pmac.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /*
  2. * Support for IDE interfaces on PowerMacs.
  3. *
  4. * These IDE interfaces are memory-mapped and have a DBDMA channel
  5. * for doing DMA.
  6. *
  7. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  8. * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #include "../ide-timing.h"
  49. #undef IDE_PMAC_DEBUG
  50. #define DMA_WAIT_TIMEOUT 50
  51. typedef struct pmac_ide_hwif {
  52. unsigned long regbase;
  53. int irq;
  54. int kind;
  55. int aapl_bus_id;
  56. unsigned cable_80 : 1;
  57. unsigned mediabay : 1;
  58. unsigned broken_dma : 1;
  59. unsigned broken_dma_warn : 1;
  60. struct device_node* node;
  61. struct macio_dev *mdev;
  62. u32 timings[4];
  63. volatile u32 __iomem * *kauai_fcr;
  64. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  65. /* Those fields are duplicating what is in hwif. We currently
  66. * can't use the hwif ones because of some assumptions that are
  67. * beeing done by the generic code about the kind of dma controller
  68. * and format of the dma table. This will have to be fixed though.
  69. */
  70. volatile struct dbdma_regs __iomem * dma_regs;
  71. struct dbdma_cmd* dma_table_cpu;
  72. #endif
  73. } pmac_ide_hwif_t;
  74. static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
  75. static int pmac_ide_count;
  76. enum {
  77. controller_ohare, /* OHare based */
  78. controller_heathrow, /* Heathrow/Paddington */
  79. controller_kl_ata3, /* KeyLargo ATA-3 */
  80. controller_kl_ata4, /* KeyLargo ATA-4 */
  81. controller_un_ata6, /* UniNorth2 ATA-6 */
  82. controller_k2_ata6, /* K2 ATA-6 */
  83. controller_sh_ata6, /* Shasta ATA-6 */
  84. };
  85. static const char* model_name[] = {
  86. "OHare ATA", /* OHare based */
  87. "Heathrow ATA", /* Heathrow/Paddington */
  88. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  89. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  90. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  91. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  92. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  93. };
  94. /*
  95. * Extra registers, both 32-bit little-endian
  96. */
  97. #define IDE_TIMING_CONFIG 0x200
  98. #define IDE_INTERRUPT 0x300
  99. /* Kauai (U2) ATA has different register setup */
  100. #define IDE_KAUAI_PIO_CONFIG 0x200
  101. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  102. #define IDE_KAUAI_POLL_CONFIG 0x220
  103. /*
  104. * Timing configuration register definitions
  105. */
  106. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  107. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  108. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  109. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  110. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  111. /* 133Mhz cell, found in shasta.
  112. * See comments about 100 Mhz Uninorth 2...
  113. * Note that PIO_MASK and MDMA_MASK seem to overlap
  114. */
  115. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  116. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  117. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  118. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  119. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  120. * this one yet, it appears as a pci device (106b/0033) on uninorth
  121. * internal PCI bus and it's clock is controlled like gem or fw. It
  122. * appears to be an evolution of keylargo ATA4 with a timing register
  123. * extended to 2 32bits registers and a similar DBDMA channel. Other
  124. * registers seem to exist but I can't tell much about them.
  125. *
  126. * So far, I'm using pre-calculated tables for this extracted from
  127. * the values used by the MacOS X driver.
  128. *
  129. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  130. * register controls the UDMA timings. At least, it seems bit 0
  131. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  132. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  133. * know their meaning yet
  134. */
  135. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  136. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  137. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  138. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  139. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  140. * 40 connector cable and to 4 on 80 connector one.
  141. * Clock unit is 15ns (66Mhz)
  142. *
  143. * 3 Values can be programmed:
  144. * - Write data setup, which appears to match the cycle time. They
  145. * also call it DIOW setup.
  146. * - Ready to pause time (from spec)
  147. * - Address setup. That one is weird. I don't see where exactly
  148. * it fits in UDMA cycles, I got it's name from an obscure piece
  149. * of commented out code in Darwin. They leave it to 0, we do as
  150. * well, despite a comment that would lead to think it has a
  151. * min value of 45ns.
  152. * Apple also add 60ns to the write data setup (or cycle time ?) on
  153. * reads.
  154. */
  155. #define TR_66_UDMA_MASK 0xfff00000
  156. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  157. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  158. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  159. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  160. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  161. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  162. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  163. #define TR_66_MDMA_MASK 0x000ffc00
  164. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  165. #define TR_66_MDMA_RECOVERY_SHIFT 15
  166. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  167. #define TR_66_MDMA_ACCESS_SHIFT 10
  168. #define TR_66_PIO_MASK 0x000003ff
  169. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  170. #define TR_66_PIO_RECOVERY_SHIFT 5
  171. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  172. #define TR_66_PIO_ACCESS_SHIFT 0
  173. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  174. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  175. *
  176. * The access time and recovery time can be programmed. Some older
  177. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  178. * the same here fore safety against broken old hardware ;)
  179. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  180. * time and removes one from recovery. It's not supported on KeyLargo
  181. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  182. * is used to reach long timings used in this mode.
  183. */
  184. #define TR_33_MDMA_MASK 0x003ff800
  185. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  186. #define TR_33_MDMA_RECOVERY_SHIFT 16
  187. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  188. #define TR_33_MDMA_ACCESS_SHIFT 11
  189. #define TR_33_MDMA_HALFTICK 0x00200000
  190. #define TR_33_PIO_MASK 0x000007ff
  191. #define TR_33_PIO_E 0x00000400
  192. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  193. #define TR_33_PIO_RECOVERY_SHIFT 5
  194. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  195. #define TR_33_PIO_ACCESS_SHIFT 0
  196. /*
  197. * Interrupt register definitions
  198. */
  199. #define IDE_INTR_DMA 0x80000000
  200. #define IDE_INTR_DEVICE 0x40000000
  201. /*
  202. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  203. */
  204. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  205. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  206. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  207. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  208. /* Rounded Multiword DMA timings
  209. *
  210. * I gave up finding a generic formula for all controller
  211. * types and instead, built tables based on timing values
  212. * used by Apple in Darwin's implementation.
