umem.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
  37. #include <linux/config.h>
  38. #include <linux/sched.h>
  39. #include <linux/fs.h>
  40. #include <linux/bio.h>
  41. #include <linux/kernel.h>
  42. #include <linux/mm.h>
  43. #include <linux/mman.h>
  44. #include <linux/ioctl.h>
  45. #include <linux/module.h>
  46. #include <linux/init.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/smp_lock.h>
  49. #include <linux/timer.h>
  50. #include <linux/pci.h>
  51. #include <linux/slab.h>
  52. #include <linux/dma-mapping.h>
  53. #include <linux/fcntl.h> /* O_ACCMODE */
  54. #include <linux/hdreg.h> /* HDIO_GETGEO */
  55. #include <linux/umem.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/io.h>
  58. #define MM_MAXCARDS 4
  59. #define MM_RAHEAD 2 /* two sectors */
  60. #define MM_BLKSIZE 1024 /* 1k blocks */
  61. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  62. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  63. /*
  64. * Version Information
  65. */
  66. #define DRIVER_VERSION "v2.3"
  67. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  68. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  69. static int debug;
  70. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  71. #define HW_TRACE(x)
  72. #define DEBUG_LED_ON_TRANSFER 0x01
  73. #define DEBUG_BATTERY_POLLING 0x02
  74. module_param(debug, int, 0644);
  75. MODULE_PARM_DESC(debug, "Debug bitmask");
  76. static int pci_read_cmd = 0x0C; /* Read Multiple */
  77. module_param(pci_read_cmd, int, 0);
  78. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  79. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  80. module_param(pci_write_cmd, int, 0);
  81. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  82. static int pci_cmds;
  83. static int major_nr;
  84. #include <linux/blkdev.h>
  85. #include <linux/blkpg.h>
  86. struct cardinfo {
  87. int card_number;
  88. struct pci_dev *dev;
  89. int irq;
  90. unsigned long csr_base;
  91. unsigned char __iomem *csr_remap;
  92. unsigned long csr_len;
  93. #ifdef CONFIG_MM_MAP_MEMORY
  94. unsigned long mem_base;
  95. unsigned char __iomem *mem_remap;
  96. unsigned long mem_len;
  97. #endif
  98. unsigned int win_size; /* PCI window size */
  99. unsigned int mm_size; /* size in kbytes */
  100. unsigned int init_size; /* initial segment, in sectors,
  101. * that we know to
  102. * have been written
  103. */
  104. struct bio *bio, *currentbio, **biotail;
  105. request_queue_t *queue;
  106. struct mm_page {
  107. dma_addr_t page_dma;
  108. struct mm_dma_desc *desc;
  109. int cnt, headcnt;
  110. struct bio *bio, **biotail;
  111. } mm_pages[2];
  112. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  113. int Active, Ready;
  114. struct tasklet_struct tasklet;
  115. unsigned int dma_status;
  116. struct {
  117. int good;
  118. int warned;
  119. unsigned long last_change;
  120. } battery[2];
  121. spinlock_t lock;
  122. int check_batteries;
  123. int flags;
  124. };
  125. static struct cardinfo cards[MM_MAXCARDS];
  126. static struct block_device_operations mm_fops;
  127. static struct timer_list battery_timer;
  128. static int num_cards = 0;
  129. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  130. static void check_batteries(struct cardinfo *card);
  131. /*
  132. -----------------------------------------------------------------------------------
  133. -- get_userbit
  134. -----------------------------------------------------------------------------------
  135. */
  136. static int get_userbit(struct cardinfo *card, int bit)
  137. {
  138. unsigned char led;
  139. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  140. return led & bit;
  141. }
  142. /*
  143. -----------------------------------------------------------------------------------
  144. -- set_userbit
  145. -----------------------------------------------------------------------------------
  146. */
  147. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  148. {
  149. unsigned char led;
  150. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  151. if (state)
  152. led |= bit;
  153. else
  154. led &= ~bit;
  155. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  156. return 0;
  157. }
  158. /*
  159. -----------------------------------------------------------------------------------
  160. -- set_led
  161. -----------------------------------------------------------------------------------
  162. */
  163. /*
  164. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  165. */
  166. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  167. {
  168. unsigned char led;
  169. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  170. if (state == LED_FLIP)
  171. led ^= (1<<shift);
