page_alloc.c 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. static void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. set_compound_page_dtor(page, free_compound_page);
  244. set_compound_order(page, order);
  245. __SetPageHead(page);
  246. for (i = 1; i < nr_pages; i++) {
  247. struct page *p = page + i;
  248. __SetPageTail(p);
  249. p->first_page = page;
  250. }
  251. }
  252. static void destroy_compound_page(struct page *page, unsigned long order)
  253. {
  254. int i;
  255. int nr_pages = 1 << order;
  256. if (unlikely(compound_order(page) != order))
  257. bad_page(page);
  258. if (unlikely(!PageHead(page)))
  259. bad_page(page);
  260. __ClearPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. if (unlikely(!PageTail(p) |
  264. (p->first_page != page)))
  265. bad_page(page);
  266. __ClearPageTail(p);
  267. }
  268. }
  269. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  270. {
  271. int i;
  272. /*
  273. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  274. * and __GFP_HIGHMEM from hard or soft interrupt context.
  275. */
  276. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  277. for (i = 0; i < (1 << order); i++)
  278. clear_highpage(page + i);
  279. }
  280. static inline void set_page_order(struct page *page, int order)
  281. {
  282. set_page_private(page, order);
  283. __SetPageBuddy(page);
  284. }
  285. static inline void rmv_page_order(struct page *page)
  286. {
  287. __ClearPageBuddy(page);
  288. set_page_private(page, 0);
  289. }
  290. /*
  291. * Locate the struct page for both the matching buddy in our
  292. * pair (buddy1) and the combined O(n+1) page they form (page).
  293. *
  294. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  295. * the following equation:
  296. * B2 = B1 ^ (1 << O)
  297. * For example, if the starting buddy (buddy2) is #8 its order
  298. * 1 buddy is #10:
  299. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  300. *
  301. * 2) Any buddy B will have an order O+1 parent P which
  302. * satisfies the following equation:
  303. * P = B & ~(1 << O)
  304. *
  305. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  306. */
  307. static inline struct page *
  308. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  309. {
  310. unsigned long buddy_idx = page_idx ^ (1 << order);
  311. return page + (buddy_idx - page_idx);
  312. }
  313. static inline unsigned long
  314. __find_combined_index(unsigned long page_idx, unsigned int order)
  315. {
  316. return (page_idx & ~(1 << order));
  317. }
  318. /*
  319. * This function checks whether a page is free && is the buddy
  320. * we can do coalesce a page and its buddy if
  321. * (a) the buddy is not in a hole &&
  322. * (b) the buddy is in the buddy system &&
  323. * (c) a page and its buddy have the same order &&
  324. * (d) a page and its buddy are in the same zone.
  325. *
  326. * For recording whether a page is in the buddy system, we use PG_buddy.
  327. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  328. *
  329. * For recording page's order, we use page_private(page).
  330. */
  331. static inline int page_is_buddy(struct page *page, struct page *buddy,
  332. int order)
  333. {
  334. if (!pfn_valid_within(page_to_pfn(buddy)))
  335. return 0;
  336. if (page_zone_id(page) != page_zone_id(buddy))
  337. return 0;
  338. if (PageBuddy(buddy) && page_order(buddy) == order) {
  339. BUG_ON(page_count(buddy) != 0);
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. /*
  345. * Freeing function for a buddy system allocator.
  346. *
  347. * The concept of a buddy system is to maintain direct-mapped table
  348. * (containing bit values) for memory blocks of various "orders".
  349. * The bottom level table contains the map for the smallest allocatable
  350. * units of memory (here, pages), and each level above it describes
  351. * pairs of units from the levels below, hence, "buddies".
  352. * At a high level, all that happens here is marking the table entry
  353. * at the bottom level available, and propagating the changes upward
  354. * as necessary, plus some accounting needed to play nicely with other
  355. * parts of the VM system.
  356. * At each level, we keep a list of pages, which are heads of continuous
  357. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  358. * order is recorded in page_private(page) field.
  359. * So when we are allocating or freeing one, we can derive the state of the
  360. * other. That is, if we allocate a small block, and both were
  361. * free, the remainder of the region must be split into blocks.
  362. * If a block is freed, and its buddy is also free, then this
  363. * triggers coalescing into a block of larger size.
  364. *
  365. * -- wli
  366. */
  367. static inline void __free_one_page(struct page *page,
  368. struct zone *zone, unsigned int order)
  369. {
  370. unsigned long page_idx;
  371. int order_size = 1 << order;
  372. int migratetype = get_pageblock_migratetype(page);
  373. if (unlikely(PageCompound(page)))
  374. destroy_compound_page(page, order);
  375. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  376. VM_BUG_ON(page_idx & (order_size - 1));
  377. VM_BUG_ON(bad_range(zone, page));
  378. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  379. while (order < MAX_ORDER-1) {
  380. unsigned long combined_idx;
  381. struct page *buddy;
  382. buddy = __page_find_buddy(page, page_idx, order);
  383. if (!page_is_buddy(page, buddy, order))
  384. break;
  385. /* Our buddy is free, merge with it and move up one order. */
  386. list_del(&buddy->lru);
  387. zone->free_area[order].nr_free--;
  388. rmv_page_order(buddy);
  389. combined_idx = __find_combined_index(page_idx, order);
  390. page = page + (combined_idx - page_idx);
  391. page_idx = combined_idx;
  392. order++;
  393. }
  394. set_page_order(page, order);
  395. list_add(&page->lru,
  396. &zone->free_area[order].free_list[migratetype]);
  397. zone->free_area[order].nr_free++;
  398. }
  399. static inline int free_pages_check(struct page *page)
  400. {
  401. if (unlikely(page_mapcount(page) |
  402. (page->mapping != NULL) |
  403. (page_get_page_cgroup(page) != NULL) |
  404. (page_count(page) != 0) |
  405. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  406. bad_page(page);
  407. if (PageDirty(page))
  408. __ClearPageDirty(page);
  409. /*
  410. * For now, we report if PG_reserved was found set, but do not
  411. * clear it, and do not free the page. But we shall soon need
  412. * to do more, for when the ZERO_PAGE count wraps negative.
  413. */
  414. return PageReserved(page);
  415. }
  416. /*
  417. * Frees a list of pages.
  418. * Assumes all pages on list are in same zone, and of same order.
  419. * count is the number of pages to free.
  420. *
  421. * If the zone was previously in an "all pages pinned" state then look to
  422. * see if this freeing clears that state.
  423. *
  424. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  425. * pinned" detection logic.
  426. */
  427. static void free_pages_bulk(struct zone *zone, int count,
  428. struct list_head *list, int order)
  429. {
  430. spin_lock(&zone->lock);
  431. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  432. zone->pages_scanned = 0;
  433. while (count--) {
  434. struct page *page;
  435. VM_BUG_ON(list_empty(list));
  436. page = list_entry(list->prev, struct page, lru);
  437. /* have to delete it as __free_one_page list manipulates */
  438. list_del(&page->lru);
  439. __free_one_page(page, zone, order);
  440. }
  441. spin_unlock(&zone->lock);
  442. }
  443. static void free_one_page(struct zone *zone, struct page *page, int order)
  444. {
  445. spin_lock(&zone->lock);
  446. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  447. zone->pages_scanned = 0;
  448. __free_one_page(page, zone, order);
  449. spin_unlock(&zone->lock);
  450. }
  451. static void __free_pages_ok(struct page *page, unsigned int order)
  452. {
  453. unsigned long flags;
  454. int i;
  455. int reserved = 0;
  456. for (i = 0 ; i < (1 << order) ; ++i)
  457. reserved += free_pages_check(page + i);
  458. if (reserved)
  459. return;
  460. if (!PageHighMem(page)) {
  461. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  462. debug_check_no_obj_freed(page_address(page),
  463. PAGE_SIZE << order);
  464. }
  465. arch_free_page(page, order);
  466. kernel_map_pages(page, 1 << order, 0);
  467. local_irq_save(flags);
  468. __count_vm_events(PGFREE, 1 << order);
  469. free_one_page(page_zone(page), page, order);
  470. local_irq_restore(flags);
  471. }
  472. /*
  473. * permit the bootmem allocator to evade page validation on high-order frees
  474. */
  475. void __free_pages_bootmem(struct page *page, unsigned int order)
  476. {
  477. if (order == 0) {
  478. __ClearPageReserved(page);
  479. set_page_count(page, 0);
  480. set_page_refcounted(page);
  481. __free_page(page);
  482. } else {
  483. int loop;
  484. prefetchw(page);
  485. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  486. struct page *p = &page[loop];
  487. if (loop + 1 < BITS_PER_LONG)
  488. prefetchw(p + 1);
  489. __ClearPageReserved(p);
  490. set_page_count(p, 0);
  491. }
  492. set_page_refcounted(page);
  493. __free_pages(page, order);
  494. }
  495. }
  496. /*
  497. * The order of subdivision here is critical for the IO subsystem.
  498. * Please do not alter this order without good reasons and regression
  499. * testing. Specifically, as large blocks of memory are subdivided,
  500. * the order in which smaller blocks are delivered depends on the order
  501. * they're subdivided in this function. This is the primary factor
  502. * influencing the order in which pages are delivered to the IO
  503. * subsystem according to empirical testing, and this is also justified
  504. * by considering the behavior of a buddy system containing a single
  505. * large block of memory acted on by a series of small allocations.
  506. * This behavior is a critical factor in sglist merging's success.
  507. *
  508. * -- wli
  509. */
  510. static inline void expand(struct zone *zone, struct page *page,
  511. int low, int high, struct free_area *area,
  512. int migratetype)
  513. {
  514. unsigned long size = 1 << high;
  515. while (high > low) {
  516. area--;
  517. high--;
  518. size >>= 1;
  519. VM_BUG_ON(bad_range(zone, &page[size]));
  520. list_add(&page[size].lru, &area->free_list[migratetype]);
  521. area->nr_free++;
  522. set_page_order(&page[size], high);
  523. }
  524. }
  525. /*
  526. * This page is about to be returned from the page allocator
  527. */
  528. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  529. {
  530. if (unlikely(page_mapcount(page) |
  531. (page->mapping != NULL) |
  532. (page_get_page_cgroup(page) != NULL) |
  533. (page_count(page) != 0) |
  534. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  535. bad_page(page);
  536. /*
  537. * For now, we report if PG_reserved was found set, but do not
  538. * clear it, and do not allocate the page: as a safety net.
  539. */
  540. if (PageReserved(page))
  541. return 1;
  542. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  543. 1 << PG_referenced | 1 << PG_arch_1 |
  544. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  545. set_page_private(page, 0);
  546. set_page_refcounted(page);
  547. arch_alloc_page(page, order);
  548. kernel_map_pages(page, 1 << order, 1);
  549. if (gfp_flags & __GFP_ZERO)
  550. prep_zero_page(page, order, gfp_flags);
  551. if (order && (gfp_flags & __GFP_COMP))
  552. prep_compound_page(page, order);
  553. return 0;
  554. }
  555. /*
  556. * Go through the free lists for the given migratetype and remove
  557. * the smallest available page from the freelists
  558. */
  559. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  560. int migratetype)
  561. {
  562. unsigned int current_order;
  563. struct free_area * area;
  564. struct page *page;
  565. /* Find a page of the appropriate size in the preferred list */
  566. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  567. area = &(zone->free_area[current_order]);
  568. if (list_empty(&area->free_list[migratetype]))
  569. continue;
  570. page = list_entry(area->free_list[migratetype].next,
  571. struct page, lru);
  572. list_del(&page->lru);
  573. rmv_page_order(page);
  574. area->nr_free--;
  575. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  576. expand(zone, page, order, current_order, area, migratetype);
  577. return page;
  578. }
  579. return NULL;
  580. }
  581. /*
  582. * This array describes the order lists are fallen back to when
  583. * the free lists for the desirable migrate type are depleted
  584. */
  585. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  586. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  587. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  588. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  589. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  590. };
  591. /*
  592. * Move the free pages in a range to the free lists of the requested type.
  593. * Note that start_page and end_pages are not aligned on a pageblock
  594. * boundary. If alignment is required, use move_freepages_block()
  595. */
  596. int move_freepages(struct zone *zone,
  597. struct page *start_page, struct page *end_page,
  598. int migratetype)
  599. {
  600. struct page *page;
  601. unsigned long order;
  602. int pages_moved = 0;
  603. #ifndef CONFIG_HOLES_IN_ZONE
  604. /*
  605. * page_zone is not safe to call in this context when
  606. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  607. * anyway as we check zone boundaries in move_freepages_block().
  608. * Remove at a later date when no bug reports exist related to
  609. * grouping pages by mobility
  610. */
  611. BUG_ON(page_zone(start_page) != page_zone(end_page));
  612. #endif
  613. for (page = start_page; page <= end_page;) {
  614. if (!pfn_valid_within(page_to_pfn(page))) {
  615. page++;
  616. continue;
  617. }
  618. if (!PageBuddy(page)) {
  619. page++;
  620. continue;
  621. }
  622. order = page_order(page);
  623. list_del(&page->lru);
  624. list_add(&page->lru,
  625. &zone->free_area[order].free_list[migratetype]);
  626. page += 1 << order;
  627. pages_moved += 1 << order;
  628. }
  629. return pages_moved;
  630. }
  631. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  632. {
  633. unsigned long start_pfn, end_pfn;
  634. struct page *start_page, *end_page;
  635. start_pfn = page_to_pfn(page);
  636. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  637. start_page = pfn_to_page(start_pfn);
  638. end_page = start_page + pageblock_nr_pages - 1;
  639. end_pfn = start_pfn + pageblock_nr_pages - 1;
  640. /* Do not cross zone boundaries */
  641. if (start_pfn < zone->zone_start_pfn)
  642. start_page = page;
  643. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  644. return 0;
  645. return move_freepages(zone, start_page, end_page, migratetype);
  646. }
  647. /* Remove an element from the buddy allocator from the fallback list */
  648. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  649. int start_migratetype)
  650. {
  651. struct free_area * area;
  652. int current_order;
  653. struct page *page;
  654. int migratetype, i;
  655. /* Find the largest possible block of pages in the other list */
  656. for (current_order = MAX_ORDER-1; current_order >= order;
  657. --current_order) {
  658. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  659. migratetype = fallbacks[start_migratetype][i];
  660. /* MIGRATE_RESERVE handled later if necessary */
  661. if (migratetype == MIGRATE_RESERVE)
  662. continue;
  663. area = &(zone->free_area[current_order]);
  664. if (list_empty(&area->free_list[migratetype]))
  665. continue;
  666. page = list_entry(area->free_list[migratetype].next,
  667. struct page, lru);
  668. area->nr_free--;
  669. /*
  670. * If breaking a large block of pages, move all free
  671. * pages to the preferred allocation list. If falling
  672. * back for a reclaimable kernel allocation, be more
  673. * agressive about taking ownership of free pages
  674. */
  675. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  676. start_migratetype == MIGRATE_RECLAIMABLE) {
  677. unsigned long pages;
  678. pages = move_freepages_block(zone, page,
  679. start_migratetype);
  680. /* Claim the whole block if over half of it is free */
  681. if (pages >= (1 << (pageblock_order-1)))
  682. set_pageblock_migratetype(page,
  683. start_migratetype);
  684. migratetype = start_migratetype;
  685. }
  686. /* Remove the page from the freelists */
  687. list_del(&page->lru);
  688. rmv_page_order(page);
  689. __mod_zone_page_state(zone, NR_FREE_PAGES,
  690. -(1UL << order));
  691. if (current_order == pageblock_order)
  692. set_pageblock_migratetype(page,
  693. start_migratetype);
  694. expand(zone, page, order, current_order, area, migratetype);
  695. return page;
  696. }
  697. }
  698. /* Use MIGRATE_RESERVE rather than fail an allocation */
  699. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  700. }
  701. /*
  702. * Do the hard work of removing an element from the buddy allocator.
  703. * Call me with the zone->lock already held.
  704. */
  705. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  706. int migratetype)
  707. {
  708. struct page *page;
  709. page = __rmqueue_smallest(zone, order, migratetype);
  710. if (unlikely(!page))
  711. page = __rmqueue_fallback(zone, order, migratetype);
  712. return page;
  713. }
  714. /*
  715. * Obtain a specified number of elements from the buddy allocator, all under
  716. * a single hold of the lock, for efficiency. Add them to the supplied list.
  717. * Returns the number of new pages which were placed at *list.