  213. */
  214. struct mdma_timings_t {
  215. int accessTime;
  216. int recoveryTime;
  217. int cycleTime;
  218. };
  219. struct mdma_timings_t mdma_timings_33[] =
  220. {
  221. { 240, 240, 480 },
  222. { 180, 180, 360 },
  223. { 135, 135, 270 },
  224. { 120, 120, 240 },
  225. { 105, 105, 210 },
  226. { 90, 90, 180 },
  227. { 75, 75, 150 },
  228. { 75, 45, 120 },
  229. { 0, 0, 0 }
  230. };
  231. struct mdma_timings_t mdma_timings_33k[] =
  232. {
  233. { 240, 240, 480 },
  234. { 180, 180, 360 },
  235. { 150, 150, 300 },
  236. { 120, 120, 240 },
  237. { 90, 120, 210 },
  238. { 90, 90, 180 },
  239. { 90, 60, 150 },
  240. { 90, 30, 120 },
  241. { 0, 0, 0 }
  242. };
  243. struct mdma_timings_t mdma_timings_66[] =
  244. {
  245. { 240, 240, 480 },
  246. { 180, 180, 360 },
  247. { 135, 135, 270 },
  248. { 120, 120, 240 },
  249. { 105, 105, 210 },
  250. { 90, 90, 180 },
  251. { 90, 75, 165 },
  252. { 75, 45, 120 },
  253. { 0, 0, 0 }
  254. };
  255. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  256. struct {
  257. int addrSetup; /* ??? */
  258. int rdy2pause;
  259. int wrDataSetup;
  260. } kl66_udma_timings[] =
  261. {
  262. { 0, 180, 120 }, /* Mode 0 */
  263. { 0, 150, 90 }, /* 1 */
  264. { 0, 120, 60 }, /* 2 */
  265. { 0, 90, 45 }, /* 3 */
  266. { 0, 90, 30 } /* 4 */
  267. };
  268. /* UniNorth 2 ATA/100 timings */
  269. struct kauai_timing {
  270. int cycle_time;
  271. u32 timing_reg;
  272. };
  273. static struct kauai_timing kauai_pio_timings[] =
  274. {
  275. { 930 , 0x08000fff },
  276. { 600 , 0x08000a92 },
  277. { 383 , 0x0800060f },
  278. { 360 , 0x08000492 },
  279. { 330 , 0x0800048f },
  280. { 300 , 0x080003cf },
  281. { 270 , 0x080003cc },
  282. { 240 , 0x0800038b },
  283. { 239 , 0x0800030c },
  284. { 180 , 0x05000249 },
  285. { 120 , 0x04000148 },
  286. { 0 , 0 },
  287. };
  288. static struct kauai_timing kauai_mdma_timings[] =
  289. {
  290. { 1260 , 0x00fff000 },
  291. { 480 , 0x00618000 },
  292. { 360 , 0x00492000 },
  293. { 270 , 0x0038e000 },
  294. { 240 , 0x0030c000 },
  295. { 210 , 0x002cb000 },
  296. { 180 , 0x00249000 },
  297. { 150 , 0x00209000 },
  298. { 120 , 0x00148000 },
  299. { 0 , 0 },
  300. };
  301. static struct kauai_timing kauai_udma_timings[] =
  302. {
  303. { 120 , 0x000070c0 },
  304. { 90 , 0x00005d80 },
  305. { 60 , 0x00004a60 },
  306. { 45 , 0x00003a50 },
  307. { 30 , 0x00002a30 },
  308. { 20 , 0x00002921 },
  309. { 0 , 0 },
  310. };
  311. static struct kauai_timing shasta_pio_timings[] =
  312. {
  313. { 930 , 0x08000fff },
  314. { 600 , 0x0A000c97 },
  315. { 383 , 0x07000712 },
  316. { 360 , 0x040003cd },
  317. { 330 , 0x040003cd },
  318. { 300 , 0x040003cd },
  319. { 270 , 0x040003cd },
  320. { 240 , 0x040003cd },
  321. { 239 , 0x040003cd },
  322. { 180 , 0x0400028b },
  323. { 120 , 0x0400010a },
  324. { 0 , 0 },
  325. };
  326. static struct kauai_timing shasta_mdma_timings[] =
  327. {
  328. { 1260 , 0x00fff000 },
  329. { 480 , 0x00820800 },
  330. { 360 , 0x00820800 },
  331. { 270 , 0x00820800 },
  332. { 240 , 0x00820800 },
  333. { 210 , 0x00820800 },
  334. { 180 , 0x00820800 },
  335. { 150 , 0x0028b000 },
  336. { 120 , 0x001ca000 },
  337. { 0 , 0 },
  338. };
  339. static struct kauai_timing shasta_udma133_timings[] =
  340. {
  341. { 120 , 0x00035901, },
  342. { 90 , 0x000348b1, },
  343. { 60 , 0x00033881, },
  344. { 45 , 0x00033861, },
  345. { 30 , 0x00033841, },
  346. { 20 , 0x00033031, },
  347. { 15 , 0x00033021, },
  348. { 0 , 0 },
  349. };
  350. static inline u32
  351. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  352. {
  353. int i;
  354. for (i=0; table[i].cycle_time; i++)
  355. if (cycle_time > table[i+1].cycle_time)
  356. return table[i].timing_reg;
  357. BUG();
  358. return 0;
  359. }
  360. /* allow up to 256 DBDMA commands per xfer */
  361. #define MAX_DCMDS 256
  362. /*
  363. * Wait 1s for disk to answer on IDE bus after a hard reset
  364. * of the device (via GPIO/FCR).
  365. *
  366. * Some devices seem to "pollute" the bus even after dropping
  367. * the BSY bit (typically some combo drives slave on the UDMA
  368. * bus) after a hard reset. Since we hard reset all drives on
  369. * KeyLargo ATA66, we have to keep that delay around. I may end
  370. * up not hard resetting anymore on these and keep the delay only
  371. * for older interfaces instead (we have to reset when coming
  372. * from MacOS...) --BenH.
  373. */
  374. #define IDE_WAKEUP_DELAY (1*HZ)
  375. static int pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
  376. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  377. static void pmac_ide_selectproc(ide_drive_t *drive);
  378. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  379. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  380. /*
  381. * N.B. this can't be an initfunc, because the media-bay task can
  382. * call ide_[un]register at any time.
