huge_memory.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. if (!khugepaged_thread)
  127. khugepaged_thread = kthread_run(khugepaged, NULL,
  128. "khugepaged");
  129. if (unlikely(IS_ERR(khugepaged_thread))) {
  130. printk(KERN_ERR
  131. "khugepaged: kthread_run(khugepaged) failed\n");
  132. err = PTR_ERR(khugepaged_thread);
  133. khugepaged_thread = NULL;
  134. }
  135. if (!list_empty(&khugepaged_scan.mm_head))
  136. wake_up_interruptible(&khugepaged_wait);
  137. set_recommended_min_free_kbytes();
  138. } else if (khugepaged_thread) {
  139. /* wakeup to exit */
  140. wake_up_interruptible(&khugepaged_wait);
  141. kthread_stop(khugepaged_thread);
  142. khugepaged_thread = NULL;
  143. }
  144. return err;
  145. }
  146. #ifdef CONFIG_SYSFS
  147. static ssize_t double_flag_show(struct kobject *kobj,
  148. struct kobj_attribute *attr, char *buf,
  149. enum transparent_hugepage_flag enabled,
  150. enum transparent_hugepage_flag req_madv)
  151. {
  152. if (test_bit(enabled, &transparent_hugepage_flags)) {
  153. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  154. return sprintf(buf, "[always] madvise never\n");
  155. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  156. return sprintf(buf, "always [madvise] never\n");
  157. else
  158. return sprintf(buf, "always madvise [never]\n");
  159. }
  160. static ssize_t double_flag_store(struct kobject *kobj,
  161. struct kobj_attribute *attr,
  162. const char *buf, size_t count,
  163. enum transparent_hugepage_flag enabled,
  164. enum transparent_hugepage_flag req_madv)
  165. {
  166. if (!memcmp("always", buf,
  167. min(sizeof("always")-1, count))) {
  168. set_bit(enabled, &transparent_hugepage_flags);
  169. clear_bit(req_madv, &transparent_hugepage_flags);
  170. } else if (!memcmp("madvise", buf,
  171. min(sizeof("madvise")-1, count))) {
  172. clear_bit(enabled, &transparent_hugepage_flags);
  173. set_bit(req_madv, &transparent_hugepage_flags);
  174. } else if (!memcmp("never", buf,
  175. min(sizeof("never")-1, count))) {
  176. clear_bit(enabled, &transparent_hugepage_flags);
  177. clear_bit(req_madv, &transparent_hugepage_flags);
  178. } else
  179. return -EINVAL;
  180. return count;
  181. }
  182. static ssize_t enabled_show(struct kobject *kobj,
  183. struct kobj_attribute *attr, char *buf)
  184. {
  185. return double_flag_show(kobj, attr, buf,
  186. TRANSPARENT_HUGEPAGE_FLAG,
  187. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  188. }
  189. static ssize_t enabled_store(struct kobject *kobj,
  190. struct kobj_attribute *attr,
  191. const char *buf, size_t count)
  192. {
  193. ssize_t ret;
  194. ret = double_flag_store(kobj, attr, buf, count,
  195. TRANSPARENT_HUGEPAGE_FLAG,
  196. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  197. if (ret > 0) {
  198. int err;
  199. mutex_lock(&khugepaged_mutex);
  200. err = start_khugepaged();
  201. mutex_unlock(&khugepaged_mutex);
  202. if (err)
  203. ret = err;
  204. }
  205. if (ret > 0 &&
  206. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  207. &transparent_hugepage_flags) ||
  208. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  209. &transparent_hugepage_flags)))
  210. set_recommended_min_free_kbytes();
  211. return ret;
  212. }
  213. static struct kobj_attribute enabled_attr =
  214. __ATTR(enabled, 0644, enabled_show, enabled_store);
  215. static ssize_t single_flag_show(struct kobject *kobj,
  216. struct kobj_attribute *attr, char *buf,
  217. enum transparent_hugepage_flag flag)
  218. {
  219. return sprintf(buf, "%d\n",
  220. !!test_bit(flag, &transparent_hugepage_flags));
  221. }
  222. static ssize_t single_flag_store(struct kobject *kobj,
  223. struct kobj_attribute *attr,
  224. const char *buf, size_t count,
  225. enum transparent_hugepage_flag flag)
  226. {
  227. unsigned long value;
  228. int ret;
  229. ret = kstrtoul(buf, 10, &value);
  230. if (ret < 0)
  231. return ret;
  232. if (value > 1)
  233. return -EINVAL;
  234. if (value)
  235. set_bit(flag, &transparent_hugepage_flags);
  236. else
  237. clear_bit(flag, &transparent_hugepage_flags);
  238. return count;
  239. }
  240. /*
  241. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  242. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  243. * memory just to allocate one more hugepage.
  244. */
  245. static ssize_t defrag_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return double_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  250. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  251. }
  252. static ssize_t defrag_store(struct kobject *kobj,
  253. struct kobj_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. return double_flag_store(kobj, attr, buf, count,
  257. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  259. }
  260. static struct kobj_attribute defrag_attr =
  261. __ATTR(defrag, 0644, defrag_show, defrag_store);
  262. #ifdef CONFIG_DEBUG_VM
  263. static ssize_t debug_cow_show(struct kobject *kobj,
  264. struct kobj_attribute *attr, char *buf)
  265. {
  266. return single_flag_show(kobj, attr, buf,
  267. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  268. }
  269. static ssize_t debug_cow_store(struct kobject *kobj,
  270. struct kobj_attribute *attr,
  271. const char *buf, size_t count)
  272. {
  273. return single_flag_store(kobj, attr, buf, count,
  274. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  275. }
  276. static struct kobj_attribute debug_cow_attr =
  277. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  278. #endif /* CONFIG_DEBUG_VM */
  279. static struct attribute *hugepage_attr[] = {
  280. &enabled_attr.attr,
  281. &defrag_attr.attr,
  282. #ifdef CONFIG_DEBUG_VM
  283. &debug_cow_attr.attr,
  284. #endif
  285. NULL,
  286. };
  287. static struct attribute_group hugepage_attr_group = {
  288. .attrs = hugepage_attr,
  289. };
  290. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  291. struct kobj_attribute *attr,
  292. char *buf)
  293. {
  294. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  295. }
  296. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  297. struct kobj_attribute *attr,
  298. const char *buf, size_t count)
  299. {
  300. unsigned long msecs;
  301. int err;
  302. err = strict_strtoul(buf, 10, &msecs);
  303. if (err || msecs > UINT_MAX)
  304. return -EINVAL;
  305. khugepaged_scan_sleep_millisecs = msecs;
  306. wake_up_interruptible(&khugepaged_wait);
  307. return count;
  308. }
  309. static struct kobj_attribute scan_sleep_millisecs_attr =
  310. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  311. scan_sleep_millisecs_store);
  312. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  313. struct kobj_attribute *attr,
  314. char *buf)
  315. {
  316. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  317. }
  318. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  319. struct kobj_attribute *attr,
  320. const char *buf, size_t count)
  321. {
  322. unsigned long msecs;
  323. int err;
  324. err = strict_strtoul(buf, 10, &msecs);
  325. if (err || msecs > UINT_MAX)
  326. return -EINVAL;
  327. khugepaged_alloc_sleep_millisecs = msecs;
  328. wake_up_interruptible(&khugepaged_wait);
  329. return count;
  330. }
  331. static struct kobj_attribute alloc_sleep_millisecs_attr =
  332. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  333. alloc_sleep_millisecs_store);
  334. static ssize_t pages_to_scan_show(struct kobject *kobj,
  335. struct kobj_attribute *attr,
  336. char *buf)
  337. {
  338. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  339. }
  340. static ssize_t pages_to_scan_store(struct kobject *kobj,
  341. struct kobj_attribute *attr,
  342. const char *buf, size_t count)
  343. {
  344. int err;
  345. unsigned long pages;
  346. err = strict_strtoul(buf, 10, &pages);
  347. if (err || !pages || pages > UINT_MAX)
  348. return -EINVAL;
  349. khugepaged_pages_to_scan = pages;
  350. return count;
  351. }
  352. static struct kobj_attribute pages_to_scan_attr =
  353. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  354. pages_to_scan_store);
  355. static ssize_t pages_collapsed_show(struct kobject *kobj,
  356. struct kobj_attribute *attr,
  357. char *buf)
  358. {
  359. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  360. }
  361. static struct kobj_attribute pages_collapsed_attr =
  362. __ATTR_RO(pages_collapsed);
  363. static ssize_t full_scans_show(struct kobject *kobj,
  364. struct kobj_attribute *attr,
  365. char *buf)
  366. {
  367. return sprintf(buf, "%u\n", khugepaged_full_scans);
  368. }
  369. static struct kobj_attribute full_scans_attr =
  370. __ATTR_RO(full_scans);
  371. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  372. struct kobj_attribute *attr, char *buf)
  373. {
  374. return single_flag_show(kobj, attr, buf,
  375. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  376. }
  377. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return single_flag_store(kobj, attr, buf, count,
  382. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  383. }
  384. static struct kobj_attribute khugepaged_defrag_attr =
  385. __ATTR(defrag, 0644, khugepaged_defrag_show,
  386. khugepaged_defrag_store);
  387. /*
  388. * max_ptes_none controls if khugepaged should collapse hugepages over
  389. * any unmapped ptes in turn potentially increasing the memory
  390. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  391. * reduce the available free memory in the system as it
  392. * runs. Increasing max_ptes_none will instead potentially reduce the
  393. * free memory in the system during the khugepaged scan.
