i915_gem_gtt.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. /* PPGTT stuff */
  30. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  31. #define GEN6_PDE_VALID (1 << 0)
  32. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  33. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  34. #define GEN6_PTE_VALID (1 << 0)
  35. #define GEN6_PTE_UNCACHED (1 << 1)
  36. #define HSW_PTE_UNCACHED (0)
  37. #define GEN6_PTE_CACHE_LLC (2 << 1)
  38. #define GEN6_PTE_CACHE_LLC_MLC (3 << 1)
  39. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  40. static gen6_gtt_pte_t gen6_pte_encode(struct drm_device *dev,
  41. dma_addr_t addr,
  42. enum i915_cache_level level)
  43. {
  44. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  45. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  46. switch (level) {
  47. case I915_CACHE_LLC_MLC:
  48. pte |= GEN6_PTE_CACHE_LLC_MLC;
  49. break;
  50. case I915_CACHE_LLC:
  51. pte |= GEN6_PTE_CACHE_LLC;
  52. break;
  53. case I915_CACHE_NONE:
  54. pte |= GEN6_PTE_UNCACHED;
  55. break;
  56. default:
  57. BUG();
  58. }
  59. return pte;
  60. }
  61. #define BYT_PTE_WRITEABLE (1 << 1)
  62. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  63. static gen6_gtt_pte_t byt_pte_encode(struct drm_device *dev,
  64. dma_addr_t addr,
  65. enum i915_cache_level level)
  66. {
  67. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  68. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  69. /* Mark the page as writeable. Other platforms don't have a
  70. * setting for read-only/writable, so this matches that behavior.
  71. */
  72. pte |= BYT_PTE_WRITEABLE;
  73. if (level != I915_CACHE_NONE)
  74. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  75. return pte;
  76. }
  77. static gen6_gtt_pte_t hsw_pte_encode(struct drm_device *dev,
  78. dma_addr_t addr,
  79. enum i915_cache_level level)
  80. {
  81. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  82. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  83. if (level != I915_CACHE_NONE)
  84. pte |= GEN6_PTE_CACHE_LLC;
  85. return pte;
  86. }
  87. static int gen6_ppgtt_enable(struct drm_device *dev)
  88. {
  89. drm_i915_private_t *dev_priv = dev->dev_private;
  90. uint32_t pd_offset;
  91. struct intel_ring_buffer *ring;
  92. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  93. gen6_gtt_pte_t __iomem *pd_addr;
  94. uint32_t pd_entry;
  95. int i;
  96. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  97. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  98. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  99. dma_addr_t pt_addr;
  100. pt_addr = ppgtt->pt_dma_addr[i];
  101. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  102. pd_entry |= GEN6_PDE_VALID;
  103. writel(pd_entry, pd_addr + i);
  104. }
  105. readl(pd_addr);
  106. pd_offset = ppgtt->pd_offset;
  107. pd_offset /= 64; /* in cachelines, */
  108. pd_offset <<= 16;
  109. if (INTEL_INFO(dev)->gen == 6) {
  110. uint32_t ecochk, gab_ctl, ecobits;
  111. ecobits = I915_READ(GAC_ECO_BITS);
  112. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  113. ECOBITS_PPGTT_CACHE64B);
  114. gab_ctl = I915_READ(GAB_CTL);
  115. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  116. ecochk = I915_READ(GAM_ECOCHK);
  117. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  118. ECOCHK_PPGTT_CACHE64B);
  119. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  120. } else if (INTEL_INFO(dev)->gen >= 7) {
  121. uint32_t ecochk, ecobits;
  122. ecobits = I915_READ(GAC_ECO_BITS);