  718. */
  719. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  720. unsigned long count, struct list_head *list,
  721. int migratetype)
  722. {
  723. int i;
  724. spin_lock(&zone->lock);
  725. for (i = 0; i < count; ++i) {
  726. struct page *page = __rmqueue(zone, order, migratetype);
  727. if (unlikely(page == NULL))
  728. break;
  729. /*
  730. * Split buddy pages returned by expand() are received here
  731. * in physical page order. The page is added to the callers and
  732. * list and the list head then moves forward. From the callers
  733. * perspective, the linked list is ordered by page number in
  734. * some conditions. This is useful for IO devices that can
  735. * merge IO requests if the physical pages are ordered
  736. * properly.
  737. */
  738. list_add(&page->lru, list);
  739. set_page_private(page, migratetype);
  740. list = &page->lru;
  741. }
  742. spin_unlock(&zone->lock);
  743. return i;
  744. }
  745. #ifdef CONFIG_NUMA
  746. /*
  747. * Called from the vmstat counter updater to drain pagesets of this
  748. * currently executing processor on remote nodes after they have
  749. * expired.
  750. *
  751. * Note that this function must be called with the thread pinned to
  752. * a single processor.
  753. */
  754. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  755. {
  756. unsigned long flags;
  757. int to_drain;
  758. local_irq_save(flags);
  759. if (pcp->count >= pcp->batch)
  760. to_drain = pcp->batch;
  761. else
  762. to_drain = pcp->count;
  763. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  764. pcp->count -= to_drain;
  765. local_irq_restore(flags);
  766. }
  767. #endif
  768. /*
  769. * Drain pages of the indicated processor.
  770. *
  771. * The processor must either be the current processor and the
  772. * thread pinned to the current processor or a processor that
  773. * is not online.
  774. */
  775. static void drain_pages(unsigned int cpu)
  776. {
  777. unsigned long flags;
  778. struct zone *zone;
  779. for_each_zone(zone) {
  780. struct per_cpu_pageset *pset;
  781. struct per_cpu_pages *pcp;
  782. if (!populated_zone(zone))
  783. continue;
  784. pset = zone_pcp(zone, cpu);
  785. pcp = &pset->pcp;
  786. local_irq_save(flags);
  787. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  788. pcp->count = 0;
  789. local_irq_restore(flags);
  790. }
  791. }
  792. /*
  793. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  794. */
  795. void drain_local_pages(void *arg)
  796. {
  797. drain_pages(smp_processor_id());
  798. }
  799. /*
  800. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  801. */
  802. void drain_all_pages(void)
  803. {
  804. on_each_cpu(drain_local_pages, NULL, 1);
  805. }
  806. #ifdef CONFIG_HIBERNATION
  807. void mark_free_pages(struct zone *zone)
  808. {
  809. unsigned long pfn, max_zone_pfn;
  810. unsigned long flags;
  811. int order, t;
  812. struct list_head *curr;
  813. if (!zone->spanned_pages)
  814. return;
  815. spin_lock_irqsave(&zone->lock, flags);
  816. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  817. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  818. if (pfn_valid(pfn)) {
  819. struct page *page = pfn_to_page(pfn);
  820. if (!swsusp_page_is_forbidden(page))
  821. swsusp_unset_page_free(page);
  822. }
  823. for_each_migratetype_order(order, t) {
  824. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  825. unsigned long i;
  826. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  827. for (i = 0; i < (1UL << order); i++)
  828. swsusp_set_page_free(pfn_to_page(pfn + i));
  829. }
  830. }
  831. spin_unlock_irqrestore(&zone->lock, flags);
  832. }
  833. #endif /* CONFIG_PM */
  834. /*
  835. * Free a 0-order page
  836. */
  837. static void free_hot_cold_page(struct page *page, int cold)
  838. {
  839. struct zone *zone = page_zone(page);
  840. struct per_cpu_pages *pcp;
  841. unsigned long flags;
  842. if (PageAnon(page))
  843. page->mapping = NULL;
  844. if (free_pages_check(page))
  845. return;
  846. if (!PageHighMem(page)) {
  847. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  848. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  849. }
  850. arch_free_page(page, 0);
  851. kernel_map_pages(page, 1, 0);
  852. pcp = &zone_pcp(zone, get_cpu())->pcp;
  853. local_irq_save(flags);
  854. __count_vm_event(PGFREE);
  855. if (cold)
  856. list_add_tail(&page->lru, &pcp->list);
  857. else
  858. list_add(&page->lru, &pcp->list);
  859. set_page_private(page, get_pageblock_migratetype(page));
  860. pcp->count++;
  861. if (pcp->count >= pcp->high) {
  862. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  863. pcp->count -= pcp->batch;
  864. }
  865. local_irq_restore(flags);
  866. put_cpu();
  867. }
  868. void free_hot_page(struct page *page)
  869. {
  870. free_hot_cold_page(page, 0);
  871. }
  872. void free_cold_page(struct page *page)
  873. {
  874. free_hot_cold_page(page, 1);
  875. }
  876. /*
  877. * split_page takes a non-compound higher-order page, and splits it into
  878. * n (1<<order) sub-pages: page[0..n]
  879. * Each sub-page must be freed individually.
  880. *
  881. * Note: this is probably too low level an operation for use in drivers.
  882. * Please consult with lkml before using this in your driver.
  883. */
  884. void split_page(struct page *page, unsigned int order)
  885. {
  886. int i;
  887. VM_BUG_ON(PageCompound(page));
  888. VM_BUG_ON(!page_count(page));
  889. for (i = 1; i < (1 << order); i++)
  890. set_page_refcounted(page + i);
  891. }
  892. /*
  893. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  894. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  895. * or two.
  896. */
  897. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  898. struct zone *zone, int order, gfp_t gfp_flags)
  899. {
  900. unsigned long flags;
  901. struct page *page;
  902. int cold = !!(gfp_flags & __GFP_COLD);
  903. int cpu;
  904. int migratetype = allocflags_to_migratetype(gfp_flags);
  905. again:
  906. cpu = get_cpu();
  907. if (likely(order == 0)) {
  908. struct per_cpu_pages *pcp;
  909. pcp = &zone_pcp(zone, cpu)->pcp;
  910. local_irq_save(flags);
  911. if (!pcp->count) {
  912. pcp->count = rmqueue_bulk(zone, 0,
  913. pcp->batch, &pcp->list, migratetype);
  914. if (unlikely(!pcp->count))
  915. goto failed;
  916. }
  917. /* Find a page of the appropriate migrate type */
  918. if (cold) {
  919. list_for_each_entry_reverse(page, &pcp->list, lru)
  920. if (page_private(page) == migratetype)
  921. break;
  922. } else {
  923. list_for_each_entry(page, &pcp->list, lru)
  924. if (page_private(page) == migratetype)
  925. break;
  926. }
  927. /* Allocate more to the pcp list if necessary */
  928. if (unlikely(&page->lru == &pcp->list)) {
  929. pcp->count += rmqueue_bulk(zone, 0,
  930. pcp->batch, &pcp->list, migratetype);
  931. page = list_entry(pcp->list.next, struct page, lru);
  932. }
  933. list_del(&page->lru);
  934. pcp->count--;
  935. } else {
  936. spin_lock_irqsave(&zone->lock, flags);
  937. page = __rmqueue(zone, order, migratetype);
  938. spin_unlock(&zone->lock);
  939. if (!page)
  940. goto failed;
  941. }
  942. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  943. zone_statistics(preferred_zone, zone);
  944. local_irq_restore(flags);
  945. put_cpu();
  946. VM_BUG_ON(bad_range(zone, page));
  947. if (prep_new_page(page, order, gfp_flags))
  948. goto again;
  949. return page;
  950. failed:
  951. local_irq_restore(flags);
  952. put_cpu();
  953. return NULL;
  954. }
  955. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  956. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  957. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  958. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  959. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  960. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  961. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  962. #ifdef CONFIG_FAIL_PAGE_ALLOC
  963. static struct fail_page_alloc_attr {
  964. struct fault_attr attr;
  965. u32 ignore_gfp_highmem;
  966. u32 ignore_gfp_wait;
  967. u32 min_order;
  968. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  969. struct dentry *ignore_gfp_highmem_file;
  970. struct dentry *ignore_gfp_wait_file;
  971. struct dentry *min_order_file;
  972. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  973. } fail_page_alloc = {
  974. .attr = FAULT_ATTR_INITIALIZER,
  975. .ignore_gfp_wait = 1,
  976. .ignore_gfp_highmem = 1,
  977. .min_order = 1,
  978. };
  979. static int __init setup_fail_page_alloc(char *str)
  980. {
  981. return setup_fault_attr(&fail_page_alloc.attr, str);
  982. }
  983. __setup("fail_page_alloc=", setup_fail_page_alloc);
  984. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  985. {
  986. if (order < fail_page_alloc.min_order)
  987. return 0;
  988. if (gfp_mask & __GFP_NOFAIL)
  989. return 0;
  990. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  991. return 0;
  992. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  993. return 0;
  994. return should_fail(&fail_page_alloc.attr, 1 << order);
  995. }
  996. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  997. static int __init fail_page_alloc_debugfs(void)
  998. {
  999. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1000. struct dentry *dir;
  1001. int err;
  1002. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1003. "fail_page_alloc");
  1004. if (err)
  1005. return err;
  1006. dir = fail_page_alloc.attr.dentries.dir;
  1007. fail_page_alloc.ignore_gfp_wait_file =
  1008. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1009. &fail_page_alloc.ignore_gfp_wait);
  1010. fail_page_alloc.ignore_gfp_highmem_file =
  1011. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1012. &fail_page_alloc.ignore_gfp_highmem);
  1013. fail_page_alloc.min_order_file =
  1014. debugfs_create_u32("min-order", mode, dir,
  1015. &fail_page_alloc.min_order);
  1016. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1017. !fail_page_alloc.ignore_gfp_highmem_file ||
  1018. !fail_page_alloc.min_order_file) {
  1019. err = -ENOMEM;
  1020. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1021. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1022. debugfs_remove(fail_page_alloc.min_order_file);
  1023. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1024. }
  1025. return err;
  1026. }
  1027. late_initcall(fail_page_alloc_debugfs);
  1028. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1029. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1030. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1031. {
  1032. return 0;
  1033. }
  1034. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1035. /*
  1036. * Return 1 if free pages are above 'mark'. This takes into account the order
  1037. * of the allocation.
  1038. */
  1039. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1040. int classzone_idx, int alloc_flags)
  1041. {
  1042. /* free_pages my go negative - that's OK */
  1043. long min = mark;
  1044. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1045. int o;
  1046. if (alloc_flags & ALLOC_HIGH)
  1047. min -= min / 2;
  1048. if (alloc_flags & ALLOC_HARDER)
  1049. min -= min / 4;
  1050. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1051. return 0;
  1052. for (o = 0; o < order; o++) {
  1053. /* At the next order, this order's pages become unavailable */
  1054. free_pages -= z->free_area[o].nr_free << o;
  1055. /* Require fewer higher order pages to be free */
  1056. min >>= 1;
  1057. if (free_pages <= min)
  1058. return 0;
  1059. }
  1060. return 1;
  1061. }
  1062. #ifdef CONFIG_NUMA
  1063. /*
  1064. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1065. * skip over zones that are not allowed by the cpuset, or that have
  1066. * been recently (in last second) found to be nearly full. See further
  1067. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1068. * that have to skip over a lot of full or unallowed zones.
  1069. *
  1070. * If the zonelist cache is present in the passed in zonelist, then
  1071. * returns a pointer to the allowed node mask (either the current
  1072. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1073. *
  1074. * If the zonelist cache is not available for this zonelist, does
  1075. * nothing and returns NULL.
  1076. *
  1077. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1078. * a second since last zap'd) then we zap it out (clear its bits.)
  1079. *
  1080. * We hold off even calling zlc_setup, until after we've checked the
  1081. * first zone in the zonelist, on the theory that most allocations will
  1082. * be satisfied from that first zone, so best to examine that zone as
  1083. * quickly as we can.
  1084. */
  1085. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1086. {
  1087. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1088. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1089. zlc = zonelist->zlcache_ptr;
  1090. if (!zlc)
  1091. return NULL;
  1092. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1093. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1094. zlc->last_full_zap = jiffies;
  1095. }
  1096. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1097. &cpuset_current_mems_allowed :
  1098. &node_states[N_HIGH_MEMORY];
  1099. return allowednodes;
  1100. }
  1101. /*
  1102. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1103. * if it is worth looking at further for free memory:
  1104. * 1) Check that the zone isn't thought to be full (doesn't have its
  1105. * bit set in the zonelist_cache fullzones BITMAP).
  1106. * 2) Check that the zones node (obtained from the zonelist_cache
  1107. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1108. * Return true (non-zero) if zone is worth looking at further, or
  1109. * else return false (zero) if it is not.
  1110. *
  1111. * This check -ignores- the distinction between various watermarks,
  1112. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1113. * found to be full for any variation of these watermarks, it will
  1114. * be considered full for up to one second by all requests, unless
  1115. * we are so low on memory on all allowed nodes that we are forced
  1116. * into the second scan of the zonelist.
  1117. *
  1118. * In the second scan we ignore this zonelist cache and exactly
  1119. * apply the watermarks to all zones, even it is slower to do so.
  1120. * We are low on memory in the second scan, and should leave no stone
  1121. * unturned looking for a free page.
  1122. */
  1123. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1124. nodemask_t *allowednodes)
  1125. {
  1126. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1127. int i; /* index of *z in zonelist zones */
  1128. int n; /* node that zone *z is on */
  1129. zlc = zonelist->zlcache_ptr;
  1130. if (!zlc)
  1131. return 1;
  1132. i = z - zonelist->_zonerefs;
  1133. n = zlc->z_to_n[i];
  1134. /* This zone is worth trying if it is allowed but not full */
  1135. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1136. }
  1137. /*
  1138. * Given 'z' scanning a zonelist, set the corresponding bit in
  1139. * zlc->fullzones, so that subsequent attempts to allocate a page
  1140. * from that zone don't waste time re-examining it.
  1141. */
  1142. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1143. {
  1144. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1145. int i; /* index of *z in zonelist zones */
  1146. zlc = zonelist->zlcache_ptr;
  1147. if (!zlc)
  1148. return;
  1149. i = z - zonelist->_zonerefs;
  1150. set_bit(i, zlc->fullzones);
  1151. }
  1152. #else /* CONFIG_NUMA */
  1153. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1154. {
  1155. return NULL;
  1156. }
  1157. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1158. nodemask_t *allowednodes)
  1159. {
  1160. return 1;
  1161. }
  1162. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1163. {
  1164. }
  1165. #endif /* CONFIG_NUMA */
  1166. /*
  1167. * get_page_from_freelist goes through the zonelist trying to allocate
  1168. * a page.
  1169. */
  1170. static struct page *
  1171. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1172. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1173. {
  1174. struct zoneref *z;
  1175. struct page *page = NULL;
  1176. int classzone_idx;
  1177. struct zone *zone, *preferred_zone;
  1178. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1179. int zlc_active = 0; /* set if using zonelist_cache */
  1180. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1181. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1182. &preferred_zone);
  1183. if (!preferred_zone)
  1184. return NULL;
  1185. classzone_idx = zone_idx(preferred_zone);
  1186. zonelist_scan:
  1187. /*
  1188. * Scan zonelist, looking for a zone with enough free.
  1189. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1190. */
  1191. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1192. high_zoneidx, nodemask) {
  1193. if (NUMA_BUILD && zlc_active &&
  1194. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1195. continue;
  1196. if ((alloc_flags & ALLOC_CPUSET) &&
  1197. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1198. goto try_next_zone;
  1199. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1200. unsigned long mark;
  1201. if (alloc_flags & ALLOC_WMARK_MIN)
  1202. mark = zone->pages_min;
  1203. else if (alloc_flags & ALLOC_WMARK_LOW)
  1204. mark = zone->pages_low;
  1205. else
  1206. mark = zone->pages_high;
  1207. if (!zone_watermark_ok(zone, order, mark,
  1208. classzone_idx, alloc_flags)) {
  1209. if (!zone_reclaim_mode ||
  1210. !zone_reclaim(zone, gfp_mask, order))
  1211. goto this_zone_full;
  1212. }
  1213. }
  1214. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1215. if (page)
  1216. break;
  1217. this_zone_full:
  1218. if (NUMA_BUILD)
  1219. zlc_mark_zone_full(zonelist, z);
  1220. try_next_zone:
  1221. if (NUMA_BUILD && !did_zlc_setup) {
  1222. /* we do zlc_setup after the first zone is tried */
  1223. allowednodes = zlc_setup(zonelist, alloc_flags);
  1224. zlc_active = 1;
  1225. did_zlc_setup = 1;
  1226. }
  1227. }
  1228. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1229. /* Disable zlc cache for second zonelist scan */
  1230. zlc_active = 0;
  1231. goto zonelist_scan;
  1232. }
  1233. return page;
  1234. }
  1235. /*
  1236. * This is the 'heart' of the zoned buddy allocator.