  383. */
  384. void
  385. pmac_ide_init_hwif_ports(hw_regs_t *hw,
  386. unsigned long data_port, unsigned long ctrl_port,
  387. int *irq)
  388. {
  389. int i, ix;
  390. if (data_port == 0)
  391. return;
  392. for (ix = 0; ix < MAX_HWIFS; ++ix)
  393. if (data_port == pmac_ide[ix].regbase)
  394. break;
  395. if (ix >= MAX_HWIFS)
  396. return; /* not an IDE PMAC interface */
  397. for (i = 0; i < 8; ++i)
  398. hw->io_ports[i] = data_port + i * 0x10;
  399. hw->io_ports[8] = data_port + 0x160;
  400. if (irq != NULL)
  401. *irq = pmac_ide[ix].irq;
  402. hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
  403. }
  404. #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
  405. /*
  406. * Apply the timings of the proper unit (master/slave) to the shared
  407. * timing register when selecting that unit. This version is for
  408. * ASICs with a single timing register
  409. */
  410. static void
  411. pmac_ide_selectproc(ide_drive_t *drive)
  412. {
  413. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  414. if (pmif == NULL)
  415. return;
  416. if (drive->select.b.unit & 0x01)
  417. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  418. else
  419. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  420. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  421. }
  422. /*
  423. * Apply the timings of the proper unit (master/slave) to the shared
  424. * timing register when selecting that unit. This version is for
  425. * ASICs with a dual timing register (Kauai)
  426. */
  427. static void
  428. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  429. {
  430. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  431. if (pmif == NULL)
  432. return;
  433. if (drive->select.b.unit & 0x01) {
  434. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  435. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  436. } else {
  437. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  438. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  439. }
  440. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  441. }
  442. /*
  443. * Force an update of controller timing values for a given drive
  444. */
  445. static void
  446. pmac_ide_do_update_timings(ide_drive_t *drive)
  447. {
  448. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  449. if (pmif == NULL)
  450. return;
  451. if (pmif->kind == controller_sh_ata6 ||
  452. pmif->kind == controller_un_ata6 ||
  453. pmif->kind == controller_k2_ata6)
  454. pmac_ide_kauai_selectproc(drive);
  455. else
  456. pmac_ide_selectproc(drive);
  457. }
  458. static void
  459. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  460. {
  461. u32 tmp;
  462. writeb(value, (void __iomem *) port);
  463. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  464. }
  465. /*
  466. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  467. */
  468. static void
  469. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  470. {
  471. u32 *timings, t;
  472. unsigned accessTicks, recTicks;
  473. unsigned accessTime, recTime;
  474. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  475. unsigned int cycle_time;
  476. if (pmif == NULL)
  477. return;
  478. /* which drive is it ? */
  479. timings = &pmif->timings[drive->select.b.unit & 0x01];
  480. t = *timings;
  481. cycle_time = ide_pio_cycle_time(drive, pio);
  482. switch (pmif->kind) {
  483. case controller_sh_ata6: {
  484. /* 133Mhz cell */
  485. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  486. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  487. break;
  488. }
  489. case controller_un_ata6:
  490. case controller_k2_ata6: {
  491. /* 100Mhz cell */
  492. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  493. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  494. break;
  495. }
  496. case controller_kl_ata4:
  497. /* 66Mhz cell */
  498. recTime = cycle_time - ide_pio_timings[pio].active_time
  499. - ide_pio_timings[pio].setup_time;
  500. recTime = max(recTime, 150U);
  501. accessTime = ide_pio_timings[pio].active_time;
  502. accessTime = max(accessTime, 150U);
  503. accessTicks = SYSCLK_TICKS_66(accessTime);
  504. accessTicks = min(accessTicks, 0x1fU);
  505. recTicks = SYSCLK_TICKS_66(recTime);
  506. recTicks = min(recTicks, 0x1fU);
  507. t = (t & ~TR_66_PIO_MASK) |
  508. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  509. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  510. break;
  511. default: {
  512. /* 33Mhz cell */
  513. int ebit = 0;
  514. recTime = cycle_time - ide_pio_timings[pio].active_time
  515. - ide_pio_timings[pio].setup_time;
  516. recTime = max(recTime, 150U);
  517. accessTime = ide_pio_timings[pio].active_time;
  518. accessTime = max(accessTime, 150U);
  519. accessTicks = SYSCLK_TICKS(accessTime);
  520. accessTicks = min(accessTicks, 0x1fU);
  521. accessTicks = max(accessTicks, 4U);
  522. recTicks = SYSCLK_TICKS(recTime);
  523. recTicks = min(recTicks, 0x1fU);
  524. recTicks = max(recTicks, 5U) - 4;
  525. if (recTicks > 9) {
  526. recTicks--; /* guess, but it's only for PIO0, so... */
  527. ebit = 1;
  528. }
  529. t = (t & ~TR_33_PIO_MASK) |
  530. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  531. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  532. if (ebit)
  533. t |= TR_33_PIO_E;
  534. break;
  535. }
  536. }
  537. #ifdef IDE_PMAC_DEBUG
  538. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  539. drive->name, pio, *timings);
  540. #endif
  541. *timings = t;
  542. pmac_ide_do_update_timings(drive);
  543. }
  544. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  545. /*
  546. * Calculate KeyLargo ATA/66 UDMA timings
  547. */
  548. static int
  549. set_timings_udma_ata4(u32 *timings, u8 speed)
  550. {
  551. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  552. if (speed > XFER_UDMA_4)
  553. return 1;
  554. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  555. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  556. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  557. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  558. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  559. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  560. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  561. TR_66_UDMA_EN;
  562. #ifdef IDE_PMAC_DEBUG
  563. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  564. speed & 0xf, *timings);
  565. #endif
  566. return 0;
  567. }
  568. /*
  569. * Calculate Kauai ATA/100 UDMA timings
  570. */
  571. static int
  572. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  573. {
  574. struct ide_timing *t = ide_timing_find_mode(speed);
  575. u32 tr;
  576. if (speed > XFER_UDMA_5 || t == NULL)
  577. return 1;
  578. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  579. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  580. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  581. return 0;
  582. }
  583. /*
  584. * Calculate Shasta ATA/133 UDMA timings
  585. */
  586. static int
  587. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  588. {
  589. struct ide_timing *t = ide_timing_find_mode(speed);
  590. u32 tr;
  591. if (speed > XFER_UDMA_6 || t == NULL)
  592. return 1;
  593. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  594. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  595. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  596. return 0;
  597. }
  598. /*
  599. * Calculate MDMA timings for all cells