  394. */
  395. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  396. struct kobj_attribute *attr,
  397. char *buf)
  398. {
  399. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  400. }
  401. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  402. struct kobj_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. int err;
  406. unsigned long max_ptes_none;
  407. err = strict_strtoul(buf, 10, &max_ptes_none);
  408. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  409. return -EINVAL;
  410. khugepaged_max_ptes_none = max_ptes_none;
  411. return count;
  412. }
  413. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  414. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  415. khugepaged_max_ptes_none_store);
  416. static struct attribute *khugepaged_attr[] = {
  417. &khugepaged_defrag_attr.attr,
  418. &khugepaged_max_ptes_none_attr.attr,
  419. &pages_to_scan_attr.attr,
  420. &pages_collapsed_attr.attr,
  421. &full_scans_attr.attr,
  422. &scan_sleep_millisecs_attr.attr,
  423. &alloc_sleep_millisecs_attr.attr,
  424. NULL,
  425. };
  426. static struct attribute_group khugepaged_attr_group = {
  427. .attrs = khugepaged_attr,
  428. .name = "khugepaged",
  429. };
  430. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  431. {
  432. int err;
  433. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  434. if (unlikely(!*hugepage_kobj)) {
  435. printk(KERN_ERR "hugepage: failed kobject create\n");
  436. return -ENOMEM;
  437. }
  438. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  439. if (err) {
  440. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  441. goto delete_obj;
  442. }
  443. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  444. if (err) {
  445. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  446. goto remove_hp_group;
  447. }
  448. return 0;
  449. remove_hp_group:
  450. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  451. delete_obj:
  452. kobject_put(*hugepage_kobj);
  453. return err;
  454. }
  455. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  456. {
  457. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  458. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  459. kobject_put(hugepage_kobj);
  460. }
  461. #else
  462. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  463. {
  464. return 0;
  465. }
  466. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  467. {
  468. }
  469. #endif /* CONFIG_SYSFS */
  470. static int __init hugepage_init(void)
  471. {
  472. int err;
  473. struct kobject *hugepage_kobj;
  474. if (!has_transparent_hugepage()) {
  475. transparent_hugepage_flags = 0;
  476. return -EINVAL;
  477. }
  478. err = hugepage_init_sysfs(&hugepage_kobj);
  479. if (err)
  480. return err;
  481. err = khugepaged_slab_init();
  482. if (err)
  483. goto out;
  484. err = mm_slots_hash_init();
  485. if (err) {
  486. khugepaged_slab_free();
  487. goto out;
  488. }
  489. /*
  490. * By default disable transparent hugepages on smaller systems,
  491. * where the extra memory used could hurt more than TLB overhead
  492. * is likely to save. The admin can still enable it through /sys.
  493. */
  494. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  495. transparent_hugepage_flags = 0;
  496. start_khugepaged();
  497. set_recommended_min_free_kbytes();
  498. return 0;
  499. out:
  500. hugepage_exit_sysfs(hugepage_kobj);
  501. return err;
  502. }
  503. module_init(hugepage_init)
  504. static int __init setup_transparent_hugepage(char *str)
  505. {
  506. int ret = 0;
  507. if (!str)
  508. goto out;
  509. if (!strcmp(str, "always")) {
  510. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  511. &transparent_hugepage_flags);
  512. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  513. &transparent_hugepage_flags);
  514. ret = 1;
  515. } else if (!strcmp(str, "madvise")) {
  516. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  517. &transparent_hugepage_flags);
  518. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  519. &transparent_hugepage_flags);
  520. ret = 1;
  521. } else if (!strcmp(str, "never")) {
  522. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  523. &transparent_hugepage_flags);
  524. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  525. &transparent_hugepage_flags);
  526. ret = 1;
  527. }
  528. out:
  529. if (!ret)
  530. printk(KERN_WARNING
  531. "transparent_hugepage= cannot parse, ignored\n");
  532. return ret;
  533. }
  534. __setup("transparent_hugepage=", setup_transparent_hugepage);
  535. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  536. struct mm_struct *mm)
  537. {
  538. assert_spin_locked(&mm->page_table_lock);
  539. /* FIFO */
  540. if (!mm->pmd_huge_pte)
  541. INIT_LIST_HEAD(&pgtable->lru);
  542. else
  543. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  544. mm->pmd_huge_pte = pgtable;
  545. }
  546. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  547. {
  548. if (likely(vma->vm_flags & VM_WRITE))
  549. pmd = pmd_mkwrite(pmd);
  550. return pmd;
  551. }
  552. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  553. struct vm_area_struct *vma,
  554. unsigned long haddr, pmd_t *pmd,
  555. struct page *page)
  556. {
  557. pgtable_t pgtable;
  558. VM_BUG_ON(!PageCompound(page));
  559. pgtable = pte_alloc_one(mm, haddr);
  560. if (unlikely(!pgtable))
  561. return VM_FAULT_OOM;
  562. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  563. __SetPageUptodate(page);
  564. spin_lock(&mm->page_table_lock);
  565. if (unlikely(!pmd_none(*pmd))) {
  566. spin_unlock(&mm->page_table_lock);
  567. mem_cgroup_uncharge_page(page);
  568. put_page(page);
  569. pte_free(mm, pgtable);
  570. } else {
  571. pmd_t entry;
  572. entry = mk_pmd(page, vma->vm_page_prot);
  573. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  574. entry = pmd_mkhuge(entry);
  575. /*
  576. * The spinlocking to take the lru_lock inside
  577. * page_add_new_anon_rmap() acts as a full memory
  578. * barrier to be sure clear_huge_page writes become
  579. * visible after the set_pmd_at() write.
  580. */
  581. page_add_new_anon_rmap(page, vma, haddr);
  582. set_pmd_at(mm, haddr, pmd, entry);
  583. prepare_pmd_huge_pte(pgtable, mm);
  584. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  585. mm->nr_ptes++;
  586. spin_unlock(&mm->page_table_lock);
  587. }
  588. return 0;
  589. }
  590. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  591. {
  592. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  593. }
  594. static inline struct page *alloc_hugepage_vma(int defrag,
  595. struct vm_area_struct *vma,
  596. unsigned long haddr, int nd,
  597. gfp_t extra_gfp)
  598. {
  599. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  600. HPAGE_PMD_ORDER, vma, haddr, nd);
  601. }
  602. #ifndef CONFIG_NUMA
  603. static inline struct page *alloc_hugepage(int defrag)
  604. {
  605. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  606. HPAGE_PMD_ORDER);
  607. }
  608. #endif
  609. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  610. unsigned long address, pmd_t *pmd,
  611. unsigned int flags)
  612. {
  613. struct page *page;
  614. unsigned long haddr = address & HPAGE_PMD_MASK;
  615. pte_t *pte;
  616. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  617. if (unlikely(anon_vma_prepare(vma)))
  618. return VM_FAULT_OOM;
  619. if (unlikely(khugepaged_enter(vma)))
  620. return VM_FAULT_OOM;
  621. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  622. vma, haddr, numa_node_id(), 0);
  623. if (unlikely(!page)) {
  624. count_vm_event(THP_FAULT_FALLBACK);
  625. goto out;
  626. }
  627. count_vm_event(THP_FAULT_ALLOC);
  628. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  629. put_page(page);
  630. goto out;
  631. }
  632. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  633. page))) {
  634. mem_cgroup_uncharge_page(page);
  635. put_page(page);
  636. goto out;
  637. }
  638. return 0;
  639. }
  640. out:
  641. /*
  642. * Use __pte_alloc instead of pte_alloc_map, because we can't
  643. * run pte_offset_map on the pmd, if an huge pmd could
  644. * materialize from under us from a different thread.
  645. */
  646. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  647. return VM_FAULT_OOM;
  648. /* if an huge pmd materialized from under us just retry later */
  649. if (unlikely(pmd_trans_huge(*pmd)))
  650. return 0;
  651. /*
  652. * A regular pmd is established and it can't morph into a huge pmd
  653. * from under us anymore at this point because we hold the mmap_sem
  654. * read mode and khugepaged takes it in write mode. So now it's
  655. * safe to run pte_offset_map().