  172. else {
  173. led &= ~(0x03 << shift);
  174. led |= (state << shift);
  175. }
  176. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  177. }
  178. #ifdef MM_DIAG
  179. /*
  180. -----------------------------------------------------------------------------------
  181. -- dump_regs
  182. -----------------------------------------------------------------------------------
  183. */
  184. static void dump_regs(struct cardinfo *card)
  185. {
  186. unsigned char *p;
  187. int i, i1;
  188. p = card->csr_remap;
  189. for (i = 0; i < 8; i++) {
  190. printk(KERN_DEBUG "%p ", p);
  191. for (i1 = 0; i1 < 16; i1++)
  192. printk("%02x ", *p++);
  193. printk("\n");
  194. }
  195. }
  196. #endif
  197. /*
  198. -----------------------------------------------------------------------------------
  199. -- dump_dmastat
  200. -----------------------------------------------------------------------------------
  201. */
  202. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  203. {
  204. printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
  205. if (dmastat & DMASCR_ANY_ERR)
  206. printk("ANY_ERR ");
  207. if (dmastat & DMASCR_MBE_ERR)
  208. printk("MBE_ERR ");
  209. if (dmastat & DMASCR_PARITY_ERR_REP)
  210. printk("PARITY_ERR_REP ");
  211. if (dmastat & DMASCR_PARITY_ERR_DET)
  212. printk("PARITY_ERR_DET ");
  213. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  214. printk("SYSTEM_ERR_SIG ");
  215. if (dmastat & DMASCR_TARGET_ABT)
  216. printk("TARGET_ABT ");
  217. if (dmastat & DMASCR_MASTER_ABT)
  218. printk("MASTER_ABT ");
  219. if (dmastat & DMASCR_CHAIN_COMPLETE)
  220. printk("CHAIN_COMPLETE ");
  221. if (dmastat & DMASCR_DMA_COMPLETE)
  222. printk("DMA_COMPLETE ");
  223. printk("\n");
  224. }
  225. /*
  226. * Theory of request handling
  227. *
  228. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  229. * We have two pages of mm_dma_desc, holding about 64 descriptors
  230. * each. These are allocated at init time.
  231. * One page is "Ready" and is either full, or can have request added.
  232. * The other page might be "Active", which DMA is happening on it.
  233. *
  234. * Whenever IO on the active page completes, the Ready page is activated
  235. * and the ex-Active page is clean out and made Ready.
  236. * Otherwise the Ready page is only activated when it becomes full, or
  237. * when mm_unplug_device is called via the unplug_io_fn.
  238. *
  239. * If a request arrives while both pages a full, it is queued, and b_rdev is
  240. * overloaded to record whether it was a read or a write.
  241. *
  242. * The interrupt handler only polls the device to clear the interrupt.
  243. * The processing of the result is done in a tasklet.
  244. */
  245. static void mm_start_io(struct cardinfo *card)
  246. {
  247. /* we have the lock, we know there is
  248. * no IO active, and we know that card->Active
  249. * is set
  250. */
  251. struct mm_dma_desc *desc;
  252. struct mm_page *page;
  253. int offset;
  254. /* make the last descriptor end the chain */
  255. page = &card->mm_pages[card->Active];
  256. pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
  257. desc = &page->desc[page->cnt-1];
  258. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  259. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  260. desc->sem_control_bits = desc->control_bits;
  261. if (debug & DEBUG_LED_ON_TRANSFER)
  262. set_led(card, LED_REMOVE, LED_ON);
  263. desc = &page->desc[page->headcnt];
  264. writel(0, card->csr_remap + DMA_PCI_ADDR);
  265. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  266. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  267. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  268. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  269. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  270. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  271. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  272. offset = ((char*)desc) - ((char*)page->desc);
  273. writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
  274. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  275. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  276. * and on some ports will do nothing ! */
  277. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  278. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  279. /* Go, go, go */
  280. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  281. card->csr_remap + DMA_STATUS_CTRL);
  282. }
  283. static int add_bio(struct cardinfo *card);
  284. static void activate(struct cardinfo *card)
  285. {
  286. /* if No page is Active, and Ready is
  287. * not empty, then switch Ready page
  288. * to active and start IO.
