xhci-ring.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. /*
  23. * Ring initialization rules:
  24. * 1. Each segment is initialized to zero, except for link TRBs.
  25. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  26. * Consumer Cycle State (CCS), depending on ring function.
  27. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  28. *
  29. * Ring behavior rules:
  30. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  31. * least one free TRB in the ring. This is useful if you want to turn that
  32. * into a link TRB and expand the ring.
  33. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  34. * link TRB, then load the pointer with the address in the link TRB. If the
  35. * link TRB had its toggle bit set, you may need to update the ring cycle
  36. * state (see cycle bit rules). You may have to do this multiple times
  37. * until you reach a non-link TRB.
  38. * 3. A ring is full if enqueue++ (for the definition of increment above)
  39. * equals the dequeue pointer.
  40. *
  41. * Cycle bit rules:
  42. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  43. * in a link TRB, it must toggle the ring cycle state.
  44. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  45. * in a link TRB, it must toggle the ring cycle state.
  46. *
  47. * Producer rules:
  48. * 1. Check if ring is full before you enqueue.
  49. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  50. * Update enqueue pointer between each write (which may update the ring
  51. * cycle state).
  52. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  53. * and endpoint rings. If HC is the producer for the event ring,
  54. * and it generates an interrupt according to interrupt modulation rules.
  55. *
  56. * Consumer rules:
  57. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  58. * the TRB is owned by the consumer.
  59. * 2. Update dequeue pointer (which may update the ring cycle state) and
  60. * continue processing TRBs until you reach a TRB which is not owned by you.
  61. * 3. Notify the producer. SW is the consumer for the event ring, and it
  62. * updates event ring dequeue pointer. HC is the consumer for the command and
  63. * endpoint rings; it generates events on the event ring for these.
  64. */
  65. #include <linux/scatterlist.h>
  66. #include "xhci.h"
  67. /*
  68. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  69. * address of the TRB.
  70. */
  71. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  72. union xhci_trb *trb)
  73. {
  74. unsigned long segment_offset;
  75. if (!seg || !trb || trb < seg->trbs)
  76. return 0;
  77. /* offset in TRBs */
  78. segment_offset = trb - seg->trbs;
  79. if (segment_offset > TRBS_PER_SEGMENT)
  80. return 0;
  81. return seg->dma + (segment_offset * sizeof(*trb));
  82. }
  83. /* Does this link TRB point to the first segment in a ring,
  84. * or was the previous TRB the last TRB on the last segment in the ERST?
  85. */
  86. static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
  87. struct xhci_segment *seg, union xhci_trb *trb)
  88. {
  89. if (ring == xhci->event_ring)
  90. return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
  91. (seg->next == xhci->event_ring->first_seg);
  92. else
  93. return trb->link.control & LINK_TOGGLE;
  94. }
  95. /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
  96. * segment? I.e. would the updated event TRB pointer step off the end of the
  97. * event seg?
  98. */
  99. static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  100. struct xhci_segment *seg, union xhci_trb *trb)
  101. {
  102. if (ring == xhci->event_ring)
  103. return trb == &seg->trbs[TRBS_PER_SEGMENT];
  104. else
  105. return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK);
  106. }
  107. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  108. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  109. * effect the ring dequeue or enqueue pointers.
  110. */
  111. static void next_trb(struct xhci_hcd *xhci,
  112. struct xhci_ring *ring,
  113. struct xhci_segment **seg,
  114. union xhci_trb **trb)
  115. {
  116. if (last_trb(xhci, ring, *seg, *trb)) {
  117. *seg = (*seg)->next;
  118. *trb = ((*seg)->trbs);
  119. } else {
  120. *trb = (*trb)++;
  121. }
  122. }
  123. /*
  124. * See Cycle bit rules. SW is the consumer for the event ring only.
  125. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  126. */
  127. static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
  128. {
  129. union xhci_trb *next = ++(ring->dequeue);
  130. unsigned long long addr;
  131. ring->deq_updates++;
  132. /* Update the dequeue pointer further if that was a link TRB or we're at
  133. * the end of an event ring segment (which doesn't have link TRBS)
  134. */
  135. while (last_trb(xhci, ring, ring->deq_seg, next)) {
  136. if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
  137. ring->cycle_state = (ring->cycle_state ? 0 : 1);
  138. if (!in_interrupt())
  139. xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
  140. ring,
  141. (unsigned int) ring->cycle_state);
  142. }
  143. ring->deq_seg = ring->deq_seg->next;
  144. ring->dequeue = ring->deq_seg->trbs;
  145. next = ring->dequeue;
  146. }
  147. addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
  148. if (ring == xhci->event_ring)
  149. xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
  150. else if (ring == xhci->cmd_ring)
  151. xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
  152. else
  153. xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
  154. }
  155. /*
  156. * See Cycle bit rules. SW is the consumer for the event ring only.
  157. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  158. *
  159. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  160. * chain bit is set), then set the chain bit in all the following link TRBs.
  161. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  162. * have their chain bit cleared (so that each Link TRB is a separate TD).
  163. *
  164. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  165. * set, but other sections talk about dealing with the chain bit set. This was
  166. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  167. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  168. */
  169. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
  170. {
  171. u32 chain;
  172. union xhci_trb *next;
  173. unsigned long long addr;
  174. chain = ring->enqueue->generic.field[3] & TRB_CHAIN;
  175. next = ++(ring->enqueue);
  176. ring->enq_updates++;
  177. /* Update the dequeue pointer further if that was a link TRB or we're at
  178. * the end of an event ring segment (which doesn't have link TRBS)
  179. */
  180. while (last_trb(xhci, ring, ring->enq_seg, next)) {
  181. if (!consumer) {
  182. if (ring != xhci->event_ring) {
  183. /* If we're not dealing with 0.95 hardware,
  184. * carry over the chain bit of the previous TRB
  185. * (which may mean the chain bit is cleared).
  186. */
  187. if (!xhci_link_trb_quirk(xhci)) {
  188. next->link.control &= ~TRB_CHAIN;
  189. next->link.control |= chain;
  190. }
  191. /* Give this link TRB to the hardware */
  192. wmb();
  193. if (next->link.control & TRB_CYCLE)
  194. next->link.control &= (u32) ~TRB_CYCLE;
  195. else
  196. next->link.control |= (u32) TRB_CYCLE;
  197. }
  198. /* Toggle the cycle bit after the last ring segment. */
  199. if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
  200. ring->cycle_state = (ring->cycle_state ? 0 : 1);
  201. if (!in_interrupt())
  202. xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
  203. ring,
  204. (unsigned int) ring->cycle_state);
  205. }
  206. }
  207. ring->enq_seg = ring->enq_seg->next;
  208. ring->enqueue = ring->enq_seg->trbs;
  209. next = ring->enqueue;
  210. }
  211. addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
  212. if (ring == xhci->event_ring)
  213. xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
  214. else if (ring == xhci->cmd_ring)
  215. xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
  216. else
  217. xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
  218. }
  219. /*
  220. * Check to see if there's room to enqueue num_trbs on the ring. See rules
  221. * above.
  222. * FIXME: this would be simpler and faster if we just kept track of the number
  223. * of free TRBs in a ring.
  224. */
  225. static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  226. unsigned int num_trbs)
  227. {
  228. int i;
  229. union xhci_trb *enq = ring->enqueue;
  230. struct xhci_segment *enq_seg = ring->enq_seg;
  231. /* Check if ring is empty */
  232. if (enq == ring->dequeue)
  233. return 1;
  234. /* Make sure there's an extra empty TRB available */
  235. for (i = 0; i <= num_trbs; ++i) {
  236. if (enq == ring->dequeue)
  237. return 0;
  238. enq++;
  239. while (last_trb(xhci, ring, enq_seg, enq)) {
  240. enq_seg = enq_seg->next;
  241. enq = enq_seg->trbs;
  242. }
  243. }
  244. return 1;
  245. }
  246. void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  247. {
  248. u64 temp;
  249. dma_addr_t deq;
  250. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  251. xhci->event_ring->dequeue);
  252. if (deq == 0 && !in_interrupt())
  253. xhci_warn(xhci, "WARN something wrong with SW event ring "
  254. "dequeue ptr.\n");
  255. /* Update HC event ring dequeue pointer */
  256. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  257. temp &= ERST_PTR_MASK;
  258. /* Don't clear the EHB bit (which is RW1C) because
  259. * there might be more events to service.
  260. */
  261. temp &= ~ERST_EHB;
  262. xhci_dbg(xhci, "// Write event ring dequeue pointer, preserving EHB bit\n");
  263. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  264. &xhci->ir_set->erst_dequeue);
  265. }
  266. /* Ring the host controller doorbell after placing a command on the ring */
  267. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  268. {
  269. u32 temp;
  270. xhci_dbg(xhci, "// Ding dong!\n");
  271. temp = xhci_readl(xhci, &xhci->dba->doorbell[0]) & DB_MASK;
  272. xhci_writel(xhci, temp | DB_TARGET_HOST, &xhci->dba->doorbell[0]);
  273. /* Flush PCI posted writes */
  274. xhci_readl(xhci, &xhci->dba->doorbell[0]);
  275. }
  276. static void ring_ep_doorbell(struct xhci_hcd *xhci,
  277. unsigned int slot_id,
  278. unsigned int ep_index)
  279. {
  280. struct xhci_virt_ep *ep;
  281. unsigned int ep_state;
  282. u32 field;
  283. __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  284. ep = &xhci->devs[slot_id]->eps[ep_index];
  285. ep_state = ep->ep_state;
  286. /* Don't ring the doorbell for this endpoint if there are pending
  287. * cancellations because the we don't want to interrupt processing.
