intel_display.c 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *match_clock,
  77. intel_clock_t *best_clock);
  78. static bool
  79. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *match_clock,
  81. intel_clock_t *best_clock);
  82. static bool
  83. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  84. int target, int refclk, intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. static bool
  87. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  88. int target, int refclk, intel_clock_t *match_clock,
  89. intel_clock_t *best_clock);
  90. static inline u32 /* units of 100MHz */
  91. intel_fdi_link_freq(struct drm_device *dev)
  92. {
  93. if (IS_GEN5(dev)) {
  94. struct drm_i915_private *dev_priv = dev->dev_private;
  95. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  96. } else
  97. return 27;
  98. }
  99. static const intel_limit_t intel_limits_i8xx_dvo = {
  100. .dot = { .min = 25000, .max = 350000 },
  101. .vco = { .min = 930000, .max = 1400000 },
  102. .n = { .min = 3, .max = 16 },
  103. .m = { .min = 96, .max = 140 },
  104. .m1 = { .min = 18, .max = 26 },
  105. .m2 = { .min = 6, .max = 16 },
  106. .p = { .min = 4, .max = 128 },
  107. .p1 = { .min = 2, .max = 33 },
  108. .p2 = { .dot_limit = 165000,
  109. .p2_slow = 4, .p2_fast = 2 },
  110. .find_pll = intel_find_best_PLL,
  111. };
  112. static const intel_limit_t intel_limits_i8xx_lvds = {
  113. .dot = { .min = 25000, .max = 350000 },
  114. .vco = { .min = 930000, .max = 1400000 },
  115. .n = { .min = 3, .max = 16 },
  116. .m = { .min = 96, .max = 140 },
  117. .m1 = { .min = 18, .max = 26 },
  118. .m2 = { .min = 6, .max = 16 },
  119. .p = { .min = 4, .max = 128 },
  120. .p1 = { .min = 1, .max = 6 },
  121. .p2 = { .dot_limit = 165000,
  122. .p2_slow = 14, .p2_fast = 7 },
  123. .find_pll = intel_find_best_PLL,
  124. };
  125. static const intel_limit_t intel_limits_i9xx_sdvo = {
  126. .dot = { .min = 20000, .max = 400000 },
  127. .vco = { .min = 1400000, .max = 2800000 },
  128. .n = { .min = 1, .max = 6 },
  129. .m = { .min = 70, .max = 120 },
  130. .m1 = { .min = 10, .max = 22 },
  131. .m2 = { .min = 5, .max = 9 },
  132. .p = { .min = 5, .max = 80 },
  133. .p1 = { .min = 1, .max = 8 },
  134. .p2 = { .dot_limit = 200000,
  135. .p2_slow = 10, .p2_fast = 5 },
  136. .find_pll = intel_find_best_PLL,
  137. };
  138. static const intel_limit_t intel_limits_i9xx_lvds = {
  139. .dot = { .min = 20000, .max = 400000 },
  140. .vco = { .min = 1400000, .max = 2800000 },
  141. .n = { .min = 1, .max = 6 },
  142. .m = { .min = 70, .max = 120 },
  143. .m1 = { .min = 10, .max = 22 },
  144. .m2 = { .min = 5, .max = 9 },
  145. .p = { .min = 7, .max = 98 },
  146. .p1 = { .min = 1, .max = 8 },
  147. .p2 = { .dot_limit = 112000,
  148. .p2_slow = 14, .p2_fast = 7 },
  149. .find_pll = intel_find_best_PLL,
  150. };
  151. static const intel_limit_t intel_limits_g4x_sdvo = {
  152. .dot = { .min = 25000, .max = 270000 },
  153. .vco = { .min = 1750000, .max = 3500000},
  154. .n = { .min = 1, .max = 4 },
  155. .m = { .min = 104, .max = 138 },
  156. .m1 = { .min = 17, .max = 23 },
  157. .m2 = { .min = 5, .max = 11 },
  158. .p = { .min = 10, .max = 30 },
  159. .p1 = { .min = 1, .max = 3},
  160. .p2 = { .dot_limit = 270000,
  161. .p2_slow = 10,
  162. .p2_fast = 10
  163. },