  600. */
  601. static void
  602. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  603. u8 speed)
  604. {
  605. int cycleTime, accessTime = 0, recTime = 0;
  606. unsigned accessTicks, recTicks;
  607. struct hd_driveid *id = drive->id;
  608. struct mdma_timings_t* tm = NULL;
  609. int i;
  610. /* Get default cycle time for mode */
  611. switch(speed & 0xf) {
  612. case 0: cycleTime = 480; break;
  613. case 1: cycleTime = 150; break;
  614. case 2: cycleTime = 120; break;
  615. default:
  616. BUG();
  617. break;
  618. }
  619. /* Check if drive provides explicit DMA cycle time */
  620. if ((id->field_valid & 2) && id->eide_dma_time)
  621. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  622. /* OHare limits according to some old Apple sources */
  623. if ((intf_type == controller_ohare) && (cycleTime < 150))
  624. cycleTime = 150;
  625. /* Get the proper timing array for this controller */
  626. switch(intf_type) {
  627. case controller_sh_ata6:
  628. case controller_un_ata6:
  629. case controller_k2_ata6:
  630. break;
  631. case controller_kl_ata4:
  632. tm = mdma_timings_66;
  633. break;
  634. case controller_kl_ata3:
  635. tm = mdma_timings_33k;
  636. break;
  637. default:
  638. tm = mdma_timings_33;
  639. break;
  640. }
  641. if (tm != NULL) {
  642. /* Lookup matching access & recovery times */
  643. i = -1;
  644. for (;;) {
  645. if (tm[i+1].cycleTime < cycleTime)
  646. break;
  647. i++;
  648. }
  649. cycleTime = tm[i].cycleTime;
  650. accessTime = tm[i].accessTime;
  651. recTime = tm[i].recoveryTime;
  652. #ifdef IDE_PMAC_DEBUG
  653. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  654. drive->name, cycleTime, accessTime, recTime);
  655. #endif
  656. }
  657. switch(intf_type) {
  658. case controller_sh_ata6: {
  659. /* 133Mhz cell */
  660. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  661. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  662. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  663. }
  664. case controller_un_ata6:
  665. case controller_k2_ata6: {
  666. /* 100Mhz cell */
  667. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  668. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  669. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  670. }
  671. break;
  672. case controller_kl_ata4:
  673. /* 66Mhz cell */
  674. accessTicks = SYSCLK_TICKS_66(accessTime);
  675. accessTicks = min(accessTicks, 0x1fU);
  676. accessTicks = max(accessTicks, 0x1U);
  677. recTicks = SYSCLK_TICKS_66(recTime);
  678. recTicks = min(recTicks, 0x1fU);
  679. recTicks = max(recTicks, 0x3U);
  680. /* Clear out mdma bits and disable udma */
  681. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  682. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  683. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  684. break;
  685. case controller_kl_ata3:
  686. /* 33Mhz cell on KeyLargo */
  687. accessTicks = SYSCLK_TICKS(accessTime);
  688. accessTicks = max(accessTicks, 1U);
  689. accessTicks = min(accessTicks, 0x1fU);
  690. accessTime = accessTicks * IDE_SYSCLK_NS;
  691. recTicks = SYSCLK_TICKS(recTime);
  692. recTicks = max(recTicks, 1U);
  693. recTicks = min(recTicks, 0x1fU);
  694. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  695. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  696. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  697. break;
  698. default: {
  699. /* 33Mhz cell on others */
  700. int halfTick = 0;
  701. int origAccessTime = accessTime;
  702. int origRecTime = recTime;
  703. accessTicks = SYSCLK_TICKS(accessTime);
  704. accessTicks = max(accessTicks, 1U);
  705. accessTicks = min(accessTicks, 0x1fU);
  706. accessTime = accessTicks * IDE_SYSCLK_NS;
  707. recTicks = SYSCLK_TICKS(recTime);
  708. recTicks = max(recTicks, 2U) - 1;
  709. recTicks = min(recTicks, 0x1fU);
  710. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  711. if ((accessTicks > 1) &&
  712. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  713. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  714. halfTick = 1;
  715. accessTicks--;
  716. }
  717. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  718. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  719. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  720. if (halfTick)
  721. *timings |= TR_33_MDMA_HALFTICK;
  722. }
  723. }
  724. #ifdef IDE_PMAC_DEBUG
  725. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  726. drive->name, speed & 0xf, *timings);
  727. #endif
  728. }
  729. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  730. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  731. {
  732. int unit = (drive->select.b.unit & 0x01);
  733. int ret = 0;
  734. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  735. u32 *timings, *timings2, tl[2];
  736. timings = &pmif->timings[unit];
  737. timings2 = &pmif->timings[unit+2];
  738. /* Copy timings to local image */
  739. tl[0] = *timings;
  740. tl[1] = *timings2;
  741. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  742. if (speed >= XFER_UDMA_0) {
  743. if (pmif->kind == controller_kl_ata4)
  744. ret = set_timings_udma_ata4(&tl[0], speed);
  745. else if (pmif->kind == controller_un_ata6
  746. || pmif->kind == controller_k2_ata6)
  747. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  748. else if (pmif->kind == controller_sh_ata6)
  749. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  750. else
  751. ret = -1;
  752. } else
  753. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  754. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  755. if (ret)
  756. return;
  757. /* Apply timings to controller */
  758. *timings = tl[0];
  759. *timings2 = tl[1];
  760. pmac_ide_do_update_timings(drive);
  761. }
  762. /*
  763. * Blast some well known "safe" values to the timing registers at init or
  764. * wakeup from sleep time, before we do real calculation
  765. */
  766. static void
  767. sanitize_timings(pmac_ide_hwif_t *pmif)
  768. {
  769. unsigned int value, value2 = 0;
  770. switch(pmif->kind) {
  771. case controller_sh_ata6:
  772. value = 0x0a820c97;
  773. value2 = 0x00033031;
  774. break;
  775. case controller_un_ata6:
  776. case controller_k2_ata6:
  777. value = 0x08618a92;
  778. value2 = 0x00002921;
  779. break;
  780. case controller_kl_ata4:
  781. value = 0x0008438c;
  782. break;
  783. case controller_kl_ata3:
  784. value = 0x00084526;
  785. break;
  786. case controller_heathrow:
  787. case controller_ohare:
  788. default:
  789. value = 0x00074526;
  790. break;
  791. }
  792. pmif->timings[0] = pmif->timings[1] = value;
  793. pmif->timings[2] = pmif->timings[3] = value2;
  794. }
  795. unsigned long
  796. pmac_ide_get_base(int index)
  797. {
  798. return pmac_ide[index].regbase;
  799. }
  800. int
  801. pmac_ide_check_base(unsigned long base)
  802. {
  803. int ix;
  804. for (ix = 0; ix < MAX_HWIFS; ++ix)
  805. if (base == pmac_ide[ix].regbase)
  806. return ix;
  807. return -1;
  808. }
  809. int
  810. pmac_ide_get_irq(unsigned long base)
  811. {
  812. int ix;
  813. for (ix = 0; ix < MAX_HWIFS; ++ix)
  814. if (base == pmac_ide[ix].regbase)
  815. return pmac_ide[ix].irq;
  816. return 0;
  817. }
  818. static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
  819. dev_t __init
  820. pmac_find_ide_boot(char *bootdevice, int n)
  821. {
  822. int i;
  823. /*
  824. * Look through the list of IDE interfaces for this one.