  288. */
  289. if (!ep->cancels_pending && !(ep_state & SET_DEQ_PENDING)
  290. && !(ep_state & EP_HALTED)) {
  291. field = xhci_readl(xhci, db_addr) & DB_MASK;
  292. xhci_writel(xhci, field | EPI_TO_DB(ep_index), db_addr);
  293. /* Flush PCI posted writes - FIXME Matthew Wilcox says this
  294. * isn't time-critical and we shouldn't make the CPU wait for
  295. * the flush.
  296. */
  297. xhci_readl(xhci, db_addr);
  298. }
  299. }
  300. /*
  301. * Find the segment that trb is in. Start searching in start_seg.
  302. * If we must move past a segment that has a link TRB with a toggle cycle state
  303. * bit set, then we will toggle the value pointed at by cycle_state.
  304. */
  305. static struct xhci_segment *find_trb_seg(
  306. struct xhci_segment *start_seg,
  307. union xhci_trb *trb, int *cycle_state)
  308. {
  309. struct xhci_segment *cur_seg = start_seg;
  310. struct xhci_generic_trb *generic_trb;
  311. while (cur_seg->trbs > trb ||
  312. &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
  313. generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
  314. if (TRB_TYPE(generic_trb->field[3]) == TRB_LINK &&
  315. (generic_trb->field[3] & LINK_TOGGLE))
  316. *cycle_state = ~(*cycle_state) & 0x1;
  317. cur_seg = cur_seg->next;
  318. if (cur_seg == start_seg)
  319. /* Looped over the entire list. Oops! */
  320. return 0;
  321. }
  322. return cur_seg;
  323. }
  324. /*
  325. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  326. * Record the new state of the xHC's endpoint ring dequeue segment,
  327. * dequeue pointer, and new consumer cycle state in state.
  328. * Update our internal representation of the ring's dequeue pointer.
  329. *
  330. * We do this in three jumps:
  331. * - First we update our new ring state to be the same as when the xHC stopped.
  332. * - Then we traverse the ring to find the segment that contains
  333. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  334. * any link TRBs with the toggle cycle bit set.
  335. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  336. * if we've moved it past a link TRB with the toggle cycle bit set.
  337. */
  338. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  339. unsigned int slot_id, unsigned int ep_index,
  340. struct xhci_td *cur_td, struct xhci_dequeue_state *state)
  341. {
  342. struct xhci_virt_device *dev = xhci->devs[slot_id];
  343. struct xhci_ring *ep_ring = dev->eps[ep_index].ring;
  344. struct xhci_generic_trb *trb;
  345. struct xhci_ep_ctx *ep_ctx;
  346. dma_addr_t addr;
  347. state->new_cycle_state = 0;
  348. xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
  349. state->new_deq_seg = find_trb_seg(cur_td->start_seg,
  350. dev->eps[ep_index].stopped_trb,
  351. &state->new_cycle_state);
  352. if (!state->new_deq_seg)
  353. BUG();
  354. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  355. xhci_dbg(xhci, "Finding endpoint context\n");
  356. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  357. state->new_cycle_state = 0x1 & ep_ctx->deq;
  358. state->new_deq_ptr = cur_td->last_trb;
  359. xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
  360. state->new_deq_seg = find_trb_seg(state->new_deq_seg,
  361. state->new_deq_ptr,
  362. &state->new_cycle_state);
  363. if (!state->new_deq_seg)
  364. BUG();
  365. trb = &state->new_deq_ptr->generic;
  366. if (TRB_TYPE(trb->field[3]) == TRB_LINK &&
  367. (trb->field[3] & LINK_TOGGLE))
  368. state->new_cycle_state = ~(state->new_cycle_state) & 0x1;
  369. next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
  370. /* Don't update the ring cycle state for the producer (us). */
  371. xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
  372. state->new_deq_seg);
  373. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  374. xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
  375. (unsigned long long) addr);
  376. xhci_dbg(xhci, "Setting dequeue pointer in internal ring state.\n");
  377. ep_ring->dequeue = state->new_deq_ptr;
  378. ep_ring->deq_seg = state->new_deq_seg;
  379. }
  380. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  381. struct xhci_td *cur_td)
  382. {
  383. struct xhci_segment *cur_seg;
  384. union xhci_trb *cur_trb;
  385. for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
  386. true;
  387. next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
  388. if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) ==
  389. TRB_TYPE(TRB_LINK)) {
  390. /* Unchain any chained Link TRBs, but
  391. * leave the pointers intact.
  392. */
  393. cur_trb->generic.field[3] &= ~TRB_CHAIN;
  394. xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
  395. xhci_dbg(xhci, "Address = %p (0x%llx dma); "
  396. "in seg %p (0x%llx dma)\n",
  397. cur_trb,
  398. (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
  399. cur_seg,
  400. (unsigned long long)cur_seg->dma);
  401. } else {
  402. cur_trb->generic.field[0] = 0;
  403. cur_trb->generic.field[1] = 0;
  404. cur_trb->generic.field[2] = 0;
  405. /* Preserve only the cycle bit of this TRB */
  406. cur_trb->generic.field[3] &= TRB_CYCLE;
  407. cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP);
  408. xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
  409. "in seg %p (0x%llx dma)\n",
  410. cur_trb,
  411. (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
  412. cur_seg,
  413. (unsigned long long)cur_seg->dma);
  414. }
  415. if (cur_trb == cur_td->last_trb)
  416. break;
  417. }
  418. }
  419. static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
  420. unsigned int ep_index, struct xhci_segment *deq_seg,
  421. union xhci_trb *deq_ptr, u32 cycle_state);
  422. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  423. unsigned int slot_id, unsigned int ep_index,
  424. struct xhci_dequeue_state *deq_state)
  425. {
  426. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  427. xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
  428. "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
  429. deq_state->new_deq_seg,
  430. (unsigned long long)deq_state->new_deq_seg->dma,
  431. deq_state->new_deq_ptr,
  432. (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
  433. deq_state->new_cycle_state);
  434. queue_set_tr_deq(xhci, slot_id, ep_index,
  435. deq_state->new_deq_seg,
  436. deq_state->new_deq_ptr,
  437. (u32) deq_state->new_cycle_state);
  438. /* Stop the TD queueing code from ringing the doorbell until
  439. * this command completes. The HC won't set the dequeue pointer
  440. * if the ring is running, and ringing the doorbell starts the
  441. * ring running.
  442. */
  443. ep->ep_state |= SET_DEQ_PENDING;
  444. }
  445. /*
  446. * When we get a command completion for a Stop Endpoint Command, we need to
  447. * unlink any cancelled TDs from the ring. There are two ways to do that:
  448. *
  449. * 1. If the HW was in the middle of processing the TD that needs to be
  450. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  451. * in the TD with a Set Dequeue Pointer Command.
  452. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  453. * bit cleared) so that the HW will skip over them.
  454. */
  455. static void handle_stopped_endpoint(struct xhci_hcd *xhci,
  456. union xhci_trb *trb)
  457. {
  458. unsigned int slot_id;
  459. unsigned int ep_index;
  460. struct xhci_ring *ep_ring;
  461. struct xhci_virt_ep *ep;
  462. struct list_head *entry;
  463. struct xhci_td *cur_td = 0;
  464. struct xhci_td *last_unlinked_td;
  465. struct xhci_dequeue_state deq_state;
  466. #ifdef CONFIG_USB_HCD_STAT
  467. ktime_t stop_time = ktime_get();
  468. #endif
  469. memset(&deq_state, 0, sizeof(deq_state));
  470. slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
  471. ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
  472. ep = &xhci->devs[slot_id]->eps[ep_index];
  473. ep_ring = ep->ring;
  474. if (list_empty(&ep->cancelled_td_list))
  475. return;
  476. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  477. * We have the xHCI lock, so nothing can modify this list until we drop
  478. * it. We're also in the event handler, so we can't get re-interrupted
  479. * if another Stop Endpoint command completes
  480. */
  481. list_for_each(entry, &ep->cancelled_td_list) {
  482. cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
  483. xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
  484. cur_td->first_trb,
  485. (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
  486. /*
  487. * If we stopped on the TD we need to cancel, then we have to
  488. * move the xHC endpoint ring dequeue pointer past this TD.
  489. */
  490. if (cur_td == ep->stopped_td)
  491. xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td,
  492. &deq_state);
  493. else
  494. td_to_noop(xhci, ep_ring, cur_td);
  495. /*
  496. * The event handler won't see a completion for this TD anymore,
  497. * so remove it from the endpoint ring's TD list. Keep it in
  498. * the cancelled TD list for URB completion later.