  164. .find_pll = intel_g4x_find_best_PLL,
  165. };
  166. static const intel_limit_t intel_limits_g4x_hdmi = {
  167. .dot = { .min = 22000, .max = 400000 },
  168. .vco = { .min = 1750000, .max = 3500000},
  169. .n = { .min = 1, .max = 4 },
  170. .m = { .min = 104, .max = 138 },
  171. .m1 = { .min = 16, .max = 23 },
  172. .m2 = { .min = 5, .max = 11 },
  173. .p = { .min = 5, .max = 80 },
  174. .p1 = { .min = 1, .max = 8},
  175. .p2 = { .dot_limit = 165000,
  176. .p2_slow = 10, .p2_fast = 5 },
  177. .find_pll = intel_g4x_find_best_PLL,
  178. };
  179. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  180. .dot = { .min = 20000, .max = 115000 },
  181. .vco = { .min = 1750000, .max = 3500000 },
  182. .n = { .min = 1, .max = 3 },
  183. .m = { .min = 104, .max = 138 },
  184. .m1 = { .min = 17, .max = 23 },
  185. .m2 = { .min = 5, .max = 11 },
  186. .p = { .min = 28, .max = 112 },
  187. .p1 = { .min = 2, .max = 8 },
  188. .p2 = { .dot_limit = 0,
  189. .p2_slow = 14, .p2_fast = 14
  190. },
  191. .find_pll = intel_g4x_find_best_PLL,
  192. };
  193. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  194. .dot = { .min = 80000, .max = 224000 },
  195. .vco = { .min = 1750000, .max = 3500000 },
  196. .n = { .min = 1, .max = 3 },
  197. .m = { .min = 104, .max = 138 },
  198. .m1 = { .min = 17, .max = 23 },
  199. .m2 = { .min = 5, .max = 11 },
  200. .p = { .min = 14, .max = 42 },
  201. .p1 = { .min = 2, .max = 6 },
  202. .p2 = { .dot_limit = 0,
  203. .p2_slow = 7, .p2_fast = 7
  204. },
  205. .find_pll = intel_g4x_find_best_PLL,
  206. };
  207. static const intel_limit_t intel_limits_g4x_display_port = {
  208. .dot = { .min = 161670, .max = 227000 },
  209. .vco = { .min = 1750000, .max = 3500000},
  210. .n = { .min = 1, .max = 2 },
  211. .m = { .min = 97, .max = 108 },
  212. .m1 = { .min = 0x10, .max = 0x12 },
  213. .m2 = { .min = 0x05, .max = 0x06 },
  214. .p = { .min = 10, .max = 20 },
  215. .p1 = { .min = 1, .max = 2},
  216. .p2 = { .dot_limit = 0,
  217. .p2_slow = 10, .p2_fast = 10 },
  218. .find_pll = intel_find_pll_g4x_dp,
  219. };
  220. static const intel_limit_t intel_limits_pineview_sdvo = {
  221. .dot = { .min = 20000, .max = 400000},
  222. .vco = { .min = 1700000, .max = 3500000 },
  223. /* Pineview's Ncounter is a ring counter */
  224. .n = { .min = 3, .max = 6 },
  225. .m = { .min = 2, .max = 256 },
  226. /* Pineview only has one combined m divider, which we treat as m2. */
  227. .m1 = { .min = 0, .max = 0 },
  228. .m2 = { .min = 0, .max = 254 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 200000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. .find_pll = intel_find_best_PLL,
  234. };
  235. static const intel_limit_t intel_limits_pineview_lvds = {
  236. .dot = { .min = 20000, .max = 400000 },
  237. .vco = { .min = 1700000, .max = 3500000 },
  238. .n = { .min = 3, .max = 6 },
  239. .m = { .min = 2, .max = 256 },
  240. .m1 = { .min = 0, .max = 0 },
  241. .m2 = { .min = 0, .max = 254 },
  242. .p = { .min = 7, .max = 112 },
  243. .p1 = { .min = 1, .max = 8 },
  244. .p2 = { .dot_limit = 112000,
  245. .p2_slow = 14, .p2_fast = 14 },
  246. .find_pll = intel_find_best_PLL,
  247. };
  248. /* Ironlake / Sandybridge
  249. *
  250. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  251. * the range value for them is (actual_value - 2).