  1237. */
  1238. struct page *
  1239. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1240. struct zonelist *zonelist, nodemask_t *nodemask)
  1241. {
  1242. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1243. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1244. struct zoneref *z;
  1245. struct zone *zone;
  1246. struct page *page;
  1247. struct reclaim_state reclaim_state;
  1248. struct task_struct *p = current;
  1249. int do_retry;
  1250. int alloc_flags;
  1251. unsigned long did_some_progress;
  1252. unsigned long pages_reclaimed = 0;
  1253. might_sleep_if(wait);
  1254. if (should_fail_alloc_page(gfp_mask, order))
  1255. return NULL;
  1256. restart:
  1257. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1258. if (unlikely(!z->zone)) {
  1259. /*
  1260. * Happens if we have an empty zonelist as a result of
  1261. * GFP_THISNODE being used on a memoryless node
  1262. */
  1263. return NULL;
  1264. }
  1265. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1266. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1267. if (page)
  1268. goto got_pg;
  1269. /*
  1270. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1271. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1272. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1273. * using a larger set of nodes after it has established that the
  1274. * allowed per node queues are empty and that nodes are
  1275. * over allocated.
  1276. */
  1277. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1278. goto nopage;
  1279. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1280. wakeup_kswapd(zone, order);
  1281. /*
  1282. * OK, we're below the kswapd watermark and have kicked background
  1283. * reclaim. Now things get more complex, so set up alloc_flags according
  1284. * to how we want to proceed.
  1285. *
  1286. * The caller may dip into page reserves a bit more if the caller
  1287. * cannot run direct reclaim, or if the caller has realtime scheduling
  1288. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1289. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1290. */
  1291. alloc_flags = ALLOC_WMARK_MIN;
  1292. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1293. alloc_flags |= ALLOC_HARDER;
  1294. if (gfp_mask & __GFP_HIGH)
  1295. alloc_flags |= ALLOC_HIGH;
  1296. if (wait)
  1297. alloc_flags |= ALLOC_CPUSET;
  1298. /*
  1299. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1300. * coming from realtime tasks go deeper into reserves.
  1301. *
  1302. * This is the last chance, in general, before the goto nopage.
  1303. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1304. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1305. */
  1306. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1307. high_zoneidx, alloc_flags);
  1308. if (page)
  1309. goto got_pg;
  1310. /* This allocation should allow future memory freeing. */
  1311. rebalance:
  1312. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1313. && !in_interrupt()) {
  1314. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1315. nofail_alloc:
  1316. /* go through the zonelist yet again, ignoring mins */
  1317. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1318. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1319. if (page)
  1320. goto got_pg;
  1321. if (gfp_mask & __GFP_NOFAIL) {
  1322. congestion_wait(WRITE, HZ/50);
  1323. goto nofail_alloc;
  1324. }
  1325. }
  1326. goto nopage;
  1327. }
  1328. /* Atomic allocations - we can't balance anything */
  1329. if (!wait)
  1330. goto nopage;
  1331. cond_resched();
  1332. /* We now go into synchronous reclaim */
  1333. cpuset_memory_pressure_bump();
  1334. p->flags |= PF_MEMALLOC;
  1335. reclaim_state.reclaimed_slab = 0;
  1336. p->reclaim_state = &reclaim_state;
  1337. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1338. p->reclaim_state = NULL;
  1339. p->flags &= ~PF_MEMALLOC;
  1340. cond_resched();
  1341. if (order != 0)
  1342. drain_all_pages();
  1343. if (likely(did_some_progress)) {
  1344. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1345. zonelist, high_zoneidx, alloc_flags);
  1346. if (page)
  1347. goto got_pg;
  1348. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1349. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1350. schedule_timeout_uninterruptible(1);
  1351. goto restart;
  1352. }
  1353. /*
  1354. * Go through the zonelist yet one more time, keep
  1355. * very high watermark here, this is only to catch
  1356. * a parallel oom killing, we must fail if we're still
  1357. * under heavy pressure.
  1358. */
  1359. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1360. order, zonelist, high_zoneidx,
  1361. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1362. if (page) {
  1363. clear_zonelist_oom(zonelist, gfp_mask);
  1364. goto got_pg;
  1365. }
  1366. /* The OOM killer will not help higher order allocs so fail */
  1367. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1368. clear_zonelist_oom(zonelist, gfp_mask);
  1369. goto nopage;
  1370. }
  1371. out_of_memory(zonelist, gfp_mask, order);
  1372. clear_zonelist_oom(zonelist, gfp_mask);
  1373. goto restart;
  1374. }
  1375. /*
  1376. * Don't let big-order allocations loop unless the caller explicitly
  1377. * requests that. Wait for some write requests to complete then retry.
  1378. *
  1379. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1380. * means __GFP_NOFAIL, but that may not be true in other
  1381. * implementations.
  1382. *
  1383. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1384. * specified, then we retry until we no longer reclaim any pages
  1385. * (above), or we've reclaimed an order of pages at least as
  1386. * large as the allocation's order. In both cases, if the
  1387. * allocation still fails, we stop retrying.
  1388. */
  1389. pages_reclaimed += did_some_progress;
  1390. do_retry = 0;
  1391. if (!(gfp_mask & __GFP_NORETRY)) {
  1392. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1393. do_retry = 1;
  1394. } else {
  1395. if (gfp_mask & __GFP_REPEAT &&
  1396. pages_reclaimed < (1 << order))
  1397. do_retry = 1;
  1398. }
  1399. if (gfp_mask & __GFP_NOFAIL)
  1400. do_retry = 1;
  1401. }
  1402. if (do_retry) {
  1403. congestion_wait(WRITE, HZ/50);
  1404. goto rebalance;
  1405. }
  1406. nopage:
  1407. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1408. printk(KERN_WARNING "%s: page allocation failure."
  1409. " order:%d, mode:0x%x\n",
  1410. p->comm, order, gfp_mask);
  1411. dump_stack();
  1412. show_mem();
  1413. }
  1414. got_pg:
  1415. return page;
  1416. }
  1417. EXPORT_SYMBOL(__alloc_pages_internal);
  1418. /*
  1419. * Common helper functions.
  1420. */
  1421. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1422. {
  1423. struct page * page;
  1424. page = alloc_pages(gfp_mask, order);
  1425. if (!page)
  1426. return 0;
  1427. return (unsigned long) page_address(page);
  1428. }
  1429. EXPORT_SYMBOL(__get_free_pages);
  1430. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1431. {
  1432. struct page * page;
  1433. /*
  1434. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1435. * a highmem page
  1436. */
  1437. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1438. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1439. if (page)
  1440. return (unsigned long) page_address(page);
  1441. return 0;
  1442. }
  1443. EXPORT_SYMBOL(get_zeroed_page);
  1444. void __pagevec_free(struct pagevec *pvec)
  1445. {
  1446. int i = pagevec_count(pvec);
  1447. while (--i >= 0)
  1448. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1449. }
  1450. void __free_pages(struct page *page, unsigned int order)
  1451. {
  1452. if (put_page_testzero(page)) {
  1453. if (order == 0)
  1454. free_hot_page(page);
  1455. else
  1456. __free_pages_ok(page, order);
  1457. }
  1458. }
  1459. EXPORT_SYMBOL(__free_pages);
  1460. void free_pages(unsigned long addr, unsigned int order)
  1461. {
  1462. if (addr != 0) {
  1463. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1464. __free_pages(virt_to_page((void *)addr), order);
  1465. }
  1466. }
  1467. EXPORT_SYMBOL(free_pages);
  1468. static unsigned int nr_free_zone_pages(int offset)
  1469. {
  1470. struct zoneref *z;
  1471. struct zone *zone;
  1472. /* Just pick one node, since fallback list is circular */
  1473. unsigned int sum = 0;
  1474. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1475. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1476. unsigned long size = zone->present_pages;
  1477. unsigned long high = zone->pages_high;
  1478. if (size > high)
  1479. sum += size - high;
  1480. }
  1481. return sum;
  1482. }
  1483. /*
  1484. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1485. */
  1486. unsigned int nr_free_buffer_pages(void)
  1487. {
  1488. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1489. }
  1490. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1491. /*
  1492. * Amount of free RAM allocatable within all zones
  1493. */
  1494. unsigned int nr_free_pagecache_pages(void)
  1495. {
  1496. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1497. }
  1498. static inline void show_node(struct zone *zone)
  1499. {
  1500. if (NUMA_BUILD)
  1501. printk("Node %d ", zone_to_nid(zone));
  1502. }
  1503. void si_meminfo(struct sysinfo *val)
  1504. {
  1505. val->totalram = totalram_pages;
  1506. val->sharedram = 0;
  1507. val->freeram = global_page_state(NR_FREE_PAGES);
  1508. val->bufferram = nr_blockdev_pages();
  1509. val->totalhigh = totalhigh_pages;
  1510. val->freehigh = nr_free_highpages();
  1511. val->mem_unit = PAGE_SIZE;
  1512. }
  1513. EXPORT_SYMBOL(si_meminfo);
  1514. #ifdef CONFIG_NUMA
  1515. void si_meminfo_node(struct sysinfo *val, int nid)
  1516. {
  1517. pg_data_t *pgdat = NODE_DATA(nid);
  1518. val->totalram = pgdat->node_present_pages;
  1519. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1520. #ifdef CONFIG_HIGHMEM
  1521. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1522. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1523. NR_FREE_PAGES);
  1524. #else
  1525. val->totalhigh = 0;
  1526. val->freehigh = 0;
  1527. #endif
  1528. val->mem_unit = PAGE_SIZE;
  1529. }
  1530. #endif
  1531. #define K(x) ((x) << (PAGE_SHIFT-10))
  1532. /*
  1533. * Show free area list (used inside shift_scroll-lock stuff)
  1534. * We also calculate the percentage fragmentation. We do this by counting the
  1535. * memory on each free list with the exception of the first item on the list.
  1536. */
  1537. void show_free_areas(void)
  1538. {
  1539. int cpu;
  1540. struct zone *zone;
  1541. for_each_zone(zone) {
  1542. if (!populated_zone(zone))
  1543. continue;
  1544. show_node(zone);
  1545. printk("%s per-cpu:\n", zone->name);
  1546. for_each_online_cpu(cpu) {
  1547. struct per_cpu_pageset *pageset;
  1548. pageset = zone_pcp(zone, cpu);
  1549. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1550. cpu, pageset->pcp.high,
  1551. pageset->pcp.batch, pageset->pcp.count);
  1552. }
  1553. }
  1554. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1555. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1556. global_page_state(NR_ACTIVE),
  1557. global_page_state(NR_INACTIVE),
  1558. global_page_state(NR_FILE_DIRTY),
  1559. global_page_state(NR_WRITEBACK),
  1560. global_page_state(NR_UNSTABLE_NFS),
  1561. global_page_state(NR_FREE_PAGES),
  1562. global_page_state(NR_SLAB_RECLAIMABLE) +
  1563. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1564. global_page_state(NR_FILE_MAPPED),
  1565. global_page_state(NR_PAGETABLE),
  1566. global_page_state(NR_BOUNCE));
  1567. for_each_zone(zone) {
  1568. int i;
  1569. if (!populated_zone(zone))
  1570. continue;
  1571. show_node(zone);
  1572. printk("%s"
  1573. " free:%lukB"
  1574. " min:%lukB"
  1575. " low:%lukB"
  1576. " high:%lukB"
  1577. " active:%lukB"
  1578. " inactive:%lukB"
  1579. " present:%lukB"
  1580. " pages_scanned:%lu"
  1581. " all_unreclaimable? %s"
  1582. "\n",
  1583. zone->name,
  1584. K(zone_page_state(zone, NR_FREE_PAGES)),
  1585. K(zone->pages_min),
  1586. K(zone->pages_low),
  1587. K(zone->pages_high),
  1588. K(zone_page_state(zone, NR_ACTIVE)),
  1589. K(zone_page_state(zone, NR_INACTIVE)),
  1590. K(zone->present_pages),
  1591. zone->pages_scanned,
  1592. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1593. );
  1594. printk("lowmem_reserve[]:");
  1595. for (i = 0; i < MAX_NR_ZONES; i++)
  1596. printk(" %lu", zone->lowmem_reserve[i]);
  1597. printk("\n");
  1598. }
  1599. for_each_zone(zone) {
  1600. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1601. if (!populated_zone(zone))
  1602. continue;
  1603. show_node(zone);
  1604. printk("%s: ", zone->name);
  1605. spin_lock_irqsave(&zone->lock, flags);
  1606. for (order = 0; order < MAX_ORDER; order++) {
  1607. nr[order] = zone->free_area[order].nr_free;
  1608. total += nr[order] << order;
  1609. }
  1610. spin_unlock_irqrestore(&zone->lock, flags);
  1611. for (order = 0; order < MAX_ORDER; order++)
  1612. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1613. printk("= %lukB\n", K(total));
  1614. }
  1615. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1616. show_swap_cache_info();
  1617. }
  1618. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1619. {
  1620. zoneref->zone = zone;
  1621. zoneref->zone_idx = zone_idx(zone);
  1622. }
  1623. /*
  1624. * Builds allocation fallback zone lists.
  1625. *
  1626. * Add all populated zones of a node to the zonelist.
  1627. */
  1628. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1629. int nr_zones, enum zone_type zone_type)
  1630. {
  1631. struct zone *zone;
  1632. BUG_ON(zone_type >= MAX_NR_ZONES);
  1633. zone_type++;
  1634. do {
  1635. zone_type--;
  1636. zone = pgdat->node_zones + zone_type;
  1637. if (populated_zone(zone)) {
  1638. zoneref_set_zone(zone,
  1639. &zonelist->_zonerefs[nr_zones++]);
  1640. check_highest_zone(zone_type);
  1641. }
  1642. } while (zone_type);
  1643. return nr_zones;
  1644. }
  1645. /*
  1646. * zonelist_order:
  1647. * 0 = automatic detection of better ordering.
  1648. * 1 = order by ([node] distance, -zonetype)
  1649. * 2 = order by (-zonetype, [node] distance)
  1650. *
  1651. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1652. * the same zonelist. So only NUMA can configure this param.
  1653. */
  1654. #define ZONELIST_ORDER_DEFAULT 0
  1655. #define ZONELIST_ORDER_NODE 1
  1656. #define ZONELIST_ORDER_ZONE 2
  1657. /* zonelist order in the kernel.
  1658. * set_zonelist_order() will set this to NODE or ZONE.
  1659. */
  1660. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1661. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1662. #ifdef CONFIG_NUMA
  1663. /* The value user specified ....changed by config */
  1664. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1665. /* string for sysctl */
  1666. #define NUMA_ZONELIST_ORDER_LEN 16
  1667. char numa_zonelist_order[16] = "default";
  1668. /*
  1669. * interface for configure zonelist ordering.
  1670. * command line option "numa_zonelist_order"
  1671. * = "[dD]efault - default, automatic configuration.
  1672. * = "[nN]ode - order by node locality, then by zone within node
  1673. * = "[zZ]one - order by zone, then by locality within zone
  1674. */
  1675. static int __parse_numa_zonelist_order(char *s)
  1676. {
  1677. if (*s == 'd' || *s == 'D') {
  1678. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1679. } else if (*s == 'n' || *s == 'N') {
  1680. user_zonelist_order = ZONELIST_ORDER_NODE;
  1681. } else if (*s == 'z' || *s == 'Z') {
  1682. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1683. } else {
  1684. printk(KERN_WARNING
  1685. "Ignoring invalid numa_zonelist_order value: "
  1686. "%s\n", s);
  1687. return -EINVAL;
  1688. }
  1689. return 0;
  1690. }
  1691. static __init int setup_numa_zonelist_order(char *s)
  1692. {
  1693. if (s)
  1694. return __parse_numa_zonelist_order(s);
  1695. return 0;
  1696. }
  1697. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1698. /*
  1699. * sysctl handler for numa_zonelist_order
  1700. */
  1701. int numa_zonelist_order_handler(ctl_table *table, int write,
  1702. struct file *file, void __user *buffer, size_t *length,
  1703. loff_t *ppos)
  1704. {
  1705. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1706. int ret;
  1707. if (write)
  1708. strncpy(saved_string, (char*)table->data,
  1709. NUMA_ZONELIST_ORDER_LEN);
  1710. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1711. if (ret)
  1712. return ret;
  1713. if (write) {
  1714. int oldval = user_zonelist_order;
  1715. if (__parse_numa_zonelist_order((char*)table->data)) {
  1716. /*
  1717. * bogus value. restore saved string
  1718. */
  1719. strncpy((char*)table->data, saved_string,
  1720. NUMA_ZONELIST_ORDER_LEN);
  1721. user_zonelist_order = oldval;
  1722. } else if (oldval != user_zonelist_order)
  1723. build_all_zonelists();
  1724. }
  1725. return 0;
  1726. }
  1727. #define MAX_NODE_LOAD (num_online_nodes())
  1728. static int node_load[MAX_NUMNODES];
  1729. /**
  1730. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1731. * @node: node whose fallback list we're appending
  1732. * @used_node_mask: nodemask_t of already used nodes
  1733. *
  1734. * We use a number of factors to determine which is the next node that should
  1735. * appear on a given node's fallback list. The node should not have appeared
  1736. * already in @node's fallback list, and it should be the next closest node
  1737. * according to the distance array (which contains arbitrary distance values
  1738. * from each node to each node in the system), and should also prefer nodes
  1739. * with no CPUs, since presumably they'll have very little allocation pressure
  1740. * on them otherwise.