  499. */
  500. list_del(&cur_td->td_list);
  501. ep->cancels_pending--;
  502. }
  503. last_unlinked_td = cur_td;
  504. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  505. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  506. xhci_queue_new_dequeue_state(xhci,
  507. slot_id, ep_index, &deq_state);
  508. xhci_ring_cmd_db(xhci);
  509. } else {
  510. /* Otherwise just ring the doorbell to restart the ring */
  511. ring_ep_doorbell(xhci, slot_id, ep_index);
  512. }
  513. /*
  514. * Drop the lock and complete the URBs in the cancelled TD list.
  515. * New TDs to be cancelled might be added to the end of the list before
  516. * we can complete all the URBs for the TDs we already unlinked.
  517. * So stop when we've completed the URB for the last TD we unlinked.
  518. */
  519. do {
  520. cur_td = list_entry(ep->cancelled_td_list.next,
  521. struct xhci_td, cancelled_td_list);
  522. list_del(&cur_td->cancelled_td_list);
  523. /* Clean up the cancelled URB */
  524. #ifdef CONFIG_USB_HCD_STAT
  525. hcd_stat_update(xhci->tp_stat, cur_td->urb->actual_length,
  526. ktime_sub(stop_time, cur_td->start_time));
  527. #endif
  528. cur_td->urb->hcpriv = NULL;
  529. usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), cur_td->urb);
  530. xhci_dbg(xhci, "Giveback cancelled URB %p\n", cur_td->urb);
  531. spin_unlock(&xhci->lock);
  532. /* Doesn't matter what we pass for status, since the core will
  533. * just overwrite it (because the URB has been unlinked).
  534. */
  535. usb_hcd_giveback_urb(xhci_to_hcd(xhci), cur_td->urb, 0);
  536. kfree(cur_td);
  537. spin_lock(&xhci->lock);
  538. } while (cur_td != last_unlinked_td);
  539. /* Return to the event handler with xhci->lock re-acquired */
  540. }
  541. /*
  542. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  543. * we need to clear the set deq pending flag in the endpoint ring state, so that
  544. * the TD queueing code can ring the doorbell again. We also need to ring the
  545. * endpoint doorbell to restart the ring, but only if there aren't more
  546. * cancellations pending.
  547. */
  548. static void handle_set_deq_completion(struct xhci_hcd *xhci,
  549. struct xhci_event_cmd *event,
  550. union xhci_trb *trb)
  551. {
  552. unsigned int slot_id;
  553. unsigned int ep_index;
  554. struct xhci_ring *ep_ring;
  555. struct xhci_virt_device *dev;
  556. struct xhci_ep_ctx *ep_ctx;
  557. struct xhci_slot_ctx *slot_ctx;
  558. slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
  559. ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
  560. dev = xhci->devs[slot_id];
  561. ep_ring = dev->eps[ep_index].ring;
  562. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  563. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  564. if (GET_COMP_CODE(event->status) != COMP_SUCCESS) {
  565. unsigned int ep_state;
  566. unsigned int slot_state;
  567. switch (GET_COMP_CODE(event->status)) {
  568. case COMP_TRB_ERR:
  569. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
  570. "of stream ID configuration\n");
  571. break;
  572. case COMP_CTX_STATE:
  573. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
  574. "to incorrect slot or ep state.\n");
  575. ep_state = ep_ctx->ep_info;
  576. ep_state &= EP_STATE_MASK;
  577. slot_state = slot_ctx->dev_state;
  578. slot_state = GET_SLOT_STATE(slot_state);
  579. xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
  580. slot_state, ep_state);
  581. break;
  582. case COMP_EBADSLT:
  583. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
  584. "slot %u was not enabled.\n", slot_id);
  585. break;
  586. default:
  587. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
  588. "completion code of %u.\n",
  589. GET_COMP_CODE(event->status));
  590. break;
  591. }
  592. /* OK what do we do now? The endpoint state is hosed, and we
  593. * should never get to this point if the synchronization between
  594. * queueing, and endpoint state are correct. This might happen
  595. * if the device gets disconnected after we've finished
  596. * cancelling URBs, which might not be an error...
  597. */
  598. } else {
  599. xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
  600. ep_ctx->deq);
  601. }
  602. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  603. ring_ep_doorbell(xhci, slot_id, ep_index);
  604. }
  605. static void handle_reset_ep_completion(struct xhci_hcd *xhci,
  606. struct xhci_event_cmd *event,
  607. union xhci_trb *trb)
  608. {
  609. int slot_id;
  610. unsigned int ep_index;
  611. struct xhci_ring *ep_ring;
  612. slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
  613. ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
  614. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  615. /* This command will only fail if the endpoint wasn't halted,
  616. * but we don't care.
  617. */
  618. xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
  619. (unsigned int) GET_COMP_CODE(event->status));
  620. /* HW with the reset endpoint quirk needs to have a configure endpoint
  621. * command complete before the endpoint can be used. Queue that here
  622. * because the HW can't handle two commands being queued in a row.
  623. */
  624. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  625. xhci_dbg(xhci, "Queueing configure endpoint command\n");
  626. xhci_queue_configure_endpoint(xhci,
  627. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  628. false);
  629. xhci_ring_cmd_db(xhci);
  630. } else {
  631. /* Clear our internal halted state and restart the ring */
  632. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  633. ring_ep_doorbell(xhci, slot_id, ep_index);
  634. }
  635. }
  636. static void handle_cmd_completion(struct xhci_hcd *xhci,
  637. struct xhci_event_cmd *event)
  638. {
  639. int slot_id = TRB_TO_SLOT_ID(event->flags);
  640. u64 cmd_dma;
  641. dma_addr_t cmd_dequeue_dma;
  642. struct xhci_input_control_ctx *ctrl_ctx;
  643. struct xhci_virt_device *virt_dev;
  644. unsigned int ep_index;
  645. struct xhci_ring *ep_ring;
  646. unsigned int ep_state;
  647. cmd_dma = event->cmd_trb;
  648. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  649. xhci->cmd_ring->dequeue);
  650. /* Is the command ring deq ptr out of sync with the deq seg ptr? */
  651. if (cmd_dequeue_dma == 0) {
  652. xhci->error_bitmask |= 1 << 4;
  653. return;
  654. }
  655. /* Does the DMA address match our internal dequeue pointer address? */
  656. if (cmd_dma != (u64) cmd_dequeue_dma) {
  657. xhci->error_bitmask |= 1 << 5;
  658. return;
  659. }
  660. switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) {
  661. case TRB_TYPE(TRB_ENABLE_SLOT):
  662. if (GET_COMP_CODE(event->status) == COMP_SUCCESS)
  663. xhci->slot_id = slot_id;
  664. else
  665. xhci->slot_id = 0;
  666. complete(&xhci->addr_dev);
  667. break;
  668. case TRB_TYPE(TRB_DISABLE_SLOT):
  669. if (xhci->devs[slot_id])
  670. xhci_free_virt_device(xhci, slot_id);
  671. break;
  672. case TRB_TYPE(TRB_CONFIG_EP):
  673. virt_dev = xhci->devs[slot_id];
  674. /* Check to see if a command in the device's command queue
  675. * matches this one. Signal the completion or free the command.
  676. */
  677. if (!list_empty(&virt_dev->cmd_list)) {
  678. struct xhci_command *command;
  679. command = list_entry(virt_dev->cmd_list.next,
  680. struct xhci_command, cmd_list);
  681. if (xhci->cmd_ring->dequeue == command->command_trb) {
  682. command->status =
  683. GET_COMP_CODE(event->status);
  684. list_del(&command->cmd_list);
  685. if (command->completion)
  686. complete(command->completion);
  687. else
  688. xhci_free_command(xhci, command);
  689. }
  690. break;
  691. }
  692. /*
  693. * Configure endpoint commands can come from the USB core
  694. * configuration or alt setting changes, or because the HW
  695. * needed an extra configure endpoint command after a reset
  696. * endpoint command. In the latter case, the xHCI driver is
  697. * not waiting on the configure endpoint command.