  289. * Then add any bh's that are available to Ready
  290. */
  291. do {
  292. while (add_bio(card))
  293. ;
  294. if (card->Active == -1 &&
  295. card->mm_pages[card->Ready].cnt > 0) {
  296. card->Active = card->Ready;
  297. card->Ready = 1-card->Ready;
  298. mm_start_io(card);
  299. }
  300. } while (card->Active == -1 && add_bio(card));
  301. }
  302. static inline void reset_page(struct mm_page *page)
  303. {
  304. page->cnt = 0;
  305. page->headcnt = 0;
  306. page->bio = NULL;
  307. page->biotail = & page->bio;
  308. }
  309. static void mm_unplug_device(request_queue_t *q)
  310. {
  311. struct cardinfo *card = q->queuedata;
  312. unsigned long flags;
  313. spin_lock_irqsave(&card->lock, flags);
  314. if (blk_remove_plug(q))
  315. activate(card);
  316. spin_unlock_irqrestore(&card->lock, flags);
  317. }
  318. /*
  319. * If there is room on Ready page, take
  320. * one bh off list and add it.
  321. * return 1 if there was room, else 0.
  322. */
  323. static int add_bio(struct cardinfo *card)
  324. {
  325. struct mm_page *p;
  326. struct mm_dma_desc *desc;
  327. dma_addr_t dma_handle;
  328. int offset;
  329. struct bio *bio;
  330. int rw;
  331. int len;
  332. bio = card->currentbio;
  333. if (!bio && card->bio) {
  334. card->currentbio = card->bio;
  335. card->bio = card->bio->bi_next;
  336. if (card->bio == NULL)
  337. card->biotail = &card->bio;
  338. card->currentbio->bi_next = NULL;
  339. return 1;
  340. }
  341. if (!bio)
  342. return 0;
  343. rw = bio_rw(bio);
  344. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  345. return 0;
  346. len = bio_iovec(bio)->bv_len;
  347. dma_handle = pci_map_page(card->dev,
  348. bio_page(bio),
  349. bio_offset(bio),
  350. len,
  351. (rw==READ) ?
  352. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  353. p = &card->mm_pages[card->Ready];
  354. desc = &p->desc[p->cnt];
  355. p->cnt++;
  356. if ((p->biotail) != &bio->bi_next) {
  357. *(p->biotail) = bio;
  358. p->biotail = &(bio->bi_next);
  359. bio->bi_next = NULL;
  360. }
  361. desc->data_dma_handle = dma_handle;
  362. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  363. desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
  364. desc->transfer_size = cpu_to_le32(len);
  365. offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
  366. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  367. desc->zero1 = desc->zero2 = 0;
  368. offset = ( ((char*)(desc+1)) - ((char*)p->desc));
  369. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  370. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  371. DMASCR_PARITY_INT_EN|
  372. DMASCR_CHAIN_EN |
  373. DMASCR_SEM_EN |
  374. pci_cmds);
  375. if (rw == WRITE)
  376. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  377. desc->sem_control_bits = desc->control_bits;
  378. bio->bi_sector += (len>>9);
  379. bio->bi_size -= len;
  380. bio->bi_idx++;
  381. if (bio->bi_idx >= bio->bi_vcnt)
  382. card->currentbio = NULL;
  383. return 1;
  384. }
  385. static void process_page(unsigned long data)
  386. {
  387. /* check if any of the requests in the page are DMA_COMPLETE,
  388. * and deal with them appropriately.
  389. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  390. * dma must have hit an error on that descriptor, so use dma_status instead
  391. * and assume that all following descriptors must be re-tried.
  392. */
  393. struct mm_page *page;
  394. struct bio *return_bio=NULL;
  395. struct cardinfo *card = (struct cardinfo *)data;
  396. unsigned int dma_status = card->dma_status;
  397. spin_lock_bh(&card->lock);
  398. if (card->Active < 0)
  399. goto out_unlock;
  400. page = &card->mm_pages[card->Active];
  401. while (page->headcnt < page->cnt) {
  402. struct bio *bio = page->bio;
  403. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  404. int control = le32_to_cpu(desc->sem_control_bits);
  405. int last=0;
  406. int idx;
  407. if (!(control & DMASCR_DMA_COMPLETE)) {
  408. control = dma_status;
  409. last=1;
  410. }
  411. page->headcnt++;
  412. idx = bio->bi_phys_segments;
  413. bio->bi_phys_segments++;
  414. if (bio->bi_phys_segments >= bio->bi_vcnt)
  415. page->bio = bio->bi_next;
  416. pci_unmap_page(card->dev, desc->data_dma_handle,
  417. bio_iovec_idx(bio,idx)->bv_len,
  418. (control& DMASCR_TRANSFER_READ) ?
