  2701. if (ret)
  2702. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2703. }
  2704. btrfs_put_block_group_cache(fs_info);
  2705. kthread_stop(fs_info->transaction_kthread);
  2706. kthread_stop(fs_info->cleaner_kthread);
  2707. fs_info->closing = 2;
  2708. smp_mb();
  2709. if (fs_info->delalloc_bytes) {
  2710. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2711. (unsigned long long)fs_info->delalloc_bytes);
  2712. }
  2713. if (fs_info->total_ref_cache_size) {
  2714. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2715. (unsigned long long)fs_info->total_ref_cache_size);
  2716. }
  2717. free_extent_buffer(fs_info->extent_root->node);
  2718. free_extent_buffer(fs_info->extent_root->commit_root);
  2719. free_extent_buffer(fs_info->tree_root->node);
  2720. free_extent_buffer(fs_info->tree_root->commit_root);
  2721. free_extent_buffer(fs_info->chunk_root->node);
  2722. free_extent_buffer(fs_info->chunk_root->commit_root);
  2723. free_extent_buffer(fs_info->dev_root->node);
  2724. free_extent_buffer(fs_info->dev_root->commit_root);
  2725. free_extent_buffer(fs_info->csum_root->node);
  2726. free_extent_buffer(fs_info->csum_root->commit_root);
  2727. btrfs_free_block_groups(fs_info);
  2728. del_fs_roots(fs_info);
  2729. iput(fs_info->btree_inode);
  2730. btrfs_stop_workers(&fs_info->generic_worker);
  2731. btrfs_stop_workers(&fs_info->fixup_workers);
  2732. btrfs_stop_workers(&fs_info->delalloc_workers);
  2733. btrfs_stop_workers(&fs_info->workers);
  2734. btrfs_stop_workers(&fs_info->endio_workers);
  2735. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2736. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2737. btrfs_stop_workers(&fs_info->endio_write_workers);
  2738. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2739. btrfs_stop_workers(&fs_info->submit_workers);
  2740. btrfs_stop_workers(&fs_info->delayed_workers);
  2741. btrfs_stop_workers(&fs_info->caching_workers);
  2742. btrfs_stop_workers(&fs_info->readahead_workers);
  2743. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2744. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2745. btrfsic_unmount(root, fs_info->fs_devices);
  2746. #endif
  2747. btrfs_close_devices(fs_info->fs_devices);
  2748. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2749. bdi_destroy(&fs_info->bdi);
  2750. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2751. return 0;
  2752. }
  2753. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2754. {
  2755. int ret;
  2756. struct inode *btree_inode = buf->first_page->mapping->host;
  2757. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2758. NULL);
  2759. if (!ret)
  2760. return ret;
  2761. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2762. parent_transid);
  2763. return !ret;
  2764. }
  2765. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2766. {
  2767. struct inode *btree_inode = buf->first_page->mapping->host;
  2768. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2769. buf);
  2770. }
  2771. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2772. {
  2773. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2774. u64 transid = btrfs_header_generation(buf);
  2775. struct inode *btree_inode = root->fs_info->btree_inode;
  2776. int was_dirty;
  2777. btrfs_assert_tree_locked(buf);
  2778. if (transid != root->fs_info->generation) {
  2779. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2780. "found %llu running %llu\n",
  2781. (unsigned long long)buf->start,
  2782. (unsigned long long)transid,
  2783. (unsigned long long)root->fs_info->generation);
  2784. WARN_ON(1);
  2785. }
  2786. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2787. buf);
  2788. if (!was_dirty) {
  2789. spin_lock(&root->fs_info->delalloc_lock);
  2790. root->fs_info->dirty_metadata_bytes += buf->len;
  2791. spin_unlock(&root->fs_info->delalloc_lock);
  2792. }
  2793. }
  2794. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2795. {
  2796. /*
  2797. * looks as though older kernels can get into trouble with
  2798. * this code, they end up stuck in balance_dirty_pages forever
  2799. */
  2800. u64 num_dirty;
  2801. unsigned long thresh = 32 * 1024 * 1024;
  2802. if (current->flags & PF_MEMALLOC)
  2803. return;
  2804. btrfs_balance_delayed_items(root);
  2805. num_dirty = root->fs_info->dirty_metadata_bytes;
  2806. if (num_dirty > thresh) {
  2807. balance_dirty_pages_ratelimited_nr(
  2808. root->fs_info->btree_inode->i_mapping, 1);
  2809. }
  2810. return;