  698. */
  699. ctrl_ctx = xhci_get_input_control_ctx(xhci,
  700. virt_dev->in_ctx);
  701. /* Input ctx add_flags are the endpoint index plus one */
  702. ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1;
  703. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  704. if (!ep_ring) {
  705. /* This must have been an initial configure endpoint */
  706. xhci->devs[slot_id]->cmd_status =
  707. GET_COMP_CODE(event->status);
  708. complete(&xhci->devs[slot_id]->cmd_completion);
  709. break;
  710. }
  711. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  712. xhci_dbg(xhci, "Completed config ep cmd - last ep index = %d, "
  713. "state = %d\n", ep_index, ep_state);
  714. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  715. ep_state & EP_HALTED) {
  716. /* Clear our internal halted state and restart ring */
  717. xhci->devs[slot_id]->eps[ep_index].ep_state &=
  718. ~EP_HALTED;
  719. ring_ep_doorbell(xhci, slot_id, ep_index);
  720. } else {
  721. xhci->devs[slot_id]->cmd_status =
  722. GET_COMP_CODE(event->status);
  723. complete(&xhci->devs[slot_id]->cmd_completion);
  724. }
  725. break;
  726. case TRB_TYPE(TRB_EVAL_CONTEXT):
  727. xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
  728. complete(&xhci->devs[slot_id]->cmd_completion);
  729. break;
  730. case TRB_TYPE(TRB_ADDR_DEV):
  731. xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
  732. complete(&xhci->addr_dev);
  733. break;
  734. case TRB_TYPE(TRB_STOP_RING):
  735. handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue);
  736. break;
  737. case TRB_TYPE(TRB_SET_DEQ):
  738. handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
  739. break;
  740. case TRB_TYPE(TRB_CMD_NOOP):
  741. ++xhci->noops_handled;
  742. break;
  743. case TRB_TYPE(TRB_RESET_EP):
  744. handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
  745. break;
  746. default:
  747. /* Skip over unknown commands on the event ring */
  748. xhci->error_bitmask |= 1 << 6;
  749. break;
  750. }
  751. inc_deq(xhci, xhci->cmd_ring, false);
  752. }
  753. static void handle_port_status(struct xhci_hcd *xhci,
  754. union xhci_trb *event)
  755. {
  756. u32 port_id;
  757. /* Port status change events always have a successful completion code */
  758. if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) {
  759. xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
  760. xhci->error_bitmask |= 1 << 8;
  761. }
  762. /* FIXME: core doesn't care about all port link state changes yet */
  763. port_id = GET_PORT_ID(event->generic.field[0]);
  764. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  765. /* Update event ring dequeue pointer before dropping the lock */
  766. inc_deq(xhci, xhci->event_ring, true);
  767. xhci_set_hc_event_deq(xhci);
  768. spin_unlock(&xhci->lock);
  769. /* Pass this up to the core */
  770. usb_hcd_poll_rh_status(xhci_to_hcd(xhci));
  771. spin_lock(&xhci->lock);
  772. }
  773. /*
  774. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  775. * at end_trb, which may be in another segment. If the suspect DMA address is a
  776. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  777. * returns 0.
  778. */
  779. static struct xhci_segment *trb_in_td(
  780. struct xhci_segment *start_seg,
  781. union xhci_trb *start_trb,
  782. union xhci_trb *end_trb,
  783. dma_addr_t suspect_dma)
  784. {
  785. dma_addr_t start_dma;
  786. dma_addr_t end_seg_dma;
  787. dma_addr_t end_trb_dma;
  788. struct xhci_segment *cur_seg;
  789. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  790. cur_seg = start_seg;
  791. do {
  792. /* We may get an event for a Link TRB in the middle of a TD */
  793. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  794. &start_seg->trbs[TRBS_PER_SEGMENT - 1]);
  795. /* If the end TRB isn't in this segment, this is set to 0 */
  796. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  797. if (end_trb_dma > 0) {
  798. /* The end TRB is in this segment, so suspect should be here */
  799. if (start_dma <= end_trb_dma) {
  800. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  801. return cur_seg;
  802. } else {
  803. /* Case for one segment with
  804. * a TD wrapped around to the top
  805. */
  806. if ((suspect_dma >= start_dma &&
  807. suspect_dma <= end_seg_dma) ||
  808. (suspect_dma >= cur_seg->dma &&
  809. suspect_dma <= end_trb_dma))
  810. return cur_seg;
  811. }
  812. return 0;
  813. } else {
  814. /* Might still be somewhere in this segment */
  815. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  816. return cur_seg;
  817. }
  818. cur_seg = cur_seg->next;
  819. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  820. } while (1);
  821. }
  822. /*
  823. * If this function returns an error condition, it means it got a Transfer
  824. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  825. * At this point, the host controller is probably hosed and should be reset.
  826. */
  827. static int handle_tx_event(struct xhci_hcd *xhci,
  828. struct xhci_transfer_event *event)
  829. {
  830. struct xhci_virt_device *xdev;
  831. struct xhci_virt_ep *ep;
  832. struct xhci_ring *ep_ring;
  833. unsigned int slot_id;
  834. int ep_index;
  835. struct xhci_td *td = 0;
  836. dma_addr_t event_dma;
  837. struct xhci_segment *event_seg;
  838. union xhci_trb *event_trb;
  839. struct urb *urb = 0;
  840. int status = -EINPROGRESS;
  841. struct xhci_ep_ctx *ep_ctx;
  842. u32 trb_comp_code;
  843. xhci_dbg(xhci, "In %s\n", __func__);
  844. slot_id = TRB_TO_SLOT_ID(event->flags);
  845. xdev = xhci->devs[slot_id];
  846. if (!xdev) {
  847. xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
  848. return -ENODEV;
  849. }
  850. /* Endpoint ID is 1 based, our index is zero based */
  851. ep_index = TRB_TO_EP_ID(event->flags) - 1;
  852. xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
  853. ep = &xdev->eps[ep_index];
  854. ep_ring = ep->ring;
  855. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  856. if (!ep_ring || (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) {
  857. xhci_err(xhci, "ERROR Transfer event pointed to disabled endpoint\n");
  858. return -ENODEV;
  859. }
  860. event_dma = event->buffer;
  861. /* This TRB should be in the TD at the head of this ring's TD list */
  862. xhci_dbg(xhci, "%s - checking for list empty\n", __func__);
  863. if (list_empty(&ep_ring->td_list)) {
  864. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  865. TRB_TO_SLOT_ID(event->flags), ep_index);
  866. xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
  867. (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
  868. xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
  869. urb = NULL;
  870. goto cleanup;
  871. }
  872. xhci_dbg(xhci, "%s - getting list entry\n", __func__);
  873. td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
  874. /* Is this a TRB in the currently executing TD? */
  875. xhci_dbg(xhci, "%s - looking for TD\n", __func__);
  876. event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
  877. td->last_trb, event_dma);
  878. xhci_dbg(xhci, "%s - found event_seg = %p\n", __func__, event_seg);
  879. if (!event_seg) {
  880. /* HC is busted, give up! */
  881. xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD\n");
  882. return -ESHUTDOWN;
  883. }
  884. event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)];
  885. xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
  886. (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
  887. xhci_dbg(xhci, "Offset 0x00 (buffer lo) = 0x%x\n",
  888. lower_32_bits(event->buffer));
  889. xhci_dbg(xhci, "Offset 0x04 (buffer hi) = 0x%x\n",
  890. upper_32_bits(event->buffer));
  891. xhci_dbg(xhci, "Offset 0x08 (transfer length) = 0x%x\n",
  892. (unsigned int) event->transfer_len);
  893. xhci_dbg(xhci, "Offset 0x0C (flags) = 0x%x\n",
  894. (unsigned int) event->flags);
  895. /* Look for common error cases */
  896. trb_comp_code = GET_COMP_CODE(event->transfer_len);
  897. switch (trb_comp_code) {
  898. /* Skip codes that require special handling depending on
  899. * transfer type
  900. */
  901. case COMP_SUCCESS:
  902. case COMP_SHORT_TX:
  903. break;
  904. case COMP_STOP:
  905. xhci_dbg(xhci, "Stopped on Transfer TRB\n");
  906. break;
  907. case COMP_STOP_INVAL:
  908. xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
  909. break;
  910. case COMP_STALL:
  911. xhci_warn(xhci, "WARN: Stalled endpoint\n");
  912. ep->ep_state |= EP_HALTED;
  913. status = -EPIPE;
  914. break;
  915. case COMP_TRB_ERR:
  916. xhci_warn(xhci, "WARN: TRB error on endpoint\n");
  917. status = -EILSEQ;
  918. break;
  919. case COMP_TX_ERR:
  920. xhci_warn(xhci, "WARN: transfer error on endpoint\n");
  921. status = -EPROTO;
  922. break;
  923. case COMP_BABBLE:
  924. xhci_warn(xhci, "WARN: babble error on endpoint\n");
  925. status = -EOVERFLOW;
  926. break;
  927. case COMP_DB_ERR:
  928. xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
  929. status = -ENOSR;
  930. break;
  931. default:
  932. xhci_warn(xhci, "ERROR Unknown event condition, HC probably busted\n");
  933. urb = NULL;
  934. goto cleanup;
  935. }
  936. /* Now update the urb's actual_length and give back to the core */
  937. /* Was this a control transfer? */
  938. if (usb_endpoint_xfer_control(&td->urb->ep->desc)) {
  939. xhci_debug_trb(xhci, xhci->event_ring->dequeue);
  940. switch (trb_comp_code) {
  941. case COMP_SUCCESS:
  942. if (event_trb == ep_ring->dequeue) {
  943. xhci_warn(xhci, "WARN: Success on ctrl setup TRB without IOC set??\n");
  944. status = -ESHUTDOWN;
  945. } else if (event_trb != td->last_trb) {
  946. xhci_warn(xhci, "WARN: Success on ctrl data TRB without IOC set??\n");
  947. status = -ESHUTDOWN;
  948. } else {
  949. xhci_dbg(xhci, "Successful control transfer!\n");
  950. status = 0;
  951. }
  952. break;
  953. case COMP_SHORT_TX:
  954. xhci_warn(xhci, "WARN: short transfer on control ep\n");
  955. if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
  956. status = -EREMOTEIO;
  957. else
  958. status = 0;
  959. break;
  960. case COMP_BABBLE:
  961. /* The 0.96 spec says a babbling control endpoint
  962. * is not halted. The 0.96 spec says it is. Some HW
  963. * claims to be 0.95 compliant, but it halts the control
  964. * endpoint anyway. Check if a babble halted the
  965. * endpoint.
