process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
  12. #include <linux/config.h>
  13. #include <linux/cpu.h>
  14. #include <linux/pm.h>
  15. #include <linux/elf.h>
  16. #include <linux/errno.h>
  17. #include <linux/kallsyms.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/module.h>
  21. #include <linux/notifier.h>
  22. #include <linux/personality.h>
  23. #include <linux/sched.h>
  24. #include <linux/slab.h>
  25. #include <linux/smp_lock.h>
  26. #include <linux/stddef.h>
  27. #include <linux/thread_info.h>
  28. #include <linux/unistd.h>
  29. #include <linux/efi.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/kprobes.h>
  33. #include <asm/cpu.h>
  34. #include <asm/delay.h>
  35. #include <asm/elf.h>
  36. #include <asm/ia32.h>
  37. #include <asm/irq.h>
  38. #include <asm/kdebug.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/processor.h>
  41. #include <asm/sal.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/unwind.h>
  45. #include <asm/user.h>
  46. #include "entry.h"
  47. #ifdef CONFIG_PERFMON
  48. # include <asm/perfmon.h>
  49. #endif
  50. #include "sigframe.h"
  51. void (*ia64_mark_idle)(int);
  52. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  53. unsigned long boot_option_idle_override = 0;
  54. EXPORT_SYMBOL(boot_option_idle_override);
  55. void
  56. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  57. {
  58. unsigned long ip, sp, bsp;
  59. char buf[128]; /* don't make it so big that it overflows the stack! */
  60. printk("\nCall Trace:\n");
  61. do {
  62. unw_get_ip(info, &ip);
  63. if (ip == 0)
  64. break;
  65. unw_get_sp(info, &sp);
  66. unw_get_bsp(info, &bsp);
  67. snprintf(buf, sizeof(buf),
  68. " [<%016lx>] %%s\n"
  69. " sp=%016lx bsp=%016lx\n",
  70. ip, sp, bsp);
  71. print_symbol(buf, ip);
  72. } while (unw_unwind(info) >= 0);
  73. }
  74. void
  75. show_stack (struct task_struct *task, unsigned long *sp)
  76. {
  77. if (!task)
  78. unw_init_running(ia64_do_show_stack, NULL);
  79. else {
  80. struct unw_frame_info info;
  81. unw_init_from_blocked_task(&info, task);
  82. ia64_do_show_stack(&info, NULL);
  83. }
  84. }
  85. void
  86. dump_stack (void)
  87. {
  88. show_stack(NULL, NULL);
  89. }
  90. EXPORT_SYMBOL(dump_stack);
  91. void
  92. show_regs (struct pt_regs *regs)
  93. {
  94. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  95. print_modules();
  96. printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
  97. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
  98. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
  99. print_symbol("ip is at %s\n", ip);
  100. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  101. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  102. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  103. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  104. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  105. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  106. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  107. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  108. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  109. regs->f6.u.bits[1], regs->f6.u.bits[0],
  110. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  111. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  112. regs->f8.u.bits[1], regs->f8.u.bits[0],
  113. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  114. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  115. regs->f10.u.bits[1], regs->f10.u.bits[0],
  116. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  117. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  118. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  119. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  120. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  121. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  122. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  123. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  124. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  125. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  126. if (user_mode(regs)) {
  127. /* print the stacked registers */
  128. unsigned long val, *bsp, ndirty;
  129. int i, sof, is_nat = 0;
  130. sof = regs->cr_ifs & 0x7f; /* size of frame */
  131. ndirty = (regs->loadrs >> 19);
  132. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  133. for (i = 0; i < sof; ++i) {
  134. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  135. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  136. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  137. }
  138. } else
  139. show_stack(NULL, NULL);
  140. }
  141. void
  142. do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
  143. {
  144. if (fsys_mode(current, &scr->pt)) {
  145. /* defer signal-handling etc. until we return to privilege-level 0. */
  146. if (!ia64_psr(&scr->pt)->lp)
  147. ia64_psr(&scr->pt)->lp = 1;
  148. return;
  149. }
  150. #ifdef CONFIG_PERFMON
  151. if (current->thread.pfm_needs_checking)
  152. pfm_handle_work();
  153. #endif
  154. /* deal with pending signal delivery */
  155. if (test_thread_flag(TIF_SIGPENDING))
  156. ia64_do_signal(oldset, scr, in_syscall);
  157. }
  158. static int pal_halt = 1;
  159. static int can_do_pal_halt = 1;
  160. static int __init nohalt_setup(char * str)
  161. {
  162. pal_halt = can_do_pal_halt = 0;
  163. return 1;
  164. }
  165. __setup("nohalt", nohalt_setup);
  166. void
  167. update_pal_halt_status(int status)
  168. {
  169. can_do_pal_halt = pal_halt && status;
  170. }
  171. /*
  172. * We use this if we don't have any better idle routine..