  252. */
  253. static const intel_limit_t intel_limits_ironlake_dac = {
  254. .dot = { .min = 25000, .max = 350000 },
  255. .vco = { .min = 1760000, .max = 3510000 },
  256. .n = { .min = 1, .max = 5 },
  257. .m = { .min = 79, .max = 127 },
  258. .m1 = { .min = 12, .max = 22 },
  259. .m2 = { .min = 5, .max = 9 },
  260. .p = { .min = 5, .max = 80 },
  261. .p1 = { .min = 1, .max = 8 },
  262. .p2 = { .dot_limit = 225000,
  263. .p2_slow = 10, .p2_fast = 5 },
  264. .find_pll = intel_g4x_find_best_PLL,
  265. };
  266. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  267. .dot = { .min = 25000, .max = 350000 },
  268. .vco = { .min = 1760000, .max = 3510000 },
  269. .n = { .min = 1, .max = 3 },
  270. .m = { .min = 79, .max = 118 },
  271. .m1 = { .min = 12, .max = 22 },
  272. .m2 = { .min = 5, .max = 9 },
  273. .p = { .min = 28, .max = 112 },
  274. .p1 = { .min = 2, .max = 8 },
  275. .p2 = { .dot_limit = 225000,
  276. .p2_slow = 14, .p2_fast = 14 },
  277. .find_pll = intel_g4x_find_best_PLL,
  278. };
  279. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  280. .dot = { .min = 25000, .max = 350000 },
  281. .vco = { .min = 1760000, .max = 3510000 },
  282. .n = { .min = 1, .max = 3 },
  283. .m = { .min = 79, .max = 127 },
  284. .m1 = { .min = 12, .max = 22 },
  285. .m2 = { .min = 5, .max = 9 },
  286. .p = { .min = 14, .max = 56 },
  287. .p1 = { .min = 2, .max = 8 },
  288. .p2 = { .dot_limit = 225000,
  289. .p2_slow = 7, .p2_fast = 7 },
  290. .find_pll = intel_g4x_find_best_PLL,
  291. };
  292. /* LVDS 100mhz refclk limits. */
  293. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  294. .dot = { .min = 25000, .max = 350000 },
  295. .vco = { .min = 1760000, .max = 3510000 },
  296. .n = { .min = 1, .max = 2 },
  297. .m = { .min = 79, .max = 126 },
  298. .m1 = { .min = 12, .max = 22 },
  299. .m2 = { .min = 5, .max = 9 },
  300. .p = { .min = 28, .max = 112 },
  301. .p1 = { .min = 2, .max = 8 },
  302. .p2 = { .dot_limit = 225000,
  303. .p2_slow = 14, .p2_fast = 14 },
  304. .find_pll = intel_g4x_find_best_PLL,
  305. };
  306. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  307. .dot = { .min = 25000, .max = 350000 },
  308. .vco = { .min = 1760000, .max = 3510000 },
  309. .n = { .min = 1, .max = 3 },
  310. .m = { .min = 79, .max = 126 },
  311. .m1 = { .min = 12, .max = 22 },
  312. .m2 = { .min = 5, .max = 9 },
  313. .p = { .min = 14, .max = 42 },
  314. .p1 = { .min = 2, .max = 6 },
  315. .p2 = { .dot_limit = 225000,
  316. .p2_slow = 7, .p2_fast = 7 },
  317. .find_pll = intel_g4x_find_best_PLL,
  318. };
  319. static const intel_limit_t intel_limits_ironlake_display_port = {
  320. .dot = { .min = 25000, .max = 350000 },
  321. .vco = { .min = 1760000, .max = 3510000},
  322. .n = { .min = 1, .max = 2 },
  323. .m = { .min = 81, .max = 90 },
  324. .m1 = { .min = 12, .max = 22 },
  325. .m2 = { .min = 5, .max = 9 },
  326. .p = { .min = 10, .max = 20 },
  327. .p1 = { .min = 1, .max = 2},
  328. .p2 = { .dot_limit = 0,
  329. .p2_slow = 10, .p2_fast = 10 },
  330. .find_pll = intel_find_pll_ironlake_dp,
  331. };
  332. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  333. {
  334. unsigned long flags;
  335. u32 val = 0;
  336. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  337. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  338. DRM_ERROR("DPIO idle wait timed out\n");
  339. goto out_unlock;
  340. }
  341. I915_WRITE(DPIO_REG, reg);
  342. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  343. DPIO_BYTE);
  344. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  345. DRM_ERROR("DPIO read wait timed out\n");
  346. goto out_unlock;
  347. }
  348. val = I915_READ(DPIO_DATA);
  349. out_unlock:
  350. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  351. return val;
  352. }
  353. static void vlv_init_dpio(struct drm_device *dev)
  354. {
  355. struct drm_i915_private *dev_priv = dev->dev_private;
  356. /* Reset the DPIO config */
  357. I915_WRITE(DPIO_CTL, 0);
  358. POSTING_READ(DPIO_CTL);
  359. I915_WRITE(DPIO_CTL, 1);
  360. POSTING_READ(DPIO_CTL);
  361. }
  362. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  363. {
  364. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  365. return 1;
  366. }
  367. static const struct dmi_system_id intel_dual_link_lvds[] = {
  368. {
  369. .callback = intel_dual_link_lvds_callback,
  370. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  371. .matches = {
  372. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  373. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  374. },
  375. },
  376. { } /* terminating entry */
  377. };
  378. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  379. unsigned int reg)
  380. {
  381. unsigned int val;
  382. /* use the module option value if specified */
  383. if (i915_lvds_channel_mode > 0)
  384. return i915_lvds_channel_mode == 2;
  385. if (dmi_check_system(intel_dual_link_lvds))
  386. return true;
  387. if (dev_priv->lvds_val)
  388. val = dev_priv->lvds_val;
  389. else {
  390. /* BIOS should set the proper LVDS register value at boot, but
  391. * in reality, it doesn't set the value when the lid is closed;
  392. * we need to check "the value to be set" in VBT when LVDS
  393. * register is uninitialized.