  966. */
  967. if (ep_ctx->ep_info != EP_STATE_HALTED)
  968. break;
  969. /* else fall through */
  970. case COMP_STALL:
  971. /* Did we transfer part of the data (middle) phase? */
  972. if (event_trb != ep_ring->dequeue &&
  973. event_trb != td->last_trb)
  974. td->urb->actual_length =
  975. td->urb->transfer_buffer_length
  976. - TRB_LEN(event->transfer_len);
  977. else
  978. td->urb->actual_length = 0;
  979. ep->stopped_td = td;
  980. ep->stopped_trb = event_trb;
  981. xhci_queue_reset_ep(xhci, slot_id, ep_index);
  982. xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
  983. xhci_ring_cmd_db(xhci);
  984. goto td_cleanup;
  985. default:
  986. /* Others already handled above */
  987. break;
  988. }
  989. /*
  990. * Did we transfer any data, despite the errors that might have
  991. * happened? I.e. did we get past the setup stage?
  992. */
  993. if (event_trb != ep_ring->dequeue) {
  994. /* The event was for the status stage */
  995. if (event_trb == td->last_trb) {
  996. if (td->urb->actual_length != 0) {
  997. /* Don't overwrite a previously set error code */
  998. if ((status == -EINPROGRESS ||
  999. status == 0) &&
  1000. (td->urb->transfer_flags
  1001. & URB_SHORT_NOT_OK))
  1002. /* Did we already see a short data stage? */
  1003. status = -EREMOTEIO;
  1004. } else {
  1005. td->urb->actual_length =
  1006. td->urb->transfer_buffer_length;
  1007. }
  1008. } else {
  1009. /* Maybe the event was for the data stage? */
  1010. if (trb_comp_code != COMP_STOP_INVAL) {
  1011. /* We didn't stop on a link TRB in the middle */
  1012. td->urb->actual_length =
  1013. td->urb->transfer_buffer_length -
  1014. TRB_LEN(event->transfer_len);
  1015. xhci_dbg(xhci, "Waiting for status stage event\n");
  1016. urb = NULL;
  1017. goto cleanup;
  1018. }
  1019. }
  1020. }
  1021. } else {
  1022. switch (trb_comp_code) {
  1023. case COMP_SUCCESS:
  1024. /* Double check that the HW transferred everything. */
  1025. if (event_trb != td->last_trb) {
  1026. xhci_warn(xhci, "WARN Successful completion "
  1027. "on short TX\n");
  1028. if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
  1029. status = -EREMOTEIO;
  1030. else
  1031. status = 0;
  1032. } else {
  1033. if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
  1034. xhci_dbg(xhci, "Successful bulk "
  1035. "transfer!\n");
  1036. else
  1037. xhci_dbg(xhci, "Successful interrupt "
  1038. "transfer!\n");
  1039. status = 0;
  1040. }
  1041. break;
  1042. case COMP_SHORT_TX:
  1043. if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
  1044. status = -EREMOTEIO;
  1045. else
  1046. status = 0;
  1047. break;
  1048. default:
  1049. /* Others already handled above */
  1050. break;
  1051. }
  1052. dev_dbg(&td->urb->dev->dev,
  1053. "ep %#x - asked for %d bytes, "
  1054. "%d bytes untransferred\n",
  1055. td->urb->ep->desc.bEndpointAddress,
  1056. td->urb->transfer_buffer_length,
  1057. TRB_LEN(event->transfer_len));
  1058. /* Fast path - was this the last TRB in the TD for this URB? */
  1059. if (event_trb == td->last_trb) {
  1060. if (TRB_LEN(event->transfer_len) != 0) {
  1061. td->urb->actual_length =
  1062. td->urb->transfer_buffer_length -
  1063. TRB_LEN(event->transfer_len);
  1064. if (td->urb->transfer_buffer_length <
  1065. td->urb->actual_length) {
  1066. xhci_warn(xhci, "HC gave bad length "
  1067. "of %d bytes left\n",
  1068. TRB_LEN(event->transfer_len));
  1069. td->urb->actual_length = 0;
  1070. if (td->urb->transfer_flags &
  1071. URB_SHORT_NOT_OK)
  1072. status = -EREMOTEIO;
  1073. else
  1074. status = 0;
  1075. }
  1076. /* Don't overwrite a previously set error code */
  1077. if (status == -EINPROGRESS) {
  1078. if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
  1079. status = -EREMOTEIO;
  1080. else
  1081. status = 0;
  1082. }
  1083. } else {
  1084. td->urb->actual_length = td->urb->transfer_buffer_length;
  1085. /* Ignore a short packet completion if the
  1086. * untransferred length was zero.
  1087. */
  1088. if (status == -EREMOTEIO)
  1089. status = 0;
  1090. }
  1091. } else {
  1092. /* Slow path - walk the list, starting from the dequeue
  1093. * pointer, to get the actual length transferred.
  1094. */
  1095. union xhci_trb *cur_trb;
  1096. struct xhci_segment *cur_seg;
  1097. td->urb->actual_length = 0;
  1098. for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
  1099. cur_trb != event_trb;
  1100. next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
  1101. if (TRB_TYPE(cur_trb->generic.field[3]) != TRB_TR_NOOP &&
  1102. TRB_TYPE(cur_trb->generic.field[3]) != TRB_LINK)
  1103. td->urb->actual_length +=
  1104. TRB_LEN(cur_trb->generic.field[2]);
  1105. }
  1106. /* If the ring didn't stop on a Link or No-op TRB, add
  1107. * in the actual bytes transferred from the Normal TRB
  1108. */
  1109. if (trb_comp_code != COMP_STOP_INVAL)
  1110. td->urb->actual_length +=
  1111. TRB_LEN(cur_trb->generic.field[2]) -
  1112. TRB_LEN(event->transfer_len);
  1113. }
  1114. }
  1115. if (trb_comp_code == COMP_STOP_INVAL ||
  1116. trb_comp_code == COMP_STOP) {
  1117. /* The Endpoint Stop Command completion will take care of any
  1118. * stopped TDs. A stopped TD may be restarted, so don't update
  1119. * the ring dequeue pointer or take this TD off any lists yet.
  1120. */
  1121. ep->stopped_td = td;
  1122. ep->stopped_trb = event_trb;
  1123. } else {
  1124. if (trb_comp_code == COMP_STALL ||
  1125. trb_comp_code == COMP_BABBLE) {
  1126. /* The transfer is completed from the driver's
  1127. * perspective, but we need to issue a set dequeue
  1128. * command for this stalled endpoint to move the dequeue
  1129. * pointer past the TD. We can't do that here because
  1130. * the halt condition must be cleared first.
  1131. */
  1132. ep->stopped_td = td;
  1133. ep->stopped_trb = event_trb;
  1134. } else {
  1135. /* Update ring dequeue pointer */
  1136. while (ep_ring->dequeue != td->last_trb)
  1137. inc_deq(xhci, ep_ring, false);
  1138. inc_deq(xhci, ep_ring, false);
  1139. }
  1140. td_cleanup:
  1141. /* Clean up the endpoint's TD list */
  1142. urb = td->urb;
  1143. /* Do one last check of the actual transfer length.
  1144. * If the host controller said we transferred more data than
  1145. * the buffer length, urb->actual_length will be a very big
  1146. * number (since it's unsigned). Play it safe and say we didn't
  1147. * transfer anything.
  1148. */
  1149. if (urb->actual_length > urb->transfer_buffer_length) {
  1150. xhci_warn(xhci, "URB transfer length is wrong, "
  1151. "xHC issue? req. len = %u, "
  1152. "act. len = %u\n",
  1153. urb->transfer_buffer_length,
  1154. urb->actual_length);
  1155. urb->actual_length = 0;
  1156. if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
  1157. status = -EREMOTEIO;
  1158. else
  1159. status = 0;
  1160. }
  1161. list_del(&td->td_list);
  1162. /* Was this TD slated to be cancelled but completed anyway? */
  1163. if (!list_empty(&td->cancelled_td_list)) {
  1164. list_del(&td->cancelled_td_list);
  1165. ep->cancels_pending--;
  1166. }
  1167. /* Leave the TD around for the reset endpoint function to use
  1168. * (but only if it's not a control endpoint, since we already
  1169. * queued the Set TR dequeue pointer command for stalled
  1170. * control endpoints).