  123. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  124. ecochk = I915_READ(GAM_ECOCHK);
  125. if (IS_HASWELL(dev)) {
  126. ecochk |= ECOCHK_PPGTT_WB_HSW;
  127. } else {
  128. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  129. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  130. }
  131. I915_WRITE(GAM_ECOCHK, ecochk);
  132. /* GFX_MODE is per-ring on gen7+ */
  133. }
  134. for_each_ring(ring, dev_priv, i) {
  135. if (INTEL_INFO(dev)->gen >= 7)
  136. I915_WRITE(RING_MODE_GEN7(ring),
  137. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  138. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  139. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  140. }
  141. return 0;
  142. }
  143. /* PPGTT support for Sandybdrige/Gen6 and later */
  144. static void gen6_ppgtt_clear_range(struct i915_hw_ppgtt *ppgtt,
  145. unsigned first_entry,
  146. unsigned num_entries)
  147. {
  148. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  149. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  150. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  151. unsigned last_pte, i;
  152. scratch_pte = ppgtt->pte_encode(ppgtt->dev,
  153. ppgtt->scratch_page_dma_addr,
  154. I915_CACHE_LLC);
  155. while (num_entries) {
  156. last_pte = first_pte + num_entries;
  157. if (last_pte > I915_PPGTT_PT_ENTRIES)
  158. last_pte = I915_PPGTT_PT_ENTRIES;
  159. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  160. for (i = first_pte; i < last_pte; i++)
  161. pt_vaddr[i] = scratch_pte;
  162. kunmap_atomic(pt_vaddr);
  163. num_entries -= last_pte - first_pte;
  164. first_pte = 0;
  165. act_pt++;
  166. }
  167. }
  168. static void gen6_ppgtt_insert_entries(struct i915_hw_ppgtt *ppgtt,
  169. struct sg_table *pages,
  170. unsigned first_entry,
  171. enum i915_cache_level cache_level)
  172. {
  173. gen6_gtt_pte_t *pt_vaddr;
  174. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  175. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  176. struct sg_page_iter sg_iter;
  177. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  178. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  179. dma_addr_t page_addr;
  180. page_addr = sg_page_iter_dma_address(&sg_iter);
  181. pt_vaddr[act_pte] = ppgtt->pte_encode(ppgtt->dev, page_addr,
  182. cache_level);
  183. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  184. kunmap_atomic(pt_vaddr);
  185. act_pt++;
  186. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  187. act_pte = 0;
  188. }
  189. }
  190. kunmap_atomic(pt_vaddr);
  191. }
  192. static void gen6_ppgtt_cleanup(struct i915_hw_ppgtt *ppgtt)
  193. {
  194. int i;
  195. if (ppgtt->pt_dma_addr) {
  196. for (i = 0; i < ppgtt->num_pd_entries; i++)
  197. pci_unmap_page(ppgtt->dev->pdev,
  198. ppgtt->pt_dma_addr[i],
  199. 4096, PCI_DMA_BIDIRECTIONAL);
  200. }
  201. kfree(ppgtt->pt_dma_addr);
  202. for (i = 0; i < ppgtt->num_pd_entries; i++)
  203. __free_page(ppgtt->pt_pages[i]);
  204. kfree(ppgtt->pt_pages);
  205. kfree(ppgtt);
  206. }
  207. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  208. {
  209. struct drm_device *dev = ppgtt->dev;
  210. struct drm_i915_private *dev_priv = dev->dev_private;
  211. unsigned first_pd_entry_in_global_pt;
  212. int i;
  213. int ret = -ENOMEM;
  214. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  215. * entries. For aliasing ppgtt support we just steal them at the end for
  216. * now. */
  217. first_pd_entry_in_global_pt =
  218. gtt_total_entries(dev_priv->gtt) - I915_PPGTT_PD_ENTRIES;
  219. if (IS_HASWELL(dev)) {
  220. ppgtt->pte_encode = hsw_pte_encode;