  825. */
  826. for (i = 0; i < pmac_ide_count; ++i) {
  827. char *name;
  828. if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
  829. continue;
  830. name = pmac_ide[i].node->full_name;
  831. if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
  832. /* XXX should cope with the 2nd drive as well... */
  833. return MKDEV(ide_majors[i], 0);
  834. }
  835. }
  836. return 0;
  837. }
  838. /* Suspend call back, should be called after the child devices
  839. * have actually been suspended
  840. */
  841. static int
  842. pmac_ide_do_suspend(ide_hwif_t *hwif)
  843. {
  844. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  845. /* We clear the timings */
  846. pmif->timings[0] = 0;
  847. pmif->timings[1] = 0;
  848. disable_irq(pmif->irq);
  849. /* The media bay will handle itself just fine */
  850. if (pmif->mediabay)
  851. return 0;
  852. /* Kauai has bus control FCRs directly here */
  853. if (pmif->kauai_fcr) {
  854. u32 fcr = readl(pmif->kauai_fcr);
  855. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  856. writel(fcr, pmif->kauai_fcr);
  857. }
  858. /* Disable the bus on older machines and the cell on kauai */
  859. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  860. 0);
  861. return 0;
  862. }
  863. /* Resume call back, should be called before the child devices
  864. * are resumed
  865. */
  866. static int
  867. pmac_ide_do_resume(ide_hwif_t *hwif)
  868. {
  869. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  870. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  871. if (!pmif->mediabay) {
  872. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  873. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  874. msleep(10);
  875. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  876. /* Kauai has it different */
  877. if (pmif->kauai_fcr) {
  878. u32 fcr = readl(pmif->kauai_fcr);
  879. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  880. writel(fcr, pmif->kauai_fcr);
  881. }
  882. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  883. }
  884. /* Sanitize drive timings */
  885. sanitize_timings(pmif);
  886. enable_irq(pmif->irq);
  887. return 0;
  888. }
  889. static const struct ide_port_info pmac_port_info = {
  890. .chipset = ide_pmac,
  891. .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  892. IDE_HFLAG_PIO_NO_DOWNGRADE |
  893. IDE_HFLAG_POST_SET_MODE |
  894. IDE_HFLAG_NO_DMA | /* no SFF-style DMA */
  895. IDE_HFLAG_UNMASK_IRQS,
  896. .pio_mask = ATA_PIO4,
  897. .mwdma_mask = ATA_MWDMA2,
  898. };
  899. /*
  900. * Setup, register & probe an IDE channel driven by this driver, this is
  901. * called by one of the 2 probe functions (macio or PCI). Note that a channel
  902. * that ends up beeing free of any device is not kept around by this driver
  903. * (it is kept in 2.4). This introduce an interface numbering change on some
  904. * rare machines unfortunately, but it's better this way.
  905. */
  906. static int __devinit
  907. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
  908. {
  909. struct device_node *np = pmif->node;
  910. const int *bidp;
  911. u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
  912. struct ide_port_info d = pmac_port_info;
  913. pmif->cable_80 = 0;
  914. pmif->broken_dma = pmif->broken_dma_warn = 0;
  915. if (of_device_is_compatible(np, "shasta-ata")) {
  916. pmif->kind = controller_sh_ata6;
  917. d.udma_mask = ATA_UDMA6;
  918. } else if (of_device_is_compatible(np, "kauai-ata")) {
  919. pmif->kind = controller_un_ata6;
  920. d.udma_mask = ATA_UDMA5;
  921. } else if (of_device_is_compatible(np, "K2-UATA")) {
  922. pmif->kind = controller_k2_ata6;
  923. d.udma_mask = ATA_UDMA5;
  924. } else if (of_device_is_compatible(np, "keylargo-ata")) {
  925. if (strcmp(np->name, "ata-4") == 0) {
  926. pmif->kind = controller_kl_ata4;
  927. d.udma_mask = ATA_UDMA4;
  928. } else
  929. pmif->kind = controller_kl_ata3;
  930. } else if (of_device_is_compatible(np, "heathrow-ata")) {
  931. pmif->kind = controller_heathrow;
  932. } else {
  933. pmif->kind = controller_ohare;
  934. pmif->broken_dma = 1;
  935. }
  936. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  937. pmif->aapl_bus_id = bidp ? *bidp : 0;
  938. /* Get cable type from device-tree */
  939. if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
  940. || pmif->kind == controller_k2_ata6
  941. || pmif->kind == controller_sh_ata6) {
  942. const char* cable = of_get_property(np, "cable-type", NULL);
  943. if (cable && !strncmp(cable, "80-", 3))
  944. pmif->cable_80 = 1;
  945. }
  946. /* G5's seem to have incorrect cable type in device-tree. Let's assume
  947. * they have a 80 conductor cable, this seem to be always the case unless
  948. * the user mucked around
  949. */
  950. if (of_device_is_compatible(np, "K2-UATA") ||
  951. of_device_is_compatible(np, "shasta-ata"))
  952. pmif->cable_80 = 1;
  953. /* On Kauai-type controllers, we make sure the FCR is correct */
  954. if (pmif->kauai_fcr)
  955. writel(KAUAI_FCR_UATA_MAGIC |
  956. KAUAI_FCR_UATA_RESET_N |
  957. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  958. pmif->mediabay = 0;
  959. /* Make sure we have sane timings */
  960. sanitize_timings(pmif);
  961. #ifndef CONFIG_PPC64
  962. /* XXX FIXME: Media bay stuff need re-organizing */
  963. if (np->parent && np->parent->name
  964. && strcasecmp(np->parent->name, "media-bay") == 0) {
  965. #ifdef CONFIG_PMAC_MEDIABAY
  966. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
  967. #endif /* CONFIG_PMAC_MEDIABAY */
  968. pmif->mediabay = 1;
  969. if (!bidp)
  970. pmif->aapl_bus_id = 1;
  971. } else if (pmif->kind == controller_ohare) {
  972. /* The code below is having trouble on some ohare machines
  973. * (timing related ?). Until I can put my hand on one of these
  974. * units, I keep the old way
  975. */
  976. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  977. } else
  978. #endif
  979. {
  980. /* This is necessary to enable IDE when net-booting */
  981. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  982. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  983. msleep(10);
  984. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  985. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  986. }
  987. /* Setup MMIO ops */
  988. default_hwif_mmiops(hwif);
  989. hwif->OUTBSYNC = pmac_outbsync;
  990. /* Tell common code _not_ to mess with resources */
  991. hwif->mmio = 1;
  992. hwif->hwif_data = pmif;
  993. ide_init_port_hw(hwif, hw);
  994. hwif->noprobe = pmif->mediabay;
  995. hwif->hold = pmif->mediabay;
  996. hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
  997. hwif->set_pio_mode = pmac_ide_set_pio_mode;
  998. if (pmif->kind == controller_un_ata6
  999. || pmif->kind == controller_k2_ata6
  1000. || pmif->kind == controller_sh_ata6)
  1001. hwif->selectproc = pmac_ide_kauai_selectproc;
  1002. else