  1171. */
  1172. if (usb_endpoint_xfer_control(&urb->ep->desc) ||
  1173. (trb_comp_code != COMP_STALL &&
  1174. trb_comp_code != COMP_BABBLE)) {
  1175. kfree(td);
  1176. }
  1177. urb->hcpriv = NULL;
  1178. }
  1179. cleanup:
  1180. inc_deq(xhci, xhci->event_ring, true);
  1181. xhci_set_hc_event_deq(xhci);
  1182. /* FIXME for multi-TD URBs (who have buffers bigger than 64MB) */
  1183. if (urb) {
  1184. usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb);
  1185. xhci_dbg(xhci, "Giveback URB %p, len = %d, status = %d\n",
  1186. urb, urb->actual_length, status);
  1187. spin_unlock(&xhci->lock);
  1188. usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status);
  1189. spin_lock(&xhci->lock);
  1190. }
  1191. return 0;
  1192. }
  1193. /*
  1194. * This function handles all OS-owned events on the event ring. It may drop
  1195. * xhci->lock between event processing (e.g. to pass up port status changes).
  1196. */
  1197. void xhci_handle_event(struct xhci_hcd *xhci)
  1198. {
  1199. union xhci_trb *event;
  1200. int update_ptrs = 1;
  1201. int ret;
  1202. xhci_dbg(xhci, "In %s\n", __func__);
  1203. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  1204. xhci->error_bitmask |= 1 << 1;
  1205. return;
  1206. }
  1207. event = xhci->event_ring->dequeue;
  1208. /* Does the HC or OS own the TRB? */
  1209. if ((event->event_cmd.flags & TRB_CYCLE) !=
  1210. xhci->event_ring->cycle_state) {
  1211. xhci->error_bitmask |= 1 << 2;
  1212. return;
  1213. }
  1214. xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
  1215. /* FIXME: Handle more event types. */
  1216. switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) {
  1217. case TRB_TYPE(TRB_COMPLETION):
  1218. xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
  1219. handle_cmd_completion(xhci, &event->event_cmd);
  1220. xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
  1221. break;
  1222. case TRB_TYPE(TRB_PORT_STATUS):
  1223. xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
  1224. handle_port_status(xhci, event);
  1225. xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
  1226. update_ptrs = 0;
  1227. break;
  1228. case TRB_TYPE(TRB_TRANSFER):
  1229. xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
  1230. ret = handle_tx_event(xhci, &event->trans_event);
  1231. xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
  1232. if (ret < 0)
  1233. xhci->error_bitmask |= 1 << 9;
  1234. else
  1235. update_ptrs = 0;
  1236. break;
  1237. default:
  1238. xhci->error_bitmask |= 1 << 3;
  1239. }
  1240. if (update_ptrs) {
  1241. /* Update SW and HC event ring dequeue pointer */
  1242. inc_deq(xhci, xhci->event_ring, true);
  1243. xhci_set_hc_event_deq(xhci);
  1244. }
  1245. /* Are there more items on the event ring? */
  1246. xhci_handle_event(xhci);
  1247. }
  1248. /**** Endpoint Ring Operations ****/
  1249. /*
  1250. * Generic function for queueing a TRB on a ring.
  1251. * The caller must have checked to make sure there's room on the ring.
  1252. */
  1253. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1254. bool consumer,
  1255. u32 field1, u32 field2, u32 field3, u32 field4)
  1256. {
  1257. struct xhci_generic_trb *trb;
  1258. trb = &ring->enqueue->generic;
  1259. trb->field[0] = field1;
  1260. trb->field[1] = field2;
  1261. trb->field[2] = field3;
  1262. trb->field[3] = field4;
  1263. inc_enq(xhci, ring, consumer);
  1264. }
  1265. /*
  1266. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  1267. * FIXME allocate segments if the ring is full.
  1268. */
  1269. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  1270. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  1271. {
  1272. /* Make sure the endpoint has been added to xHC schedule */
  1273. xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
  1274. switch (ep_state) {
  1275. case EP_STATE_DISABLED:
  1276. /*
  1277. * USB core changed config/interfaces without notifying us,
  1278. * or hardware is reporting the wrong state.
  1279. */
  1280. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  1281. return -ENOENT;
  1282. case EP_STATE_ERROR:
  1283. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  1284. /* FIXME event handling code for error needs to clear it */
  1285. /* XXX not sure if this should be -ENOENT or not */
  1286. return -EINVAL;
  1287. case EP_STATE_HALTED:
  1288. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  1289. case EP_STATE_STOPPED:
  1290. case EP_STATE_RUNNING:
  1291. break;
  1292. default:
  1293. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  1294. /*
  1295. * FIXME issue Configure Endpoint command to try to get the HC
  1296. * back into a known state.
  1297. */
  1298. return -EINVAL;
  1299. }
  1300. if (!room_on_ring(xhci, ep_ring, num_trbs)) {
  1301. /* FIXME allocate more room */
  1302. xhci_err(xhci, "ERROR no room on ep ring\n");
  1303. return -ENOMEM;
  1304. }
  1305. return 0;
  1306. }
  1307. static int prepare_transfer(struct xhci_hcd *xhci,
  1308. struct xhci_virt_device *xdev,
  1309. unsigned int ep_index,
  1310. unsigned int num_trbs,
  1311. struct urb *urb,
  1312. struct xhci_td **td,
  1313. gfp_t mem_flags)
  1314. {
  1315. int ret;
  1316. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1317. ret = prepare_ring(xhci, xdev->eps[ep_index].ring,
  1318. ep_ctx->ep_info & EP_STATE_MASK,
  1319. num_trbs, mem_flags);
  1320. if (ret)
  1321. return ret;
  1322. *td = kzalloc(sizeof(struct xhci_td), mem_flags);
  1323. if (!*td)
  1324. return -ENOMEM;
  1325. INIT_LIST_HEAD(&(*td)->td_list);
  1326. INIT_LIST_HEAD(&(*td)->cancelled_td_list);
  1327. ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb);
  1328. if (unlikely(ret)) {
  1329. kfree(*td);
  1330. return ret;
  1331. }
  1332. (*td)->urb = urb;
  1333. urb->hcpriv = (void *) (*td);
  1334. /* Add this TD to the tail of the endpoint ring's TD list */
  1335. list_add_tail(&(*td)->td_list, &xdev->eps[ep_index].ring->td_list);
  1336. (*td)->start_seg = xdev->eps[ep_index].ring->enq_seg;
  1337. (*td)->first_trb = xdev->eps[ep_index].ring->enqueue;
  1338. return 0;
  1339. }
  1340. static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
  1341. {
  1342. int num_sgs, num_trbs, running_total, temp, i;
  1343. struct scatterlist *sg;
  1344. sg = NULL;
  1345. num_sgs = urb->num_sgs;
  1346. temp = urb->transfer_buffer_length;
  1347. xhci_dbg(xhci, "count sg list trbs: \n");
  1348. num_trbs = 0;
  1349. for_each_sg(urb->sg->sg, sg, num_sgs, i) {
  1350. unsigned int previous_total_trbs = num_trbs;
  1351. unsigned int len = sg_dma_len(sg);
  1352. /* Scatter gather list entries may cross 64KB boundaries */
  1353. running_total = TRB_MAX_BUFF_SIZE -
  1354. (sg_dma_address(sg) & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
  1355. if (running_total != 0)
  1356. num_trbs++;
  1357. /* How many more 64KB chunks to transfer, how many more TRBs? */
  1358. while (running_total < sg_dma_len(sg)) {
  1359. num_trbs++;
  1360. running_total += TRB_MAX_BUFF_SIZE;
  1361. }
  1362. xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
  1363. i, (unsigned long long)sg_dma_address(sg),
  1364. len, len, num_trbs - previous_total_trbs);
  1365. len = min_t(int, len, temp);
  1366. temp -= len;
  1367. if (temp == 0)
  1368. break;
  1369. }
  1370. xhci_dbg(xhci, "\n");
  1371. if (!in_interrupt())
  1372. dev_dbg(&urb->dev->dev, "ep %#x - urb len = %d, sglist used, num_trbs = %d\n",
  1373. urb->ep->desc.bEndpointAddress,
  1374. urb->transfer_buffer_length,
  1375. num_trbs);
  1376. return num_trbs;
  1377. }
  1378. static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
  1379. {
  1380. if (num_trbs != 0)
  1381. dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
  1382. "TRBs, %d left\n", __func__,
  1383. urb->ep->desc.bEndpointAddress, num_trbs);
  1384. if (running_total != urb->transfer_buffer_length)
  1385. dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  1386. "queued %#x (%d), asked for %#x (%d)\n",
  1387. __func__,
  1388. urb->ep->desc.bEndpointAddress,
  1389. running_total, running_total,
  1390. urb->transfer_buffer_length,
  1391. urb->transfer_buffer_length);
  1392. }
  1393. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  1394. unsigned int ep_index, int start_cycle,
  1395. struct xhci_generic_trb *start_trb, struct xhci_td *td)
  1396. {
  1397. /*
  1398. * Pass all the TRBs to the hardware at once and make sure this write
  1399. * isn't reordered.
  1400. */
  1401. wmb();
  1402. start_trb->field[3] |= start_cycle;
  1403. ring_ep_doorbell(xhci, slot_id, ep_index);
  1404. }
  1405. /*
  1406. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  1407. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  1408. * (comprised of sg list entries) can take several service intervals to
  1409. * transmit.