  1741. * It returns -1 if no node is found.
  1742. */
  1743. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1744. {
  1745. int n, val;
  1746. int min_val = INT_MAX;
  1747. int best_node = -1;
  1748. node_to_cpumask_ptr(tmp, 0);
  1749. /* Use the local node if we haven't already */
  1750. if (!node_isset(node, *used_node_mask)) {
  1751. node_set(node, *used_node_mask);
  1752. return node;
  1753. }
  1754. for_each_node_state(n, N_HIGH_MEMORY) {
  1755. /* Don't want a node to appear more than once */
  1756. if (node_isset(n, *used_node_mask))
  1757. continue;
  1758. /* Use the distance array to find the distance */
  1759. val = node_distance(node, n);
  1760. /* Penalize nodes under us ("prefer the next node") */
  1761. val += (n < node);
  1762. /* Give preference to headless and unused nodes */
  1763. node_to_cpumask_ptr_next(tmp, n);
  1764. if (!cpus_empty(*tmp))
  1765. val += PENALTY_FOR_NODE_WITH_CPUS;
  1766. /* Slight preference for less loaded node */
  1767. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1768. val += node_load[n];
  1769. if (val < min_val) {
  1770. min_val = val;
  1771. best_node = n;
  1772. }
  1773. }
  1774. if (best_node >= 0)
  1775. node_set(best_node, *used_node_mask);
  1776. return best_node;
  1777. }
  1778. /*
  1779. * Build zonelists ordered by node and zones within node.
  1780. * This results in maximum locality--normal zone overflows into local
  1781. * DMA zone, if any--but risks exhausting DMA zone.
  1782. */
  1783. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1784. {
  1785. int j;
  1786. struct zonelist *zonelist;
  1787. zonelist = &pgdat->node_zonelists[0];
  1788. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1789. ;
  1790. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1791. MAX_NR_ZONES - 1);
  1792. zonelist->_zonerefs[j].zone = NULL;
  1793. zonelist->_zonerefs[j].zone_idx = 0;
  1794. }
  1795. /*
  1796. * Build gfp_thisnode zonelists
  1797. */
  1798. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1799. {
  1800. int j;
  1801. struct zonelist *zonelist;
  1802. zonelist = &pgdat->node_zonelists[1];
  1803. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1804. zonelist->_zonerefs[j].zone = NULL;
  1805. zonelist->_zonerefs[j].zone_idx = 0;
  1806. }
  1807. /*
  1808. * Build zonelists ordered by zone and nodes within zones.
  1809. * This results in conserving DMA zone[s] until all Normal memory is
  1810. * exhausted, but results in overflowing to remote node while memory
  1811. * may still exist in local DMA zone.
  1812. */
  1813. static int node_order[MAX_NUMNODES];
  1814. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1815. {
  1816. int pos, j, node;
  1817. int zone_type; /* needs to be signed */
  1818. struct zone *z;
  1819. struct zonelist *zonelist;
  1820. zonelist = &pgdat->node_zonelists[0];
  1821. pos = 0;
  1822. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1823. for (j = 0; j < nr_nodes; j++) {
  1824. node = node_order[j];
  1825. z = &NODE_DATA(node)->node_zones[zone_type];
  1826. if (populated_zone(z)) {
  1827. zoneref_set_zone(z,
  1828. &zonelist->_zonerefs[pos++]);
  1829. check_highest_zone(zone_type);
  1830. }
  1831. }
  1832. }
  1833. zonelist->_zonerefs[pos].zone = NULL;
  1834. zonelist->_zonerefs[pos].zone_idx = 0;
  1835. }
  1836. static int default_zonelist_order(void)
  1837. {
  1838. int nid, zone_type;
  1839. unsigned long low_kmem_size,total_size;
  1840. struct zone *z;
  1841. int average_size;
  1842. /*
  1843. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1844. * If they are really small and used heavily, the system can fall
  1845. * into OOM very easily.
  1846. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1847. */
  1848. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1849. low_kmem_size = 0;
  1850. total_size = 0;
  1851. for_each_online_node(nid) {
  1852. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1853. z = &NODE_DATA(nid)->node_zones[zone_type];
  1854. if (populated_zone(z)) {
  1855. if (zone_type < ZONE_NORMAL)
  1856. low_kmem_size += z->present_pages;
  1857. total_size += z->present_pages;
  1858. }
  1859. }
  1860. }
  1861. if (!low_kmem_size || /* there are no DMA area. */
  1862. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1863. return ZONELIST_ORDER_NODE;
  1864. /*
  1865. * look into each node's config.
  1866. * If there is a node whose DMA/DMA32 memory is very big area on
  1867. * local memory, NODE_ORDER may be suitable.
  1868. */
  1869. average_size = total_size /
  1870. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1871. for_each_online_node(nid) {
  1872. low_kmem_size = 0;
  1873. total_size = 0;
  1874. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1875. z = &NODE_DATA(nid)->node_zones[zone_type];
  1876. if (populated_zone(z)) {
  1877. if (zone_type < ZONE_NORMAL)
  1878. low_kmem_size += z->present_pages;
  1879. total_size += z->present_pages;
  1880. }
  1881. }
  1882. if (low_kmem_size &&
  1883. total_size > average_size && /* ignore small node */
  1884. low_kmem_size > total_size * 70/100)
  1885. return ZONELIST_ORDER_NODE;
  1886. }
  1887. return ZONELIST_ORDER_ZONE;
  1888. }
  1889. static void set_zonelist_order(void)
  1890. {
  1891. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1892. current_zonelist_order = default_zonelist_order();
  1893. else
  1894. current_zonelist_order = user_zonelist_order;
  1895. }
  1896. static void build_zonelists(pg_data_t *pgdat)
  1897. {
  1898. int j, node, load;
  1899. enum zone_type i;
  1900. nodemask_t used_mask;
  1901. int local_node, prev_node;
  1902. struct zonelist *zonelist;
  1903. int order = current_zonelist_order;
  1904. /* initialize zonelists */
  1905. for (i = 0; i < MAX_ZONELISTS; i++) {
  1906. zonelist = pgdat->node_zonelists + i;
  1907. zonelist->_zonerefs[0].zone = NULL;
  1908. zonelist->_zonerefs[0].zone_idx = 0;
  1909. }
  1910. /* NUMA-aware ordering of nodes */
  1911. local_node = pgdat->node_id;
  1912. load = num_online_nodes();
  1913. prev_node = local_node;
  1914. nodes_clear(used_mask);
  1915. memset(node_load, 0, sizeof(node_load));
  1916. memset(node_order, 0, sizeof(node_order));
  1917. j = 0;
  1918. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1919. int distance = node_distance(local_node, node);
  1920. /*
  1921. * If another node is sufficiently far away then it is better
  1922. * to reclaim pages in a zone before going off node.
  1923. */
  1924. if (distance > RECLAIM_DISTANCE)
  1925. zone_reclaim_mode = 1;
  1926. /*
  1927. * We don't want to pressure a particular node.
  1928. * So adding penalty to the first node in same
  1929. * distance group to make it round-robin.
  1930. */
  1931. if (distance != node_distance(local_node, prev_node))
  1932. node_load[node] = load;
  1933. prev_node = node;
  1934. load--;
  1935. if (order == ZONELIST_ORDER_NODE)
  1936. build_zonelists_in_node_order(pgdat, node);
  1937. else
  1938. node_order[j++] = node; /* remember order */
  1939. }
  1940. if (order == ZONELIST_ORDER_ZONE) {
  1941. /* calculate node order -- i.e., DMA last! */
  1942. build_zonelists_in_zone_order(pgdat, j);
  1943. }
  1944. build_thisnode_zonelists(pgdat);
  1945. }
  1946. /* Construct the zonelist performance cache - see further mmzone.h */
  1947. static void build_zonelist_cache(pg_data_t *pgdat)
  1948. {
  1949. struct zonelist *zonelist;
  1950. struct zonelist_cache *zlc;
  1951. struct zoneref *z;
  1952. zonelist = &pgdat->node_zonelists[0];
  1953. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1954. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1955. for (z = zonelist->_zonerefs; z->zone; z++)
  1956. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  1957. }
  1958. #else /* CONFIG_NUMA */
  1959. static void set_zonelist_order(void)
  1960. {
  1961. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1962. }
  1963. static void build_zonelists(pg_data_t *pgdat)
  1964. {
  1965. int node, local_node;
  1966. enum zone_type j;
  1967. struct zonelist *zonelist;
  1968. local_node = pgdat->node_id;
  1969. zonelist = &pgdat->node_zonelists[0];
  1970. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1971. /*
  1972. * Now we build the zonelist so that it contains the zones
  1973. * of all the other nodes.
  1974. * We don't want to pressure a particular node, so when
  1975. * building the zones for node N, we make sure that the
  1976. * zones coming right after the local ones are those from
  1977. * node N+1 (modulo N)
  1978. */
  1979. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1980. if (!node_online(node))
  1981. continue;
  1982. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1983. MAX_NR_ZONES - 1);
  1984. }
  1985. for (node = 0; node < local_node; node++) {
  1986. if (!node_online(node))
  1987. continue;
  1988. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1989. MAX_NR_ZONES - 1);
  1990. }
  1991. zonelist->_zonerefs[j].zone = NULL;
  1992. zonelist->_zonerefs[j].zone_idx = 0;
  1993. }
  1994. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1995. static void build_zonelist_cache(pg_data_t *pgdat)
  1996. {
  1997. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  1998. }
  1999. #endif /* CONFIG_NUMA */
  2000. /* return values int ....just for stop_machine_run() */
  2001. static int __build_all_zonelists(void *dummy)
  2002. {
  2003. int nid;
  2004. for_each_online_node(nid) {
  2005. pg_data_t *pgdat = NODE_DATA(nid);
  2006. build_zonelists(pgdat);
  2007. build_zonelist_cache(pgdat);
  2008. }
  2009. return 0;
  2010. }
  2011. void build_all_zonelists(void)
  2012. {
  2013. set_zonelist_order();
  2014. if (system_state == SYSTEM_BOOTING) {
  2015. __build_all_zonelists(NULL);
  2016. mminit_verify_zonelist();
  2017. cpuset_init_current_mems_allowed();
  2018. } else {
  2019. /* we have to stop all cpus to guarantee there is no user
  2020. of zonelist */
  2021. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2022. /* cpuset refresh routine should be here */
  2023. }
  2024. vm_total_pages = nr_free_pagecache_pages();
  2025. /*
  2026. * Disable grouping by mobility if the number of pages in the
  2027. * system is too low to allow the mechanism to work. It would be
  2028. * more accurate, but expensive to check per-zone. This check is
  2029. * made on memory-hotadd so a system can start with mobility
  2030. * disabled and enable it later
  2031. */
  2032. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2033. page_group_by_mobility_disabled = 1;
  2034. else
  2035. page_group_by_mobility_disabled = 0;
  2036. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2037. "Total pages: %ld\n",
  2038. num_online_nodes(),
  2039. zonelist_order_name[current_zonelist_order],
  2040. page_group_by_mobility_disabled ? "off" : "on",
  2041. vm_total_pages);
  2042. #ifdef CONFIG_NUMA
  2043. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2044. #endif
  2045. }
  2046. /*
  2047. * Helper functions to size the waitqueue hash table.
  2048. * Essentially these want to choose hash table sizes sufficiently
  2049. * large so that collisions trying to wait on pages are rare.
  2050. * But in fact, the number of active page waitqueues on typical
  2051. * systems is ridiculously low, less than 200. So this is even
  2052. * conservative, even though it seems large.
  2053. *
  2054. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2055. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2056. */
  2057. #define PAGES_PER_WAITQUEUE 256
  2058. #ifndef CONFIG_MEMORY_HOTPLUG
  2059. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2060. {
  2061. unsigned long size = 1;
  2062. pages /= PAGES_PER_WAITQUEUE;
  2063. while (size < pages)
  2064. size <<= 1;
  2065. /*
  2066. * Once we have dozens or even hundreds of threads sleeping
  2067. * on IO we've got bigger problems than wait queue collision.
  2068. * Limit the size of the wait table to a reasonable size.
  2069. */
  2070. size = min(size, 4096UL);
  2071. return max(size, 4UL);
  2072. }
  2073. #else
  2074. /*
  2075. * A zone's size might be changed by hot-add, so it is not possible to determine
  2076. * a suitable size for its wait_table. So we use the maximum size now.
  2077. *
  2078. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2079. *
  2080. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2081. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2082. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2083. *
  2084. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2085. * or more by the traditional way. (See above). It equals:
  2086. *
  2087. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2088. * ia64(16K page size) : = ( 8G + 4M)byte.
  2089. * powerpc (64K page size) : = (32G +16M)byte.
  2090. */
  2091. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2092. {
  2093. return 4096UL;
  2094. }
  2095. #endif
  2096. /*
  2097. * This is an integer logarithm so that shifts can be used later
  2098. * to extract the more random high bits from the multiplicative
  2099. * hash function before the remainder is taken.
  2100. */
  2101. static inline unsigned long wait_table_bits(unsigned long size)
  2102. {
  2103. return ffz(~size);
  2104. }
  2105. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2106. /*
  2107. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2108. * of blocks reserved is based on zone->pages_min. The memory within the
  2109. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2110. * higher will lead to a bigger reserve which will get freed as contiguous
  2111. * blocks as reclaim kicks in
  2112. */
  2113. static void setup_zone_migrate_reserve(struct zone *zone)
  2114. {
  2115. unsigned long start_pfn, pfn, end_pfn;
  2116. struct page *page;
  2117. unsigned long reserve, block_migratetype;
  2118. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2119. start_pfn = zone->zone_start_pfn;
  2120. end_pfn = start_pfn + zone->spanned_pages;
  2121. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2122. pageblock_order;
  2123. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2124. if (!pfn_valid(pfn))
  2125. continue;
  2126. page = pfn_to_page(pfn);
  2127. /* Blocks with reserved pages will never free, skip them. */
  2128. if (PageReserved(page))
  2129. continue;
  2130. block_migratetype = get_pageblock_migratetype(page);
  2131. /* If this block is reserved, account for it */
  2132. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2133. reserve--;
  2134. continue;
  2135. }
  2136. /* Suitable for reserving if this block is movable */
  2137. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2138. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2139. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2140. reserve--;
  2141. continue;
  2142. }
  2143. /*
  2144. * If the reserve is met and this is a previous reserved block,
  2145. * take it back
  2146. */
  2147. if (block_migratetype == MIGRATE_RESERVE) {
  2148. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2149. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2150. }
  2151. }
  2152. }
  2153. /*
  2154. * Initially all pages are reserved - free ones are freed
  2155. * up by free_all_bootmem() once the early boot process is
  2156. * done. Non-atomic initialization, single-pass.
  2157. */
  2158. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2159. unsigned long start_pfn, enum memmap_context context)
  2160. {
  2161. struct page *page;
  2162. unsigned long end_pfn = start_pfn + size;
  2163. unsigned long pfn;
  2164. struct zone *z;
  2165. z = &NODE_DATA(nid)->node_zones[zone];
  2166. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2167. /*
  2168. * There can be holes in boot-time mem_map[]s
  2169. * handed to this function. They do not
  2170. * exist on hotplugged memory.