  656. */
  657. pte = pte_offset_map(pmd, address);
  658. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  659. }
  660. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  661. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  662. struct vm_area_struct *vma)
  663. {
  664. struct page *src_page;
  665. pmd_t pmd;
  666. pgtable_t pgtable;
  667. int ret;
  668. ret = -ENOMEM;
  669. pgtable = pte_alloc_one(dst_mm, addr);
  670. if (unlikely(!pgtable))
  671. goto out;
  672. spin_lock(&dst_mm->page_table_lock);
  673. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  674. ret = -EAGAIN;
  675. pmd = *src_pmd;
  676. if (unlikely(!pmd_trans_huge(pmd))) {
  677. pte_free(dst_mm, pgtable);
  678. goto out_unlock;
  679. }
  680. if (unlikely(pmd_trans_splitting(pmd))) {
  681. /* split huge page running from under us */
  682. spin_unlock(&src_mm->page_table_lock);
  683. spin_unlock(&dst_mm->page_table_lock);
  684. pte_free(dst_mm, pgtable);
  685. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  686. goto out;
  687. }
  688. src_page = pmd_page(pmd);
  689. VM_BUG_ON(!PageHead(src_page));
  690. get_page(src_page);
  691. page_dup_rmap(src_page);
  692. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  693. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  694. pmd = pmd_mkold(pmd_wrprotect(pmd));
  695. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  696. prepare_pmd_huge_pte(pgtable, dst_mm);
  697. dst_mm->nr_ptes++;
  698. ret = 0;
  699. out_unlock:
  700. spin_unlock(&src_mm->page_table_lock);
  701. spin_unlock(&dst_mm->page_table_lock);
  702. out:
  703. return ret;
  704. }
  705. /* no "address" argument so destroys page coloring of some arch */
  706. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  707. {
  708. pgtable_t pgtable;
  709. assert_spin_locked(&mm->page_table_lock);
  710. /* FIFO */
  711. pgtable = mm->pmd_huge_pte;
  712. if (list_empty(&pgtable->lru))
  713. mm->pmd_huge_pte = NULL;
  714. else {
  715. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  716. struct page, lru);
  717. list_del(&pgtable->lru);
  718. }
  719. return pgtable;
  720. }
  721. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  722. struct vm_area_struct *vma,
  723. unsigned long address,
  724. pmd_t *pmd, pmd_t orig_pmd,
  725. struct page *page,
  726. unsigned long haddr)
  727. {
  728. pgtable_t pgtable;
  729. pmd_t _pmd;
  730. int ret = 0, i;
  731. struct page **pages;
  732. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  733. GFP_KERNEL);
  734. if (unlikely(!pages)) {
  735. ret |= VM_FAULT_OOM;
  736. goto out;
  737. }
  738. for (i = 0; i < HPAGE_PMD_NR; i++) {
  739. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  740. __GFP_OTHER_NODE,
  741. vma, address, page_to_nid(page));
  742. if (unlikely(!pages[i] ||
  743. mem_cgroup_newpage_charge(pages[i], mm,
  744. GFP_KERNEL))) {
  745. if (pages[i])
  746. put_page(pages[i]);
  747. mem_cgroup_uncharge_start();
  748. while (--i >= 0) {
  749. mem_cgroup_uncharge_page(pages[i]);
  750. put_page(pages[i]);
  751. }
  752. mem_cgroup_uncharge_end();
  753. kfree(pages);
  754. ret |= VM_FAULT_OOM;
  755. goto out;
  756. }
  757. }
  758. for (i = 0; i < HPAGE_PMD_NR; i++) {
  759. copy_user_highpage(pages[i], page + i,
  760. haddr + PAGE_SIZE * i, vma);
  761. __SetPageUptodate(pages[i]);
  762. cond_resched();
  763. }
  764. spin_lock(&mm->page_table_lock);
  765. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  766. goto out_free_pages;
  767. VM_BUG_ON(!PageHead(page));
  768. pmdp_clear_flush_notify(vma, haddr, pmd);
  769. /* leave pmd empty until pte is filled */
  770. pgtable = get_pmd_huge_pte(mm);
  771. pmd_populate(mm, &_pmd, pgtable);
  772. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  773. pte_t *pte, entry;
  774. entry = mk_pte(pages[i], vma->vm_page_prot);
  775. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  776. page_add_new_anon_rmap(pages[i], vma, haddr);
  777. pte = pte_offset_map(&_pmd, haddr);
  778. VM_BUG_ON(!pte_none(*pte));
  779. set_pte_at(mm, haddr, pte, entry);
  780. pte_unmap(pte);
  781. }
  782. kfree(pages);
  783. smp_wmb(); /* make pte visible before pmd */
  784. pmd_populate(mm, pmd, pgtable);
  785. page_remove_rmap(page);
  786. spin_unlock(&mm->page_table_lock);
  787. ret |= VM_FAULT_WRITE;
  788. put_page(page);
  789. out:
  790. return ret;
  791. out_free_pages:
  792. spin_unlock(&mm->page_table_lock);
  793. mem_cgroup_uncharge_start();
  794. for (i = 0; i < HPAGE_PMD_NR; i++) {
  795. mem_cgroup_uncharge_page(pages[i]);
  796. put_page(pages[i]);
  797. }
  798. mem_cgroup_uncharge_end();
  799. kfree(pages);
  800. goto out;
  801. }
  802. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  803. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  804. {
  805. int ret = 0;
  806. struct page *page, *new_page;
  807. unsigned long haddr;
  808. VM_BUG_ON(!vma->anon_vma);
  809. spin_lock(&mm->page_table_lock);
  810. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  811. goto out_unlock;
  812. page = pmd_page(orig_pmd);
  813. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  814. haddr = address & HPAGE_PMD_MASK;
  815. if (page_mapcount(page) == 1) {
  816. pmd_t entry;
  817. entry = pmd_mkyoung(orig_pmd);
  818. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  819. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  820. update_mmu_cache(vma, address, entry);
  821. ret |= VM_FAULT_WRITE;
  822. goto out_unlock;
  823. }
  824. get_page(page);
  825. spin_unlock(&mm->page_table_lock);
  826. if (transparent_hugepage_enabled(vma) &&
  827. !transparent_hugepage_debug_cow())
  828. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  829. vma, haddr, numa_node_id(), 0);
  830. else
  831. new_page = NULL;
  832. if (unlikely(!new_page)) {
  833. count_vm_event(THP_FAULT_FALLBACK);
  834. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  835. pmd, orig_pmd, page, haddr);
  836. if (ret & VM_FAULT_OOM)
  837. split_huge_page(page);
  838. put_page(page);
  839. goto out;
  840. }
  841. count_vm_event(THP_FAULT_ALLOC);
  842. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  843. put_page(new_page);
  844. split_huge_page(page);
  845. put_page(page);
  846. ret |= VM_FAULT_OOM;
  847. goto out;
  848. }
  849. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  850. __SetPageUptodate(new_page);
  851. spin_lock(&mm->page_table_lock);
  852. put_page(page);
  853. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  854. spin_unlock(&mm->page_table_lock);
  855. mem_cgroup_uncharge_page(new_page);
  856. put_page(new_page);
  857. goto out;
  858. } else {
  859. pmd_t entry;
  860. VM_BUG_ON(!PageHead(page));
  861. entry = mk_pmd(new_page, vma->vm_page_prot);
  862. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  863. entry = pmd_mkhuge(entry);
  864. pmdp_clear_flush_notify(vma, haddr, pmd);
  865. page_add_new_anon_rmap(new_page, vma, haddr);
  866. set_pmd_at(mm, haddr, pmd, entry);
  867. update_mmu_cache(vma, address, entry);
  868. page_remove_rmap(page);
  869. put_page(page);
  870. ret |= VM_FAULT_WRITE;
  871. }
  872. out_unlock:
  873. spin_unlock(&mm->page_table_lock);
  874. out:
  875. return ret;
  876. }
  877. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  878. unsigned long addr,
  879. pmd_t *pmd,
  880. unsigned int flags)
  881. {
  882. struct page *page = NULL;
  883. assert_spin_locked(&mm->page_table_lock);
  884. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  885. goto out;
  886. page = pmd_page(*pmd);
  887. VM_BUG_ON(!PageHead(page));
  888. if (flags & FOLL_TOUCH) {
  889. pmd_t _pmd;
  890. /*
  891. * We should set the dirty bit only for FOLL_WRITE but
  892. * for now the dirty bit in the pmd is meaningless.
  893. * And if the dirty bit will become meaningful and
  894. * we'll only set it with FOLL_WRITE, an atomic
  895. * set_bit will be required on the pmd to set the
  896. * young bit, instead of the current set_pmd_at.
  897. */
  898. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  899. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  900. }
  901. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  902. VM_BUG_ON(!PageCompound(page));
  903. if (flags & FOLL_GET)
  904. get_page_foll(page);
  905. out:
  906. return page;
  907. }
  908. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  909. pmd_t *pmd, unsigned long addr)
  910. {
  911. int ret = 0;
  912. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  913. struct page *page;
  914. pgtable_t pgtable;
  915. pgtable = get_pmd_huge_pte(tlb->mm);
  916. page = pmd_page(*pmd);
  917. pmd_clear(pmd);
  918. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  919. page_remove_rmap(page);
  920. VM_BUG_ON(page_mapcount(page) < 0);
  921. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  922. VM_BUG_ON(!PageHead(page));
  923. tlb->mm->nr_ptes--;
  924. spin_unlock(&tlb->mm->page_table_lock);
  925. tlb_remove_page(tlb, page);
  926. pte_free(tlb->mm, pgtable);
  927. ret = 1;
  928. }
  929. return ret;
  930. }
  931. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  932. unsigned long addr, unsigned long end,
  933. unsigned char *vec)
  934. {
  935. int ret = 0;
  936. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  937. /*
  938. * All logical pages in the range are present
  939. * if backed by a huge page.