  1410. */
  1411. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  1412. struct urb *urb, int slot_id, unsigned int ep_index)
  1413. {
  1414. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
  1415. xhci->devs[slot_id]->out_ctx, ep_index);
  1416. int xhci_interval;
  1417. int ep_interval;
  1418. xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info);
  1419. ep_interval = urb->interval;
  1420. /* Convert to microframes */
  1421. if (urb->dev->speed == USB_SPEED_LOW ||
  1422. urb->dev->speed == USB_SPEED_FULL)
  1423. ep_interval *= 8;
  1424. /* FIXME change this to a warning and a suggestion to use the new API
  1425. * to set the polling interval (once the API is added).
  1426. */
  1427. if (xhci_interval != ep_interval) {
  1428. if (!printk_ratelimit())
  1429. dev_dbg(&urb->dev->dev, "Driver uses different interval"
  1430. " (%d microframe%s) than xHCI "
  1431. "(%d microframe%s)\n",
  1432. ep_interval,
  1433. ep_interval == 1 ? "" : "s",
  1434. xhci_interval,
  1435. xhci_interval == 1 ? "" : "s");
  1436. urb->interval = xhci_interval;
  1437. /* Convert back to frames for LS/FS devices */
  1438. if (urb->dev->speed == USB_SPEED_LOW ||
  1439. urb->dev->speed == USB_SPEED_FULL)
  1440. urb->interval /= 8;
  1441. }
  1442. return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
  1443. }
  1444. static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  1445. struct urb *urb, int slot_id, unsigned int ep_index)
  1446. {
  1447. struct xhci_ring *ep_ring;
  1448. unsigned int num_trbs;
  1449. struct xhci_td *td;
  1450. struct scatterlist *sg;
  1451. int num_sgs;
  1452. int trb_buff_len, this_sg_len, running_total;
  1453. bool first_trb;
  1454. u64 addr;
  1455. struct xhci_generic_trb *start_trb;
  1456. int start_cycle;
  1457. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  1458. num_trbs = count_sg_trbs_needed(xhci, urb);
  1459. num_sgs = urb->num_sgs;
  1460. trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
  1461. ep_index, num_trbs, urb, &td, mem_flags);
  1462. if (trb_buff_len < 0)
  1463. return trb_buff_len;
  1464. /*
  1465. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  1466. * until we've finished creating all the other TRBs. The ring's cycle
  1467. * state may change as we enqueue the other TRBs, so save it too.
  1468. */
  1469. start_trb = &ep_ring->enqueue->generic;
  1470. start_cycle = ep_ring->cycle_state;
  1471. running_total = 0;
  1472. /*
  1473. * How much data is in the first TRB?
  1474. *
  1475. * There are three forces at work for TRB buffer pointers and lengths:
  1476. * 1. We don't want to walk off the end of this sg-list entry buffer.
  1477. * 2. The transfer length that the driver requested may be smaller than
  1478. * the amount of memory allocated for this scatter-gather list.
  1479. * 3. TRBs buffers can't cross 64KB boundaries.
  1480. */
  1481. sg = urb->sg->sg;
  1482. addr = (u64) sg_dma_address(sg);
  1483. this_sg_len = sg_dma_len(sg);
  1484. trb_buff_len = TRB_MAX_BUFF_SIZE -
  1485. (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
  1486. trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
  1487. if (trb_buff_len > urb->transfer_buffer_length)
  1488. trb_buff_len = urb->transfer_buffer_length;
  1489. xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
  1490. trb_buff_len);
  1491. first_trb = true;
  1492. /* Queue the first TRB, even if it's zero-length */
  1493. do {
  1494. u32 field = 0;
  1495. u32 length_field = 0;
  1496. /* Don't change the cycle bit of the first TRB until later */
  1497. if (first_trb)
  1498. first_trb = false;
  1499. else
  1500. field |= ep_ring->cycle_state;
  1501. /* Chain all the TRBs together; clear the chain bit in the last
  1502. * TRB to indicate it's the last TRB in the chain.
  1503. */
  1504. if (num_trbs > 1) {
  1505. field |= TRB_CHAIN;
  1506. } else {
  1507. /* FIXME - add check for ZERO_PACKET flag before this */
  1508. td->last_trb = ep_ring->enqueue;
  1509. field |= TRB_IOC;
  1510. }
  1511. xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
  1512. "64KB boundary at %#x, end dma = %#x\n",
  1513. (unsigned int) addr, trb_buff_len, trb_buff_len,
  1514. (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
  1515. (unsigned int) addr + trb_buff_len);
  1516. if (TRB_MAX_BUFF_SIZE -
  1517. (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)) < trb_buff_len) {
  1518. xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
  1519. xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
  1520. (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
  1521. (unsigned int) addr + trb_buff_len);
  1522. }
  1523. length_field = TRB_LEN(trb_buff_len) |
  1524. TD_REMAINDER(urb->transfer_buffer_length - running_total) |
  1525. TRB_INTR_TARGET(0);
  1526. queue_trb(xhci, ep_ring, false,
  1527. lower_32_bits(addr),
  1528. upper_32_bits(addr),
  1529. length_field,
  1530. /* We always want to know if the TRB was short,
  1531. * or we won't get an event when it completes.
  1532. * (Unless we use event data TRBs, which are a
  1533. * waste of space and HC resources.)
  1534. */
  1535. field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
  1536. --num_trbs;
  1537. running_total += trb_buff_len;
  1538. /* Calculate length for next transfer --
  1539. * Are we done queueing all the TRBs for this sg entry?
  1540. */
  1541. this_sg_len -= trb_buff_len;
  1542. if (this_sg_len == 0) {
  1543. --num_sgs;
  1544. if (num_sgs == 0)
  1545. break;
  1546. sg = sg_next(sg);
  1547. addr = (u64) sg_dma_address(sg);
  1548. this_sg_len = sg_dma_len(sg);
  1549. } else {
  1550. addr += trb_buff_len;
  1551. }
  1552. trb_buff_len = TRB_MAX_BUFF_SIZE -
  1553. (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
  1554. trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
  1555. if (running_total + trb_buff_len > urb->transfer_buffer_length)
  1556. trb_buff_len =
  1557. urb->transfer_buffer_length - running_total;
  1558. } while (running_total < urb->transfer_buffer_length);
  1559. check_trb_math(urb, num_trbs, running_total);
  1560. giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
  1561. return 0;
  1562. }
  1563. /* This is very similar to what ehci-q.c qtd_fill() does */
  1564. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  1565. struct urb *urb, int slot_id, unsigned int ep_index)
  1566. {
  1567. struct xhci_ring *ep_ring;
  1568. struct xhci_td *td;
  1569. int num_trbs;
  1570. struct xhci_generic_trb *start_trb;
  1571. bool first_trb;
  1572. int start_cycle;
  1573. u32 field, length_field;
  1574. int running_total, trb_buff_len, ret;
  1575. u64 addr;
  1576. if (urb->sg)
  1577. return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
  1578. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  1579. num_trbs = 0;
  1580. /* How much data is (potentially) left before the 64KB boundary? */
  1581. running_total = TRB_MAX_BUFF_SIZE -
  1582. (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
  1583. /* If there's some data on this 64KB chunk, or we have to send a
  1584. * zero-length transfer, we need at least one TRB
  1585. */
  1586. if (running_total != 0 || urb->transfer_buffer_length == 0)
  1587. num_trbs++;
  1588. /* How many more 64KB chunks to transfer, how many more TRBs? */
  1589. while (running_total < urb->transfer_buffer_length) {
  1590. num_trbs++;
  1591. running_total += TRB_MAX_BUFF_SIZE;
  1592. }
  1593. /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
  1594. if (!in_interrupt())
  1595. dev_dbg(&urb->dev->dev, "ep %#x - urb len = %#x (%d), addr = %#llx, num_trbs = %d\n",
  1596. urb->ep->desc.bEndpointAddress,
  1597. urb->transfer_buffer_length,
  1598. urb->transfer_buffer_length,
  1599. (unsigned long long)urb->transfer_dma,
  1600. num_trbs);
  1601. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  1602. num_trbs, urb, &td, mem_flags);
  1603. if (ret < 0)
  1604. return ret;
  1605. /*
  1606. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  1607. * until we've finished creating all the other TRBs. The ring's cycle
  1608. * state may change as we enqueue the other TRBs, so save it too.
  1609. */
  1610. start_trb = &ep_ring->enqueue->generic;
  1611. start_cycle = ep_ring->cycle_state;
  1612. running_total = 0;
  1613. /* How much data is in the first TRB? */
  1614. addr = (u64) urb->transfer_dma;
  1615. trb_buff_len = TRB_MAX_BUFF_SIZE -
  1616. (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
  1617. if (urb->transfer_buffer_length < trb_buff_len)
  1618. trb_buff_len = urb->transfer_buffer_length;
  1619. first_trb = true;
  1620. /* Queue the first TRB, even if it's zero-length */
  1621. do {
  1622. field = 0;
  1623. /* Don't change the cycle bit of the first TRB until later */
  1624. if (first_trb)
  1625. first_trb = false;
  1626. else
  1627. field |= ep_ring->cycle_state;
  1628. /* Chain all the TRBs together; clear the chain bit in the last
  1629. * TRB to indicate it's the last TRB in the chain.