  1003. hwif->selectproc = pmac_ide_selectproc;
  1004. hwif->set_dma_mode = pmac_ide_set_dma_mode;
  1005. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  1006. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  1007. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  1008. #ifdef CONFIG_PMAC_MEDIABAY
  1009. if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
  1010. hwif->noprobe = 0;
  1011. #endif /* CONFIG_PMAC_MEDIABAY */
  1012. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1013. if (pmif->cable_80 == 0)
  1014. d.udma_mask &= ATA_UDMA2;
  1015. /* has a DBDMA controller channel */
  1016. if (pmif->dma_regs == 0 || pmac_ide_setup_dma(pmif, hwif) < 0)
  1017. #endif
  1018. d.udma_mask = d.mwdma_mask = 0;
  1019. idx[0] = hwif->index;
  1020. ide_device_add(idx, &d);
  1021. return 0;
  1022. }
  1023. /*
  1024. * Attach to a macio probed interface
  1025. */
  1026. static int __devinit
  1027. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1028. {
  1029. void __iomem *base;
  1030. unsigned long regbase;
  1031. int irq;
  1032. ide_hwif_t *hwif;
  1033. pmac_ide_hwif_t *pmif;
  1034. int i, rc;
  1035. hw_regs_t hw;
  1036. i = 0;
  1037. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1038. || pmac_ide[i].node != NULL))
  1039. ++i;
  1040. if (i >= MAX_HWIFS) {
  1041. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  1042. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  1043. return -ENODEV;
  1044. }
  1045. pmif = &pmac_ide[i];
  1046. hwif = &ide_hwifs[i];
  1047. if (macio_resource_count(mdev) == 0) {
  1048. printk(KERN_WARNING "ide%d: no address for %s\n",
  1049. i, mdev->ofdev.node->full_name);
  1050. return -ENXIO;
  1051. }
  1052. /* Request memory resource for IO ports */
  1053. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1054. printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
  1055. return -EBUSY;
  1056. }
  1057. /* XXX This is bogus. Should be fixed in the registry by checking
  1058. * the kind of host interrupt controller, a bit like gatwick
  1059. * fixes in irq.c. That works well enough for the single case
  1060. * where that happens though...
  1061. */
  1062. if (macio_irq_count(mdev) == 0) {
  1063. printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
  1064. i, mdev->ofdev.node->full_name);
  1065. irq = irq_create_mapping(NULL, 13);
  1066. } else
  1067. irq = macio_irq(mdev, 0);
  1068. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1069. regbase = (unsigned long) base;
  1070. hwif->dev = &mdev->bus->pdev->dev;
  1071. pmif->mdev = mdev;
  1072. pmif->node = mdev->ofdev.node;
  1073. pmif->regbase = regbase;
  1074. pmif->irq = irq;
  1075. pmif->kauai_fcr = NULL;
  1076. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1077. if (macio_resource_count(mdev) >= 2) {
  1078. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1079. printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
  1080. else
  1081. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1082. } else
  1083. pmif->dma_regs = NULL;
  1084. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1085. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1086. memset(&hw, 0, sizeof(hw));
  1087. pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
  1088. hw.irq = irq;
  1089. hw.dev = &mdev->ofdev.dev;
  1090. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1091. if (rc != 0) {
  1092. /* The inteface is released to the common IDE layer */
  1093. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1094. iounmap(base);
  1095. if (pmif->dma_regs) {
  1096. iounmap(pmif->dma_regs);
  1097. macio_release_resource(mdev, 1);
  1098. }
  1099. memset(pmif, 0, sizeof(*pmif));
  1100. macio_release_resource(mdev, 0);
  1101. }
  1102. return rc;
  1103. }
  1104. static int
  1105. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1106. {
  1107. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1108. int rc = 0;
  1109. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1110. && mesg.event == PM_EVENT_SUSPEND) {
  1111. rc = pmac_ide_do_suspend(hwif);
  1112. if (rc == 0)
  1113. mdev->ofdev.dev.power.power_state = mesg;
  1114. }
  1115. return rc;
  1116. }
  1117. static int
  1118. pmac_ide_macio_resume(struct macio_dev *mdev)
  1119. {
  1120. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1121. int rc = 0;
  1122. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1123. rc = pmac_ide_do_resume(hwif);
  1124. if (rc == 0)
  1125. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1126. }
  1127. return rc;
  1128. }
  1129. /*
  1130. * Attach to a PCI probed interface
  1131. */
  1132. static int __devinit
  1133. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1134. {
  1135. ide_hwif_t *hwif;
  1136. struct device_node *np;
  1137. pmac_ide_hwif_t *pmif;
  1138. void __iomem *base;
  1139. unsigned long rbase, rlen;
  1140. int i, rc;
  1141. hw_regs_t hw;
  1142. np = pci_device_to_OF_node(pdev);
  1143. if (np == NULL) {
  1144. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1145. return -ENODEV;
  1146. }
  1147. i = 0;
  1148. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1149. || pmac_ide[i].node != NULL))
  1150. ++i;
  1151. if (i >= MAX_HWIFS) {
  1152. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1153. printk(KERN_ERR " %s\n", np->full_name);
  1154. return -ENODEV;
  1155. }
  1156. pmif = &pmac_ide[i];
  1157. hwif = &ide_hwifs[i];
  1158. if (pci_enable_device(pdev)) {
  1159. printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
  1160. i, np->full_name);
  1161. return -ENXIO;
  1162. }
  1163. pci_set_master(pdev);
  1164. if (pci_request_regions(pdev, "Kauai ATA")) {
  1165. printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
  1166. i, np->full_name);
  1167. return -ENXIO;
  1168. }
  1169. hwif->dev = &pdev->dev;
  1170. pmif->mdev = NULL;
  1171. pmif->node = np;
  1172. rbase = pci_resource_start(pdev, 0);
  1173. rlen = pci_resource_len(pdev, 0);
  1174. base = ioremap(rbase, rlen);
  1175. pmif->regbase = (unsigned long) base + 0x2000;
  1176. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1177. pmif->dma_regs = base + 0x1000;
  1178. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1179. pmif->kauai_fcr = base;
  1180. pmif->irq = pdev->irq;
  1181. pci_set_drvdata(pdev, hwif);
  1182. memset(&hw, 0, sizeof(hw));
  1183. pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
  1184. hw.irq = pdev->irq;
  1185. hw.dev = &pdev->dev;
  1186. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1187. if (rc != 0) {
  1188. /* The inteface is released to the common IDE layer */
  1189. pci_set_drvdata(pdev, NULL);
  1190. iounmap(base);
  1191. memset(pmif, 0, sizeof(*pmif));
  1192. pci_release_regions(pdev);
  1193. }
  1194. return rc;
  1195. }
  1196. static int
  1197. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1198. {