  940. */
  941. spin_unlock(&vma->vm_mm->page_table_lock);
  942. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  943. ret = 1;
  944. }
  945. return ret;
  946. }
  947. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  948. unsigned long old_addr,
  949. unsigned long new_addr, unsigned long old_end,
  950. pmd_t *old_pmd, pmd_t *new_pmd)
  951. {
  952. int ret = 0;
  953. pmd_t pmd;
  954. struct mm_struct *mm = vma->vm_mm;
  955. if ((old_addr & ~HPAGE_PMD_MASK) ||
  956. (new_addr & ~HPAGE_PMD_MASK) ||
  957. old_end - old_addr < HPAGE_PMD_SIZE ||
  958. (new_vma->vm_flags & VM_NOHUGEPAGE))
  959. goto out;
  960. /*
  961. * The destination pmd shouldn't be established, free_pgtables()
  962. * should have release it.
  963. */
  964. if (WARN_ON(!pmd_none(*new_pmd))) {
  965. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  966. goto out;
  967. }
  968. ret = __pmd_trans_huge_lock(old_pmd, vma);
  969. if (ret == 1) {
  970. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  971. VM_BUG_ON(!pmd_none(*new_pmd));
  972. set_pmd_at(mm, new_addr, new_pmd, pmd);
  973. spin_unlock(&mm->page_table_lock);
  974. }
  975. out:
  976. return ret;
  977. }
  978. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  979. unsigned long addr, pgprot_t newprot)
  980. {
  981. struct mm_struct *mm = vma->vm_mm;
  982. int ret = 0;
  983. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  984. pmd_t entry;
  985. entry = pmdp_get_and_clear(mm, addr, pmd);
  986. entry = pmd_modify(entry, newprot);
  987. set_pmd_at(mm, addr, pmd, entry);
  988. spin_unlock(&vma->vm_mm->page_table_lock);
  989. ret = 1;
  990. }
  991. return ret;
  992. }
  993. /*
  994. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  995. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  996. *
  997. * Note that if it returns 1, this routine returns without unlocking page
  998. * table locks. So callers must unlock them.
  999. */
  1000. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1001. {
  1002. spin_lock(&vma->vm_mm->page_table_lock);
  1003. if (likely(pmd_trans_huge(*pmd))) {
  1004. if (unlikely(pmd_trans_splitting(*pmd))) {
  1005. spin_unlock(&vma->vm_mm->page_table_lock);
  1006. wait_split_huge_page(vma->anon_vma, pmd);
  1007. return -1;
  1008. } else {
  1009. /* Thp mapped by 'pmd' is stable, so we can
  1010. * handle it as it is. */
  1011. return 1;
  1012. }
  1013. }
  1014. spin_unlock(&vma->vm_mm->page_table_lock);
  1015. return 0;
  1016. }
  1017. pmd_t *page_check_address_pmd(struct page *page,
  1018. struct mm_struct *mm,
  1019. unsigned long address,
  1020. enum page_check_address_pmd_flag flag)
  1021. {
  1022. pgd_t *pgd;
  1023. pud_t *pud;
  1024. pmd_t *pmd, *ret = NULL;
  1025. if (address & ~HPAGE_PMD_MASK)
  1026. goto out;
  1027. pgd = pgd_offset(mm, address);
  1028. if (!pgd_present(*pgd))
  1029. goto out;
  1030. pud = pud_offset(pgd, address);
  1031. if (!pud_present(*pud))
  1032. goto out;
  1033. pmd = pmd_offset(pud, address);
  1034. if (pmd_none(*pmd))
  1035. goto out;
  1036. if (pmd_page(*pmd) != page)
  1037. goto out;
  1038. /*
  1039. * split_vma() may create temporary aliased mappings. There is
  1040. * no risk as long as all huge pmd are found and have their
  1041. * splitting bit set before __split_huge_page_refcount
  1042. * runs. Finding the same huge pmd more than once during the
  1043. * same rmap walk is not a problem.
  1044. */
  1045. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1046. pmd_trans_splitting(*pmd))
  1047. goto out;
  1048. if (pmd_trans_huge(*pmd)) {
  1049. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1050. !pmd_trans_splitting(*pmd));
  1051. ret = pmd;
  1052. }
  1053. out:
  1054. return ret;
  1055. }
  1056. static int __split_huge_page_splitting(struct page *page,
  1057. struct vm_area_struct *vma,
  1058. unsigned long address)
  1059. {
  1060. struct mm_struct *mm = vma->vm_mm;
  1061. pmd_t *pmd;
  1062. int ret = 0;
  1063. spin_lock(&mm->page_table_lock);
  1064. pmd = page_check_address_pmd(page, mm, address,
  1065. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1066. if (pmd) {
  1067. /*
  1068. * We can't temporarily set the pmd to null in order
  1069. * to split it, the pmd must remain marked huge at all
  1070. * times or the VM won't take the pmd_trans_huge paths
  1071. * and it won't wait on the anon_vma->root->mutex to
  1072. * serialize against split_huge_page*.
  1073. */
  1074. pmdp_splitting_flush_notify(vma, address, pmd);
  1075. ret = 1;
  1076. }
  1077. spin_unlock(&mm->page_table_lock);
  1078. return ret;
  1079. }
  1080. static void __split_huge_page_refcount(struct page *page)
  1081. {
  1082. int i;
  1083. struct zone *zone = page_zone(page);
  1084. struct lruvec *lruvec;
  1085. int tail_count = 0;
  1086. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1087. spin_lock_irq(&zone->lru_lock);
  1088. lruvec = mem_cgroup_page_lruvec(page, zone);
  1089. compound_lock(page);
  1090. /* complete memcg works before add pages to LRU */
  1091. mem_cgroup_split_huge_fixup(page);
  1092. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1093. struct page *page_tail = page + i;
  1094. /* tail_page->_mapcount cannot change */
  1095. BUG_ON(page_mapcount(page_tail) < 0);
  1096. tail_count += page_mapcount(page_tail);
  1097. /* check for overflow */
  1098. BUG_ON(tail_count < 0);
  1099. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1100. /*
  1101. * tail_page->_count is zero and not changing from
  1102. * under us. But get_page_unless_zero() may be running
  1103. * from under us on the tail_page. If we used
  1104. * atomic_set() below instead of atomic_add(), we
  1105. * would then run atomic_set() concurrently with
  1106. * get_page_unless_zero(), and atomic_set() is
  1107. * implemented in C not using locked ops. spin_unlock
  1108. * on x86 sometime uses locked ops because of PPro
  1109. * errata 66, 92, so unless somebody can guarantee
  1110. * atomic_set() here would be safe on all archs (and
  1111. * not only on x86), it's safer to use atomic_add().
  1112. */
  1113. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1114. &page_tail->_count);
  1115. /* after clearing PageTail the gup refcount can be released */
  1116. smp_mb();
  1117. /*
  1118. * retain hwpoison flag of the poisoned tail page:
  1119. * fix for the unsuitable process killed on Guest Machine(KVM)
  1120. * by the memory-failure.
  1121. */
  1122. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1123. page_tail->flags |= (page->flags &
  1124. ((1L << PG_referenced) |
  1125. (1L << PG_swapbacked) |
  1126. (1L << PG_mlocked) |
  1127. (1L << PG_uptodate)));
  1128. page_tail->flags |= (1L << PG_dirty);
  1129. /* clear PageTail before overwriting first_page */
  1130. smp_wmb();
  1131. /*
  1132. * __split_huge_page_splitting() already set the
  1133. * splitting bit in all pmd that could map this
  1134. * hugepage, that will ensure no CPU can alter the
  1135. * mapcount on the head page. The mapcount is only
  1136. * accounted in the head page and it has to be
  1137. * transferred to all tail pages in the below code. So
  1138. * for this code to be safe, the split the mapcount
  1139. * can't change. But that doesn't mean userland can't
  1140. * keep changing and reading the page contents while
  1141. * we transfer the mapcount, so the pmd splitting
  1142. * status is achieved setting a reserved bit in the
  1143. * pmd, not by clearing the present bit.
  1144. */
  1145. page_tail->_mapcount = page->_mapcount;
  1146. BUG_ON(page_tail->mapping);
  1147. page_tail->mapping = page->mapping;
  1148. page_tail->index = page->index + i;
  1149. BUG_ON(!PageAnon(page_tail));
  1150. BUG_ON(!PageUptodate(page_tail));
  1151. BUG_ON(!PageDirty(page_tail));
  1152. BUG_ON(!PageSwapBacked(page_tail));
  1153. lru_add_page_tail(page, page_tail, lruvec);
  1154. }
  1155. atomic_sub(tail_count, &page->_count);
  1156. BUG_ON(atomic_read(&page->_count) <= 0);
  1157. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1158. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1159. ClearPageCompound(page);
  1160. compound_unlock(page);
  1161. spin_unlock_irq(&zone->lru_lock);
  1162. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1163. struct page *page_tail = page + i;
  1164. BUG_ON(page_count(page_tail) <= 0);
  1165. /*
  1166. * Tail pages may be freed if there wasn't any mapping
  1167. * like if add_to_swap() is running on a lru page that
  1168. * had its mapping zapped. And freeing these pages
  1169. * requires taking the lru_lock so we do the put_page
  1170. * of the tail pages after the split is complete.