  221. } else if (IS_VALLEYVIEW(dev)) {
  222. ppgtt->pte_encode = byt_pte_encode;
  223. } else {
  224. ppgtt->pte_encode = gen6_pte_encode;
  225. }
  226. ppgtt->num_pd_entries = I915_PPGTT_PD_ENTRIES;
  227. ppgtt->enable = gen6_ppgtt_enable;
  228. ppgtt->clear_range = gen6_ppgtt_clear_range;
  229. ppgtt->insert_entries = gen6_ppgtt_insert_entries;
  230. ppgtt->cleanup = gen6_ppgtt_cleanup;
  231. ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
  232. GFP_KERNEL);
  233. if (!ppgtt->pt_pages)
  234. return -ENOMEM;
  235. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  236. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  237. if (!ppgtt->pt_pages[i])
  238. goto err_pt_alloc;
  239. }
  240. ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
  241. GFP_KERNEL);
  242. if (!ppgtt->pt_dma_addr)
  243. goto err_pt_alloc;
  244. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  245. dma_addr_t pt_addr;
  246. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  247. PCI_DMA_BIDIRECTIONAL);
  248. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  249. ret = -EIO;
  250. goto err_pd_pin;
  251. }
  252. ppgtt->pt_dma_addr[i] = pt_addr;
  253. }
  254. ppgtt->clear_range(ppgtt, 0,
  255. ppgtt->num_pd_entries*I915_PPGTT_PT_ENTRIES);
  256. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  257. return 0;
  258. err_pd_pin:
  259. if (ppgtt->pt_dma_addr) {
  260. for (i--; i >= 0; i--)
  261. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  262. 4096, PCI_DMA_BIDIRECTIONAL);
  263. }
  264. err_pt_alloc:
  265. kfree(ppgtt->pt_dma_addr);
  266. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  267. if (ppgtt->pt_pages[i])
  268. __free_page(ppgtt->pt_pages[i]);
  269. }
  270. kfree(ppgtt->pt_pages);
  271. return ret;
  272. }
  273. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  274. {
  275. struct drm_i915_private *dev_priv = dev->dev_private;
  276. struct i915_hw_ppgtt *ppgtt;
  277. int ret;
  278. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  279. if (!ppgtt)
  280. return -ENOMEM;
  281. ppgtt->dev = dev;
  282. ppgtt->scratch_page_dma_addr = dev_priv->gtt.scratch_page_dma;
  283. if (INTEL_INFO(dev)->gen < 8)
  284. ret = gen6_ppgtt_init(ppgtt);
  285. else
  286. BUG();
  287. if (ret)
  288. kfree(ppgtt);
  289. else
  290. dev_priv->mm.aliasing_ppgtt = ppgtt;
  291. return ret;
  292. }
  293. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  294. {
  295. struct drm_i915_private *dev_priv = dev->dev_private;
  296. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  297. if (!ppgtt)
  298. return;
  299. ppgtt->cleanup(ppgtt);
  300. dev_priv->mm.aliasing_ppgtt = NULL;
  301. }
  302. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  303. struct drm_i915_gem_object *obj,
  304. enum i915_cache_level cache_level)
  305. {
  306. ppgtt->insert_entries(ppgtt, obj->pages,
  307. obj->gtt_space->start >> PAGE_SHIFT,
  308. cache_level);
  309. }
  310. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  311. struct drm_i915_gem_object *obj)
  312. {
  313. ppgtt->clear_range(ppgtt,
  314. obj->gtt_space->start >> PAGE_SHIFT,
  315. obj->base.size >> PAGE_SHIFT);
  316. }
  317. extern int intel_iommu_gfx_mapped;
  318. /* Certain Gen5 chipsets require require idling the GPU before
  319. * unmapping anything from the GTT when VT-d is enabled.
  320. */
  321. static inline bool needs_idle_maps(struct drm_device *dev)
  322. {
  323. #ifdef CONFIG_INTEL_IOMMU
  324. /* Query intel_iommu to see if we need the workaround. Presumably that
  325. * was loaded first.