  2171. */
  2172. if (context == MEMMAP_EARLY) {
  2173. if (!early_pfn_valid(pfn))
  2174. continue;
  2175. if (!early_pfn_in_nid(pfn, nid))
  2176. continue;
  2177. }
  2178. page = pfn_to_page(pfn);
  2179. set_page_links(page, zone, nid, pfn);
  2180. mminit_verify_page_links(page, zone, nid, pfn);
  2181. init_page_count(page);
  2182. reset_page_mapcount(page);
  2183. SetPageReserved(page);
  2184. /*
  2185. * Mark the block movable so that blocks are reserved for
  2186. * movable at startup. This will force kernel allocations
  2187. * to reserve their blocks rather than leaking throughout
  2188. * the address space during boot when many long-lived
  2189. * kernel allocations are made. Later some blocks near
  2190. * the start are marked MIGRATE_RESERVE by
  2191. * setup_zone_migrate_reserve()
  2192. *
  2193. * bitmap is created for zone's valid pfn range. but memmap
  2194. * can be created for invalid pages (for alignment)
  2195. * check here not to call set_pageblock_migratetype() against
  2196. * pfn out of zone.
  2197. */
  2198. if ((z->zone_start_pfn <= pfn)
  2199. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2200. && !(pfn & (pageblock_nr_pages - 1)))
  2201. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2202. INIT_LIST_HEAD(&page->lru);
  2203. #ifdef WANT_PAGE_VIRTUAL
  2204. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2205. if (!is_highmem_idx(zone))
  2206. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2207. #endif
  2208. }
  2209. }
  2210. static void __meminit zone_init_free_lists(struct zone *zone)
  2211. {
  2212. int order, t;
  2213. for_each_migratetype_order(order, t) {
  2214. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2215. zone->free_area[order].nr_free = 0;
  2216. }
  2217. }
  2218. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2219. #define memmap_init(size, nid, zone, start_pfn) \
  2220. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2221. #endif
  2222. static int zone_batchsize(struct zone *zone)
  2223. {
  2224. int batch;
  2225. /*
  2226. * The per-cpu-pages pools are set to around 1000th of the
  2227. * size of the zone. But no more than 1/2 of a meg.
  2228. *
  2229. * OK, so we don't know how big the cache is. So guess.
  2230. */
  2231. batch = zone->present_pages / 1024;
  2232. if (batch * PAGE_SIZE > 512 * 1024)
  2233. batch = (512 * 1024) / PAGE_SIZE;
  2234. batch /= 4; /* We effectively *= 4 below */
  2235. if (batch < 1)
  2236. batch = 1;
  2237. /*
  2238. * Clamp the batch to a 2^n - 1 value. Having a power
  2239. * of 2 value was found to be more likely to have
  2240. * suboptimal cache aliasing properties in some cases.
  2241. *
  2242. * For example if 2 tasks are alternately allocating
  2243. * batches of pages, one task can end up with a lot
  2244. * of pages of one half of the possible page colors
  2245. * and the other with pages of the other colors.
  2246. */
  2247. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2248. return batch;
  2249. }
  2250. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2251. {
  2252. struct per_cpu_pages *pcp;
  2253. memset(p, 0, sizeof(*p));
  2254. pcp = &p->pcp;
  2255. pcp->count = 0;
  2256. pcp->high = 6 * batch;
  2257. pcp->batch = max(1UL, 1 * batch);
  2258. INIT_LIST_HEAD(&pcp->list);
  2259. }
  2260. /*
  2261. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2262. * to the value high for the pageset p.
  2263. */
  2264. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2265. unsigned long high)
  2266. {
  2267. struct per_cpu_pages *pcp;
  2268. pcp = &p->pcp;
  2269. pcp->high = high;
  2270. pcp->batch = max(1UL, high/4);
  2271. if ((high/4) > (PAGE_SHIFT * 8))
  2272. pcp->batch = PAGE_SHIFT * 8;
  2273. }
  2274. #ifdef CONFIG_NUMA
  2275. /*
  2276. * Boot pageset table. One per cpu which is going to be used for all
  2277. * zones and all nodes. The parameters will be set in such a way
  2278. * that an item put on a list will immediately be handed over to
  2279. * the buddy list. This is safe since pageset manipulation is done
  2280. * with interrupts disabled.
  2281. *
  2282. * Some NUMA counter updates may also be caught by the boot pagesets.
  2283. *
  2284. * The boot_pagesets must be kept even after bootup is complete for
  2285. * unused processors and/or zones. They do play a role for bootstrapping
  2286. * hotplugged processors.
  2287. *
  2288. * zoneinfo_show() and maybe other functions do
  2289. * not check if the processor is online before following the pageset pointer.
  2290. * Other parts of the kernel may not check if the zone is available.
  2291. */
  2292. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2293. /*
  2294. * Dynamically allocate memory for the
  2295. * per cpu pageset array in struct zone.
  2296. */
  2297. static int __cpuinit process_zones(int cpu)
  2298. {
  2299. struct zone *zone, *dzone;
  2300. int node = cpu_to_node(cpu);
  2301. node_set_state(node, N_CPU); /* this node has a cpu */
  2302. for_each_zone(zone) {
  2303. if (!populated_zone(zone))
  2304. continue;
  2305. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2306. GFP_KERNEL, node);
  2307. if (!zone_pcp(zone, cpu))
  2308. goto bad;
  2309. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2310. if (percpu_pagelist_fraction)
  2311. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2312. (zone->present_pages / percpu_pagelist_fraction));
  2313. }
  2314. return 0;
  2315. bad:
  2316. for_each_zone(dzone) {
  2317. if (!populated_zone(dzone))
  2318. continue;
  2319. if (dzone == zone)
  2320. break;
  2321. kfree(zone_pcp(dzone, cpu));
  2322. zone_pcp(dzone, cpu) = NULL;
  2323. }
  2324. return -ENOMEM;
  2325. }
  2326. static inline void free_zone_pagesets(int cpu)
  2327. {
  2328. struct zone *zone;
  2329. for_each_zone(zone) {
  2330. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2331. /* Free per_cpu_pageset if it is slab allocated */
  2332. if (pset != &boot_pageset[cpu])
  2333. kfree(pset);
  2334. zone_pcp(zone, cpu) = NULL;
  2335. }
  2336. }
  2337. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2338. unsigned long action,
  2339. void *hcpu)
  2340. {
  2341. int cpu = (long)hcpu;
  2342. int ret = NOTIFY_OK;
  2343. switch (action) {
  2344. case CPU_UP_PREPARE:
  2345. case CPU_UP_PREPARE_FROZEN:
  2346. if (process_zones(cpu))
  2347. ret = NOTIFY_BAD;
  2348. break;
  2349. case CPU_UP_CANCELED:
  2350. case CPU_UP_CANCELED_FROZEN:
  2351. case CPU_DEAD:
  2352. case CPU_DEAD_FROZEN:
  2353. free_zone_pagesets(cpu);
  2354. break;
  2355. default:
  2356. break;
  2357. }
  2358. return ret;
  2359. }
  2360. static struct notifier_block __cpuinitdata pageset_notifier =
  2361. { &pageset_cpuup_callback, NULL, 0 };
  2362. void __init setup_per_cpu_pageset(void)
  2363. {
  2364. int err;
  2365. /* Initialize per_cpu_pageset for cpu 0.
  2366. * A cpuup callback will do this for every cpu
  2367. * as it comes online
  2368. */
  2369. err = process_zones(smp_processor_id());
  2370. BUG_ON(err);
  2371. register_cpu_notifier(&pageset_notifier);
  2372. }
  2373. #endif
  2374. static noinline __init_refok
  2375. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2376. {
  2377. int i;
  2378. struct pglist_data *pgdat = zone->zone_pgdat;
  2379. size_t alloc_size;
  2380. /*
  2381. * The per-page waitqueue mechanism uses hashed waitqueues
  2382. * per zone.
  2383. */
  2384. zone->wait_table_hash_nr_entries =
  2385. wait_table_hash_nr_entries(zone_size_pages);
  2386. zone->wait_table_bits =
  2387. wait_table_bits(zone->wait_table_hash_nr_entries);
  2388. alloc_size = zone->wait_table_hash_nr_entries
  2389. * sizeof(wait_queue_head_t);
  2390. if (!slab_is_available()) {
  2391. zone->wait_table = (wait_queue_head_t *)
  2392. alloc_bootmem_node(pgdat, alloc_size);
  2393. } else {
  2394. /*
  2395. * This case means that a zone whose size was 0 gets new memory
  2396. * via memory hot-add.
  2397. * But it may be the case that a new node was hot-added. In
  2398. * this case vmalloc() will not be able to use this new node's
  2399. * memory - this wait_table must be initialized to use this new
  2400. * node itself as well.
  2401. * To use this new node's memory, further consideration will be
  2402. * necessary.
  2403. */
  2404. zone->wait_table = vmalloc(alloc_size);
  2405. }
  2406. if (!zone->wait_table)
  2407. return -ENOMEM;
  2408. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2409. init_waitqueue_head(zone->wait_table + i);
  2410. return 0;
  2411. }
  2412. static __meminit void zone_pcp_init(struct zone *zone)
  2413. {
  2414. int cpu;
  2415. unsigned long batch = zone_batchsize(zone);
  2416. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2417. #ifdef CONFIG_NUMA
  2418. /* Early boot. Slab allocator not functional yet */
  2419. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2420. setup_pageset(&boot_pageset[cpu],0);
  2421. #else
  2422. setup_pageset(zone_pcp(zone,cpu), batch);
  2423. #endif
  2424. }
  2425. if (zone->present_pages)
  2426. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2427. zone->name, zone->present_pages, batch);
  2428. }
  2429. __meminit int init_currently_empty_zone(struct zone *zone,
  2430. unsigned long zone_start_pfn,
  2431. unsigned long size,
  2432. enum memmap_context context)
  2433. {
  2434. struct pglist_data *pgdat = zone->zone_pgdat;
  2435. int ret;
  2436. ret = zone_wait_table_init(zone, size);
  2437. if (ret)
  2438. return ret;
  2439. pgdat->nr_zones = zone_idx(zone) + 1;
  2440. zone->zone_start_pfn = zone_start_pfn;
  2441. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2442. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2443. pgdat->node_id,
  2444. (unsigned long)zone_idx(zone),
  2445. zone_start_pfn, (zone_start_pfn + size));
  2446. zone_init_free_lists(zone);
  2447. return 0;
  2448. }
  2449. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2450. /*
  2451. * Basic iterator support. Return the first range of PFNs for a node
  2452. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2453. */
  2454. static int __meminit first_active_region_index_in_nid(int nid)
  2455. {
  2456. int i;
  2457. for (i = 0; i < nr_nodemap_entries; i++)
  2458. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2459. return i;
  2460. return -1;
  2461. }
  2462. /*
  2463. * Basic iterator support. Return the next active range of PFNs for a node
  2464. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2465. */
  2466. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2467. {
  2468. for (index = index + 1; index < nr_nodemap_entries; index++)
  2469. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2470. return index;
  2471. return -1;
  2472. }
  2473. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2474. /*
  2475. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2476. * Architectures may implement their own version but if add_active_range()
  2477. * was used and there are no special requirements, this is a convenient
  2478. * alternative
  2479. */
  2480. int __meminit early_pfn_to_nid(unsigned long pfn)
  2481. {
  2482. int i;
  2483. for (i = 0; i < nr_nodemap_entries; i++) {
  2484. unsigned long start_pfn = early_node_map[i].start_pfn;
  2485. unsigned long end_pfn = early_node_map[i].end_pfn;
  2486. if (start_pfn <= pfn && pfn < end_pfn)
  2487. return early_node_map[i].nid;
  2488. }
  2489. return 0;
  2490. }
  2491. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2492. /* Basic iterator support to walk early_node_map[] */
  2493. #define for_each_active_range_index_in_nid(i, nid) \
  2494. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2495. i = next_active_region_index_in_nid(i, nid))
  2496. /**
  2497. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2498. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2499. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2500. *
  2501. * If an architecture guarantees that all ranges registered with
  2502. * add_active_ranges() contain no holes and may be freed, this
  2503. * this function may be used instead of calling free_bootmem() manually.
  2504. */
  2505. void __init free_bootmem_with_active_regions(int nid,
  2506. unsigned long max_low_pfn)
  2507. {
  2508. int i;
  2509. for_each_active_range_index_in_nid(i, nid) {
  2510. unsigned long size_pages = 0;
  2511. unsigned long end_pfn = early_node_map[i].end_pfn;
  2512. if (early_node_map[i].start_pfn >= max_low_pfn)
  2513. continue;
  2514. if (end_pfn > max_low_pfn)
  2515. end_pfn = max_low_pfn;
  2516. size_pages = end_pfn - early_node_map[i].start_pfn;
  2517. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2518. PFN_PHYS(early_node_map[i].start_pfn),
  2519. size_pages << PAGE_SHIFT);
  2520. }
  2521. }
  2522. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2523. {
  2524. int i;
  2525. int ret;
  2526. for_each_active_range_index_in_nid(i, nid) {
  2527. ret = work_fn(early_node_map[i].start_pfn,
  2528. early_node_map[i].end_pfn, data);
  2529. if (ret)
  2530. break;
  2531. }
  2532. }
  2533. /**
  2534. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2535. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2536. *
  2537. * If an architecture guarantees that all ranges registered with
  2538. * add_active_ranges() contain no holes and may be freed, this
  2539. * function may be used instead of calling memory_present() manually.
  2540. */
  2541. void __init sparse_memory_present_with_active_regions(int nid)
  2542. {
  2543. int i;
  2544. for_each_active_range_index_in_nid(i, nid)
  2545. memory_present(early_node_map[i].nid,
  2546. early_node_map[i].start_pfn,
  2547. early_node_map[i].end_pfn);
  2548. }
  2549. /**
  2550. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2551. * @nid: The nid of the node to push the boundary for
  2552. * @start_pfn: The start pfn of the node
  2553. * @end_pfn: The end pfn of the node
  2554. *
  2555. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2556. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2557. * be hotplugged even though no physical memory exists. This function allows
  2558. * an arch to push out the node boundaries so mem_map is allocated that can
  2559. * be used later.
  2560. */
  2561. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2562. void __init push_node_boundaries(unsigned int nid,
  2563. unsigned long start_pfn, unsigned long end_pfn)
  2564. {
  2565. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2566. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2567. nid, start_pfn, end_pfn);
  2568. /* Initialise the boundary for this node if necessary */
  2569. if (node_boundary_end_pfn[nid] == 0)
  2570. node_boundary_start_pfn[nid] = -1UL;
  2571. /* Update the boundaries */
  2572. if (node_boundary_start_pfn[nid] > start_pfn)
  2573. node_boundary_start_pfn[nid] = start_pfn;
  2574. if (node_boundary_end_pfn[nid] < end_pfn)
  2575. node_boundary_end_pfn[nid] = end_pfn;
  2576. }
  2577. /* If necessary, push the node boundary out for reserve hotadd */
  2578. static void __meminit account_node_boundary(unsigned int nid,
  2579. unsigned long *start_pfn, unsigned long *end_pfn)
  2580. {
  2581. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2582. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2583. nid, *start_pfn, *end_pfn);
  2584. /* Return if boundary information has not been provided */
  2585. if (node_boundary_end_pfn[nid] == 0)
  2586. return;
  2587. /* Check the boundaries and update if necessary */
  2588. if (node_boundary_start_pfn[nid] < *start_pfn)
  2589. *start_pfn = node_boundary_start_pfn[nid];
  2590. if (node_boundary_end_pfn[nid] > *end_pfn)
  2591. *end_pfn = node_boundary_end_pfn[nid];
  2592. }
  2593. #else
  2594. void __init push_node_boundaries(unsigned int nid,
  2595. unsigned long start_pfn, unsigned long end_pfn) {}
  2596. static void __meminit account_node_boundary(unsigned int nid,
  2597. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2598. #endif
  2599. /**
  2600. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2601. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2602. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2603. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2604. *
  2605. * It returns the start and end page frame of a node based on information
  2606. * provided by an arch calling add_active_range(). If called for a node
  2607. * with no available memory, a warning is printed and the start and end
  2608. * PFNs will be 0.