  1171. */
  1172. put_page(page_tail);
  1173. }
  1174. /*
  1175. * Only the head page (now become a regular page) is required
  1176. * to be pinned by the caller.
  1177. */
  1178. BUG_ON(page_count(page) <= 0);
  1179. }
  1180. static int __split_huge_page_map(struct page *page,
  1181. struct vm_area_struct *vma,
  1182. unsigned long address)
  1183. {
  1184. struct mm_struct *mm = vma->vm_mm;
  1185. pmd_t *pmd, _pmd;
  1186. int ret = 0, i;
  1187. pgtable_t pgtable;
  1188. unsigned long haddr;
  1189. spin_lock(&mm->page_table_lock);
  1190. pmd = page_check_address_pmd(page, mm, address,
  1191. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1192. if (pmd) {
  1193. pgtable = get_pmd_huge_pte(mm);
  1194. pmd_populate(mm, &_pmd, pgtable);
  1195. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1196. i++, haddr += PAGE_SIZE) {
  1197. pte_t *pte, entry;
  1198. BUG_ON(PageCompound(page+i));
  1199. entry = mk_pte(page + i, vma->vm_page_prot);
  1200. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1201. if (!pmd_write(*pmd))
  1202. entry = pte_wrprotect(entry);
  1203. else
  1204. BUG_ON(page_mapcount(page) != 1);
  1205. if (!pmd_young(*pmd))
  1206. entry = pte_mkold(entry);
  1207. pte = pte_offset_map(&_pmd, haddr);
  1208. BUG_ON(!pte_none(*pte));
  1209. set_pte_at(mm, haddr, pte, entry);
  1210. pte_unmap(pte);
  1211. }
  1212. smp_wmb(); /* make pte visible before pmd */
  1213. /*
  1214. * Up to this point the pmd is present and huge and
  1215. * userland has the whole access to the hugepage
  1216. * during the split (which happens in place). If we
  1217. * overwrite the pmd with the not-huge version
  1218. * pointing to the pte here (which of course we could
  1219. * if all CPUs were bug free), userland could trigger
  1220. * a small page size TLB miss on the small sized TLB
  1221. * while the hugepage TLB entry is still established
  1222. * in the huge TLB. Some CPU doesn't like that. See
  1223. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1224. * Erratum 383 on page 93. Intel should be safe but is
  1225. * also warns that it's only safe if the permission
  1226. * and cache attributes of the two entries loaded in
  1227. * the two TLB is identical (which should be the case
  1228. * here). But it is generally safer to never allow
  1229. * small and huge TLB entries for the same virtual
  1230. * address to be loaded simultaneously. So instead of
  1231. * doing "pmd_populate(); flush_tlb_range();" we first
  1232. * mark the current pmd notpresent (atomically because
  1233. * here the pmd_trans_huge and pmd_trans_splitting
  1234. * must remain set at all times on the pmd until the
  1235. * split is complete for this pmd), then we flush the
  1236. * SMP TLB and finally we write the non-huge version
  1237. * of the pmd entry with pmd_populate.
  1238. */
  1239. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1240. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1241. pmd_populate(mm, pmd, pgtable);
  1242. ret = 1;
  1243. }
  1244. spin_unlock(&mm->page_table_lock);
  1245. return ret;
  1246. }
  1247. /* must be called with anon_vma->root->mutex hold */
  1248. static void __split_huge_page(struct page *page,
  1249. struct anon_vma *anon_vma)
  1250. {
  1251. int mapcount, mapcount2;
  1252. struct anon_vma_chain *avc;
  1253. BUG_ON(!PageHead(page));
  1254. BUG_ON(PageTail(page));
  1255. mapcount = 0;
  1256. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1257. struct vm_area_struct *vma = avc->vma;
  1258. unsigned long addr = vma_address(page, vma);
  1259. BUG_ON(is_vma_temporary_stack(vma));
  1260. if (addr == -EFAULT)
  1261. continue;
  1262. mapcount += __split_huge_page_splitting(page, vma, addr);
  1263. }
  1264. /*
  1265. * It is critical that new vmas are added to the tail of the
  1266. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1267. * and establishes a child pmd before
  1268. * __split_huge_page_splitting() freezes the parent pmd (so if
  1269. * we fail to prevent copy_huge_pmd() from running until the
  1270. * whole __split_huge_page() is complete), we will still see
  1271. * the newly established pmd of the child later during the
  1272. * walk, to be able to set it as pmd_trans_splitting too.
  1273. */
  1274. if (mapcount != page_mapcount(page))
  1275. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1276. mapcount, page_mapcount(page));
  1277. BUG_ON(mapcount != page_mapcount(page));
  1278. __split_huge_page_refcount(page);
  1279. mapcount2 = 0;
  1280. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1281. struct vm_area_struct *vma = avc->vma;
  1282. unsigned long addr = vma_address(page, vma);
  1283. BUG_ON(is_vma_temporary_stack(vma));
  1284. if (addr == -EFAULT)
  1285. continue;
  1286. mapcount2 += __split_huge_page_map(page, vma, addr);
  1287. }
  1288. if (mapcount != mapcount2)
  1289. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1290. mapcount, mapcount2, page_mapcount(page));
  1291. BUG_ON(mapcount != mapcount2);
  1292. }
  1293. int split_huge_page(struct page *page)
  1294. {
  1295. struct anon_vma *anon_vma;
  1296. int ret = 1;
  1297. BUG_ON(!PageAnon(page));
  1298. anon_vma = page_lock_anon_vma(page);
  1299. if (!anon_vma)
  1300. goto out;
  1301. ret = 0;
  1302. if (!PageCompound(page))
  1303. goto out_unlock;
  1304. BUG_ON(!PageSwapBacked(page));
  1305. __split_huge_page(page, anon_vma);
  1306. count_vm_event(THP_SPLIT);
  1307. BUG_ON(PageCompound(page));
  1308. out_unlock:
  1309. page_unlock_anon_vma(anon_vma);
  1310. out:
  1311. return ret;
  1312. }
  1313. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1314. int hugepage_madvise(struct vm_area_struct *vma,
  1315. unsigned long *vm_flags, int advice)
  1316. {
  1317. switch (advice) {
  1318. case MADV_HUGEPAGE:
  1319. /*
  1320. * Be somewhat over-protective like KSM for now!
  1321. */
  1322. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1323. return -EINVAL;
  1324. *vm_flags &= ~VM_NOHUGEPAGE;
  1325. *vm_flags |= VM_HUGEPAGE;
  1326. /*
  1327. * If the vma become good for khugepaged to scan,
  1328. * register it here without waiting a page fault that
  1329. * may not happen any time soon.
  1330. */
  1331. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1332. return -ENOMEM;
  1333. break;
  1334. case MADV_NOHUGEPAGE:
  1335. /*
  1336. * Be somewhat over-protective like KSM for now!
  1337. */
  1338. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1339. return -EINVAL;
  1340. *vm_flags &= ~VM_HUGEPAGE;
  1341. *vm_flags |= VM_NOHUGEPAGE;
  1342. /*
  1343. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1344. * this vma even if we leave the mm registered in khugepaged if
  1345. * it got registered before VM_NOHUGEPAGE was set.
  1346. */
  1347. break;
  1348. }
  1349. return 0;
  1350. }
  1351. static int __init khugepaged_slab_init(void)
  1352. {
  1353. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1354. sizeof(struct mm_slot),
  1355. __alignof__(struct mm_slot), 0, NULL);
  1356. if (!mm_slot_cache)
  1357. return -ENOMEM;
  1358. return 0;
  1359. }
  1360. static void __init khugepaged_slab_free(void)
  1361. {
  1362. kmem_cache_destroy(mm_slot_cache);
  1363. mm_slot_cache = NULL;
  1364. }
  1365. static inline struct mm_slot *alloc_mm_slot(void)
  1366. {
  1367. if (!mm_slot_cache) /* initialization failed */
  1368. return NULL;
  1369. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1370. }
  1371. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1372. {
  1373. kmem_cache_free(mm_slot_cache, mm_slot);
  1374. }
  1375. static int __init mm_slots_hash_init(void)
  1376. {
  1377. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1378. GFP_KERNEL);
  1379. if (!mm_slots_hash)
  1380. return -ENOMEM;
  1381. return 0;
  1382. }
  1383. #if 0
  1384. static void __init mm_slots_hash_free(void)
  1385. {
  1386. kfree(mm_slots_hash);
  1387. mm_slots_hash = NULL;
  1388. }
  1389. #endif
  1390. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1391. {
  1392. struct mm_slot *mm_slot;
  1393. struct hlist_head *bucket;
  1394. struct hlist_node *node;
  1395. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1396. % MM_SLOTS_HASH_HEADS];
  1397. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1398. if (mm == mm_slot->mm)
  1399. return mm_slot;
  1400. }
  1401. return NULL;
  1402. }
  1403. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1404. struct mm_slot *mm_slot)
  1405. {
  1406. struct hlist_head *bucket;
  1407. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1408. % MM_SLOTS_HASH_HEADS];
  1409. mm_slot->mm = mm;
  1410. hlist_add_head(&mm_slot->hash, bucket);
  1411. }
  1412. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1413. {
  1414. return atomic_read(&mm->mm_users) == 0;
  1415. }
  1416. int __khugepaged_enter(struct mm_struct *mm)
  1417. {
  1418. struct mm_slot *mm_slot;
  1419. int wakeup;
  1420. mm_slot = alloc_mm_slot();
  1421. if (!mm_slot)
  1422. return -ENOMEM;
  1423. /* __khugepaged_exit() must not run from under us */
  1424. VM_BUG_ON(khugepaged_test_exit(mm));
  1425. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1426. free_mm_slot(mm_slot);
  1427. return 0;
  1428. }
  1429. spin_lock(&khugepaged_mm_lock);
  1430. insert_to_mm_slots_hash(mm, mm_slot);
  1431. /*
  1432. * Insert just behind the scanning cursor, to let the area settle
  1433. * down a little.