  326. */
  327. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  328. return true;
  329. #endif
  330. return false;
  331. }
  332. static bool do_idling(struct drm_i915_private *dev_priv)
  333. {
  334. bool ret = dev_priv->mm.interruptible;
  335. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  336. dev_priv->mm.interruptible = false;
  337. if (i915_gpu_idle(dev_priv->dev)) {
  338. DRM_ERROR("Couldn't idle GPU\n");
  339. /* Wait a bit, in hopes it avoids the hang */
  340. udelay(10);
  341. }
  342. }
  343. return ret;
  344. }
  345. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  346. {
  347. if (unlikely(dev_priv->gtt.do_idle_maps))
  348. dev_priv->mm.interruptible = interruptible;
  349. }
  350. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  351. {
  352. struct drm_i915_private *dev_priv = dev->dev_private;
  353. struct drm_i915_gem_object *obj;
  354. /* First fill our portion of the GTT with scratch pages */
  355. dev_priv->gtt.gtt_clear_range(dev, dev_priv->gtt.start / PAGE_SIZE,
  356. dev_priv->gtt.total / PAGE_SIZE);
  357. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
  358. i915_gem_clflush_object(obj);
  359. i915_gem_gtt_bind_object(obj, obj->cache_level);
  360. }
  361. i915_gem_chipset_flush(dev);
  362. }
  363. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  364. {
  365. if (obj->has_dma_mapping)
  366. return 0;
  367. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  368. obj->pages->sgl, obj->pages->nents,
  369. PCI_DMA_BIDIRECTIONAL))
  370. return -ENOSPC;
  371. return 0;
  372. }
  373. /*
  374. * Binds an object into the global gtt with the specified cache level. The object
  375. * will be accessible to the GPU via commands whose operands reference offsets
  376. * within the global GTT as well as accessible by the GPU through the GMADR
  377. * mapped BAR (dev_priv->mm.gtt->gtt).
  378. */
  379. static void gen6_ggtt_insert_entries(struct drm_device *dev,
  380. struct sg_table *st,
  381. unsigned int first_entry,
  382. enum i915_cache_level level)
  383. {
  384. struct drm_i915_private *dev_priv = dev->dev_private;
  385. gen6_gtt_pte_t __iomem *gtt_entries =
  386. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  387. int i = 0;
  388. struct sg_page_iter sg_iter;
  389. dma_addr_t addr;
  390. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  391. addr = sg_page_iter_dma_address(&sg_iter);
  392. iowrite32(dev_priv->gtt.pte_encode(dev, addr, level),
  393. &gtt_entries[i]);
  394. i++;
  395. }
  396. /* XXX: This serves as a posting read to make sure that the PTE has
  397. * actually been updated. There is some concern that even though
  398. * registers and PTEs are within the same BAR that they are potentially
  399. * of NUMA access patterns. Therefore, even with the way we assume
  400. * hardware should work, we must keep this posting read for paranoia.
  401. */
  402. if (i != 0)
  403. WARN_ON(readl(&gtt_entries[i-1])
  404. != dev_priv->gtt.pte_encode(dev, addr, level));
  405. /* This next bit makes the above posting read even more important. We
  406. * want to flush the TLBs only after we're certain all the PTE updates
  407. * have finished.