  394. */
  395. val = I915_READ(reg);
  396. if (!(val & ~LVDS_DETECTED))
  397. val = dev_priv->bios_lvds_val;
  398. dev_priv->lvds_val = val;
  399. }
  400. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  401. }
  402. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  403. int refclk)
  404. {
  405. struct drm_device *dev = crtc->dev;
  406. struct drm_i915_private *dev_priv = dev->dev_private;
  407. const intel_limit_t *limit;
  408. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  409. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  410. /* LVDS dual channel */
  411. if (refclk == 100000)
  412. limit = &intel_limits_ironlake_dual_lvds_100m;
  413. else
  414. limit = &intel_limits_ironlake_dual_lvds;
  415. } else {
  416. if (refclk == 100000)
  417. limit = &intel_limits_ironlake_single_lvds_100m;
  418. else
  419. limit = &intel_limits_ironlake_single_lvds;
  420. }
  421. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  422. HAS_eDP)
  423. limit = &intel_limits_ironlake_display_port;
  424. else
  425. limit = &intel_limits_ironlake_dac;
  426. return limit;
  427. }
  428. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  429. {
  430. struct drm_device *dev = crtc->dev;
  431. struct drm_i915_private *dev_priv = dev->dev_private;
  432. const intel_limit_t *limit;
  433. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  434. if (is_dual_link_lvds(dev_priv, LVDS))
  435. /* LVDS with dual channel */
  436. limit = &intel_limits_g4x_dual_channel_lvds;
  437. else
  438. /* LVDS with dual channel */
  439. limit = &intel_limits_g4x_single_channel_lvds;
  440. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  441. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  442. limit = &intel_limits_g4x_hdmi;
  443. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  444. limit = &intel_limits_g4x_sdvo;
  445. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  446. limit = &intel_limits_g4x_display_port;
  447. } else /* The option is for other outputs */
  448. limit = &intel_limits_i9xx_sdvo;
  449. return limit;
  450. }
  451. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  452. {
  453. struct drm_device *dev = crtc->dev;
  454. const intel_limit_t *limit;
  455. if (HAS_PCH_SPLIT(dev))
  456. limit = intel_ironlake_limit(crtc, refclk);
  457. else if (IS_G4X(dev)) {
  458. limit = intel_g4x_limit(crtc);
  459. } else if (IS_PINEVIEW(dev)) {
  460. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  461. limit = &intel_limits_pineview_lvds;
  462. else
  463. limit = &intel_limits_pineview_sdvo;
  464. } else if (!IS_GEN2(dev)) {
  465. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  466. limit = &intel_limits_i9xx_lvds;
  467. else
  468. limit = &intel_limits_i9xx_sdvo;
  469. } else {
  470. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  471. limit = &intel_limits_i8xx_lvds;
  472. else
  473. limit = &intel_limits_i8xx_dvo;
  474. }
  475. return limit;
  476. }
  477. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  478. static void pineview_clock(int refclk, intel_clock_t *clock)
  479. {
  480. clock->m = clock->m2 + 2;
  481. clock->p = clock->p1 * clock->p2;
  482. clock->vco = refclk * clock->m / clock->n;
  483. clock->dot = clock->vco / clock->p;
  484. }
  485. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  486. {
  487. if (IS_PINEVIEW(dev)) {
  488. pineview_clock(refclk, clock);
  489. return;
  490. }
  491. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  492. clock->p = clock->p1 * clock->p2;
  493. clock->vco = refclk * clock->m / (clock->n + 2);
  494. clock->dot = clock->vco / clock->p;
  495. }
  496. /**
  497. * Returns whether any output on the specified pipe is of the specified type
  498. */
  499. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. struct drm_mode_config *mode_config = &dev->mode_config;
  503. struct intel_encoder *encoder;
  504. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  505. if (encoder->base.crtc == crtc && encoder->type == type)
  506. return true;
  507. return false;
  508. }
  509. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  510. /**
  511. * Returns whether the given set of divisors are valid for a given refclk with
  512. * the given connectors.
  513. */
  514. static bool intel_PLL_is_valid(struct drm_device *dev,
  515. const intel_limit_t *limit,
  516. const intel_clock_t *clock)
  517. {
  518. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  519. INTELPllInvalid("p1 out of range\n");
  520. if (clock->p < limit->p.min || limit->p.max < clock->p)
  521. INTELPllInvalid("p out of range\n");
  522. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  523. INTELPllInvalid("m2 out of range\n");
  524. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  525. INTELPllInvalid("m1 out of range\n");
  526. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  527. INTELPllInvalid("m1 <= m2\n");
  528. if (clock->m < limit->m.min || limit->m.max < clock->m)
  529. INTELPllInvalid("m out of range\n");
  530. if (clock->n < limit->n.min || limit->n.max < clock->n)
  531. INTELPllInvalid("n out of range\n");
  532. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  533. INTELPllInvalid("vco out of range\n");
  534. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  535. * connector, etc., rather than just a single range.