  1434. */
  1435. wakeup = list_empty(&khugepaged_scan.mm_head);
  1436. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1437. spin_unlock(&khugepaged_mm_lock);
  1438. atomic_inc(&mm->mm_count);
  1439. if (wakeup)
  1440. wake_up_interruptible(&khugepaged_wait);
  1441. return 0;
  1442. }
  1443. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1444. {
  1445. unsigned long hstart, hend;
  1446. if (!vma->anon_vma)
  1447. /*
  1448. * Not yet faulted in so we will register later in the
  1449. * page fault if needed.
  1450. */
  1451. return 0;
  1452. if (vma->vm_ops)
  1453. /* khugepaged not yet working on file or special mappings */
  1454. return 0;
  1455. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1456. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1457. hend = vma->vm_end & HPAGE_PMD_MASK;
  1458. if (hstart < hend)
  1459. return khugepaged_enter(vma);
  1460. return 0;
  1461. }
  1462. void __khugepaged_exit(struct mm_struct *mm)
  1463. {
  1464. struct mm_slot *mm_slot;
  1465. int free = 0;
  1466. spin_lock(&khugepaged_mm_lock);
  1467. mm_slot = get_mm_slot(mm);
  1468. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1469. hlist_del(&mm_slot->hash);
  1470. list_del(&mm_slot->mm_node);
  1471. free = 1;
  1472. }
  1473. spin_unlock(&khugepaged_mm_lock);
  1474. if (free) {
  1475. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1476. free_mm_slot(mm_slot);
  1477. mmdrop(mm);
  1478. } else if (mm_slot) {
  1479. /*
  1480. * This is required to serialize against
  1481. * khugepaged_test_exit() (which is guaranteed to run
  1482. * under mmap sem read mode). Stop here (after we
  1483. * return all pagetables will be destroyed) until
  1484. * khugepaged has finished working on the pagetables
  1485. * under the mmap_sem.
  1486. */
  1487. down_write(&mm->mmap_sem);
  1488. up_write(&mm->mmap_sem);
  1489. }
  1490. }
  1491. static void release_pte_page(struct page *page)
  1492. {
  1493. /* 0 stands for page_is_file_cache(page) == false */
  1494. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1495. unlock_page(page);
  1496. putback_lru_page(page);
  1497. }
  1498. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1499. {
  1500. while (--_pte >= pte) {
  1501. pte_t pteval = *_pte;
  1502. if (!pte_none(pteval))
  1503. release_pte_page(pte_page(pteval));
  1504. }
  1505. }
  1506. static void release_all_pte_pages(pte_t *pte)
  1507. {
  1508. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1509. }
  1510. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1511. unsigned long address,
  1512. pte_t *pte)
  1513. {
  1514. struct page *page;
  1515. pte_t *_pte;
  1516. int referenced = 0, isolated = 0, none = 0;
  1517. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1518. _pte++, address += PAGE_SIZE) {
  1519. pte_t pteval = *_pte;
  1520. if (pte_none(pteval)) {
  1521. if (++none <= khugepaged_max_ptes_none)
  1522. continue;
  1523. else {
  1524. release_pte_pages(pte, _pte);
  1525. goto out;
  1526. }
  1527. }
  1528. if (!pte_present(pteval) || !pte_write(pteval)) {
  1529. release_pte_pages(pte, _pte);
  1530. goto out;
  1531. }
  1532. page = vm_normal_page(vma, address, pteval);
  1533. if (unlikely(!page)) {
  1534. release_pte_pages(pte, _pte);
  1535. goto out;
  1536. }
  1537. VM_BUG_ON(PageCompound(page));
  1538. BUG_ON(!PageAnon(page));
  1539. VM_BUG_ON(!PageSwapBacked(page));
  1540. /* cannot use mapcount: can't collapse if there's a gup pin */
  1541. if (page_count(page) != 1) {
  1542. release_pte_pages(pte, _pte);
  1543. goto out;
  1544. }
  1545. /*
  1546. * We can do it before isolate_lru_page because the
  1547. * page can't be freed from under us. NOTE: PG_lock
  1548. * is needed to serialize against split_huge_page
  1549. * when invoked from the VM.
  1550. */
  1551. if (!trylock_page(page)) {
  1552. release_pte_pages(pte, _pte);
  1553. goto out;
  1554. }
  1555. /*
  1556. * Isolate the page to avoid collapsing an hugepage
  1557. * currently in use by the VM.
  1558. */
  1559. if (isolate_lru_page(page)) {
  1560. unlock_page(page);
  1561. release_pte_pages(pte, _pte);
  1562. goto out;
  1563. }
  1564. /* 0 stands for page_is_file_cache(page) == false */
  1565. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1566. VM_BUG_ON(!PageLocked(page));
  1567. VM_BUG_ON(PageLRU(page));
  1568. /* If there is no mapped pte young don't collapse the page */
  1569. if (pte_young(pteval) || PageReferenced(page) ||
  1570. mmu_notifier_test_young(vma->vm_mm, address))
  1571. referenced = 1;
  1572. }
  1573. if (unlikely(!referenced))
  1574. release_all_pte_pages(pte);
  1575. else
  1576. isolated = 1;
  1577. out:
  1578. return isolated;
  1579. }
  1580. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1581. struct vm_area_struct *vma,
  1582. unsigned long address,
  1583. spinlock_t *ptl)
  1584. {
  1585. pte_t *_pte;
  1586. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1587. pte_t pteval = *_pte;
  1588. struct page *src_page;
  1589. if (pte_none(pteval)) {
  1590. clear_user_highpage(page, address);
  1591. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1592. } else {
  1593. src_page = pte_page(pteval);
  1594. copy_user_highpage(page, src_page, address, vma);
  1595. VM_BUG_ON(page_mapcount(src_page) != 1);
  1596. release_pte_page(src_page);
  1597. /*
  1598. * ptl mostly unnecessary, but preempt has to
  1599. * be disabled to update the per-cpu stats
  1600. * inside page_remove_rmap().
  1601. */
  1602. spin_lock(ptl);
  1603. /*
  1604. * paravirt calls inside pte_clear here are
  1605. * superfluous.
  1606. */
  1607. pte_clear(vma->vm_mm, address, _pte);
  1608. page_remove_rmap(src_page);
  1609. spin_unlock(ptl);
  1610. free_page_and_swap_cache(src_page);
  1611. }
  1612. address += PAGE_SIZE;
  1613. page++;
  1614. }
  1615. }
  1616. static void collapse_huge_page(struct mm_struct *mm,
  1617. unsigned long address,
  1618. struct page **hpage,
  1619. struct vm_area_struct *vma,
  1620. int node)
  1621. {
  1622. pgd_t *pgd;
  1623. pud_t *pud;
  1624. pmd_t *pmd, _pmd;
  1625. pte_t *pte;
  1626. pgtable_t pgtable;
  1627. struct page *new_page;
  1628. spinlock_t *ptl;
  1629. int isolated;
  1630. unsigned long hstart, hend;
  1631. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1632. #ifndef CONFIG_NUMA
  1633. up_read(&mm->mmap_sem);
  1634. VM_BUG_ON(!*hpage);
  1635. new_page = *hpage;
  1636. #else
  1637. VM_BUG_ON(*hpage);
  1638. /*
  1639. * Allocate the page while the vma is still valid and under
  1640. * the mmap_sem read mode so there is no memory allocation
  1641. * later when we take the mmap_sem in write mode. This is more
  1642. * friendly behavior (OTOH it may actually hide bugs) to
  1643. * filesystems in userland with daemons allocating memory in
  1644. * the userland I/O paths. Allocating memory with the
  1645. * mmap_sem in read mode is good idea also to allow greater
  1646. * scalability.