  408. */
  409. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  410. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  411. }
  412. static void gen6_ggtt_clear_range(struct drm_device *dev,
  413. unsigned int first_entry,
  414. unsigned int num_entries)
  415. {
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  418. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  419. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  420. int i;
  421. if (WARN(num_entries > max_entries,
  422. "First entry = %d; Num entries = %d (max=%d)\n",
  423. first_entry, num_entries, max_entries))
  424. num_entries = max_entries;
  425. scratch_pte = dev_priv->gtt.pte_encode(dev,
  426. dev_priv->gtt.scratch_page_dma,
  427. I915_CACHE_LLC);
  428. for (i = 0; i < num_entries; i++)
  429. iowrite32(scratch_pte, &gtt_base[i]);
  430. readl(gtt_base);
  431. }
  432. static void i915_ggtt_insert_entries(struct drm_device *dev,
  433. struct sg_table *st,
  434. unsigned int pg_start,
  435. enum i915_cache_level cache_level)
  436. {
  437. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  438. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  439. intel_gtt_insert_sg_entries(st, pg_start, flags);
  440. }
  441. static void i915_ggtt_clear_range(struct drm_device *dev,
  442. unsigned int first_entry,
  443. unsigned int num_entries)
  444. {
  445. intel_gtt_clear_range(first_entry, num_entries);
  446. }
  447. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  448. enum i915_cache_level cache_level)
  449. {
  450. struct drm_device *dev = obj->base.dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. dev_priv->gtt.gtt_insert_entries(dev, obj->pages,
  453. obj->gtt_space->start >> PAGE_SHIFT,
  454. cache_level);
  455. obj->has_global_gtt_mapping = 1;
  456. }
  457. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  458. {
  459. struct drm_device *dev = obj->base.dev;
  460. struct drm_i915_private *dev_priv = dev->dev_private;
  461. dev_priv->gtt.gtt_clear_range(obj->base.dev,
  462. obj->gtt_space->start >> PAGE_SHIFT,
  463. obj->base.size >> PAGE_SHIFT);
  464. obj->has_global_gtt_mapping = 0;
  465. }
  466. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  467. {
  468. struct drm_device *dev = obj->base.dev;
  469. struct drm_i915_private *dev_priv = dev->dev_private;
  470. bool interruptible;
  471. interruptible = do_idling(dev_priv);
  472. if (!obj->has_dma_mapping)
  473. dma_unmap_sg(&dev->pdev->dev,
  474. obj->pages->sgl, obj->pages->nents,
  475. PCI_DMA_BIDIRECTIONAL);
  476. undo_idling(dev_priv, interruptible);
  477. }
  478. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  479. unsigned long color,
  480. unsigned long *start,
  481. unsigned long *end)
  482. {
  483. if (node->color != color)
  484. *start += 4096;
  485. if (!list_empty(&node->node_list)) {
  486. node = list_entry(node->node_list.next,
  487. struct drm_mm_node,
  488. node_list);
  489. if (node->allocated && node->color != color)
  490. *end -= 4096;
  491. }
  492. }
  493. void i915_gem_setup_global_gtt(struct drm_device *dev,
  494. unsigned long start,
  495. unsigned long mappable_end,
  496. unsigned long end)
  497. {
  498. /* Let GEM Manage all of the aperture.
  499. *
  500. * However, leave one page at the end still bound to the scratch page.
  501. * There are a number of places where the hardware apparently prefetches
  502. * past the end of the object, and we've seen multiple hangs with the
  503. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  504. * aperture. One page should be enough to keep any prefetching inside
  505. * of the aperture.
  506. */
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. struct drm_mm_node *entry;
  509. struct drm_i915_gem_object *obj;
  510. unsigned long hole_start, hole_end;
  511. BUG_ON(mappable_end > end);
  512. /* Subtract the guard page ... */
  513. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start - PAGE_SIZE);
  514. if (!HAS_LLC(dev))
  515. dev_priv->mm.gtt_space.color_adjust = i915_gtt_color_adjust;
  516. /* Mark any preallocated objects as occupied */
  517. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) {
  518. DRM_DEBUG_KMS("reserving preallocated space: %x + %zx\n",
  519. obj->gtt_offset, obj->base.size);
  520. BUG_ON(obj->gtt_space != I915_GTT_RESERVED);
  521. obj->gtt_space = drm_mm_create_block(&dev_priv->mm.gtt_space,
  522. obj->gtt_offset,
  523. obj->base.size,