  2609. */
  2610. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2611. unsigned long *start_pfn, unsigned long *end_pfn)
  2612. {
  2613. int i;
  2614. *start_pfn = -1UL;
  2615. *end_pfn = 0;
  2616. for_each_active_range_index_in_nid(i, nid) {
  2617. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2618. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2619. }
  2620. if (*start_pfn == -1UL)
  2621. *start_pfn = 0;
  2622. /* Push the node boundaries out if requested */
  2623. account_node_boundary(nid, start_pfn, end_pfn);
  2624. }
  2625. /*
  2626. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2627. * assumption is made that zones within a node are ordered in monotonic
  2628. * increasing memory addresses so that the "highest" populated zone is used
  2629. */
  2630. void __init find_usable_zone_for_movable(void)
  2631. {
  2632. int zone_index;
  2633. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2634. if (zone_index == ZONE_MOVABLE)
  2635. continue;
  2636. if (arch_zone_highest_possible_pfn[zone_index] >
  2637. arch_zone_lowest_possible_pfn[zone_index])
  2638. break;
  2639. }
  2640. VM_BUG_ON(zone_index == -1);
  2641. movable_zone = zone_index;
  2642. }
  2643. /*
  2644. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2645. * because it is sized independant of architecture. Unlike the other zones,
  2646. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2647. * in each node depending on the size of each node and how evenly kernelcore
  2648. * is distributed. This helper function adjusts the zone ranges
  2649. * provided by the architecture for a given node by using the end of the
  2650. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2651. * zones within a node are in order of monotonic increases memory addresses
  2652. */
  2653. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2654. unsigned long zone_type,
  2655. unsigned long node_start_pfn,
  2656. unsigned long node_end_pfn,
  2657. unsigned long *zone_start_pfn,
  2658. unsigned long *zone_end_pfn)
  2659. {
  2660. /* Only adjust if ZONE_MOVABLE is on this node */
  2661. if (zone_movable_pfn[nid]) {
  2662. /* Size ZONE_MOVABLE */
  2663. if (zone_type == ZONE_MOVABLE) {
  2664. *zone_start_pfn = zone_movable_pfn[nid];
  2665. *zone_end_pfn = min(node_end_pfn,
  2666. arch_zone_highest_possible_pfn[movable_zone]);
  2667. /* Adjust for ZONE_MOVABLE starting within this range */
  2668. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2669. *zone_end_pfn > zone_movable_pfn[nid]) {
  2670. *zone_end_pfn = zone_movable_pfn[nid];
  2671. /* Check if this whole range is within ZONE_MOVABLE */
  2672. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2673. *zone_start_pfn = *zone_end_pfn;
  2674. }
  2675. }
  2676. /*
  2677. * Return the number of pages a zone spans in a node, including holes
  2678. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2679. */
  2680. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2681. unsigned long zone_type,
  2682. unsigned long *ignored)
  2683. {
  2684. unsigned long node_start_pfn, node_end_pfn;
  2685. unsigned long zone_start_pfn, zone_end_pfn;
  2686. /* Get the start and end of the node and zone */
  2687. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2688. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2689. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2690. adjust_zone_range_for_zone_movable(nid, zone_type,
  2691. node_start_pfn, node_end_pfn,
  2692. &zone_start_pfn, &zone_end_pfn);
  2693. /* Check that this node has pages within the zone's required range */
  2694. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2695. return 0;
  2696. /* Move the zone boundaries inside the node if necessary */
  2697. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2698. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2699. /* Return the spanned pages */
  2700. return zone_end_pfn - zone_start_pfn;
  2701. }
  2702. /*
  2703. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2704. * then all holes in the requested range will be accounted for.
  2705. */
  2706. unsigned long __meminit __absent_pages_in_range(int nid,
  2707. unsigned long range_start_pfn,
  2708. unsigned long range_end_pfn)
  2709. {
  2710. int i = 0;
  2711. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2712. unsigned long start_pfn;
  2713. /* Find the end_pfn of the first active range of pfns in the node */
  2714. i = first_active_region_index_in_nid(nid);
  2715. if (i == -1)
  2716. return 0;
  2717. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2718. /* Account for ranges before physical memory on this node */
  2719. if (early_node_map[i].start_pfn > range_start_pfn)
  2720. hole_pages = prev_end_pfn - range_start_pfn;
  2721. /* Find all holes for the zone within the node */
  2722. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2723. /* No need to continue if prev_end_pfn is outside the zone */
  2724. if (prev_end_pfn >= range_end_pfn)
  2725. break;
  2726. /* Make sure the end of the zone is not within the hole */
  2727. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2728. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2729. /* Update the hole size cound and move on */
  2730. if (start_pfn > range_start_pfn) {
  2731. BUG_ON(prev_end_pfn > start_pfn);
  2732. hole_pages += start_pfn - prev_end_pfn;
  2733. }
  2734. prev_end_pfn = early_node_map[i].end_pfn;
  2735. }
  2736. /* Account for ranges past physical memory on this node */
  2737. if (range_end_pfn > prev_end_pfn)
  2738. hole_pages += range_end_pfn -
  2739. max(range_start_pfn, prev_end_pfn);
  2740. return hole_pages;
  2741. }
  2742. /**
  2743. * absent_pages_in_range - Return number of page frames in holes within a range
  2744. * @start_pfn: The start PFN to start searching for holes
  2745. * @end_pfn: The end PFN to stop searching for holes
  2746. *
  2747. * It returns the number of pages frames in memory holes within a range.
  2748. */
  2749. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2750. unsigned long end_pfn)
  2751. {
  2752. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2753. }
  2754. /* Return the number of page frames in holes in a zone on a node */
  2755. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2756. unsigned long zone_type,
  2757. unsigned long *ignored)
  2758. {
  2759. unsigned long node_start_pfn, node_end_pfn;
  2760. unsigned long zone_start_pfn, zone_end_pfn;
  2761. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2762. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2763. node_start_pfn);
  2764. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2765. node_end_pfn);
  2766. adjust_zone_range_for_zone_movable(nid, zone_type,
  2767. node_start_pfn, node_end_pfn,
  2768. &zone_start_pfn, &zone_end_pfn);
  2769. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2770. }
  2771. #else
  2772. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2773. unsigned long zone_type,
  2774. unsigned long *zones_size)
  2775. {
  2776. return zones_size[zone_type];
  2777. }
  2778. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2779. unsigned long zone_type,
  2780. unsigned long *zholes_size)
  2781. {
  2782. if (!zholes_size)
  2783. return 0;
  2784. return zholes_size[zone_type];
  2785. }
  2786. #endif
  2787. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2788. unsigned long *zones_size, unsigned long *zholes_size)
  2789. {
  2790. unsigned long realtotalpages, totalpages = 0;
  2791. enum zone_type i;
  2792. for (i = 0; i < MAX_NR_ZONES; i++)
  2793. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2794. zones_size);
  2795. pgdat->node_spanned_pages = totalpages;
  2796. realtotalpages = totalpages;
  2797. for (i = 0; i < MAX_NR_ZONES; i++)
  2798. realtotalpages -=
  2799. zone_absent_pages_in_node(pgdat->node_id, i,
  2800. zholes_size);
  2801. pgdat->node_present_pages = realtotalpages;
  2802. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2803. realtotalpages);
  2804. }
  2805. #ifndef CONFIG_SPARSEMEM
  2806. /*
  2807. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2808. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2809. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2810. * round what is now in bits to nearest long in bits, then return it in
  2811. * bytes.
  2812. */
  2813. static unsigned long __init usemap_size(unsigned long zonesize)
  2814. {
  2815. unsigned long usemapsize;
  2816. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2817. usemapsize = usemapsize >> pageblock_order;
  2818. usemapsize *= NR_PAGEBLOCK_BITS;
  2819. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2820. return usemapsize / 8;
  2821. }
  2822. static void __init setup_usemap(struct pglist_data *pgdat,
  2823. struct zone *zone, unsigned long zonesize)
  2824. {
  2825. unsigned long usemapsize = usemap_size(zonesize);
  2826. zone->pageblock_flags = NULL;
  2827. if (usemapsize) {
  2828. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2829. memset(zone->pageblock_flags, 0, usemapsize);
  2830. }
  2831. }
  2832. #else
  2833. static void inline setup_usemap(struct pglist_data *pgdat,
  2834. struct zone *zone, unsigned long zonesize) {}
  2835. #endif /* CONFIG_SPARSEMEM */
  2836. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2837. /* Return a sensible default order for the pageblock size. */
  2838. static inline int pageblock_default_order(void)
  2839. {
  2840. if (HPAGE_SHIFT > PAGE_SHIFT)
  2841. return HUGETLB_PAGE_ORDER;
  2842. return MAX_ORDER-1;
  2843. }
  2844. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2845. static inline void __init set_pageblock_order(unsigned int order)
  2846. {
  2847. /* Check that pageblock_nr_pages has not already been setup */
  2848. if (pageblock_order)
  2849. return;
  2850. /*
  2851. * Assume the largest contiguous order of interest is a huge page.
  2852. * This value may be variable depending on boot parameters on IA64
  2853. */
  2854. pageblock_order = order;
  2855. }
  2856. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2857. /*
  2858. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2859. * and pageblock_default_order() are unused as pageblock_order is set
  2860. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2861. * pageblock_order based on the kernel config
  2862. */
  2863. static inline int pageblock_default_order(unsigned int order)
  2864. {
  2865. return MAX_ORDER-1;
  2866. }
  2867. #define set_pageblock_order(x) do {} while (0)
  2868. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2869. /*
  2870. * Set up the zone data structures:
  2871. * - mark all pages reserved
  2872. * - mark all memory queues empty
  2873. * - clear the memory bitmaps
  2874. */
  2875. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2876. unsigned long *zones_size, unsigned long *zholes_size)
  2877. {
  2878. enum zone_type j;
  2879. int nid = pgdat->node_id;
  2880. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2881. int ret;
  2882. pgdat_resize_init(pgdat);
  2883. pgdat->nr_zones = 0;
  2884. init_waitqueue_head(&pgdat->kswapd_wait);
  2885. pgdat->kswapd_max_order = 0;
  2886. for (j = 0; j < MAX_NR_ZONES; j++) {
  2887. struct zone *zone = pgdat->node_zones + j;
  2888. unsigned long size, realsize, memmap_pages;
  2889. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2890. realsize = size - zone_absent_pages_in_node(nid, j,
  2891. zholes_size);
  2892. /*
  2893. * Adjust realsize so that it accounts for how much memory
  2894. * is used by this zone for memmap. This affects the watermark
  2895. * and per-cpu initialisations
  2896. */
  2897. memmap_pages =
  2898. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2899. if (realsize >= memmap_pages) {
  2900. realsize -= memmap_pages;
  2901. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2902. "%s zone: %lu pages used for memmap\n",
  2903. zone_names[j], memmap_pages);
  2904. } else
  2905. printk(KERN_WARNING
  2906. " %s zone: %lu pages exceeds realsize %lu\n",
  2907. zone_names[j], memmap_pages, realsize);
  2908. /* Account for reserved pages */
  2909. if (j == 0 && realsize > dma_reserve) {
  2910. realsize -= dma_reserve;
  2911. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2912. "%s zone: %lu pages reserved\n",
  2913. zone_names[0], dma_reserve);
  2914. }
  2915. if (!is_highmem_idx(j))
  2916. nr_kernel_pages += realsize;
  2917. nr_all_pages += realsize;
  2918. zone->spanned_pages = size;
  2919. zone->present_pages = realsize;
  2920. #ifdef CONFIG_NUMA
  2921. zone->node = nid;
  2922. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2923. / 100;
  2924. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2925. #endif
  2926. zone->name = zone_names[j];
  2927. spin_lock_init(&zone->lock);
  2928. spin_lock_init(&zone->lru_lock);
  2929. zone_seqlock_init(zone);
  2930. zone->zone_pgdat = pgdat;
  2931. zone->prev_priority = DEF_PRIORITY;
  2932. zone_pcp_init(zone);
  2933. INIT_LIST_HEAD(&zone->active_list);
  2934. INIT_LIST_HEAD(&zone->inactive_list);
  2935. zone->nr_scan_active = 0;
  2936. zone->nr_scan_inactive = 0;
  2937. zap_zone_vm_stats(zone);
  2938. zone->flags = 0;
  2939. if (!size)
  2940. continue;
  2941. set_pageblock_order(pageblock_default_order());
  2942. setup_usemap(pgdat, zone, size);
  2943. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2944. size, MEMMAP_EARLY);
  2945. BUG_ON(ret);
  2946. memmap_init(size, nid, j, zone_start_pfn);
  2947. zone_start_pfn += size;
  2948. }
  2949. }
  2950. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2951. {
  2952. /* Skip empty nodes */
  2953. if (!pgdat->node_spanned_pages)
  2954. return;
  2955. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2956. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2957. if (!pgdat->node_mem_map) {
  2958. unsigned long size, start, end;
  2959. struct page *map;
  2960. /*
  2961. * The zone's endpoints aren't required to be MAX_ORDER
  2962. * aligned but the node_mem_map endpoints must be in order
  2963. * for the buddy allocator to function correctly.
  2964. */
  2965. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2966. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2967. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2968. size = (end - start) * sizeof(struct page);
  2969. map = alloc_remap(pgdat->node_id, size);
  2970. if (!map)
  2971. map = alloc_bootmem_node(pgdat, size);
  2972. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2973. }
  2974. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2975. /*
  2976. * With no DISCONTIG, the global mem_map is just set as node 0's
  2977. */
  2978. if (pgdat == NODE_DATA(0)) {
  2979. mem_map = NODE_DATA(0)->node_mem_map;
  2980. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2981. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2982. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2983. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2984. }
  2985. #endif
  2986. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2987. }
  2988. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  2989. unsigned long node_start_pfn, unsigned long *zholes_size)
  2990. {
  2991. pg_data_t *pgdat = NODE_DATA(nid);
  2992. pgdat->node_id = nid;
  2993. pgdat->node_start_pfn = node_start_pfn;
  2994. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2995. alloc_node_mem_map(pgdat);
  2996. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2997. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  2998. nid, (unsigned long)pgdat,
  2999. (unsigned long)pgdat->node_mem_map);
  3000. #endif
  3001. free_area_init_core(pgdat, zones_size, zholes_size);
  3002. }
  3003. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3004. #if MAX_NUMNODES > 1
  3005. /*
  3006. * Figure out the number of possible node ids.
  3007. */
  3008. static void __init setup_nr_node_ids(void)
  3009. {
  3010. unsigned int node;
  3011. unsigned int highest = 0;
  3012. for_each_node_mask(node, node_possible_map)
  3013. highest = node;
  3014. nr_node_ids = highest + 1;
  3015. }
  3016. #else
  3017. static inline void setup_nr_node_ids(void)
  3018. {
  3019. }
  3020. #endif
  3021. /**
  3022. * add_active_range - Register a range of PFNs backed by physical memory
  3023. * @nid: The node ID the range resides on
  3024. * @start_pfn: The start PFN of the available physical memory
  3025. * @end_pfn: The end PFN of the available physical memory
  3026. *
  3027. * These ranges are stored in an early_node_map[] and later used by
  3028. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3029. * range spans a memory hole, it is up to the architecture to ensure
  3030. * the memory is not freed by the bootmem allocator. If possible
  3031. * the range being registered will be merged with existing ranges.
  3032. */
  3033. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3034. unsigned long end_pfn)
  3035. {
  3036. int i;
  3037. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3038. "Entering add_active_range(%d, %#lx, %#lx) "
  3039. "%d entries of %d used\n",
  3040. nid, start_pfn, end_pfn,
  3041. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3042. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3043. /* Merge with existing active regions if possible */
  3044. for (i = 0; i < nr_nodemap_entries; i++) {
  3045. if (early_node_map[i].nid != nid)
  3046. continue;
  3047. /* Skip if an existing region covers this new one */
  3048. if (start_pfn >= early_node_map[i].start_pfn &&
  3049. end_pfn <= early_node_map[i].end_pfn)
  3050. return;
  3051. /* Merge forward if suitable */
  3052. if (start_pfn <= early_node_map[i].end_pfn &&
  3053. end_pfn > early_node_map[i].end_pfn) {
  3054. early_node_map[i].end_pfn = end_pfn;
  3055. return;
  3056. }
  3057. /* Merge backward if suitable */
  3058. if (start_pfn < early_node_map[i].end_pfn &&
  3059. end_pfn >= early_node_map[i].start_pfn) {
  3060. early_node_map[i].start_pfn = start_pfn;
  3061. return;
  3062. }
  3063. }
  3064. /* Check that early_node_map is large enough */
  3065. if (i >= MAX_ACTIVE_REGIONS) {
  3066. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3067. MAX_ACTIVE_REGIONS);
  3068. return;
  3069. }
  3070. early_node_map[i].nid = nid;
  3071. early_node_map[i].start_pfn = start_pfn;
  3072. early_node_map[i].end_pfn = end_pfn;
  3073. nr_nodemap_entries = i + 1;
  3074. }
  3075. /**
  3076. * remove_active_range - Shrink an existing registered range of PFNs
  3077. * @nid: The node id the range is on that should be shrunk
  3078. * @start_pfn: The new PFN of the range
  3079. * @end_pfn: The new PFN of the range
  3080. *
  3081. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3082. * The map is kept near the end physical page range that has already been
  3083. * registered. This function allows an arch to shrink an existing registered
  3084. * range.