  419. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  420. if (control & DMASCR_HARD_ERROR) {
  421. /* error */
  422. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  423. printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
  424. card->card_number,
  425. le32_to_cpu(desc->local_addr)>>9,
  426. le32_to_cpu(desc->transfer_size));
  427. dump_dmastat(card, control);
  428. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  429. le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
  430. card->init_size += le32_to_cpu(desc->transfer_size)>>9;
  431. if (card->init_size>>1 >= card->mm_size) {
  432. printk(KERN_INFO "MM%d: memory now initialised\n",
  433. card->card_number);
  434. set_userbit(card, MEMORY_INITIALIZED, 1);
  435. }
  436. }
  437. if (bio != page->bio) {
  438. bio->bi_next = return_bio;
  439. return_bio = bio;
  440. }
  441. if (last) break;
  442. }
  443. if (debug & DEBUG_LED_ON_TRANSFER)
  444. set_led(card, LED_REMOVE, LED_OFF);
  445. if (card->check_batteries) {
  446. card->check_batteries = 0;
  447. check_batteries(card);
  448. }
  449. if (page->headcnt >= page->cnt) {
  450. reset_page(page);
  451. card->Active = -1;
  452. activate(card);
  453. } else {
  454. /* haven't finished with this one yet */
  455. pr_debug("do some more\n");
  456. mm_start_io(card);
  457. }
  458. out_unlock:
  459. spin_unlock_bh(&card->lock);
  460. while(return_bio) {
  461. struct bio *bio = return_bio;
  462. return_bio = bio->bi_next;
  463. bio->bi_next = NULL;
  464. bio_endio(bio, bio->bi_size, 0);
  465. }
  466. }
  467. /*
  468. -----------------------------------------------------------------------------------
  469. -- mm_make_request
  470. -----------------------------------------------------------------------------------
  471. */
  472. static int mm_make_request(request_queue_t *q, struct bio *bio)
  473. {
  474. struct cardinfo *card = q->queuedata;
  475. pr_debug("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
  476. bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
  477. spin_lock_irq(&card->lock);
  478. *card->biotail = bio;
  479. bio->bi_next = NULL;
  480. card->biotail = &bio->bi_next;
  481. blk_plug_device(q);
  482. spin_unlock_irq(&card->lock);
  483. return 0;
  484. }
  485. /*
  486. -----------------------------------------------------------------------------------
  487. -- mm_interrupt
  488. -----------------------------------------------------------------------------------
  489. */
  490. static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
  491. {
  492. struct cardinfo *card = (struct cardinfo *) __card;
  493. unsigned int dma_status;
  494. unsigned short cfg_status;
  495. HW_TRACE(0x30);
  496. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  497. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  498. /* interrupt wasn't for me ... */
  499. return IRQ_NONE;
  500. }
  501. /* clear COMPLETION interrupts */
  502. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  503. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  504. card->csr_remap+ DMA_STATUS_CTRL);
  505. else
  506. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  507. card->csr_remap+ DMA_STATUS_CTRL + 2);
  508. /* log errors and clear interrupt status */
  509. if (dma_status & DMASCR_ANY_ERR) {
  510. unsigned int data_log1, data_log2;
  511. unsigned int addr_log1, addr_log2;
  512. unsigned char stat, count, syndrome, check;
  513. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  514. data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
  515. data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
  516. addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
  517. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  518. count = readb(card->csr_remap + ERROR_COUNT);
  519. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  520. check = readb(card->csr_remap + ERROR_CHECK);
  521. dump_dmastat(card, dma_status);
  522. if (stat & 0x01)
  523. printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
  524. card->card_number, count);
  525. if (stat & 0x02)
  526. printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
  527. card->card_number);
  528. printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  529. card->card_number, addr_log2, addr_log1, data_log2, data_log1);
  530. printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  531. card->card_number, check, syndrome);
  532. writeb(0, card->csr_remap + ERROR_COUNT);
  533. }
  534. if (dma_status & DMASCR_PARITY_ERR_REP) {
  535. printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
  536. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  537. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  538. }
  539. if (dma_status & DMASCR_PARITY_ERR_DET) {
  540. printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
  541. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  542. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  543. }
  544. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  545. printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
  546. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  547. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  548. }
  549. if (dma_status & DMASCR_TARGET_ABT) {
  550. printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