  536. */
  537. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  538. INTELPllInvalid("dot out of range\n");
  539. return true;
  540. }
  541. static bool
  542. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  543. int target, int refclk, intel_clock_t *match_clock,
  544. intel_clock_t *best_clock)
  545. {
  546. struct drm_device *dev = crtc->dev;
  547. struct drm_i915_private *dev_priv = dev->dev_private;
  548. intel_clock_t clock;
  549. int err = target;
  550. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  551. (I915_READ(LVDS)) != 0) {
  552. /*
  553. * For LVDS, if the panel is on, just rely on its current
  554. * settings for dual-channel. We haven't figured out how to
  555. * reliably set up different single/dual channel state, if we
  556. * even can.
  557. */
  558. if (is_dual_link_lvds(dev_priv, LVDS))
  559. clock.p2 = limit->p2.p2_fast;
  560. else
  561. clock.p2 = limit->p2.p2_slow;
  562. } else {
  563. if (target < limit->p2.dot_limit)
  564. clock.p2 = limit->p2.p2_slow;
  565. else
  566. clock.p2 = limit->p2.p2_fast;
  567. }
  568. memset(best_clock, 0, sizeof(*best_clock));
  569. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  570. clock.m1++) {
  571. for (clock.m2 = limit->m2.min;
  572. clock.m2 <= limit->m2.max; clock.m2++) {
  573. /* m1 is always 0 in Pineview */
  574. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  575. break;
  576. for (clock.n = limit->n.min;
  577. clock.n <= limit->n.max; clock.n++) {
  578. for (clock.p1 = limit->p1.min;
  579. clock.p1 <= limit->p1.max; clock.p1++) {
  580. int this_err;
  581. intel_clock(dev, refclk, &clock);
  582. if (!intel_PLL_is_valid(dev, limit,
  583. &clock))
  584. continue;
  585. if (match_clock &&
  586. clock.p != match_clock->p)
  587. continue;
  588. this_err = abs(clock.dot - target);
  589. if (this_err < err) {
  590. *best_clock = clock;
  591. err = this_err;
  592. }
  593. }
  594. }
  595. }
  596. }
  597. return (err != target);
  598. }
  599. static bool
  600. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  601. int target, int refclk, intel_clock_t *match_clock,
  602. intel_clock_t *best_clock)
  603. {
  604. struct drm_device *dev = crtc->dev;
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. intel_clock_t clock;
  607. int max_n;
  608. bool found;
  609. /* approximately equals target * 0.00585 */
  610. int err_most = (target >> 8) + (target >> 9);
  611. found = false;
  612. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  613. int lvds_reg;
  614. if (HAS_PCH_SPLIT(dev))
  615. lvds_reg = PCH_LVDS;
  616. else
  617. lvds_reg = LVDS;
  618. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  619. LVDS_CLKB_POWER_UP)
  620. clock.p2 = limit->p2.p2_fast;
  621. else
  622. clock.p2 = limit->p2.p2_slow;
  623. } else {
  624. if (target < limit->p2.dot_limit)
  625. clock.p2 = limit->p2.p2_slow;
  626. else
  627. clock.p2 = limit->p2.p2_fast;
  628. }
  629. memset(best_clock, 0, sizeof(*best_clock));
  630. max_n = limit->n.max;
  631. /* based on hardware requirement, prefer smaller n to precision */
  632. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  633. /* based on hardware requirement, prefere larger m1,m2 */
  634. for (clock.m1 = limit->m1.max;
  635. clock.m1 >= limit->m1.min; clock.m1--) {
  636. for (clock.m2 = limit->m2.max;
  637. clock.m2 >= limit->m2.min; clock.m2--) {
  638. for (clock.p1 = limit->p1.max;
  639. clock.p1 >= limit->p1.min; clock.p1--) {
  640. int this_err;
  641. intel_clock(dev, refclk, &clock);
  642. if (!intel_PLL_is_valid(dev, limit,
  643. &clock))
  644. continue;
  645. if (match_clock &&
  646. clock.p != match_clock->p)
  647. continue;