  3085. */
  3086. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3087. unsigned long end_pfn)
  3088. {
  3089. int i, j;
  3090. int removed = 0;
  3091. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3092. nid, start_pfn, end_pfn);
  3093. /* Find the old active region end and shrink */
  3094. for_each_active_range_index_in_nid(i, nid) {
  3095. if (early_node_map[i].start_pfn >= start_pfn &&
  3096. early_node_map[i].end_pfn <= end_pfn) {
  3097. /* clear it */
  3098. early_node_map[i].start_pfn = 0;
  3099. early_node_map[i].end_pfn = 0;
  3100. removed = 1;
  3101. continue;
  3102. }
  3103. if (early_node_map[i].start_pfn < start_pfn &&
  3104. early_node_map[i].end_pfn > start_pfn) {
  3105. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3106. early_node_map[i].end_pfn = start_pfn;
  3107. if (temp_end_pfn > end_pfn)
  3108. add_active_range(nid, end_pfn, temp_end_pfn);
  3109. continue;
  3110. }
  3111. if (early_node_map[i].start_pfn >= start_pfn &&
  3112. early_node_map[i].end_pfn > end_pfn &&
  3113. early_node_map[i].start_pfn < end_pfn) {
  3114. early_node_map[i].start_pfn = end_pfn;
  3115. continue;
  3116. }
  3117. }
  3118. if (!removed)
  3119. return;
  3120. /* remove the blank ones */
  3121. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3122. if (early_node_map[i].nid != nid)
  3123. continue;
  3124. if (early_node_map[i].end_pfn)
  3125. continue;
  3126. /* we found it, get rid of it */
  3127. for (j = i; j < nr_nodemap_entries - 1; j++)
  3128. memcpy(&early_node_map[j], &early_node_map[j+1],
  3129. sizeof(early_node_map[j]));
  3130. j = nr_nodemap_entries - 1;
  3131. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3132. nr_nodemap_entries--;
  3133. }
  3134. }
  3135. /**
  3136. * remove_all_active_ranges - Remove all currently registered regions
  3137. *
  3138. * During discovery, it may be found that a table like SRAT is invalid
  3139. * and an alternative discovery method must be used. This function removes
  3140. * all currently registered regions.
  3141. */
  3142. void __init remove_all_active_ranges(void)
  3143. {
  3144. memset(early_node_map, 0, sizeof(early_node_map));
  3145. nr_nodemap_entries = 0;
  3146. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3147. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3148. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3149. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3150. }
  3151. /* Compare two active node_active_regions */
  3152. static int __init cmp_node_active_region(const void *a, const void *b)
  3153. {
  3154. struct node_active_region *arange = (struct node_active_region *)a;
  3155. struct node_active_region *brange = (struct node_active_region *)b;
  3156. /* Done this way to avoid overflows */
  3157. if (arange->start_pfn > brange->start_pfn)
  3158. return 1;
  3159. if (arange->start_pfn < brange->start_pfn)
  3160. return -1;
  3161. return 0;
  3162. }
  3163. /* sort the node_map by start_pfn */
  3164. static void __init sort_node_map(void)
  3165. {
  3166. sort(early_node_map, (size_t)nr_nodemap_entries,
  3167. sizeof(struct node_active_region),
  3168. cmp_node_active_region, NULL);
  3169. }
  3170. /* Find the lowest pfn for a node */
  3171. unsigned long __init find_min_pfn_for_node(int nid)
  3172. {
  3173. int i;
  3174. unsigned long min_pfn = ULONG_MAX;
  3175. /* Assuming a sorted map, the first range found has the starting pfn */
  3176. for_each_active_range_index_in_nid(i, nid)
  3177. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3178. if (min_pfn == ULONG_MAX) {
  3179. printk(KERN_WARNING
  3180. "Could not find start_pfn for node %d\n", nid);
  3181. return 0;
  3182. }
  3183. return min_pfn;
  3184. }
  3185. /**
  3186. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3187. *
  3188. * It returns the minimum PFN based on information provided via
  3189. * add_active_range().
  3190. */
  3191. unsigned long __init find_min_pfn_with_active_regions(void)
  3192. {
  3193. return find_min_pfn_for_node(MAX_NUMNODES);
  3194. }
  3195. /**
  3196. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3197. *
  3198. * It returns the maximum PFN based on information provided via
  3199. * add_active_range().
  3200. */
  3201. unsigned long __init find_max_pfn_with_active_regions(void)
  3202. {
  3203. int i;
  3204. unsigned long max_pfn = 0;
  3205. for (i = 0; i < nr_nodemap_entries; i++)
  3206. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3207. return max_pfn;
  3208. }
  3209. /*
  3210. * early_calculate_totalpages()
  3211. * Sum pages in active regions for movable zone.
  3212. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3213. */
  3214. static unsigned long __init early_calculate_totalpages(void)
  3215. {
  3216. int i;
  3217. unsigned long totalpages = 0;
  3218. for (i = 0; i < nr_nodemap_entries; i++) {
  3219. unsigned long pages = early_node_map[i].end_pfn -
  3220. early_node_map[i].start_pfn;
  3221. totalpages += pages;
  3222. if (pages)
  3223. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3224. }
  3225. return totalpages;
  3226. }
  3227. /*
  3228. * Find the PFN the Movable zone begins in each node. Kernel memory
  3229. * is spread evenly between nodes as long as the nodes have enough
  3230. * memory. When they don't, some nodes will have more kernelcore than
  3231. * others
  3232. */
  3233. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3234. {
  3235. int i, nid;
  3236. unsigned long usable_startpfn;
  3237. unsigned long kernelcore_node, kernelcore_remaining;
  3238. unsigned long totalpages = early_calculate_totalpages();
  3239. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3240. /*
  3241. * If movablecore was specified, calculate what size of
  3242. * kernelcore that corresponds so that memory usable for
  3243. * any allocation type is evenly spread. If both kernelcore
  3244. * and movablecore are specified, then the value of kernelcore
  3245. * will be used for required_kernelcore if it's greater than
  3246. * what movablecore would have allowed.
  3247. */
  3248. if (required_movablecore) {
  3249. unsigned long corepages;
  3250. /*
  3251. * Round-up so that ZONE_MOVABLE is at least as large as what
  3252. * was requested by the user
  3253. */
  3254. required_movablecore =
  3255. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3256. corepages = totalpages - required_movablecore;
  3257. required_kernelcore = max(required_kernelcore, corepages);
  3258. }
  3259. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3260. if (!required_kernelcore)
  3261. return;
  3262. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3263. find_usable_zone_for_movable();
  3264. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3265. restart:
  3266. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3267. kernelcore_node = required_kernelcore / usable_nodes;
  3268. for_each_node_state(nid, N_HIGH_MEMORY) {
  3269. /*
  3270. * Recalculate kernelcore_node if the division per node
  3271. * now exceeds what is necessary to satisfy the requested
  3272. * amount of memory for the kernel
  3273. */
  3274. if (required_kernelcore < kernelcore_node)
  3275. kernelcore_node = required_kernelcore / usable_nodes;
  3276. /*
  3277. * As the map is walked, we track how much memory is usable
  3278. * by the kernel using kernelcore_remaining. When it is
  3279. * 0, the rest of the node is usable by ZONE_MOVABLE
  3280. */
  3281. kernelcore_remaining = kernelcore_node;
  3282. /* Go through each range of PFNs within this node */
  3283. for_each_active_range_index_in_nid(i, nid) {
  3284. unsigned long start_pfn, end_pfn;
  3285. unsigned long size_pages;
  3286. start_pfn = max(early_node_map[i].start_pfn,
  3287. zone_movable_pfn[nid]);
  3288. end_pfn = early_node_map[i].end_pfn;
  3289. if (start_pfn >= end_pfn)
  3290. continue;
  3291. /* Account for what is only usable for kernelcore */
  3292. if (start_pfn < usable_startpfn) {
  3293. unsigned long kernel_pages;
  3294. kernel_pages = min(end_pfn, usable_startpfn)
  3295. - start_pfn;
  3296. kernelcore_remaining -= min(kernel_pages,
  3297. kernelcore_remaining);
  3298. required_kernelcore -= min(kernel_pages,
  3299. required_kernelcore);
  3300. /* Continue if range is now fully accounted */
  3301. if (end_pfn <= usable_startpfn) {
  3302. /*
  3303. * Push zone_movable_pfn to the end so
  3304. * that if we have to rebalance
  3305. * kernelcore across nodes, we will
  3306. * not double account here
  3307. */
  3308. zone_movable_pfn[nid] = end_pfn;
  3309. continue;
  3310. }
  3311. start_pfn = usable_startpfn;
  3312. }
  3313. /*
  3314. * The usable PFN range for ZONE_MOVABLE is from
  3315. * start_pfn->end_pfn. Calculate size_pages as the
  3316. * number of pages used as kernelcore
  3317. */
  3318. size_pages = end_pfn - start_pfn;
  3319. if (size_pages > kernelcore_remaining)
  3320. size_pages = kernelcore_remaining;
  3321. zone_movable_pfn[nid] = start_pfn + size_pages;
  3322. /*
  3323. * Some kernelcore has been met, update counts and
  3324. * break if the kernelcore for this node has been
  3325. * satisified
  3326. */
  3327. required_kernelcore -= min(required_kernelcore,
  3328. size_pages);
  3329. kernelcore_remaining -= size_pages;
  3330. if (!kernelcore_remaining)
  3331. break;
  3332. }
  3333. }
  3334. /*
  3335. * If there is still required_kernelcore, we do another pass with one
  3336. * less node in the count. This will push zone_movable_pfn[nid] further
  3337. * along on the nodes that still have memory until kernelcore is
  3338. * satisified
  3339. */
  3340. usable_nodes--;
  3341. if (usable_nodes && required_kernelcore > usable_nodes)
  3342. goto restart;
  3343. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3344. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3345. zone_movable_pfn[nid] =
  3346. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3347. }
  3348. /* Any regular memory on that node ? */
  3349. static void check_for_regular_memory(pg_data_t *pgdat)
  3350. {
  3351. #ifdef CONFIG_HIGHMEM
  3352. enum zone_type zone_type;
  3353. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3354. struct zone *zone = &pgdat->node_zones[zone_type];
  3355. if (zone->present_pages)
  3356. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3357. }
  3358. #endif
  3359. }
  3360. /**
  3361. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3362. * @max_zone_pfn: an array of max PFNs for each zone
  3363. *
  3364. * This will call free_area_init_node() for each active node in the system.
  3365. * Using the page ranges provided by add_active_range(), the size of each
  3366. * zone in each node and their holes is calculated. If the maximum PFN
  3367. * between two adjacent zones match, it is assumed that the zone is empty.
  3368. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3369. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3370. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3371. * at arch_max_dma_pfn.
  3372. */
  3373. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3374. {
  3375. unsigned long nid;
  3376. enum zone_type i;
  3377. /* Sort early_node_map as initialisation assumes it is sorted */
  3378. sort_node_map();
  3379. /* Record where the zone boundaries are */
  3380. memset(arch_zone_lowest_possible_pfn, 0,
  3381. sizeof(arch_zone_lowest_possible_pfn));
  3382. memset(arch_zone_highest_possible_pfn, 0,
  3383. sizeof(arch_zone_highest_possible_pfn));
  3384. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3385. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3386. for (i = 1; i < MAX_NR_ZONES; i++) {
  3387. if (i == ZONE_MOVABLE)
  3388. continue;
  3389. arch_zone_lowest_possible_pfn[i] =
  3390. arch_zone_highest_possible_pfn[i-1];
  3391. arch_zone_highest_possible_pfn[i] =
  3392. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3393. }
  3394. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3395. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3396. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3397. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3398. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3399. /* Print out the zone ranges */
  3400. printk("Zone PFN ranges:\n");
  3401. for (i = 0; i < MAX_NR_ZONES; i++) {
  3402. if (i == ZONE_MOVABLE)
  3403. continue;
  3404. printk(" %-8s %0#10lx -> %0#10lx\n",
  3405. zone_names[i],
  3406. arch_zone_lowest_possible_pfn[i],
  3407. arch_zone_highest_possible_pfn[i]);
  3408. }
  3409. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3410. printk("Movable zone start PFN for each node\n");
  3411. for (i = 0; i < MAX_NUMNODES; i++) {
  3412. if (zone_movable_pfn[i])
  3413. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3414. }
  3415. /* Print out the early_node_map[] */
  3416. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3417. for (i = 0; i < nr_nodemap_entries; i++)
  3418. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3419. early_node_map[i].start_pfn,
  3420. early_node_map[i].end_pfn);
  3421. /* Initialise every node */
  3422. mminit_verify_pageflags_layout();
  3423. setup_nr_node_ids();
  3424. for_each_online_node(nid) {
  3425. pg_data_t *pgdat = NODE_DATA(nid);
  3426. free_area_init_node(nid, NULL,
  3427. find_min_pfn_for_node(nid), NULL);
  3428. /* Any memory on that node */
  3429. if (pgdat->node_present_pages)
  3430. node_set_state(nid, N_HIGH_MEMORY);
  3431. check_for_regular_memory(pgdat);
  3432. }
  3433. }
  3434. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3435. {
  3436. unsigned long long coremem;
  3437. if (!p)
  3438. return -EINVAL;
  3439. coremem = memparse(p, &p);
  3440. *core = coremem >> PAGE_SHIFT;
  3441. /* Paranoid check that UL is enough for the coremem value */
  3442. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3443. return 0;
  3444. }
  3445. /*
  3446. * kernelcore=size sets the amount of memory for use for allocations that
  3447. * cannot be reclaimed or migrated.
  3448. */
  3449. static int __init cmdline_parse_kernelcore(char *p)
  3450. {
  3451. return cmdline_parse_core(p, &required_kernelcore);
  3452. }
  3453. /*
  3454. * movablecore=size sets the amount of memory for use for allocations that
  3455. * can be reclaimed or migrated.
  3456. */
  3457. static int __init cmdline_parse_movablecore(char *p)
  3458. {
  3459. return cmdline_parse_core(p, &required_movablecore);
  3460. }
  3461. early_param("kernelcore", cmdline_parse_kernelcore);
  3462. early_param("movablecore", cmdline_parse_movablecore);
  3463. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3464. /**
  3465. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3466. * @new_dma_reserve: The number of pages to mark reserved
  3467. *
  3468. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3469. * In the DMA zone, a significant percentage may be consumed by kernel image
  3470. * and other unfreeable allocations which can skew the watermarks badly. This
  3471. * function may optionally be used to account for unfreeable pages in the
  3472. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3473. * smaller per-cpu batchsize.
  3474. */
  3475. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3476. {
  3477. dma_reserve = new_dma_reserve;
  3478. }
  3479. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3480. struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
  3481. EXPORT_SYMBOL(contig_page_data);
  3482. #endif
  3483. void __init free_area_init(unsigned long *zones_size)
  3484. {
  3485. free_area_init_node(0, zones_size,
  3486. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3487. }
  3488. static int page_alloc_cpu_notify(struct notifier_block *self,
  3489. unsigned long action, void *hcpu)
  3490. {
  3491. int cpu = (unsigned long)hcpu;
  3492. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3493. drain_pages(cpu);
  3494. /*
  3495. * Spill the event counters of the dead processor
  3496. * into the current processors event counters.
  3497. * This artificially elevates the count of the current
  3498. * processor.
  3499. */
  3500. vm_events_fold_cpu(cpu);
  3501. /*
  3502. * Zero the differential counters of the dead processor
  3503. * so that the vm statistics are consistent.
  3504. *
  3505. * This is only okay since the processor is dead and cannot
  3506. * race with what we are doing.
  3507. */
  3508. refresh_cpu_vm_stats(cpu);
  3509. }
  3510. return NOTIFY_OK;
  3511. }
  3512. void __init page_alloc_init(void)
  3513. {
  3514. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3515. }
  3516. /*
  3517. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3518. * or min_free_kbytes changes.