  173. */
  174. void
  175. default_idle (void)
  176. {
  177. local_irq_enable();
  178. while (!need_resched())
  179. if (can_do_pal_halt)
  180. safe_halt();
  181. else
  182. cpu_relax();
  183. }
  184. #ifdef CONFIG_HOTPLUG_CPU
  185. /* We don't actually take CPU down, just spin without interrupts. */
  186. static inline void play_dead(void)
  187. {
  188. extern void ia64_cpu_local_tick (void);
  189. unsigned int this_cpu = smp_processor_id();
  190. /* Ack it */
  191. __get_cpu_var(cpu_state) = CPU_DEAD;
  192. max_xtp();
  193. local_irq_disable();
  194. idle_task_exit();
  195. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  196. /*
  197. * The above is a point of no-return, the processor is
  198. * expected to be in SAL loop now.
  199. */
  200. BUG();
  201. }
  202. #else
  203. static inline void play_dead(void)
  204. {
  205. BUG();
  206. }
  207. #endif /* CONFIG_HOTPLUG_CPU */
  208. void cpu_idle_wait(void)
  209. {
  210. unsigned int cpu, this_cpu = get_cpu();
  211. cpumask_t map;
  212. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  213. put_cpu();
  214. cpus_clear(map);
  215. for_each_online_cpu(cpu) {
  216. per_cpu(cpu_idle_state, cpu) = 1;
  217. cpu_set(cpu, map);
  218. }
  219. __get_cpu_var(cpu_idle_state) = 0;
  220. wmb();
  221. do {
  222. ssleep(1);
  223. for_each_online_cpu(cpu) {
  224. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  225. cpu_clear(cpu, map);
  226. }
  227. cpus_and(map, map, cpu_online_map);
  228. } while (!cpus_empty(map));
  229. }
  230. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  231. void __attribute__((noreturn))
  232. cpu_idle (void)
  233. {
  234. void (*mark_idle)(int) = ia64_mark_idle;
  235. /* endless idle loop with no priority at all */
  236. while (1) {
  237. #ifdef CONFIG_SMP
  238. if (!need_resched())
  239. min_xtp();
  240. #endif
  241. while (!need_resched()) {
  242. void (*idle)(void);
  243. if (__get_cpu_var(cpu_idle_state))
  244. __get_cpu_var(cpu_idle_state) = 0;
  245. rmb();
  246. if (mark_idle)
  247. (*mark_idle)(1);
  248. idle = pm_idle;
  249. if (!idle)
  250. idle = default_idle;
  251. (*idle)();
  252. }
  253. if (mark_idle)
  254. (*mark_idle)(0);
  255. #ifdef CONFIG_SMP
  256. normal_xtp();
  257. #endif
  258. schedule();
  259. check_pgt_cache();
  260. if (cpu_is_offline(smp_processor_id()))
  261. play_dead();
  262. }
  263. }
  264. void
  265. ia64_save_extra (struct task_struct *task)
  266. {
  267. #ifdef CONFIG_PERFMON
  268. unsigned long info;
  269. #endif
  270. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  271. ia64_save_debug_regs(&task->thread.dbr[0]);
  272. #ifdef CONFIG_PERFMON
  273. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  274. pfm_save_regs(task);
  275. info = __get_cpu_var(pfm_syst_info);
  276. if (info & PFM_CPUINFO_SYST_WIDE)
  277. pfm_syst_wide_update_task(task, info, 0);
  278. #endif
  279. #ifdef CONFIG_IA32_SUPPORT
  280. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  281. ia32_save_state(task);
  282. #endif
  283. }
  284. void
  285. ia64_load_extra (struct task_struct *task)
  286. {
  287. #ifdef CONFIG_PERFMON
  288. unsigned long info;
  289. #endif
  290. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  291. ia64_load_debug_regs(&task->thread.dbr[0]);
  292. #ifdef CONFIG_PERFMON
  293. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  294. pfm_load_regs(task);
  295. info = __get_cpu_var(pfm_syst_info);
  296. if (info & PFM_CPUINFO_SYST_WIDE)
  297. pfm_syst_wide_update_task(task, info, 1);
  298. #endif
  299. #ifdef CONFIG_IA32_SUPPORT
  300. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  301. ia32_load_state(task);
  302. #endif
  303. }
  304. /*
  305. * Copy the state of an ia-64 thread.