  648. this_err = abs(clock.dot - target);
  649. if (this_err < err_most) {
  650. *best_clock = clock;
  651. err_most = this_err;
  652. max_n = clock.n;
  653. found = true;
  654. }
  655. }
  656. }
  657. }
  658. }
  659. return found;
  660. }
  661. static bool
  662. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  663. int target, int refclk, intel_clock_t *match_clock,
  664. intel_clock_t *best_clock)
  665. {
  666. struct drm_device *dev = crtc->dev;
  667. intel_clock_t clock;
  668. if (target < 200000) {
  669. clock.n = 1;
  670. clock.p1 = 2;
  671. clock.p2 = 10;
  672. clock.m1 = 12;
  673. clock.m2 = 9;
  674. } else {
  675. clock.n = 2;
  676. clock.p1 = 1;
  677. clock.p2 = 10;
  678. clock.m1 = 14;
  679. clock.m2 = 8;
  680. }
  681. intel_clock(dev, refclk, &clock);
  682. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  683. return true;
  684. }
  685. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  686. static bool
  687. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  688. int target, int refclk, intel_clock_t *match_clock,
  689. intel_clock_t *best_clock)
  690. {
  691. intel_clock_t clock;
  692. if (target < 200000) {
  693. clock.p1 = 2;
  694. clock.p2 = 10;
  695. clock.n = 2;
  696. clock.m1 = 23;
  697. clock.m2 = 8;
  698. } else {
  699. clock.p1 = 1;
  700. clock.p2 = 10;
  701. clock.n = 1;
  702. clock.m1 = 14;
  703. clock.m2 = 2;
  704. }
  705. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  706. clock.p = (clock.p1 * clock.p2);
  707. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  708. clock.vco = 0;
  709. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  710. return true;
  711. }
  712. /**
  713. * intel_wait_for_vblank - wait for vblank on a given pipe
  714. * @dev: drm device
  715. * @pipe: pipe to wait for
  716. *
  717. * Wait for vblank to occur on a given pipe. Needed for various bits of
  718. * mode setting code.
  719. */
  720. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  721. {
  722. struct drm_i915_private *dev_priv = dev->dev_private;
  723. int pipestat_reg = PIPESTAT(pipe);
  724. /* Clear existing vblank status. Note this will clear any other
  725. * sticky status fields as well.
  726. *
  727. * This races with i915_driver_irq_handler() with the result
  728. * that either function could miss a vblank event. Here it is not
  729. * fatal, as we will either wait upon the next vblank interrupt or
  730. * timeout. Generally speaking intel_wait_for_vblank() is only
  731. * called during modeset at which time the GPU should be idle and
  732. * should *not* be performing page flips and thus not waiting on
  733. * vblanks...
  734. * Currently, the result of us stealing a vblank from the irq
  735. * handler is that a single frame will be skipped during swapbuffers.
  736. */
  737. I915_WRITE(pipestat_reg,
  738. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  739. /* Wait for vblank interrupt bit to set */
  740. if (wait_for(I915_READ(pipestat_reg) &
  741. PIPE_VBLANK_INTERRUPT_STATUS,
  742. 50))
  743. DRM_DEBUG_KMS("vblank wait timed out\n");
  744. }
  745. /*
  746. * intel_wait_for_pipe_off - wait for pipe to turn off
  747. * @dev: drm device
  748. * @pipe: pipe to wait for
  749. *
  750. * After disabling a pipe, we can't wait for vblank in the usual way,
  751. * spinning on the vblank interrupt status bit, since we won't actually
  752. * see an interrupt when the pipe is disabled.
  753. *
  754. * On Gen4 and above:
  755. * wait for the pipe register state bit to turn off
  756. *
  757. * Otherwise:
  758. * wait for the display line value to settle (it usually
  759. * ends up stopping at the start of the next frame).