  1647. */
  1648. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1649. node, __GFP_OTHER_NODE);
  1650. /*
  1651. * After allocating the hugepage, release the mmap_sem read lock in
  1652. * preparation for taking it in write mode.
  1653. */
  1654. up_read(&mm->mmap_sem);
  1655. if (unlikely(!new_page)) {
  1656. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1657. *hpage = ERR_PTR(-ENOMEM);
  1658. return;
  1659. }
  1660. count_vm_event(THP_COLLAPSE_ALLOC);
  1661. #endif
  1662. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1663. #ifdef CONFIG_NUMA
  1664. put_page(new_page);
  1665. #endif
  1666. return;
  1667. }
  1668. /*
  1669. * Prevent all access to pagetables with the exception of
  1670. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1671. * handled by the anon_vma lock + PG_lock.
  1672. */
  1673. down_write(&mm->mmap_sem);
  1674. if (unlikely(khugepaged_test_exit(mm)))
  1675. goto out;
  1676. vma = find_vma(mm, address);
  1677. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1678. hend = vma->vm_end & HPAGE_PMD_MASK;
  1679. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1680. goto out;
  1681. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1682. (vma->vm_flags & VM_NOHUGEPAGE))
  1683. goto out;
  1684. if (!vma->anon_vma || vma->vm_ops)
  1685. goto out;
  1686. if (is_vma_temporary_stack(vma))
  1687. goto out;
  1688. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1689. pgd = pgd_offset(mm, address);
  1690. if (!pgd_present(*pgd))
  1691. goto out;
  1692. pud = pud_offset(pgd, address);
  1693. if (!pud_present(*pud))
  1694. goto out;
  1695. pmd = pmd_offset(pud, address);
  1696. /* pmd can't go away or become huge under us */
  1697. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1698. goto out;
  1699. anon_vma_lock(vma->anon_vma);
  1700. pte = pte_offset_map(pmd, address);
  1701. ptl = pte_lockptr(mm, pmd);
  1702. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1703. /*
  1704. * After this gup_fast can't run anymore. This also removes
  1705. * any huge TLB entry from the CPU so we won't allow
  1706. * huge and small TLB entries for the same virtual address
  1707. * to avoid the risk of CPU bugs in that area.
  1708. */
  1709. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1710. spin_unlock(&mm->page_table_lock);
  1711. spin_lock(ptl);
  1712. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1713. spin_unlock(ptl);
  1714. if (unlikely(!isolated)) {
  1715. pte_unmap(pte);
  1716. spin_lock(&mm->page_table_lock);
  1717. BUG_ON(!pmd_none(*pmd));
  1718. set_pmd_at(mm, address, pmd, _pmd);
  1719. spin_unlock(&mm->page_table_lock);
  1720. anon_vma_unlock(vma->anon_vma);
  1721. goto out;
  1722. }
  1723. /*
  1724. * All pages are isolated and locked so anon_vma rmap
  1725. * can't run anymore.
  1726. */
  1727. anon_vma_unlock(vma->anon_vma);
  1728. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1729. pte_unmap(pte);
  1730. __SetPageUptodate(new_page);
  1731. pgtable = pmd_pgtable(_pmd);
  1732. VM_BUG_ON(page_count(pgtable) != 1);
  1733. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1734. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1735. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1736. _pmd = pmd_mkhuge(_pmd);
  1737. /*
  1738. * spin_lock() below is not the equivalent of smp_wmb(), so
  1739. * this is needed to avoid the copy_huge_page writes to become
  1740. * visible after the set_pmd_at() write.
  1741. */
  1742. smp_wmb();
  1743. spin_lock(&mm->page_table_lock);
  1744. BUG_ON(!pmd_none(*pmd));
  1745. page_add_new_anon_rmap(new_page, vma, address);
  1746. set_pmd_at(mm, address, pmd, _pmd);
  1747. update_mmu_cache(vma, address, _pmd);
  1748. prepare_pmd_huge_pte(pgtable, mm);
  1749. spin_unlock(&mm->page_table_lock);
  1750. #ifndef CONFIG_NUMA
  1751. *hpage = NULL;
  1752. #endif
  1753. khugepaged_pages_collapsed++;
  1754. out_up_write:
  1755. up_write(&mm->mmap_sem);
  1756. return;
  1757. out:
  1758. mem_cgroup_uncharge_page(new_page);
  1759. #ifdef CONFIG_NUMA
  1760. put_page(new_page);
  1761. #endif
  1762. goto out_up_write;
  1763. }
  1764. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1765. struct vm_area_struct *vma,
  1766. unsigned long address,
  1767. struct page **hpage)
  1768. {
  1769. pgd_t *pgd;
  1770. pud_t *pud;
  1771. pmd_t *pmd;
  1772. pte_t *pte, *_pte;
  1773. int ret = 0, referenced = 0, none = 0;
  1774. struct page *page;
  1775. unsigned long _address;
  1776. spinlock_t *ptl;
  1777. int node = -1;
  1778. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1779. pgd = pgd_offset(mm, address);
  1780. if (!pgd_present(*pgd))
  1781. goto out;
  1782. pud = pud_offset(pgd, address);
  1783. if (!pud_present(*pud))
  1784. goto out;
  1785. pmd = pmd_offset(pud, address);
  1786. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1787. goto out;
  1788. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1789. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1790. _pte++, _address += PAGE_SIZE) {
  1791. pte_t pteval = *_pte;
  1792. if (pte_none(pteval)) {
  1793. if (++none <= khugepaged_max_ptes_none)
  1794. continue;
  1795. else
  1796. goto out_unmap;
  1797. }
  1798. if (!pte_present(pteval) || !pte_write(pteval))
  1799. goto out_unmap;
  1800. page = vm_normal_page(vma, _address, pteval);
  1801. if (unlikely(!page))
  1802. goto out_unmap;
  1803. /*
  1804. * Chose the node of the first page. This could
  1805. * be more sophisticated and look at more pages,
  1806. * but isn't for now.
  1807. */
  1808. if (node == -1)
  1809. node = page_to_nid(page);
  1810. VM_BUG_ON(PageCompound(page));
  1811. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1812. goto out_unmap;
  1813. /* cannot use mapcount: can't collapse if there's a gup pin */
  1814. if (page_count(page) != 1)
  1815. goto out_unmap;
  1816. if (pte_young(pteval) || PageReferenced(page) ||
  1817. mmu_notifier_test_young(vma->vm_mm, address))
  1818. referenced = 1;
  1819. }
  1820. if (referenced)
  1821. ret = 1;
  1822. out_unmap:
  1823. pte_unmap_unlock(pte, ptl);
  1824. if (ret)
  1825. /* collapse_huge_page will return with the mmap_sem released */
  1826. collapse_huge_page(mm, address, hpage, vma, node);
  1827. out:
  1828. return ret;
  1829. }
  1830. static void collect_mm_slot(struct mm_slot *mm_slot)
  1831. {
  1832. struct mm_struct *mm = mm_slot->mm;
  1833. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1834. if (khugepaged_test_exit(mm)) {
  1835. /* free mm_slot */
  1836. hlist_del(&mm_slot->hash);
  1837. list_del(&mm_slot->mm_node);
  1838. /*
  1839. * Not strictly needed because the mm exited already.
  1840. *
  1841. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1842. */
  1843. /* khugepaged_mm_lock actually not necessary for the below */
  1844. free_mm_slot(mm_slot);
  1845. mmdrop(mm);
  1846. }
  1847. }
  1848. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1849. struct page **hpage)
  1850. __releases(&khugepaged_mm_lock)
  1851. __acquires(&khugepaged_mm_lock)
  1852. {
  1853. struct mm_slot *mm_slot;
  1854. struct mm_struct *mm;
  1855. struct vm_area_struct *vma;
  1856. int progress = 0;
  1857. VM_BUG_ON(!pages);
  1858. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1859. if (khugepaged_scan.mm_slot)
  1860. mm_slot = khugepaged_scan.mm_slot;
  1861. else {
  1862. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1863. struct mm_slot, mm_node);
  1864. khugepaged_scan.address = 0;
  1865. khugepaged_scan.mm_slot = mm_slot;
  1866. }
  1867. spin_unlock(&khugepaged_mm_lock);
  1868. mm = mm_slot->mm;
  1869. down_read(&mm->mmap_sem);
  1870. if (unlikely(khugepaged_test_exit(mm)))
  1871. vma = NULL;
  1872. else
  1873. vma = find_vma(mm, khugepaged_scan.address);
  1874. progress++;
  1875. for (; vma; vma = vma->vm_next) {
  1876. unsigned long hstart, hend;
  1877. cond_resched();
  1878. if (unlikely(khugepaged_test_exit(mm))) {
  1879. progress++;
  1880. break;
  1881. }
  1882. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1883. !khugepaged_always()) ||
  1884. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1885. skip:
  1886. progress++;
  1887. continue;
  1888. }
  1889. if (!vma->anon_vma || vma->vm_ops)
  1890. goto skip;
  1891. if (is_vma_temporary_stack(vma))
  1892. goto skip;
  1893. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1894. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1895. hend = vma->vm_end & HPAGE_PMD_MASK;
  1896. if (hstart >= hend)
  1897. goto skip;
  1898. if (khugepaged_scan.address > hend)
  1899. goto skip;
  1900. if (khugepaged_scan.address < hstart)
  1901. khugepaged_scan.address = hstart;
  1902. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1903. while (khugepaged_scan.address < hend) {
  1904. int ret;
  1905. cond_resched();
  1906. if (unlikely(khugepaged_test_exit(mm)))
  1907. goto breakouterloop;
  1908. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1909. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1910. hend);
  1911. ret = khugepaged_scan_pmd(mm, vma,
  1912. khugepaged_scan.address,
  1913. hpage);
  1914. /* move to next address */
  1915. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1916. progress += HPAGE_PMD_NR;
  1917. if (ret)
  1918. /* we released mmap_sem so break loop */
  1919. goto breakouterloop_mmap_sem;
  1920. if (progress >= pages)
  1921. goto breakouterloop;
  1922. }
  1923. }
  1924. breakouterloop:
  1925. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1926. breakouterloop_mmap_sem:
  1927. spin_lock(&khugepaged_mm_lock);
  1928. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1929. /*
  1930. * Release the current mm_slot if this mm is about to die, or
  1931. * if we scanned all vmas of this mm.