  2811. }
  2812. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2813. {
  2814. /*
  2815. * looks as though older kernels can get into trouble with
  2816. * this code, they end up stuck in balance_dirty_pages forever
  2817. */
  2818. u64 num_dirty;
  2819. unsigned long thresh = 32 * 1024 * 1024;
  2820. if (current->flags & PF_MEMALLOC)
  2821. return;
  2822. num_dirty = root->fs_info->dirty_metadata_bytes;
  2823. if (num_dirty > thresh) {
  2824. balance_dirty_pages_ratelimited_nr(
  2825. root->fs_info->btree_inode->i_mapping, 1);
  2826. }
  2827. return;
  2828. }
  2829. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2830. {
  2831. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2832. int ret;
  2833. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2834. if (ret == 0)
  2835. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2836. return ret;
  2837. }
  2838. static int btree_lock_page_hook(struct page *page, void *data,
  2839. void (*flush_fn)(void *))
  2840. {
  2841. struct inode *inode = page->mapping->host;
  2842. struct btrfs_root *root = BTRFS_I(inode)->root;
  2843. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2844. struct extent_buffer *eb;
  2845. unsigned long len;
  2846. u64 bytenr = page_offset(page);
  2847. if (page->private == EXTENT_PAGE_PRIVATE)
  2848. goto out;
  2849. len = page->private >> 2;
  2850. eb = find_extent_buffer(io_tree, bytenr, len);
  2851. if (!eb)
  2852. goto out;
  2853. if (!btrfs_try_tree_write_lock(eb)) {
  2854. flush_fn(data);
  2855. btrfs_tree_lock(eb);
  2856. }
  2857. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2858. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2859. spin_lock(&root->fs_info->delalloc_lock);
  2860. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2861. root->fs_info->dirty_metadata_bytes -= eb->len;
  2862. else
  2863. WARN_ON(1);
  2864. spin_unlock(&root->fs_info->delalloc_lock);
  2865. }
  2866. btrfs_tree_unlock(eb);
  2867. free_extent_buffer(eb);
  2868. out:
  2869. if (!trylock_page(page)) {
  2870. flush_fn(data);
  2871. lock_page(page);
  2872. }
  2873. return 0;
  2874. }
  2875. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2876. int read_only)
  2877. {
  2878. if (read_only)
  2879. return;
  2880. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2881. printk(KERN_WARNING "warning: mount fs with errors, "
  2882. "running btrfsck is recommended\n");
  2883. }
  2884. int btrfs_error_commit_super(struct btrfs_root *root)
  2885. {
  2886. int ret;
  2887. mutex_lock(&root->fs_info->cleaner_mutex);
  2888. btrfs_run_delayed_iputs(root);
  2889. mutex_unlock(&root->fs_info->cleaner_mutex);
  2890. down_write(&root->fs_info->cleanup_work_sem);
  2891. up_write(&root->fs_info->cleanup_work_sem);
  2892. /* cleanup FS via transaction */
  2893. btrfs_cleanup_transaction(root);
  2894. ret = write_ctree_super(NULL, root, 0);
  2895. return ret;
  2896. }
  2897. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2898. {
  2899. struct btrfs_inode *btrfs_inode;
  2900. struct list_head splice;
  2901. INIT_LIST_HEAD(&splice);
  2902. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2903. spin_lock(&root->fs_info->ordered_extent_lock);
  2904. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2905. while (!list_empty(&splice)) {
  2906. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2907. ordered_operations);
  2908. list_del_init(&btrfs_inode->ordered_operations);
  2909. btrfs_invalidate_inodes(btrfs_inode->root);
  2910. }
  2911. spin_unlock(&root->fs_info->ordered_extent_lock);
  2912. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2913. }
  2914. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2915. {
  2916. struct list_head splice;
  2917. struct btrfs_ordered_extent *ordered;
  2918. struct inode *inode;
  2919. INIT_LIST_HEAD(&splice);
  2920. spin_lock(&root->fs_info->ordered_extent_lock);
  2921. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2922. while (!list_empty(&splice)) {
  2923. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2924. root_extent_list);
  2925. list_del_init(&ordered->root_extent_list);
  2926. atomic_inc(&ordered->refs);
  2927. /* the inode may be getting freed (in sys_unlink path). */
  2928. inode = igrab(ordered->inode);
  2929. spin_unlock(&root->fs_info->ordered_extent_lock);
  2930. if (inode)
  2931. iput(inode);
  2932. atomic_set(&ordered->refs, 1);
  2933. btrfs_put_ordered_extent(ordered);
  2934. spin_lock(&root->fs_info->ordered_extent_lock);