  1199. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1200. int rc = 0;
  1201. if (mesg.event != pdev->dev.power.power_state.event
  1202. && mesg.event == PM_EVENT_SUSPEND) {
  1203. rc = pmac_ide_do_suspend(hwif);
  1204. if (rc == 0)
  1205. pdev->dev.power.power_state = mesg;
  1206. }
  1207. return rc;
  1208. }
  1209. static int
  1210. pmac_ide_pci_resume(struct pci_dev *pdev)
  1211. {
  1212. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1213. int rc = 0;
  1214. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1215. rc = pmac_ide_do_resume(hwif);
  1216. if (rc == 0)
  1217. pdev->dev.power.power_state = PMSG_ON;
  1218. }
  1219. return rc;
  1220. }
  1221. static struct of_device_id pmac_ide_macio_match[] =
  1222. {
  1223. {
  1224. .name = "IDE",
  1225. },
  1226. {
  1227. .name = "ATA",
  1228. },
  1229. {
  1230. .type = "ide",
  1231. },
  1232. {
  1233. .type = "ata",
  1234. },
  1235. {},
  1236. };
  1237. static struct macio_driver pmac_ide_macio_driver =
  1238. {
  1239. .name = "ide-pmac",
  1240. .match_table = pmac_ide_macio_match,
  1241. .probe = pmac_ide_macio_attach,
  1242. .suspend = pmac_ide_macio_suspend,
  1243. .resume = pmac_ide_macio_resume,
  1244. };
  1245. static const struct pci_device_id pmac_ide_pci_match[] = {
  1246. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1247. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1248. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1249. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1250. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1251. {},
  1252. };
  1253. static struct pci_driver pmac_ide_pci_driver = {
  1254. .name = "ide-pmac",
  1255. .id_table = pmac_ide_pci_match,
  1256. .probe = pmac_ide_pci_attach,
  1257. .suspend = pmac_ide_pci_suspend,
  1258. .resume = pmac_ide_pci_resume,
  1259. };
  1260. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1261. int __init pmac_ide_probe(void)
  1262. {
  1263. int error;
  1264. if (!machine_is(powermac))
  1265. return -ENODEV;
  1266. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1267. error = pci_register_driver(&pmac_ide_pci_driver);
  1268. if (error)
  1269. goto out;
  1270. error = macio_register_driver(&pmac_ide_macio_driver);
  1271. if (error) {
  1272. pci_unregister_driver(&pmac_ide_pci_driver);
  1273. goto out;
  1274. }
  1275. #else
  1276. error = macio_register_driver(&pmac_ide_macio_driver);
  1277. if (error)
  1278. goto out;
  1279. error = pci_register_driver(&pmac_ide_pci_driver);
  1280. if (error) {
  1281. macio_unregister_driver(&pmac_ide_macio_driver);
  1282. goto out;
  1283. }
  1284. #endif
  1285. out:
  1286. return error;
  1287. }
  1288. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1289. /*
  1290. * pmac_ide_build_dmatable builds the DBDMA command list
  1291. * for a transfer and sets the DBDMA channel to point to it.
  1292. */
  1293. static int
  1294. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1295. {
  1296. struct dbdma_cmd *table;
  1297. int i, count = 0;
  1298. ide_hwif_t *hwif = HWIF(drive);
  1299. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1300. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1301. struct scatterlist *sg;
  1302. int wr = (rq_data_dir(rq) == WRITE);
  1303. /* DMA table is already aligned */
  1304. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1305. /* Make sure DMA controller is stopped (necessary ?) */
  1306. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1307. while (readl(&dma->status) & RUN)
  1308. udelay(1);
  1309. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1310. if (!i)
  1311. return 0;
  1312. /* Build DBDMA commands list */
  1313. sg = hwif->sg_table;
  1314. while (i && sg_dma_len(sg)) {
  1315. u32 cur_addr;
  1316. u32 cur_len;
  1317. cur_addr = sg_dma_address(sg);
  1318. cur_len = sg_dma_len(sg);
  1319. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1320. if (pmif->broken_dma_warn == 0) {
  1321. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1322. "switching to PIO on Ohare chipset\n", drive->name);
  1323. pmif->broken_dma_warn = 1;
  1324. }
  1325. goto use_pio_instead;
  1326. }
  1327. while (cur_len) {
  1328. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1329. if (count++ >= MAX_DCMDS) {
  1330. printk(KERN_WARNING "%s: DMA table too small\n",
  1331. drive->name);
  1332. goto use_pio_instead;
  1333. }
  1334. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1335. st_le16(&table->req_count, tc);
  1336. st_le32(&table->phy_addr, cur_addr);
  1337. table->cmd_dep = 0;
  1338. table->xfer_status = 0;
  1339. table->res_count = 0;
  1340. cur_addr += tc;
  1341. cur_len -= tc;
  1342. ++table;
  1343. }
  1344. sg = sg_next(sg);
  1345. i--;
  1346. }
  1347. /* convert the last command to an input/output last command */
  1348. if (count) {
  1349. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1350. /* add the stop command to the end of the list */
  1351. memset(table, 0, sizeof(struct dbdma_cmd));
  1352. st_le16(&table->command, DBDMA_STOP);
  1353. mb();
  1354. writel(hwif->dmatable_dma, &dma->cmdptr);
  1355. return 1;
  1356. }
  1357. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1358. use_pio_instead:
  1359. ide_destroy_dmatable(drive);
  1360. return 0; /* revert to PIO for this request */
  1361. }
  1362. /* Teardown mappings after DMA has completed. */
  1363. static void
  1364. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1365. {
  1366. ide_hwif_t *hwif = drive->hwif;
  1367. if (hwif->sg_nents) {
  1368. ide_destroy_dmatable(drive);
  1369. hwif->sg_nents = 0;
  1370. }
  1371. }
  1372. /*
  1373. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1374. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1375. */
  1376. static int
  1377. pmac_ide_dma_setup(ide_drive_t *drive)
  1378. {
  1379. ide_hwif_t *hwif = HWIF(drive);
  1380. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1381. struct request *rq = HWGROUP(drive)->rq;
  1382. u8 unit = (drive->select.b.unit & 0x01);
  1383. u8 ata4;
  1384. if (pmif == NULL)
  1385. return 1;
  1386. ata4 = (pmif->kind == controller_kl_ata4);
  1387. if (!pmac_ide_build_dmatable(drive, rq)) {
  1388. ide_map_sg(drive, rq);
  1389. return 1;
  1390. }
  1391. /* Apple adds 60ns to wrDataSetup on reads */
  1392. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1393. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1394. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1395. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1396. }
  1397. drive->waiting_for_dma = 1;
  1398. return 0;
  1399. }
  1400. static void
  1401. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1402. {
  1403. /* issue cmd to drive */
  1404. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1405. }
  1406. /*
  1407. * Kick the DMA controller into life after the DMA command has been issued
  1408. * to the drive.