  551. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  552. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  553. }
  554. if (dma_status & DMASCR_MASTER_ABT) {
  555. printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
  556. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  557. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  558. }
  559. /* and process the DMA descriptors */
  560. card->dma_status = dma_status;
  561. tasklet_schedule(&card->tasklet);
  562. HW_TRACE(0x36);
  563. return IRQ_HANDLED;
  564. }
  565. /*
  566. -----------------------------------------------------------------------------------
  567. -- set_fault_to_battery_status
  568. -----------------------------------------------------------------------------------
  569. */
  570. /*
  571. * If both batteries are good, no LED
  572. * If either battery has been warned, solid LED
  573. * If both batteries are bad, flash the LED quickly
  574. * If either battery is bad, flash the LED semi quickly
  575. */
  576. static void set_fault_to_battery_status(struct cardinfo *card)
  577. {
  578. if (card->battery[0].good && card->battery[1].good)
  579. set_led(card, LED_FAULT, LED_OFF);
  580. else if (card->battery[0].warned || card->battery[1].warned)
  581. set_led(card, LED_FAULT, LED_ON);
  582. else if (!card->battery[0].good && !card->battery[1].good)
  583. set_led(card, LED_FAULT, LED_FLASH_7_0);
  584. else
  585. set_led(card, LED_FAULT, LED_FLASH_3_5);
  586. }
  587. static void init_battery_timer(void);
  588. /*
  589. -----------------------------------------------------------------------------------
  590. -- check_battery
  591. -----------------------------------------------------------------------------------
  592. */
  593. static int check_battery(struct cardinfo *card, int battery, int status)
  594. {
  595. if (status != card->battery[battery].good) {
  596. card->battery[battery].good = !card->battery[battery].good;
  597. card->battery[battery].last_change = jiffies;
  598. if (card->battery[battery].good) {
  599. printk(KERN_ERR "MM%d: Battery %d now good\n",
  600. card->card_number, battery + 1);
  601. card->battery[battery].warned = 0;
  602. } else
  603. printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
  604. card->card_number, battery + 1);
  605. return 1;
  606. } else if (!card->battery[battery].good &&
  607. !card->battery[battery].warned &&
  608. time_after_eq(jiffies, card->battery[battery].last_change +
  609. (HZ * 60 * 60 * 5))) {
  610. printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
  611. card->card_number, battery + 1);
  612. card->battery[battery].warned = 1;
  613. return 1;
  614. }
  615. return 0;
  616. }
  617. /*
  618. -----------------------------------------------------------------------------------
  619. -- check_batteries
  620. -----------------------------------------------------------------------------------
  621. */
  622. static void check_batteries(struct cardinfo *card)
  623. {
  624. /* NOTE: this must *never* be called while the card
  625. * is doing (bus-to-card) DMA, or you will need the
  626. * reset switch
  627. */
  628. unsigned char status;
  629. int ret1, ret2;
  630. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  631. if (debug & DEBUG_BATTERY_POLLING)
  632. printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
  633. card->card_number,
  634. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  635. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  636. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  637. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  638. if (ret1 || ret2)
  639. set_fault_to_battery_status(card);
  640. }
  641. static void check_all_batteries(unsigned long ptr)
  642. {
  643. int i;
  644. for (i = 0; i < num_cards; i++)
  645. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  646. struct cardinfo *card = &cards[i];
  647. spin_lock_bh(&card->lock);
  648. if (card->Active >= 0)
  649. card->check_batteries = 1;
  650. else
  651. check_batteries(card);
  652. spin_unlock_bh(&card->lock);
  653. }
  654. init_battery_timer();
  655. }
  656. /*
  657. -----------------------------------------------------------------------------------
  658. -- init_battery_timer
  659. -----------------------------------------------------------------------------------
  660. */
  661. static void init_battery_timer(void)
  662. {
  663. init_timer(&battery_timer);
  664. battery_timer.function = check_all_batteries;
  665. battery_timer.expires = jiffies + (HZ * 60);
  666. add_timer(&battery_timer);
  667. }
  668. /*
  669. -----------------------------------------------------------------------------------
  670. -- del_battery_timer
  671. -----------------------------------------------------------------------------------
  672. */
  673. static void del_battery_timer(void)
  674. {
  675. del_timer(&battery_timer);
  676. }
  677. /*
  678. -----------------------------------------------------------------------------------
  679. -- mm_revalidate
  680. -----------------------------------------------------------------------------------
  681. */
  682. /*
  683. * Note no locks taken out here. In a worst case scenario, we could drop
  684. * a chunk of system memory. But that should never happen, since validation
  685. * happens at open or mount time, when locks are held.