  2935. }
  2936. spin_unlock(&root->fs_info->ordered_extent_lock);
  2937. }
  2938. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2939. struct btrfs_root *root)
  2940. {
  2941. struct rb_node *node;
  2942. struct btrfs_delayed_ref_root *delayed_refs;
  2943. struct btrfs_delayed_ref_node *ref;
  2944. int ret = 0;
  2945. delayed_refs = &trans->delayed_refs;
  2946. again:
  2947. spin_lock(&delayed_refs->lock);
  2948. if (delayed_refs->num_entries == 0) {
  2949. spin_unlock(&delayed_refs->lock);
  2950. printk(KERN_INFO "delayed_refs has NO entry\n");
  2951. return ret;
  2952. }
  2953. node = rb_first(&delayed_refs->root);
  2954. while (node) {
  2955. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2956. node = rb_next(node);
  2957. ref->in_tree = 0;
  2958. rb_erase(&ref->rb_node, &delayed_refs->root);
  2959. delayed_refs->num_entries--;
  2960. atomic_set(&ref->refs, 1);
  2961. if (btrfs_delayed_ref_is_head(ref)) {
  2962. struct btrfs_delayed_ref_head *head;
  2963. head = btrfs_delayed_node_to_head(ref);
  2964. spin_unlock(&delayed_refs->lock);
  2965. mutex_lock(&head->mutex);
  2966. kfree(head->extent_op);
  2967. delayed_refs->num_heads--;
  2968. if (list_empty(&head->cluster))
  2969. delayed_refs->num_heads_ready--;
  2970. list_del_init(&head->cluster);
  2971. mutex_unlock(&head->mutex);
  2972. btrfs_put_delayed_ref(ref);
  2973. goto again;
  2974. }
  2975. spin_unlock(&delayed_refs->lock);
  2976. btrfs_put_delayed_ref(ref);
  2977. cond_resched();
  2978. spin_lock(&delayed_refs->lock);
  2979. }
  2980. spin_unlock(&delayed_refs->lock);
  2981. return ret;
  2982. }
  2983. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2984. {
  2985. struct btrfs_pending_snapshot *snapshot;
  2986. struct list_head splice;
  2987. INIT_LIST_HEAD(&splice);
  2988. list_splice_init(&t->pending_snapshots, &splice);
  2989. while (!list_empty(&splice)) {
  2990. snapshot = list_entry(splice.next,
  2991. struct btrfs_pending_snapshot,
  2992. list);
  2993. list_del_init(&snapshot->list);
  2994. kfree(snapshot);
  2995. }
  2996. }
  2997. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2998. {
  2999. struct btrfs_inode *btrfs_inode;
  3000. struct list_head splice;
  3001. INIT_LIST_HEAD(&splice);
  3002. spin_lock(&root->fs_info->delalloc_lock);
  3003. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3004. while (!list_empty(&splice)) {
  3005. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3006. delalloc_inodes);
  3007. list_del_init(&btrfs_inode->delalloc_inodes);
  3008. btrfs_invalidate_inodes(btrfs_inode->root);
  3009. }
  3010. spin_unlock(&root->fs_info->delalloc_lock);
  3011. }
  3012. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3013. struct extent_io_tree *dirty_pages,
  3014. int mark)
  3015. {
  3016. int ret;
  3017. struct page *page;
  3018. struct inode *btree_inode = root->fs_info->btree_inode;
  3019. struct extent_buffer *eb;
  3020. u64 start = 0;
  3021. u64 end;
  3022. u64 offset;
  3023. unsigned long index;
  3024. while (1) {
  3025. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3026. mark);
  3027. if (ret)
  3028. break;
  3029. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3030. while (start <= end) {
  3031. index = start >> PAGE_CACHE_SHIFT;
  3032. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3033. page = find_get_page(btree_inode->i_mapping, index);
  3034. if (!page)
  3035. continue;
  3036. offset = page_offset(page);
  3037. spin_lock(&dirty_pages->buffer_lock);
  3038. eb = radix_tree_lookup(
  3039. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3040. offset >> PAGE_CACHE_SHIFT);
  3041. spin_unlock(&dirty_pages->buffer_lock);
  3042. if (eb) {
  3043. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3044. &eb->bflags);
  3045. atomic_set(&eb->refs, 1);
  3046. }
  3047. if (PageWriteback(page))
  3048. end_page_writeback(page);
  3049. lock_page(page);
  3050. if (PageDirty(page)) {
  3051. clear_page_dirty_for_io(page);
  3052. spin_lock_irq(&page->mapping->tree_lock);
  3053. radix_tree_tag_clear(&page->mapping->page_tree,
  3054. page_index(page),
  3055. PAGECACHE_TAG_DIRTY);
  3056. spin_unlock_irq(&page->mapping->tree_lock);
  3057. }
  3058. page->mapping->a_ops->invalidatepage(page, 0);
  3059. unlock_page(page);
  3060. }
  3061. }
  3062. return ret;
  3063. }
  3064. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3065. struct extent_io_tree *pinned_extents)
  3066. {