  524. false);
  525. obj->has_global_gtt_mapping = 1;
  526. }
  527. dev_priv->gtt.start = start;
  528. dev_priv->gtt.total = end - start;
  529. /* Clear any non-preallocated blocks */
  530. drm_mm_for_each_hole(entry, &dev_priv->mm.gtt_space,
  531. hole_start, hole_end) {
  532. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  533. hole_start, hole_end);
  534. dev_priv->gtt.gtt_clear_range(dev, hole_start / PAGE_SIZE,
  535. (hole_end-hole_start) / PAGE_SIZE);
  536. }
  537. /* And finally clear the reserved guard page */
  538. dev_priv->gtt.gtt_clear_range(dev, end / PAGE_SIZE - 1, 1);
  539. }
  540. static bool
  541. intel_enable_ppgtt(struct drm_device *dev)
  542. {
  543. if (i915_enable_ppgtt >= 0)
  544. return i915_enable_ppgtt;
  545. #ifdef CONFIG_INTEL_IOMMU
  546. /* Disable ppgtt on SNB if VT-d is on. */
  547. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  548. return false;
  549. #endif
  550. return true;
  551. }
  552. void i915_gem_init_global_gtt(struct drm_device *dev)
  553. {
  554. struct drm_i915_private *dev_priv = dev->dev_private;
  555. unsigned long gtt_size, mappable_size;
  556. gtt_size = dev_priv->gtt.total;
  557. mappable_size = dev_priv->gtt.mappable_end;
  558. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  559. int ret;
  560. if (INTEL_INFO(dev)->gen <= 7) {
  561. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  562. * aperture accordingly when using aliasing ppgtt. */
  563. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  564. }
  565. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  566. ret = i915_gem_init_aliasing_ppgtt(dev);
  567. if (!ret)
  568. return;
  569. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  570. drm_mm_takedown(&dev_priv->mm.gtt_space);
  571. gtt_size += I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  572. }
  573. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  574. }
  575. static int setup_scratch_page(struct drm_device *dev)
  576. {
  577. struct drm_i915_private *dev_priv = dev->dev_private;
  578. struct page *page;
  579. dma_addr_t dma_addr;
  580. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  581. if (page == NULL)
  582. return -ENOMEM;
  583. get_page(page);
  584. set_pages_uc(page, 1);
  585. #ifdef CONFIG_INTEL_IOMMU
  586. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  587. PCI_DMA_BIDIRECTIONAL);
  588. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  589. return -EINVAL;
  590. #else
  591. dma_addr = page_to_phys(page);
  592. #endif
  593. dev_priv->gtt.scratch_page = page;
  594. dev_priv->gtt.scratch_page_dma = dma_addr;
  595. return 0;
  596. }
  597. static void teardown_scratch_page(struct drm_device *dev)
  598. {
  599. struct drm_i915_private *dev_priv = dev->dev_private;
  600. set_pages_wb(dev_priv->gtt.scratch_page, 1);
  601. pci_unmap_page(dev->pdev, dev_priv->gtt.scratch_page_dma,
  602. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  603. put_page(dev_priv->gtt.scratch_page);
  604. __free_page(dev_priv->gtt.scratch_page);
  605. }
  606. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  607. {
  608. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  609. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  610. return snb_gmch_ctl << 20;
  611. }
  612. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  613. {
  614. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  615. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  616. return snb_gmch_ctl << 25; /* 32 MB units */
  617. }
  618. static inline size_t gen7_get_stolen_size(u16 snb_gmch_ctl)
  619. {
  620. static const int stolen_decoder[] = {
  621. 0, 0, 0, 0, 0, 32, 48, 64, 128, 256, 96, 160, 224, 352};
  622. snb_gmch_ctl >>= IVB_GMCH_GMS_SHIFT;
  623. snb_gmch_ctl &= IVB_GMCH_GMS_MASK;
  624. return stolen_decoder[snb_gmch_ctl] << 20;
  625. }
  626. static int gen6_gmch_probe(struct drm_device *dev,
  627. size_t *gtt_total,
  628. size_t *stolen,
  629. phys_addr_t *mappable_base,
  630. unsigned long *mappable_end)
  631. {
  632. struct drm_i915_private *dev_priv = dev->dev_private;
  633. phys_addr_t gtt_bus_addr;
  634. unsigned int gtt_size;
  635. u16 snb_gmch_ctl;
  636. int ret;
  637. *mappable_base = pci_resource_start(dev->pdev, 2);
  638. *mappable_end = pci_resource_len(dev->pdev, 2);
  639. /* 64/512MB is the current min/max we actually know of, but this is just
  640. * a coarse sanity check.