  686. *
  687. * That's crap, since doing that while some partitions are opened
  688. * or mounted will give you really nasty results.
  689. */
  690. static int mm_revalidate(struct gendisk *disk)
  691. {
  692. struct cardinfo *card = disk->private_data;
  693. set_capacity(disk, card->mm_size << 1);
  694. return 0;
  695. }
  696. static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  697. {
  698. struct cardinfo *card = bdev->bd_disk->private_data;
  699. int size = card->mm_size * (1024 / MM_HARDSECT);
  700. /*
  701. * get geometry: we have to fake one... trim the size to a
  702. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  703. * whatever cylinders.
  704. */
  705. geo->heads = 64;
  706. geo->sectors = 32;
  707. geo->cylinders = size / (geo->heads * geo->sectors);
  708. return 0;
  709. }
  710. /*
  711. -----------------------------------------------------------------------------------
  712. -- mm_check_change
  713. -----------------------------------------------------------------------------------
  714. Future support for removable devices
  715. */
  716. static int mm_check_change(struct gendisk *disk)
  717. {
  718. /* struct cardinfo *dev = disk->private_data; */
  719. return 0;
  720. }
  721. /*
  722. -----------------------------------------------------------------------------------
  723. -- mm_fops
  724. -----------------------------------------------------------------------------------
  725. */
  726. static struct block_device_operations mm_fops = {
  727. .owner = THIS_MODULE,
  728. .getgeo = mm_getgeo,
  729. .revalidate_disk= mm_revalidate,
  730. .media_changed = mm_check_change,
  731. };
  732. /*
  733. -----------------------------------------------------------------------------------
  734. -- mm_pci_probe
  735. -----------------------------------------------------------------------------------
  736. */
  737. static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
  738. {
  739. int ret = -ENODEV;
  740. struct cardinfo *card = &cards[num_cards];
  741. unsigned char mem_present;
  742. unsigned char batt_status;
  743. unsigned int saved_bar, data;
  744. int magic_number;
  745. if (pci_enable_device(dev) < 0)
  746. return -ENODEV;
  747. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  748. pci_set_master(dev);
  749. card->dev = dev;
  750. card->card_number = num_cards;
  751. card->csr_base = pci_resource_start(dev, 0);
  752. card->csr_len = pci_resource_len(dev, 0);
  753. #ifdef CONFIG_MM_MAP_MEMORY
  754. card->mem_base = pci_resource_start(dev, 1);
  755. card->mem_len = pci_resource_len(dev, 1);
  756. #endif
  757. printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
  758. card->card_number, dev->bus->number, dev->devfn);
  759. if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
  760. pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  761. printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
  762. return -ENOMEM;
  763. }
  764. if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
  765. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  766. ret = -ENOMEM;
  767. goto failed_req_csr;
  768. }
  769. card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
  770. if (!card->csr_remap) {
  771. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  772. ret = -ENOMEM;
  773. goto failed_remap_csr;
  774. }
  775. printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
  776. card->csr_base, card->csr_remap, card->csr_len);
  777. #ifdef CONFIG_MM_MAP_MEMORY
  778. if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
  779. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  780. ret = -ENOMEM;
  781. goto failed_req_mem;
  782. }
  783. if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
  784. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  785. ret = -ENOMEM;
  786. goto failed_remap_mem;
  787. }
  788. printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
  789. card->mem_base, card->mem_remap, card->mem_len);
  790. #else
  791. printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
  792. card->card_number);
  793. #endif
  794. switch(card->dev->device) {
  795. case 0x5415:
  796. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  797. magic_number = 0x59;
  798. break;
  799. case 0x5425:
  800. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  801. magic_number = 0x5C;
  802. break;
  803. case 0x6155:
  804. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  805. magic_number = 0x99;
  806. break;
  807. default:
  808. magic_number = 0x100;
  809. break;
  810. }
  811. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  812. printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
  813. ret = -ENOMEM;
  814. goto failed_magic;
  815. }
  816. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  817. PAGE_SIZE*2,
  818. &card->mm_pages[0].page_dma);
  819. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  820. PAGE_SIZE*2,
  821. &card->mm_pages[1].page_dma);
  822. if (card->mm_pages[0].desc == NULL ||
  823. card->mm_pages[1].desc == NULL) {
  824. printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
  825. goto failed_alloc;
  826. }
  827. reset_page(&card->mm_pages[0]);
  828. reset_page(&card->mm_pages[1]);
  829. card->Ready = 0; /* page 0 is ready */
  830. card->Active = -1; /* no page is active */
  831. card->bio = NULL;
  832. card->biotail = &card->bio;
  833. card->queue = blk_alloc_queue(GFP_KERNEL);
  834. if (!card->queue)
  835. goto failed_alloc;
  836. blk_queue_make_request(card->queue, mm_make_request);
  837. card->queue->queuedata = card;
  838. card->queue->unplug_fn = mm_unplug_device;
  839. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  840. card->check_batteries = 0;
  841. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  842. switch (mem_present) {
  843. case MEM_128_MB:
  844. card->mm_size = 1024 * 128;
  845. break;
  846. case MEM_256_MB:
  847. card->mm_size = 1024 * 256;
  848. break;
  849. case MEM_512_MB:
  850. card->mm_size = 1024 * 512;
  851. break;
  852. case MEM_1_GB:
  853. card->mm_size = 1024 * 1024;
  854. break;
  855. case MEM_2_GB:
  856. card->mm_size = 1024 * 2048;
  857. break;
  858. default:
  859. card->mm_size = 0;
  860. break;
  861. }
  862. /* Clear the LED's we control */
  863. set_led(card, LED_REMOVE, LED_OFF);
  864. set_led(card, LED_FAULT, LED_OFF);
  865. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  866. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  867. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  868. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  869. if (card->flags & UM_FLAG_NO_BATT)
  870. printk(KERN_INFO "MM%d: Size %d KB\n",
  871. card->card_number, card->mm_size);
  872. else {
  873. printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  874. card->card_number, card->mm_size,
  875. (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
  876. card->battery[0].good ? "OK" : "FAILURE",
  877. (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
  878. card->battery[1].good ? "OK" : "FAILURE");
  879. set_fault_to_battery_status(card);
  880. }
  881. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  882. data = 0xffffffff;
  883. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  884. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  885. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  886. data &= 0xfffffff0;
  887. data = ~data;
  888. data += 1;
  889. card->win_size = data;
  890. if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
  891. printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
  892. ret = -ENODEV;
  893. goto failed_req_irq;
  894. }
  895. card->irq = dev->irq;
  896. printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
  897. card->win_size, card->irq);
  898. spin_lock_init(&card->lock);
  899. pci_set_drvdata(dev, card);
  900. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  901. pci_write_cmd = 0x07; /* then Memory Write command */
  902. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  903. unsigned short cfg_command;
  904. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  905. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  906. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  907. }
  908. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  909. num_cards++;
  910. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  911. printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
  912. card->init_size = 0;
  913. } else {
  914. printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
  915. card->init_size = card->mm_size;
  916. }
  917. /* Enable ECC */
  918. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  919. return 0;
  920. failed_req_irq:
  921. failed_alloc:
  922. if (card->mm_pages[0].desc)
  923. pci_free_consistent(card->dev, PAGE_SIZE*2,
  924. card->mm_pages[0].desc,
  925. card->mm_pages[0].page_dma);
  926. if (card->mm_pages[1].desc)
  927. pci_free_consistent(card->dev, PAGE_SIZE*2,
  928. card->mm_pages[1].desc,