  3519. */
  3520. static void calculate_totalreserve_pages(void)
  3521. {
  3522. struct pglist_data *pgdat;
  3523. unsigned long reserve_pages = 0;
  3524. enum zone_type i, j;
  3525. for_each_online_pgdat(pgdat) {
  3526. for (i = 0; i < MAX_NR_ZONES; i++) {
  3527. struct zone *zone = pgdat->node_zones + i;
  3528. unsigned long max = 0;
  3529. /* Find valid and maximum lowmem_reserve in the zone */
  3530. for (j = i; j < MAX_NR_ZONES; j++) {
  3531. if (zone->lowmem_reserve[j] > max)
  3532. max = zone->lowmem_reserve[j];
  3533. }
  3534. /* we treat pages_high as reserved pages. */
  3535. max += zone->pages_high;
  3536. if (max > zone->present_pages)
  3537. max = zone->present_pages;
  3538. reserve_pages += max;
  3539. }
  3540. }
  3541. totalreserve_pages = reserve_pages;
  3542. }
  3543. /*
  3544. * setup_per_zone_lowmem_reserve - called whenever
  3545. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3546. * has a correct pages reserved value, so an adequate number of
  3547. * pages are left in the zone after a successful __alloc_pages().
  3548. */
  3549. static void setup_per_zone_lowmem_reserve(void)
  3550. {
  3551. struct pglist_data *pgdat;
  3552. enum zone_type j, idx;
  3553. for_each_online_pgdat(pgdat) {
  3554. for (j = 0; j < MAX_NR_ZONES; j++) {
  3555. struct zone *zone = pgdat->node_zones + j;
  3556. unsigned long present_pages = zone->present_pages;
  3557. zone->lowmem_reserve[j] = 0;
  3558. idx = j;
  3559. while (idx) {
  3560. struct zone *lower_zone;
  3561. idx--;
  3562. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3563. sysctl_lowmem_reserve_ratio[idx] = 1;
  3564. lower_zone = pgdat->node_zones + idx;
  3565. lower_zone->lowmem_reserve[j] = present_pages /
  3566. sysctl_lowmem_reserve_ratio[idx];
  3567. present_pages += lower_zone->present_pages;
  3568. }
  3569. }
  3570. }
  3571. /* update totalreserve_pages */
  3572. calculate_totalreserve_pages();
  3573. }
  3574. /**
  3575. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3576. *
  3577. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3578. * with respect to min_free_kbytes.
  3579. */
  3580. void setup_per_zone_pages_min(void)
  3581. {
  3582. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3583. unsigned long lowmem_pages = 0;
  3584. struct zone *zone;
  3585. unsigned long flags;
  3586. /* Calculate total number of !ZONE_HIGHMEM pages */
  3587. for_each_zone(zone) {
  3588. if (!is_highmem(zone))
  3589. lowmem_pages += zone->present_pages;
  3590. }
  3591. for_each_zone(zone) {
  3592. u64 tmp;
  3593. spin_lock_irqsave(&zone->lru_lock, flags);
  3594. tmp = (u64)pages_min * zone->present_pages;
  3595. do_div(tmp, lowmem_pages);
  3596. if (is_highmem(zone)) {
  3597. /*
  3598. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3599. * need highmem pages, so cap pages_min to a small
  3600. * value here.
  3601. *
  3602. * The (pages_high-pages_low) and (pages_low-pages_min)
  3603. * deltas controls asynch page reclaim, and so should
  3604. * not be capped for highmem.
  3605. */
  3606. int min_pages;
  3607. min_pages = zone->present_pages / 1024;
  3608. if (min_pages < SWAP_CLUSTER_MAX)
  3609. min_pages = SWAP_CLUSTER_MAX;
  3610. if (min_pages > 128)
  3611. min_pages = 128;
  3612. zone->pages_min = min_pages;
  3613. } else {
  3614. /*
  3615. * If it's a lowmem zone, reserve a number of pages
  3616. * proportionate to the zone's size.
  3617. */
  3618. zone->pages_min = tmp;
  3619. }
  3620. zone->pages_low = zone->pages_min + (tmp >> 2);
  3621. zone->pages_high = zone->pages_min + (tmp >> 1);
  3622. setup_zone_migrate_reserve(zone);
  3623. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3624. }
  3625. /* update totalreserve_pages */
  3626. calculate_totalreserve_pages();
  3627. }
  3628. /*
  3629. * Initialise min_free_kbytes.
  3630. *
  3631. * For small machines we want it small (128k min). For large machines
  3632. * we want it large (64MB max). But it is not linear, because network
  3633. * bandwidth does not increase linearly with machine size. We use
  3634. *
  3635. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3636. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3637. *
  3638. * which yields
  3639. *
  3640. * 16MB: 512k
  3641. * 32MB: 724k
  3642. * 64MB: 1024k
  3643. * 128MB: 1448k
  3644. * 256MB: 2048k
  3645. * 512MB: 2896k
  3646. * 1024MB: 4096k
  3647. * 2048MB: 5792k
  3648. * 4096MB: 8192k
  3649. * 8192MB: 11584k
  3650. * 16384MB: 16384k
  3651. */
  3652. static int __init init_per_zone_pages_min(void)
  3653. {
  3654. unsigned long lowmem_kbytes;
  3655. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3656. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3657. if (min_free_kbytes < 128)
  3658. min_free_kbytes = 128;
  3659. if (min_free_kbytes > 65536)
  3660. min_free_kbytes = 65536;
  3661. setup_per_zone_pages_min();
  3662. setup_per_zone_lowmem_reserve();
  3663. return 0;
  3664. }
  3665. module_init(init_per_zone_pages_min)
  3666. /*
  3667. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3668. * that we can call two helper functions whenever min_free_kbytes
  3669. * changes.
  3670. */
  3671. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3672. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3673. {
  3674. proc_dointvec(table, write, file, buffer, length, ppos);
  3675. if (write)
  3676. setup_per_zone_pages_min();
  3677. return 0;
  3678. }
  3679. #ifdef CONFIG_NUMA
  3680. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3681. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3682. {
  3683. struct zone *zone;
  3684. int rc;
  3685. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3686. if (rc)
  3687. return rc;
  3688. for_each_zone(zone)
  3689. zone->min_unmapped_pages = (zone->present_pages *
  3690. sysctl_min_unmapped_ratio) / 100;
  3691. return 0;
  3692. }
  3693. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3694. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3695. {
  3696. struct zone *zone;
  3697. int rc;
  3698. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3699. if (rc)
  3700. return rc;
  3701. for_each_zone(zone)
  3702. zone->min_slab_pages = (zone->present_pages *
  3703. sysctl_min_slab_ratio) / 100;
  3704. return 0;
  3705. }
  3706. #endif
  3707. /*
  3708. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3709. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3710. * whenever sysctl_lowmem_reserve_ratio changes.
  3711. *
  3712. * The reserve ratio obviously has absolutely no relation with the
  3713. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3714. * if in function of the boot time zone sizes.
  3715. */
  3716. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3717. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3718. {
  3719. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3720. setup_per_zone_lowmem_reserve();
  3721. return 0;
  3722. }
  3723. /*
  3724. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3725. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3726. * can have before it gets flushed back to buddy allocator.
  3727. */
  3728. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3729. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3730. {
  3731. struct zone *zone;
  3732. unsigned int cpu;
  3733. int ret;
  3734. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3735. if (!write || (ret == -EINVAL))
  3736. return ret;
  3737. for_each_zone(zone) {
  3738. for_each_online_cpu(cpu) {
  3739. unsigned long high;
  3740. high = zone->present_pages / percpu_pagelist_fraction;
  3741. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3742. }
  3743. }
  3744. return 0;
  3745. }
  3746. int hashdist = HASHDIST_DEFAULT;
  3747. #ifdef CONFIG_NUMA
  3748. static int __init set_hashdist(char *str)
  3749. {
  3750. if (!str)
  3751. return 0;
  3752. hashdist = simple_strtoul(str, &str, 0);
  3753. return 1;
  3754. }
  3755. __setup("hashdist=", set_hashdist);
  3756. #endif
  3757. /*
  3758. * allocate a large system hash table from bootmem
  3759. * - it is assumed that the hash table must contain an exact power-of-2
  3760. * quantity of entries
  3761. * - limit is the number of hash buckets, not the total allocation size
  3762. */
  3763. void *__init alloc_large_system_hash(const char *tablename,
  3764. unsigned long bucketsize,
  3765. unsigned long numentries,
  3766. int scale,
  3767. int flags,
  3768. unsigned int *_hash_shift,
  3769. unsigned int *_hash_mask,
  3770. unsigned long limit)
  3771. {
  3772. unsigned long long max = limit;
  3773. unsigned long log2qty, size;
  3774. void *table = NULL;
  3775. /* allow the kernel cmdline to have a say */
  3776. if (!numentries) {
  3777. /* round applicable memory size up to nearest megabyte */
  3778. numentries = nr_kernel_pages;
  3779. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3780. numentries >>= 20 - PAGE_SHIFT;
  3781. numentries <<= 20 - PAGE_SHIFT;
  3782. /* limit to 1 bucket per 2^scale bytes of low memory */
  3783. if (scale > PAGE_SHIFT)
  3784. numentries >>= (scale - PAGE_SHIFT);
  3785. else
  3786. numentries <<= (PAGE_SHIFT - scale);
  3787. /* Make sure we've got at least a 0-order allocation.. */
  3788. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3789. numentries = PAGE_SIZE / bucketsize;
  3790. }
  3791. numentries = roundup_pow_of_two(numentries);
  3792. /* limit allocation size to 1/16 total memory by default */
  3793. if (max == 0) {
  3794. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3795. do_div(max, bucketsize);
  3796. }
  3797. if (numentries > max)
  3798. numentries = max;
  3799. log2qty = ilog2(numentries);
  3800. do {
  3801. size = bucketsize << log2qty;
  3802. if (flags & HASH_EARLY)
  3803. table = alloc_bootmem(size);
  3804. else if (hashdist)
  3805. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3806. else {
  3807. unsigned long order = get_order(size);
  3808. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3809. /*
  3810. * If bucketsize is not a power-of-two, we may free
  3811. * some pages at the end of hash table.
  3812. */
  3813. if (table) {
  3814. unsigned long alloc_end = (unsigned long)table +
  3815. (PAGE_SIZE << order);
  3816. unsigned long used = (unsigned long)table +
  3817. PAGE_ALIGN(size);
  3818. split_page(virt_to_page(table), order);
  3819. while (used < alloc_end) {
  3820. free_page(used);
  3821. used += PAGE_SIZE;
  3822. }
  3823. }
  3824. }
  3825. } while (!table && size > PAGE_SIZE && --log2qty);
  3826. if (!table)
  3827. panic("Failed to allocate %s hash table\n", tablename);
  3828. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3829. tablename,
  3830. (1U << log2qty),
  3831. ilog2(size) - PAGE_SHIFT,
  3832. size);
  3833. if (_hash_shift)
  3834. *_hash_shift = log2qty;
  3835. if (_hash_mask)
  3836. *_hash_mask = (1 << log2qty) - 1;
  3837. return table;
  3838. }
  3839. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3840. struct page *pfn_to_page(unsigned long pfn)
  3841. {
  3842. return __pfn_to_page(pfn);
  3843. }
  3844. unsigned long page_to_pfn(struct page *page)
  3845. {
  3846. return __page_to_pfn(page);
  3847. }
  3848. EXPORT_SYMBOL(pfn_to_page);
  3849. EXPORT_SYMBOL(page_to_pfn);
  3850. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3851. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3852. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3853. unsigned long pfn)
  3854. {
  3855. #ifdef CONFIG_SPARSEMEM
  3856. return __pfn_to_section(pfn)->pageblock_flags;
  3857. #else
  3858. return zone->pageblock_flags;
  3859. #endif /* CONFIG_SPARSEMEM */
  3860. }
  3861. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3862. {
  3863. #ifdef CONFIG_SPARSEMEM
  3864. pfn &= (PAGES_PER_SECTION-1);
  3865. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3866. #else
  3867. pfn = pfn - zone->zone_start_pfn;
  3868. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3869. #endif /* CONFIG_SPARSEMEM */
  3870. }
  3871. /**
  3872. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3873. * @page: The page within the block of interest
  3874. * @start_bitidx: The first bit of interest to retrieve
  3875. * @end_bitidx: The last bit of interest
  3876. * returns pageblock_bits flags
  3877. */
  3878. unsigned long get_pageblock_flags_group(struct page *page,
  3879. int start_bitidx, int end_bitidx)
  3880. {
  3881. struct zone *zone;
  3882. unsigned long *bitmap;
  3883. unsigned long pfn, bitidx;
  3884. unsigned long flags = 0;
  3885. unsigned long value = 1;
  3886. zone = page_zone(page);
  3887. pfn = page_to_pfn(page);
  3888. bitmap = get_pageblock_bitmap(zone, pfn);
  3889. bitidx = pfn_to_bitidx(zone, pfn);
  3890. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3891. if (test_bit(bitidx + start_bitidx, bitmap))
  3892. flags |= value;
  3893. return flags;
  3894. }
  3895. /**
  3896. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3897. * @page: The page within the block of interest
  3898. * @start_bitidx: The first bit of interest
  3899. * @end_bitidx: The last bit of interest
  3900. * @flags: The flags to set
  3901. */
  3902. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3903. int start_bitidx, int end_bitidx)
  3904. {
  3905. struct zone *zone;
  3906. unsigned long *bitmap;
  3907. unsigned long pfn, bitidx;
  3908. unsigned long value = 1;
  3909. zone = page_zone(page);
  3910. pfn = page_to_pfn(page);
  3911. bitmap = get_pageblock_bitmap(zone, pfn);
  3912. bitidx = pfn_to_bitidx(zone, pfn);
  3913. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3914. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3915. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3916. if (flags & value)
  3917. __set_bit(bitidx + start_bitidx, bitmap);
  3918. else
  3919. __clear_bit(bitidx + start_bitidx, bitmap);
  3920. }
  3921. /*
  3922. * This is designed as sub function...plz see page_isolation.c also.
  3923. * set/clear page block's type to be ISOLATE.
  3924. * page allocater never alloc memory from ISOLATE block.
  3925. */
  3926. int set_migratetype_isolate(struct page *page)
  3927. {
  3928. struct zone *zone;
  3929. unsigned long flags;
  3930. int ret = -EBUSY;
  3931. zone = page_zone(page);
  3932. spin_lock_irqsave(&zone->lock, flags);
  3933. /*
  3934. * In future, more migrate types will be able to be isolation target.
  3935. */
  3936. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3937. goto out;
  3938. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3939. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3940. ret = 0;
  3941. out:
  3942. spin_unlock_irqrestore(&zone->lock, flags);
  3943. if (!ret)
  3944. drain_all_pages();
  3945. return ret;
  3946. }
  3947. void unset_migratetype_isolate(struct page *page)
  3948. {
  3949. struct zone *zone;
  3950. unsigned long flags;
  3951. zone = page_zone(page);
  3952. spin_lock_irqsave(&zone->lock, flags);
  3953. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3954. goto out;
  3955. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3956. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3957. out:
  3958. spin_unlock_irqrestore(&zone->lock, flags);
  3959. }
  3960. #ifdef CONFIG_MEMORY_HOTREMOVE
  3961. /*
  3962. * All pages in the range must be isolated before calling this.
  3963. */
  3964. void
  3965. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3966. {
  3967. struct page *page;
  3968. struct zone *zone;
  3969. int order, i;
  3970. unsigned long pfn;
  3971. unsigned long flags;
  3972. /* find the first valid pfn */
  3973. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3974. if (pfn_valid(pfn))
  3975. break;
  3976. if (pfn == end_pfn)
  3977. return;
  3978. zone = page_zone(pfn_to_page(pfn));
  3979. spin_lock_irqsave(&zone->lock, flags);
  3980. pfn = start_pfn;
  3981. while (pfn < end_pfn) {
  3982. if (!pfn_valid(pfn)) {
  3983. pfn++;
  3984. continue;
  3985. }
  3986. page = pfn_to_page(pfn);
  3987. BUG_ON(page_count(page));
  3988. BUG_ON(!PageBuddy(page));
  3989. order = page_order(page);
  3990. #ifdef CONFIG_DEBUG_VM
  3991. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3992. pfn, 1 << order, end_pfn);
  3993. #endif
  3994. list_del(&page->lru);
  3995. rmv_page_order(page);
  3996. zone->free_area[order].nr_free--;
  3997. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3998. - (1UL << order));
  3999. for (i = 0; i < (1 << order); i++)
  4000. SetPageReserved((page+i));
  4001. pfn += (1 << order);
  4002. }
  4003. spin_unlock_irqrestore(&zone->lock, flags);
  4004. }
  4005. #endif