  306. *
  307. * We get here through the following call chain:
  308. *
  309. * from user-level: from kernel:
  310. *
  311. * <clone syscall> <some kernel call frames>
  312. * sys_clone :
  313. * do_fork do_fork
  314. * copy_thread copy_thread
  315. *
  316. * This means that the stack layout is as follows:
  317. *
  318. * +---------------------+ (highest addr)
  319. * | struct pt_regs |
  320. * +---------------------+
  321. * | struct switch_stack |
  322. * +---------------------+
  323. * | |
  324. * | memory stack |
  325. * | | <-- sp (lowest addr)
  326. * +---------------------+
  327. *
  328. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  329. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  330. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  331. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  332. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  333. * so there is nothing to worry about.
  334. */
  335. int
  336. copy_thread (int nr, unsigned long clone_flags,
  337. unsigned long user_stack_base, unsigned long user_stack_size,
  338. struct task_struct *p, struct pt_regs *regs)
  339. {
  340. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  341. struct switch_stack *child_stack, *stack;
  342. unsigned long rbs, child_rbs, rbs_size;
  343. struct pt_regs *child_ptregs;
  344. int retval = 0;
  345. #ifdef CONFIG_SMP
  346. /*
  347. * For SMP idle threads, fork_by_hand() calls do_fork with
  348. * NULL regs.
  349. */
  350. if (!regs)
  351. return 0;
  352. #endif
  353. stack = ((struct switch_stack *) regs) - 1;
  354. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  355. child_stack = (struct switch_stack *) child_ptregs - 1;
  356. /* copy parent's switch_stack & pt_regs to child: */
  357. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  358. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  359. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  360. rbs_size = stack->ar_bspstore - rbs;
  361. /* copy the parent's register backing store to the child: */
  362. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  363. if (likely(user_mode(child_ptregs))) {
  364. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  365. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  366. if (user_stack_base) {
  367. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  368. child_ptregs->ar_bspstore = user_stack_base;
  369. child_ptregs->ar_rnat = 0;
  370. child_ptregs->loadrs = 0;
  371. }
  372. } else {
  373. /*
  374. * Note: we simply preserve the relative position of
  375. * the stack pointer here. There is no need to
  376. * allocate a scratch area here, since that will have
  377. * been taken care of by the caller of sys_clone()
  378. * already.
  379. */
  380. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  381. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  382. }
  383. child_stack->ar_bspstore = child_rbs + rbs_size;
  384. if (IS_IA32_PROCESS(regs))
  385. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  386. else
  387. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  388. /* copy parts of thread_struct: */
  389. p->thread.ksp = (unsigned long) child_stack - 16;
  390. /* stop some PSR bits from being inherited.
  391. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  392. * therefore we must specify them explicitly here and not include them in
  393. * IA64_PSR_BITS_TO_CLEAR.
  394. */
  395. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  396. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  397. /*
  398. * NOTE: The calling convention considers all floating point
  399. * registers in the high partition (fph) to be scratch. Since
  400. * the only way to get to this point is through a system call,
  401. * we know that the values in fph are all dead. Hence, there
  402. * is no need to inherit the fph state from the parent to the
  403. * child and all we have to do is to make sure that
  404. * IA64_THREAD_FPH_VALID is cleared in the child.
  405. *
  406. * XXX We could push this optimization a bit further by
  407. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  408. * However, it's not clear this is worth doing. Also, it
  409. * would be a slight deviation from the normal Linux system
  410. * call behavior where scratch registers are preserved across
  411. * system calls (unless used by the system call itself).