  641. */
  642. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  643. DRM_ERROR("Unknown GMADR size (%lx)\n",
  644. dev_priv->gtt.mappable_end);
  645. return -ENXIO;
  646. }
  647. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  648. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  649. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  650. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  651. if (IS_GEN7(dev) && !IS_VALLEYVIEW(dev))
  652. *stolen = gen7_get_stolen_size(snb_gmch_ctl);
  653. else
  654. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  655. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  656. /* For Modern GENs the PTEs and register space are split in the BAR */
  657. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  658. (pci_resource_len(dev->pdev, 0) / 2);
  659. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  660. if (!dev_priv->gtt.gsm) {
  661. DRM_ERROR("Failed to map the gtt page table\n");
  662. return -ENOMEM;
  663. }
  664. ret = setup_scratch_page(dev);
  665. if (ret)
  666. DRM_ERROR("Scratch setup failed\n");
  667. dev_priv->gtt.gtt_clear_range = gen6_ggtt_clear_range;
  668. dev_priv->gtt.gtt_insert_entries = gen6_ggtt_insert_entries;
  669. return ret;
  670. }
  671. static void gen6_gmch_remove(struct drm_device *dev)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. iounmap(dev_priv->gtt.gsm);
  675. teardown_scratch_page(dev_priv->dev);
  676. }
  677. static int i915_gmch_probe(struct drm_device *dev,
  678. size_t *gtt_total,
  679. size_t *stolen,
  680. phys_addr_t *mappable_base,
  681. unsigned long *mappable_end)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. int ret;
  685. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  686. if (!ret) {
  687. DRM_ERROR("failed to set up gmch\n");
  688. return -EIO;
  689. }
  690. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  691. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  692. dev_priv->gtt.gtt_clear_range = i915_ggtt_clear_range;
  693. dev_priv->gtt.gtt_insert_entries = i915_ggtt_insert_entries;
  694. return 0;
  695. }
  696. static void i915_gmch_remove(struct drm_device *dev)
  697. {
  698. intel_gmch_remove();
  699. }
  700. int i915_gem_gtt_init(struct drm_device *dev)
  701. {
  702. struct drm_i915_private *dev_priv = dev->dev_private;
  703. struct i915_gtt *gtt = &dev_priv->gtt;
  704. int ret;
  705. if (INTEL_INFO(dev)->gen <= 5) {
  706. dev_priv->gtt.gtt_probe = i915_gmch_probe;
  707. dev_priv->gtt.gtt_remove = i915_gmch_remove;
  708. } else {
  709. dev_priv->gtt.gtt_probe = gen6_gmch_probe;
  710. dev_priv->gtt.gtt_remove = gen6_gmch_remove;
  711. if (IS_HASWELL(dev)) {
  712. dev_priv->gtt.pte_encode = hsw_pte_encode;
  713. } else if (IS_VALLEYVIEW(dev)) {
  714. dev_priv->gtt.pte_encode = byt_pte_encode;
  715. } else {
  716. dev_priv->gtt.pte_encode = gen6_pte_encode;
  717. }
  718. }
  719. ret = dev_priv->gtt.gtt_probe(dev, &dev_priv->gtt.total,
  720. &dev_priv->gtt.stolen_size,
  721. &gtt->mappable_base,
  722. &gtt->mappable_end);
  723. if (ret)
  724. return ret;
  725. /* GMADR is the PCI mmio aperture into the global GTT. */
  726. DRM_INFO("Memory usable by graphics device = %zdM\n",
  727. dev_priv->gtt.total >> 20);
  728. DRM_DEBUG_DRIVER("GMADR size = %ldM\n",
  729. dev_priv->gtt.mappable_end >> 20);
  730. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n",
  731. dev_priv->gtt.stolen_size >> 20);
  732. return 0;
  733. }