  1630. */
  1631. if (num_trbs > 1) {
  1632. field |= TRB_CHAIN;
  1633. } else {
  1634. /* FIXME - add check for ZERO_PACKET flag before this */
  1635. td->last_trb = ep_ring->enqueue;
  1636. field |= TRB_IOC;
  1637. }
  1638. length_field = TRB_LEN(trb_buff_len) |
  1639. TD_REMAINDER(urb->transfer_buffer_length - running_total) |
  1640. TRB_INTR_TARGET(0);
  1641. queue_trb(xhci, ep_ring, false,
  1642. lower_32_bits(addr),
  1643. upper_32_bits(addr),
  1644. length_field,
  1645. /* We always want to know if the TRB was short,
  1646. * or we won't get an event when it completes.
  1647. * (Unless we use event data TRBs, which are a
  1648. * waste of space and HC resources.)
  1649. */
  1650. field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
  1651. --num_trbs;
  1652. running_total += trb_buff_len;
  1653. /* Calculate length for next transfer */
  1654. addr += trb_buff_len;
  1655. trb_buff_len = urb->transfer_buffer_length - running_total;
  1656. if (trb_buff_len > TRB_MAX_BUFF_SIZE)
  1657. trb_buff_len = TRB_MAX_BUFF_SIZE;
  1658. } while (running_total < urb->transfer_buffer_length);
  1659. check_trb_math(urb, num_trbs, running_total);
  1660. giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
  1661. return 0;
  1662. }
  1663. /* Caller must have locked xhci->lock */
  1664. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  1665. struct urb *urb, int slot_id, unsigned int ep_index)
  1666. {
  1667. struct xhci_ring *ep_ring;
  1668. int num_trbs;
  1669. int ret;
  1670. struct usb_ctrlrequest *setup;
  1671. struct xhci_generic_trb *start_trb;
  1672. int start_cycle;
  1673. u32 field, length_field;
  1674. struct xhci_td *td;
  1675. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  1676. /*
  1677. * Need to copy setup packet into setup TRB, so we can't use the setup
  1678. * DMA address.
  1679. */
  1680. if (!urb->setup_packet)
  1681. return -EINVAL;
  1682. if (!in_interrupt())
  1683. xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
  1684. slot_id, ep_index);
  1685. /* 1 TRB for setup, 1 for status */
  1686. num_trbs = 2;
  1687. /*
  1688. * Don't need to check if we need additional event data and normal TRBs,
  1689. * since data in control transfers will never get bigger than 16MB
  1690. * XXX: can we get a buffer that crosses 64KB boundaries?
  1691. */
  1692. if (urb->transfer_buffer_length > 0)
  1693. num_trbs++;
  1694. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs,
  1695. urb, &td, mem_flags);
  1696. if (ret < 0)
  1697. return ret;
  1698. /*
  1699. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  1700. * until we've finished creating all the other TRBs. The ring's cycle
  1701. * state may change as we enqueue the other TRBs, so save it too.
  1702. */
  1703. start_trb = &ep_ring->enqueue->generic;
  1704. start_cycle = ep_ring->cycle_state;
  1705. /* Queue setup TRB - see section 6.4.1.2.1 */
  1706. /* FIXME better way to translate setup_packet into two u32 fields? */
  1707. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  1708. queue_trb(xhci, ep_ring, false,
  1709. /* FIXME endianness is probably going to bite my ass here. */
  1710. setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16,
  1711. setup->wIndex | setup->wLength << 16,
  1712. TRB_LEN(8) | TRB_INTR_TARGET(0),
  1713. /* Immediate data in pointer */
  1714. TRB_IDT | TRB_TYPE(TRB_SETUP));
  1715. /* If there's data, queue data TRBs */
  1716. field = 0;
  1717. length_field = TRB_LEN(urb->transfer_buffer_length) |
  1718. TD_REMAINDER(urb->transfer_buffer_length) |
  1719. TRB_INTR_TARGET(0);
  1720. if (urb->transfer_buffer_length > 0) {
  1721. if (setup->bRequestType & USB_DIR_IN)
  1722. field |= TRB_DIR_IN;
  1723. queue_trb(xhci, ep_ring, false,
  1724. lower_32_bits(urb->transfer_dma),
  1725. upper_32_bits(urb->transfer_dma),
  1726. length_field,
  1727. /* Event on short tx */
  1728. field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state);
  1729. }
  1730. /* Save the DMA address of the last TRB in the TD */
  1731. td->last_trb = ep_ring->enqueue;
  1732. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  1733. /* If the device sent data, the status stage is an OUT transfer */
  1734. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  1735. field = 0;
  1736. else
  1737. field = TRB_DIR_IN;
  1738. queue_trb(xhci, ep_ring, false,
  1739. 0,
  1740. 0,
  1741. TRB_INTR_TARGET(0),
  1742. /* Event on completion */
  1743. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  1744. giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
  1745. return 0;
  1746. }
  1747. /**** Command Ring Operations ****/
  1748. /* Generic function for queueing a command TRB on the command ring.
  1749. * Check to make sure there's room on the command ring for one command TRB.
  1750. * Also check that there's room reserved for commands that must not fail.
  1751. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  1752. * then only check for the number of reserved spots.
  1753. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  1754. * because the command event handler may want to resubmit a failed command.
  1755. */
  1756. static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
  1757. u32 field3, u32 field4, bool command_must_succeed)
  1758. {
  1759. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  1760. if (!command_must_succeed)
  1761. reserved_trbs++;
  1762. if (!room_on_ring(xhci, xhci->cmd_ring, reserved_trbs)) {
  1763. if (!in_interrupt())
  1764. xhci_err(xhci, "ERR: No room for command on command ring\n");
  1765. if (command_must_succeed)
  1766. xhci_err(xhci, "ERR: Reserved TRB counting for "
  1767. "unfailable commands failed.\n");
  1768. return -ENOMEM;
  1769. }
  1770. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  1771. field4 | xhci->cmd_ring->cycle_state);
  1772. return 0;
  1773. }
  1774. /* Queue a no-op command on the command ring */
  1775. static int queue_cmd_noop(struct xhci_hcd *xhci)
  1776. {
  1777. return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP), false);
  1778. }
  1779. /*
  1780. * Place a no-op command on the command ring to test the command and
  1781. * event ring.
  1782. */
  1783. void *xhci_setup_one_noop(struct xhci_hcd *xhci)
  1784. {
  1785. if (queue_cmd_noop(xhci) < 0)
  1786. return NULL;
  1787. xhci->noops_submitted++;
  1788. return xhci_ring_cmd_db;
  1789. }
  1790. /* Queue a slot enable or disable request on the command ring */
  1791. int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
  1792. {
  1793. return queue_command(xhci, 0, 0, 0,
  1794. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  1795. }
  1796. /* Queue an address device command TRB */
  1797. int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
  1798. u32 slot_id)
  1799. {
  1800. return queue_command(xhci, lower_32_bits(in_ctx_ptr),
  1801. upper_32_bits(in_ctx_ptr), 0,
  1802. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
  1803. false);
  1804. }
  1805. /* Queue a configure endpoint command TRB */
  1806. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
  1807. u32 slot_id, bool command_must_succeed)
  1808. {
  1809. return queue_command(xhci, lower_32_bits(in_ctx_ptr),
  1810. upper_32_bits(in_ctx_ptr), 0,
  1811. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  1812. command_must_succeed);
  1813. }
  1814. /* Queue an evaluate context command TRB */
  1815. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
  1816. u32 slot_id)
  1817. {
  1818. return queue_command(xhci, lower_32_bits(in_ctx_ptr),
  1819. upper_32_bits(in_ctx_ptr), 0,
  1820. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  1821. false);
  1822. }
  1823. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
  1824. unsigned int ep_index)
  1825. {
  1826. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  1827. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  1828. u32 type = TRB_TYPE(TRB_STOP_RING);
  1829. return queue_command(xhci, 0, 0, 0,
  1830. trb_slot_id | trb_ep_index | type, false);
  1831. }
  1832. /* Set Transfer Ring Dequeue Pointer command.
  1833. * This should not be used for endpoints that have streams enabled.
  1834. */
  1835. static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
  1836. unsigned int ep_index, struct xhci_segment *deq_seg,
  1837. union xhci_trb *deq_ptr, u32 cycle_state)
  1838. {
  1839. dma_addr_t addr;
  1840. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  1841. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  1842. u32 type = TRB_TYPE(TRB_SET_DEQ);
  1843. addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
  1844. if (addr == 0) {
  1845. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  1846. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  1847. deq_seg, deq_ptr);
  1848. return 0;
  1849. }
  1850. return queue_command(xhci, lower_32_bits(addr) | cycle_state,
  1851. upper_32_bits(addr), 0,
  1852. trb_slot_id | trb_ep_index | type, false);
  1853. }
  1854. int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
  1855. unsigned int ep_index)
  1856. {
  1857. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  1858. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  1859. u32 type = TRB_TYPE(TRB_RESET_EP);
  1860. return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
  1861. false);
  1862. }