  412. */
  413. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  414. | IA64_THREAD_PM_VALID)
  415. # define THREAD_FLAGS_TO_SET 0
  416. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  417. | THREAD_FLAGS_TO_SET);
  418. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  419. #ifdef CONFIG_IA32_SUPPORT
  420. /*
  421. * If we're cloning an IA32 task then save the IA32 extra
  422. * state from the current task to the new task
  423. */
  424. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  425. ia32_save_state(p);
  426. if (clone_flags & CLONE_SETTLS)
  427. retval = ia32_clone_tls(p, child_ptregs);
  428. /* Copy partially mapped page list */
  429. if (!retval)
  430. retval = ia32_copy_partial_page_list(p, clone_flags);
  431. }
  432. #endif
  433. #ifdef CONFIG_PERFMON
  434. if (current->thread.pfm_context)
  435. pfm_inherit(p, child_ptregs);
  436. #endif
  437. return retval;
  438. }
  439. static void
  440. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  441. {
  442. unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
  443. elf_greg_t *dst = arg;
  444. struct pt_regs *pt;
  445. char nat;
  446. int i;
  447. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  448. if (unw_unwind_to_user(info) < 0)
  449. return;
  450. unw_get_sp(info, &sp);
  451. pt = (struct pt_regs *) (sp + 16);
  452. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  453. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  454. return;
  455. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  456. &ar_rnat);
  457. /*
  458. * coredump format:
  459. * r0-r31
  460. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  461. * predicate registers (p0-p63)
  462. * b0-b7
  463. * ip cfm user-mask
  464. * ar.rsc ar.bsp ar.bspstore ar.rnat
  465. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  466. */
  467. /* r0 is zero */
  468. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  469. unw_get_gr(info, i, &dst[i], &nat);
  470. if (nat)
  471. nat_bits |= mask;
  472. mask <<= 1;
  473. }
  474. dst[32] = nat_bits;
  475. unw_get_pr(info, &dst[33]);
  476. for (i = 0; i < 8; ++i)
  477. unw_get_br(info, i, &dst[34 + i]);
  478. unw_get_rp(info, &ip);
  479. dst[42] = ip + ia64_psr(pt)->ri;
  480. dst[43] = cfm;
  481. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  482. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  483. /*
  484. * For bsp and bspstore, unw_get_ar() would return the kernel
  485. * addresses, but we need the user-level addresses instead:
  486. */
  487. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  488. dst[47] = pt->ar_bspstore;
  489. dst[48] = ar_rnat;
  490. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  491. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  492. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  493. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  494. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  495. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  496. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  497. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  498. }
  499. void
  500. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  501. {
  502. elf_fpreg_t *dst = arg;
  503. int i;
  504. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  505. if (unw_unwind_to_user(info) < 0)
  506. return;
  507. /* f0 is 0.0, f1 is 1.0 */
  508. for (i = 2; i < 32; ++i)
  509. unw_get_fr(info, i, dst + i);
  510. ia64_flush_fph(task);
  511. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  512. memcpy(dst + 32, task->thread.fph, 96*16);
  513. }
  514. void
  515. do_copy_regs (struct unw_frame_info *info, void *arg)
  516. {
  517. do_copy_task_regs(current, info, arg);
  518. }
  519. void
  520. do_dump_fpu (struct unw_frame_info *info, void *arg)
  521. {
  522. do_dump_task_fpu(current, info, arg);
  523. }
  524. int
  525. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  526. {
  527. struct unw_frame_info tcore_info;
  528. if (current == task) {
  529. unw_init_running(do_copy_regs, regs);
  530. } else {
  531. memset(&tcore_info, 0, sizeof(tcore_info));
  532. unw_init_from_blocked_task(&tcore_info, task);
  533. do_copy_task_regs(task, &tcore_info, regs);
  534. }
  535. return 1;
  536. }
  537. void
  538. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  539. {
  540. unw_init_running(do_copy_regs, dst);
  541. }
  542. int
  543. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  544. {
  545. struct unw_frame_info tcore_info;
  546. if (current == task) {
  547. unw_init_running(do_dump_fpu, dst);
  548. } else {
  549. memset(&tcore_info, 0, sizeof(tcore_info));
  550. unw_init_from_blocked_task(&tcore_info, task);
  551. do_dump_task_fpu(task, &tcore_info, dst);
  552. }
  553. return 1;
  554. }
  555. int
  556. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  557. {
  558. unw_init_running(do_dump_fpu, dst);
  559. return 1; /* f0-f31 are always valid so we always return 1 */
  560. }
  561. long
  562. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  563. struct pt_regs *regs)
  564. {
  565. char *fname;
  566. int error;
  567. fname = getname(filename);
  568. error = PTR_ERR(fname);
  569. if (IS_ERR(fname))
  570. goto out;
  571. error = do_execve(fname, argv, envp, regs);
  572. putname(fname);
  573. out:
  574. return error;
  575. }
  576. pid_t
  577. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  578. {
  579. extern void start_kernel_thread (void);
  580. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  581. struct {
  582. struct switch_stack sw;
  583. struct pt_regs pt;
  584. } regs;
  585. memset(&regs, 0, sizeof(regs));
  586. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  587. regs.pt.r1 = helper_fptr[1]; /* set GP */
  588. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  589. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  590. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  591. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  592. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  593. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  594. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  595. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  596. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  597. }
  598. EXPORT_SYMBOL(kernel_thread);
  599. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  600. int
  601. kernel_thread_helper (int (*fn)(void *), void *arg)
  602. {
  603. #ifdef CONFIG_IA32_SUPPORT
  604. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  605. /* A kernel thread is always a 64-bit process. */
  606. current->thread.map_base = DEFAULT_MAP_BASE;
  607. current->thread.task_size = DEFAULT_TASK_SIZE;
  608. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  609. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  610. }
  611. #endif
  612. return (*fn)(arg);
  613. }
  614. /*
  615. * Flush thread state. This is called when a thread does an execve().