  760. *
  761. */
  762. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  763. {
  764. struct drm_i915_private *dev_priv = dev->dev_private;
  765. if (INTEL_INFO(dev)->gen >= 4) {
  766. int reg = PIPECONF(pipe);
  767. /* Wait for the Pipe State to go off */
  768. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  769. 100))
  770. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  771. } else {
  772. u32 last_line;
  773. int reg = PIPEDSL(pipe);
  774. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  775. /* Wait for the display line to settle */
  776. do {
  777. last_line = I915_READ(reg) & DSL_LINEMASK;
  778. mdelay(5);
  779. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  780. time_after(timeout, jiffies));
  781. if (time_after(jiffies, timeout))
  782. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  783. }
  784. }
  785. static const char *state_string(bool enabled)
  786. {
  787. return enabled ? "on" : "off";
  788. }
  789. /* Only for pre-ILK configs */
  790. static void assert_pll(struct drm_i915_private *dev_priv,
  791. enum pipe pipe, bool state)
  792. {
  793. int reg;
  794. u32 val;
  795. bool cur_state;
  796. reg = DPLL(pipe);
  797. val = I915_READ(reg);
  798. cur_state = !!(val & DPLL_VCO_ENABLE);
  799. WARN(cur_state != state,
  800. "PLL state assertion failure (expected %s, current %s)\n",
  801. state_string(state), state_string(cur_state));
  802. }
  803. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  804. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  805. /* For ILK+ */
  806. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  807. struct intel_crtc *intel_crtc, bool state)
  808. {
  809. int reg;
  810. u32 val;
  811. bool cur_state;
  812. if (!intel_crtc->pch_pll) {
  813. WARN(1, "asserting PCH PLL enabled with no PLL\n");
  814. return;
  815. }
  816. if (HAS_PCH_CPT(dev_priv->dev)) {
  817. u32 pch_dpll;
  818. pch_dpll = I915_READ(PCH_DPLL_SEL);
  819. /* Make sure the selected PLL is enabled to the transcoder */
  820. WARN(!((pch_dpll >> (4 * intel_crtc->pipe)) & 8),
  821. "transcoder %d PLL not enabled\n", intel_crtc->pipe);
  822. }
  823. reg = intel_crtc->pch_pll->pll_reg;
  824. val = I915_READ(reg);
  825. cur_state = !!(val & DPLL_VCO_ENABLE);
  826. WARN(cur_state != state,
  827. "PCH PLL state assertion failure (expected %s, current %s)\n",
  828. state_string(state), state_string(cur_state));
  829. }
  830. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  831. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  832. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  833. enum pipe pipe, bool state)
  834. {
  835. int reg;
  836. u32 val;
  837. bool cur_state;
  838. reg = FDI_TX_CTL(pipe);
  839. val = I915_READ(reg);
  840. cur_state = !!(val & FDI_TX_ENABLE);
  841. WARN(cur_state != state,
  842. "FDI TX state assertion failure (expected %s, current %s)\n",
  843. state_string(state), state_string(cur_state));
  844. }
  845. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  846. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  847. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  848. enum pipe pipe, bool state)
  849. {
  850. int reg;
  851. u32 val;
  852. bool cur_state;
  853. reg = FDI_RX_CTL(pipe);
  854. val = I915_READ(reg);
  855. cur_state = !!(val & FDI_RX_ENABLE);
  856. WARN(cur_state != state,
  857. "FDI RX state assertion failure (expected %s, current %s)\n",
  858. state_string(state), state_string(cur_state));
  859. }
  860. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  861. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  862. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  863. enum pipe pipe)
  864. {
  865. int reg;
  866. u32 val;
  867. /* ILK FDI PLL is always enabled */
  868. if (dev_priv->info->gen == 5)
  869. return;
  870. reg = FDI_TX_CTL(pipe);
  871. val = I915_READ(reg);
  872. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  873. }
  874. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  875. enum pipe pipe)
  876. {
  877. int reg;
  878. u32 val;
  879. reg = FDI_RX_CTL(pipe);
  880. val = I915_READ(reg);
  881. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  882. }
  883. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  884. enum pipe pipe)
  885. {
  886. int pp_reg, lvds_reg;
  887. u32 val;
  888. enum pipe panel_pipe = PIPE_A;
  889. bool locked = true;
  890. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  891. pp_reg = PCH_PP_CONTROL;
  892. lvds_reg = PCH_LVDS;
  893. } else {
  894. pp_reg = PP_CONTROL;
  895. lvds_reg = LVDS;
  896. }
  897. val = I915_READ(pp_reg);
  898. if (!(val & PANEL_POWER_ON) ||
  899. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  900. locked = false;
  901. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  902. panel_pipe = PIPE_B;
  903. WARN(panel_pipe == pipe && locked,
  904. "panel assertion failure, pipe %c regs locked\n",
  905. pipe_name(pipe));
  906. }
  907. void assert_pipe(struct drm_i915_private *dev_priv,
  908. enum pipe pipe, bool state)
  909. {
  910. int reg;
  911. u32 val;
  912. bool cur_state;
  913. /* if we need the pipe A quirk it must be always on */
  914. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  915. state = true;
  916. reg = PIPECONF(pipe);
  917. val = I915_READ(reg);
  918. cur_state = !!(val & PIPECONF_ENABLE);
  919. WARN(cur_state != state,
  920. "pipe %c assertion failure (expected %s, current %s)\n",
  921. pipe_name(pipe), state_string(state), state_string(cur_state));
  922. }
  923. static void assert_plane(struct drm_i915_private *dev_priv,
  924. enum plane plane, bool state)
  925. {
  926. int reg;
  927. u32 val;
  928. bool cur_state;
  929. reg = DSPCNTR(plane);
  930. val = I915_READ(reg);
  931. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  932. WARN(cur_state != state,
  933. "plane %c assertion failure (expected %s, current %s)\n",