  1932. */
  1933. if (khugepaged_test_exit(mm) || !vma) {
  1934. /*
  1935. * Make sure that if mm_users is reaching zero while
  1936. * khugepaged runs here, khugepaged_exit will find
  1937. * mm_slot not pointing to the exiting mm.
  1938. */
  1939. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1940. khugepaged_scan.mm_slot = list_entry(
  1941. mm_slot->mm_node.next,
  1942. struct mm_slot, mm_node);
  1943. khugepaged_scan.address = 0;
  1944. } else {
  1945. khugepaged_scan.mm_slot = NULL;
  1946. khugepaged_full_scans++;
  1947. }
  1948. collect_mm_slot(mm_slot);
  1949. }
  1950. return progress;
  1951. }
  1952. static int khugepaged_has_work(void)
  1953. {
  1954. return !list_empty(&khugepaged_scan.mm_head) &&
  1955. khugepaged_enabled();
  1956. }
  1957. static int khugepaged_wait_event(void)
  1958. {
  1959. return !list_empty(&khugepaged_scan.mm_head) ||
  1960. !khugepaged_enabled();
  1961. }
  1962. static void khugepaged_do_scan(struct page **hpage)
  1963. {
  1964. unsigned int progress = 0, pass_through_head = 0;
  1965. unsigned int pages = khugepaged_pages_to_scan;
  1966. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1967. while (progress < pages) {
  1968. cond_resched();
  1969. #ifndef CONFIG_NUMA
  1970. if (!*hpage) {
  1971. *hpage = alloc_hugepage(khugepaged_defrag());
  1972. if (unlikely(!*hpage)) {
  1973. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1974. break;
  1975. }
  1976. count_vm_event(THP_COLLAPSE_ALLOC);
  1977. }
  1978. #else
  1979. if (IS_ERR(*hpage))
  1980. break;
  1981. #endif
  1982. if (unlikely(kthread_should_stop() || freezing(current)))
  1983. break;
  1984. spin_lock(&khugepaged_mm_lock);
  1985. if (!khugepaged_scan.mm_slot)
  1986. pass_through_head++;
  1987. if (khugepaged_has_work() &&
  1988. pass_through_head < 2)
  1989. progress += khugepaged_scan_mm_slot(pages - progress,
  1990. hpage);
  1991. else
  1992. progress = pages;
  1993. spin_unlock(&khugepaged_mm_lock);
  1994. }
  1995. }
  1996. static void khugepaged_alloc_sleep(void)
  1997. {
  1998. wait_event_freezable_timeout(khugepaged_wait, false,
  1999. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2000. }
  2001. #ifndef CONFIG_NUMA
  2002. static struct page *khugepaged_alloc_hugepage(void)
  2003. {
  2004. struct page *hpage;
  2005. do {
  2006. hpage = alloc_hugepage(khugepaged_defrag());
  2007. if (!hpage) {
  2008. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2009. khugepaged_alloc_sleep();
  2010. } else
  2011. count_vm_event(THP_COLLAPSE_ALLOC);
  2012. } while (unlikely(!hpage) &&
  2013. likely(khugepaged_enabled()));
  2014. return hpage;
  2015. }
  2016. #endif
  2017. static void khugepaged_loop(void)
  2018. {
  2019. struct page *hpage;
  2020. #ifdef CONFIG_NUMA
  2021. hpage = NULL;
  2022. #endif
  2023. while (likely(khugepaged_enabled())) {
  2024. #ifndef CONFIG_NUMA
  2025. hpage = khugepaged_alloc_hugepage();
  2026. if (unlikely(!hpage))
  2027. break;
  2028. #else
  2029. if (IS_ERR(hpage)) {
  2030. khugepaged_alloc_sleep();
  2031. hpage = NULL;
  2032. }
  2033. #endif
  2034. khugepaged_do_scan(&hpage);
  2035. #ifndef CONFIG_NUMA
  2036. if (hpage)
  2037. put_page(hpage);
  2038. #endif
  2039. try_to_freeze();
  2040. if (unlikely(kthread_should_stop()))
  2041. break;
  2042. if (khugepaged_has_work()) {
  2043. if (!khugepaged_scan_sleep_millisecs)
  2044. continue;
  2045. wait_event_freezable_timeout(khugepaged_wait, false,
  2046. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2047. } else if (khugepaged_enabled())
  2048. wait_event_freezable(khugepaged_wait,
  2049. khugepaged_wait_event());
  2050. }
  2051. }
  2052. static int khugepaged(void *none)
  2053. {
  2054. struct mm_slot *mm_slot;
  2055. set_freezable();
  2056. set_user_nice(current, 19);
  2057. while (!kthread_should_stop()) {
  2058. VM_BUG_ON(khugepaged_thread != current);
  2059. khugepaged_loop();
  2060. VM_BUG_ON(khugepaged_thread != current);
  2061. }
  2062. spin_lock(&khugepaged_mm_lock);
  2063. mm_slot = khugepaged_scan.mm_slot;
  2064. khugepaged_scan.mm_slot = NULL;
  2065. if (mm_slot)
  2066. collect_mm_slot(mm_slot);
  2067. spin_unlock(&khugepaged_mm_lock);
  2068. return 0;
  2069. }
  2070. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2071. {
  2072. struct page *page;
  2073. spin_lock(&mm->page_table_lock);
  2074. if (unlikely(!pmd_trans_huge(*pmd))) {
  2075. spin_unlock(&mm->page_table_lock);
  2076. return;
  2077. }
  2078. page = pmd_page(*pmd);
  2079. VM_BUG_ON(!page_count(page));
  2080. get_page(page);
  2081. spin_unlock(&mm->page_table_lock);
  2082. split_huge_page(page);
  2083. put_page(page);
  2084. BUG_ON(pmd_trans_huge(*pmd));
  2085. }
  2086. static void split_huge_page_address(struct mm_struct *mm,
  2087. unsigned long address)
  2088. {
  2089. pgd_t *pgd;
  2090. pud_t *pud;
  2091. pmd_t *pmd;
  2092. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2093. pgd = pgd_offset(mm, address);
  2094. if (!pgd_present(*pgd))
  2095. return;
  2096. pud = pud_offset(pgd, address);
  2097. if (!pud_present(*pud))
  2098. return;
  2099. pmd = pmd_offset(pud, address);
  2100. if (!pmd_present(*pmd))
  2101. return;
  2102. /*
  2103. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2104. * materialize from under us.
  2105. */
  2106. split_huge_page_pmd(mm, pmd);
  2107. }
  2108. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2109. unsigned long start,
  2110. unsigned long end,
  2111. long adjust_next)
  2112. {
  2113. /*
  2114. * If the new start address isn't hpage aligned and it could
  2115. * previously contain an hugepage: check if we need to split
  2116. * an huge pmd.
  2117. */
  2118. if (start & ~HPAGE_PMD_MASK &&
  2119. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2120. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2121. split_huge_page_address(vma->vm_mm, start);
  2122. /*
  2123. * If the new end address isn't hpage aligned and it could
  2124. * previously contain an hugepage: check if we need to split
  2125. * an huge pmd.
  2126. */
  2127. if (end & ~HPAGE_PMD_MASK &&
  2128. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2129. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2130. split_huge_page_address(vma->vm_mm, end);
  2131. /*
  2132. * If we're also updating the vma->vm_next->vm_start, if the new
  2133. * vm_next->vm_start isn't page aligned and it could previously
  2134. * contain an hugepage: check if we need to split an huge pmd.
  2135. */
  2136. if (adjust_next > 0) {
  2137. struct vm_area_struct *next = vma->vm_next;
  2138. unsigned long nstart = next->vm_start;
  2139. nstart += adjust_next << PAGE_SHIFT;
  2140. if (nstart & ~HPAGE_PMD_MASK &&
  2141. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2142. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2143. split_huge_page_address(next->vm_mm, nstart);
  2144. }
  2145. }