  929. card->mm_pages[1].page_dma);
  930. failed_magic:
  931. #ifdef CONFIG_MM_MAP_MEMORY
  932. iounmap(card->mem_remap);
  933. failed_remap_mem:
  934. release_mem_region(card->mem_base, card->mem_len);
  935. failed_req_mem:
  936. #endif
  937. iounmap(card->csr_remap);
  938. failed_remap_csr:
  939. release_mem_region(card->csr_base, card->csr_len);
  940. failed_req_csr:
  941. return ret;
  942. }
  943. /*
  944. -----------------------------------------------------------------------------------
  945. -- mm_pci_remove
  946. -----------------------------------------------------------------------------------
  947. */
  948. static void mm_pci_remove(struct pci_dev *dev)
  949. {
  950. struct cardinfo *card = pci_get_drvdata(dev);
  951. tasklet_kill(&card->tasklet);
  952. iounmap(card->csr_remap);
  953. release_mem_region(card->csr_base, card->csr_len);
  954. #ifdef CONFIG_MM_MAP_MEMORY
  955. iounmap(card->mem_remap);
  956. release_mem_region(card->mem_base, card->mem_len);
  957. #endif
  958. free_irq(card->irq, card);
  959. if (card->mm_pages[0].desc)
  960. pci_free_consistent(card->dev, PAGE_SIZE*2,
  961. card->mm_pages[0].desc,
  962. card->mm_pages[0].page_dma);
  963. if (card->mm_pages[1].desc)
  964. pci_free_consistent(card->dev, PAGE_SIZE*2,
  965. card->mm_pages[1].desc,
  966. card->mm_pages[1].page_dma);
  967. blk_cleanup_queue(card->queue);
  968. }
  969. static const struct pci_device_id mm_pci_ids[] = { {
  970. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  971. .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
  972. }, {
  973. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  974. .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
  975. }, {
  976. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  977. .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
  978. }, {
  979. .vendor = 0x8086,
  980. .device = 0xB555,
  981. .subvendor= 0x1332,
  982. .subdevice= 0x5460,
  983. .class = 0x050000,
  984. .class_mask= 0,
  985. }, { /* end: all zeroes */ }
  986. };
  987. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  988. static struct pci_driver mm_pci_driver = {
  989. .name = "umem",
  990. .id_table = mm_pci_ids,
  991. .probe = mm_pci_probe,
  992. .remove = mm_pci_remove,
  993. };
  994. /*
  995. -----------------------------------------------------------------------------------
  996. -- mm_init
  997. -----------------------------------------------------------------------------------
  998. */
  999. static int __init mm_init(void)
  1000. {
  1001. int retval, i;
  1002. int err;
  1003. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  1004. retval = pci_register_driver(&mm_pci_driver);
  1005. if (retval)
  1006. return -ENOMEM;
  1007. err = major_nr = register_blkdev(0, "umem");
  1008. if (err < 0)
  1009. return -EIO;
  1010. for (i = 0; i < num_cards; i++) {
  1011. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  1012. if (!mm_gendisk[i])
  1013. goto out;
  1014. }
  1015. for (i = 0; i < num_cards; i++) {
  1016. struct gendisk *disk = mm_gendisk[i];
  1017. sprintf(disk->disk_name, "umem%c", 'a'+i);
  1018. sprintf(disk->devfs_name, "umem/card%d", i);
  1019. spin_lock_init(&cards[i].lock);
  1020. disk->major = major_nr;
  1021. disk->first_minor = i << MM_SHIFT;
  1022. disk->fops = &mm_fops;
  1023. disk->private_data = &cards[i];
  1024. disk->queue = cards[i].queue;
  1025. set_capacity(disk, cards[i].mm_size << 1);
  1026. add_disk(disk);
  1027. }
  1028. init_battery_timer();
  1029. printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  1030. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  1031. return 0;
  1032. out:
  1033. unregister_blkdev(major_nr, "umem");
  1034. while (i--)
  1035. put_disk(mm_gendisk[i]);
  1036. return -ENOMEM;
  1037. }
  1038. /*
  1039. -----------------------------------------------------------------------------------
  1040. -- mm_cleanup
  1041. -----------------------------------------------------------------------------------
  1042. */
  1043. static void __exit mm_cleanup(void)
  1044. {
  1045. int i;
  1046. del_battery_timer();
  1047. for (i=0; i < num_cards ; i++) {
  1048. del_gendisk(mm_gendisk[i]);
  1049. put_disk(mm_gendisk[i]);
  1050. }
  1051. pci_unregister_driver(&mm_pci_driver);
  1052. unregister_blkdev(major_nr, "umem");
  1053. }
  1054. module_init(mm_init);
  1055. module_exit(mm_cleanup);
  1056. MODULE_AUTHOR(DRIVER_AUTHOR);
  1057. MODULE_DESCRIPTION(DRIVER_DESC);
  1058. MODULE_LICENSE("GPL");