  1409. */
  1410. static void
  1411. pmac_ide_dma_start(ide_drive_t *drive)
  1412. {
  1413. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1414. volatile struct dbdma_regs __iomem *dma;
  1415. dma = pmif->dma_regs;
  1416. writel((RUN << 16) | RUN, &dma->control);
  1417. /* Make sure it gets to the controller right now */
  1418. (void)readl(&dma->control);
  1419. }
  1420. /*
  1421. * After a DMA transfer, make sure the controller is stopped
  1422. */
  1423. static int
  1424. pmac_ide_dma_end (ide_drive_t *drive)
  1425. {
  1426. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1427. volatile struct dbdma_regs __iomem *dma;
  1428. u32 dstat;
  1429. if (pmif == NULL)
  1430. return 0;
  1431. dma = pmif->dma_regs;
  1432. drive->waiting_for_dma = 0;
  1433. dstat = readl(&dma->status);
  1434. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1435. pmac_ide_destroy_dmatable(drive);
  1436. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1437. * in theory, but with ATAPI decices doing buffer underruns, that would
  1438. * cause us to disable DMA, which isn't what we want
  1439. */
  1440. return (dstat & (RUN|DEAD)) != RUN;
  1441. }
  1442. /*
  1443. * Check out that the interrupt we got was for us. We can't always know this
  1444. * for sure with those Apple interfaces (well, we could on the recent ones but
  1445. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1446. * so it's not really a problem
  1447. */
  1448. static int
  1449. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1450. {
  1451. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1452. volatile struct dbdma_regs __iomem *dma;
  1453. unsigned long status, timeout;
  1454. if (pmif == NULL)
  1455. return 0;
  1456. dma = pmif->dma_regs;
  1457. /* We have to things to deal with here:
  1458. *
  1459. * - The dbdma won't stop if the command was started
  1460. * but completed with an error without transferring all
  1461. * datas. This happens when bad blocks are met during
  1462. * a multi-block transfer.
  1463. *
  1464. * - The dbdma fifo hasn't yet finished flushing to
  1465. * to system memory when the disk interrupt occurs.
  1466. *
  1467. */
  1468. /* If ACTIVE is cleared, the STOP command have passed and
  1469. * transfer is complete.
  1470. */
  1471. status = readl(&dma->status);
  1472. if (!(status & ACTIVE))
  1473. return 1;
  1474. if (!drive->waiting_for_dma)
  1475. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1476. called while not waiting\n", HWIF(drive)->index);
  1477. /* If dbdma didn't execute the STOP command yet, the
  1478. * active bit is still set. We consider that we aren't
  1479. * sharing interrupts (which is hopefully the case with
  1480. * those controllers) and so we just try to flush the
  1481. * channel for pending data in the fifo
  1482. */
  1483. udelay(1);
  1484. writel((FLUSH << 16) | FLUSH, &dma->control);
  1485. timeout = 0;
  1486. for (;;) {
  1487. udelay(1);
  1488. status = readl(&dma->status);
  1489. if ((status & FLUSH) == 0)
  1490. break;
  1491. if (++timeout > 100) {
  1492. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1493. timeout flushing channel\n", HWIF(drive)->index);
  1494. break;
  1495. }
  1496. }
  1497. return 1;
  1498. }
  1499. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1500. {
  1501. }
  1502. static void
  1503. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1504. {
  1505. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1506. volatile struct dbdma_regs __iomem *dma;
  1507. unsigned long status;
  1508. if (pmif == NULL)
  1509. return;
  1510. dma = pmif->dma_regs;
  1511. status = readl(&dma->status);
  1512. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1513. }
  1514. /*
  1515. * Allocate the data structures needed for using DMA with an interface
  1516. * and fill the proper list of functions pointers
  1517. */
  1518. static int __devinit pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1519. {
  1520. struct pci_dev *dev = to_pci_dev(hwif->dev);
  1521. /* We won't need pci_dev if we switch to generic consistent
  1522. * DMA routines ...
  1523. */
  1524. if (dev == NULL)
  1525. return -ENODEV;
  1526. /*
  1527. * Allocate space for the DBDMA commands.
  1528. * The +2 is +1 for the stop command and +1 to allow for
  1529. * aligning the start address to a multiple of 16 bytes.
  1530. */
  1531. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1532. dev,
  1533. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1534. &hwif->dmatable_dma);
  1535. if (pmif->dma_table_cpu == NULL) {
  1536. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1537. hwif->name);
  1538. return -ENOMEM;
  1539. }
  1540. hwif->sg_max_nents = MAX_DCMDS;
  1541. hwif->dma_host_set = &pmac_ide_dma_host_set;
  1542. hwif->dma_setup = &pmac_ide_dma_setup;
  1543. hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
  1544. hwif->dma_start = &pmac_ide_dma_start;
  1545. hwif->ide_dma_end = &pmac_ide_dma_end;
  1546. hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
  1547. hwif->dma_timeout = &ide_dma_timeout;
  1548. hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
  1549. return 0;
  1550. }
  1551. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1552. module_init(pmac_ide_probe);