  616. */
  617. void
  618. flush_thread (void)
  619. {
  620. /*
  621. * Remove function-return probe instances associated with this task
  622. * and put them back on the free list. Do not insert an exit probe for
  623. * this function, it will be disabled by kprobe_flush_task if you do.
  624. */
  625. kprobe_flush_task(current);
  626. /* drop floating-point and debug-register state if it exists: */
  627. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  628. ia64_drop_fpu(current);
  629. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  630. ia32_drop_partial_page_list(current);
  631. }
  632. /*
  633. * Clean up state associated with current thread. This is called when
  634. * the thread calls exit().
  635. */
  636. void
  637. exit_thread (void)
  638. {
  639. /*
  640. * Remove function-return probe instances associated with this task
  641. * and put them back on the free list. Do not insert an exit probe for
  642. * this function, it will be disabled by kprobe_flush_task if you do.
  643. */
  644. kprobe_flush_task(current);
  645. ia64_drop_fpu(current);
  646. #ifdef CONFIG_PERFMON
  647. /* if needed, stop monitoring and flush state to perfmon context */
  648. if (current->thread.pfm_context)
  649. pfm_exit_thread(current);
  650. /* free debug register resources */
  651. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  652. pfm_release_debug_registers(current);
  653. #endif
  654. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  655. ia32_drop_partial_page_list(current);
  656. }
  657. unsigned long
  658. get_wchan (struct task_struct *p)
  659. {
  660. struct unw_frame_info info;
  661. unsigned long ip;
  662. int count = 0;
  663. /*
  664. * Note: p may not be a blocked task (it could be current or
  665. * another process running on some other CPU. Rather than
  666. * trying to determine if p is really blocked, we just assume
  667. * it's blocked and rely on the unwind routines to fail
  668. * gracefully if the process wasn't really blocked after all.
  669. * --davidm 99/12/15
  670. */
  671. unw_init_from_blocked_task(&info, p);
  672. do {
  673. if (unw_unwind(&info) < 0)
  674. return 0;
  675. unw_get_ip(&info, &ip);
  676. if (!in_sched_functions(ip))
  677. return ip;
  678. } while (count++ < 16);
  679. return 0;
  680. }
  681. void
  682. cpu_halt (void)
  683. {
  684. pal_power_mgmt_info_u_t power_info[8];
  685. unsigned long min_power;
  686. int i, min_power_state;
  687. if (ia64_pal_halt_info(power_info) != 0)
  688. return;
  689. min_power_state = 0;
  690. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  691. for (i = 1; i < 8; ++i)
  692. if (power_info[i].pal_power_mgmt_info_s.im
  693. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  694. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  695. min_power_state = i;
  696. }
  697. while (1)
  698. ia64_pal_halt(min_power_state);
  699. }
  700. void
  701. machine_restart (char *restart_cmd)
  702. {
  703. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  704. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  705. }
  706. void
  707. machine_halt (void)
  708. {
  709. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  710. cpu_halt();
  711. }
  712. void
  713. machine_power_off (void)
  714. {
  715. if (pm_power_off)
  716. pm_power_off();
  717. machine_halt();
  718. }