  3067. struct extent_io_tree *unpin;
  3068. u64 start;
  3069. u64 end;
  3070. int ret;
  3071. unpin = pinned_extents;
  3072. while (1) {
  3073. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3074. EXTENT_DIRTY);
  3075. if (ret)
  3076. break;
  3077. /* opt_discard */
  3078. if (btrfs_test_opt(root, DISCARD))
  3079. ret = btrfs_error_discard_extent(root, start,
  3080. end + 1 - start,
  3081. NULL);
  3082. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3083. btrfs_error_unpin_extent_range(root, start, end);
  3084. cond_resched();
  3085. }
  3086. return 0;
  3087. }
  3088. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3089. struct btrfs_root *root)
  3090. {
  3091. btrfs_destroy_delayed_refs(cur_trans, root);
  3092. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3093. cur_trans->dirty_pages.dirty_bytes);
  3094. /* FIXME: cleanup wait for commit */
  3095. cur_trans->in_commit = 1;
  3096. cur_trans->blocked = 1;
  3097. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3098. wake_up(&root->fs_info->transaction_blocked_wait);
  3099. cur_trans->blocked = 0;
  3100. if (waitqueue_active(&root->fs_info->transaction_wait))
  3101. wake_up(&root->fs_info->transaction_wait);
  3102. cur_trans->commit_done = 1;
  3103. if (waitqueue_active(&cur_trans->commit_wait))
  3104. wake_up(&cur_trans->commit_wait);
  3105. btrfs_destroy_pending_snapshots(cur_trans);
  3106. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3107. EXTENT_DIRTY);
  3108. /*
  3109. memset(cur_trans, 0, sizeof(*cur_trans));
  3110. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3111. */
  3112. }
  3113. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3114. {
  3115. struct btrfs_transaction *t;
  3116. LIST_HEAD(list);
  3117. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3118. spin_lock(&root->fs_info->trans_lock);
  3119. list_splice_init(&root->fs_info->trans_list, &list);
  3120. root->fs_info->trans_no_join = 1;
  3121. spin_unlock(&root->fs_info->trans_lock);
  3122. while (!list_empty(&list)) {
  3123. t = list_entry(list.next, struct btrfs_transaction, list);
  3124. if (!t)
  3125. break;
  3126. btrfs_destroy_ordered_operations(root);
  3127. btrfs_destroy_ordered_extents(root);
  3128. btrfs_destroy_delayed_refs(t, root);
  3129. btrfs_block_rsv_release(root,
  3130. &root->fs_info->trans_block_rsv,
  3131. t->dirty_pages.dirty_bytes);
  3132. /* FIXME: cleanup wait for commit */
  3133. t->in_commit = 1;
  3134. t->blocked = 1;
  3135. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3136. wake_up(&root->fs_info->transaction_blocked_wait);
  3137. t->blocked = 0;
  3138. if (waitqueue_active(&root->fs_info->transaction_wait))
  3139. wake_up(&root->fs_info->transaction_wait);
  3140. t->commit_done = 1;
  3141. if (waitqueue_active(&t->commit_wait))
  3142. wake_up(&t->commit_wait);
  3143. btrfs_destroy_pending_snapshots(t);
  3144. btrfs_destroy_delalloc_inodes(root);
  3145. spin_lock(&root->fs_info->trans_lock);
  3146. root->fs_info->running_transaction = NULL;
  3147. spin_unlock(&root->fs_info->trans_lock);
  3148. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3149. EXTENT_DIRTY);
  3150. btrfs_destroy_pinned_extent(root,
  3151. root->fs_info->pinned_extents);
  3152. atomic_set(&t->use_count, 0);
  3153. list_del_init(&t->list);
  3154. memset(t, 0, sizeof(*t));
  3155. kmem_cache_free(btrfs_transaction_cachep, t);
  3156. }
  3157. spin_lock(&root->fs_info->trans_lock);
  3158. root->fs_info->trans_no_join = 0;
  3159. spin_unlock(&root->fs_info->trans_lock);
  3160. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3161. return 0;
  3162. }
  3163. static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
  3164. u64 start, u64 end,
  3165. struct extent_state *state)
  3166. {
  3167. struct super_block *sb = page->mapping->host->i_sb;
  3168. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  3169. btrfs_error(fs_info, -EIO,
  3170. "Error occured while writing out btree at %llu", start);
  3171. return -EIO;
  3172. }
  3173. static struct extent_io_ops btree_extent_io_ops = {
  3174. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3175. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3176. .readpage_io_failed_hook = btree_io_failed_hook,
  3177. .submit_bio_hook = btree_submit_bio_hook,
  3178. /* note we're sharing with inode.c for the merge bio hook */
  3179. .merge_bio_hook = btrfs_merge_bio_hook,
  3180. .writepage_io_failed_hook = btree_writepage_io_failed_hook,
  3181. };