  934. plane_name(plane), state_string(state), state_string(cur_state));
  935. }
  936. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  937. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  938. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  939. enum pipe pipe)
  940. {
  941. int reg, i;
  942. u32 val;
  943. int cur_pipe;
  944. /* Planes are fixed to pipes on ILK+ */
  945. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  946. reg = DSPCNTR(pipe);
  947. val = I915_READ(reg);
  948. WARN((val & DISPLAY_PLANE_ENABLE),
  949. "plane %c assertion failure, should be disabled but not\n",
  950. plane_name(pipe));
  951. return;
  952. }
  953. /* Need to check both planes against the pipe */
  954. for (i = 0; i < 2; i++) {
  955. reg = DSPCNTR(i);
  956. val = I915_READ(reg);
  957. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  958. DISPPLANE_SEL_PIPE_SHIFT;
  959. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  960. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  961. plane_name(i), pipe_name(pipe));
  962. }
  963. }
  964. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  965. {
  966. u32 val;
  967. bool enabled;
  968. val = I915_READ(PCH_DREF_CONTROL);
  969. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  970. DREF_SUPERSPREAD_SOURCE_MASK));
  971. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  972. }
  973. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  974. enum pipe pipe)
  975. {
  976. int reg;
  977. u32 val;
  978. bool enabled;
  979. reg = TRANSCONF(pipe);
  980. val = I915_READ(reg);
  981. enabled = !!(val & TRANS_ENABLE);
  982. WARN(enabled,
  983. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  984. pipe_name(pipe));
  985. }
  986. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  987. enum pipe pipe, u32 port_sel, u32 val)
  988. {
  989. if ((val & DP_PORT_EN) == 0)
  990. return false;
  991. if (HAS_PCH_CPT(dev_priv->dev)) {
  992. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  993. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  994. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  995. return false;
  996. } else {
  997. if ((val & DP_PIPE_MASK) != (pipe << 30))
  998. return false;
  999. }
  1000. return true;
  1001. }
  1002. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1003. enum pipe pipe, u32 val)
  1004. {
  1005. if ((val & PORT_ENABLE) == 0)
  1006. return false;
  1007. if (HAS_PCH_CPT(dev_priv->dev)) {
  1008. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1009. return false;
  1010. } else {
  1011. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1012. return false;
  1013. }
  1014. return true;
  1015. }
  1016. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1017. enum pipe pipe, u32 val)
  1018. {
  1019. if ((val & LVDS_PORT_EN) == 0)
  1020. return false;
  1021. if (HAS_PCH_CPT(dev_priv->dev)) {
  1022. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1023. return false;
  1024. } else {
  1025. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1026. return false;
  1027. }
  1028. return true;
  1029. }
  1030. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1031. enum pipe pipe, u32 val)
  1032. {
  1033. if ((val & ADPA_DAC_ENABLE) == 0)
  1034. return false;
  1035. if (HAS_PCH_CPT(dev_priv->dev)) {
  1036. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1037. return false;
  1038. } else {
  1039. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1040. return false;
  1041. }
  1042. return true;
  1043. }
  1044. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1045. enum pipe pipe, int reg, u32 port_sel)
  1046. {
  1047. u32 val = I915_READ(reg);
  1048. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1049. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1050. reg, pipe_name(pipe));
  1051. }
  1052. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1053. enum pipe pipe, int reg)
  1054. {
  1055. u32 val = I915_READ(reg);
  1056. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  1057. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1058. reg, pipe_name(pipe));
  1059. }
  1060. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1061. enum pipe pipe)
  1062. {
  1063. int reg;
  1064. u32 val;
  1065. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1066. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1067. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1068. reg = PCH_ADPA;
  1069. val = I915_READ(reg);
  1070. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1071. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1072. pipe_name(pipe));
  1073. reg = PCH_LVDS;
  1074. val = I915_READ(reg);
  1075. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1076. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1077. pipe_name(pipe));
  1078. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1079. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1080. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1081. }
  1082. /**
  1083. * intel_enable_pll - enable a PLL
  1084. * @dev_priv: i915 private structure
  1085. * @pipe: pipe PLL to enable
  1086. *
  1087. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1088. * make sure the PLL reg is writable first though, since the panel write
  1089. * protect mechanism may be enabled.
  1090. *
  1091. * Note! This is for pre-ILK only.
  1092. */
  1093. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1094. {
  1095. int reg;
  1096. u32 val;
  1097. /* No really, not for ILK+ */
  1098. BUG_ON(dev_priv->info->gen >= 5);
  1099. /* PLL is protected by panel, make sure we can write it */
  1100. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1101. assert_panel_unlocked(dev_priv, pipe);
  1102. reg = DPLL(pipe);
  1103. val = I915_READ(reg);
  1104. val |= DPLL_VCO_ENABLE;
  1105. /* We do this three times for luck */
  1106. I915_WRITE(reg, val);
  1107. POSTING_READ(reg);
  1108. udelay(150); /* wait for warmup */
  1109. I915_WRITE(reg, val);
  1110. POSTING_READ(reg);
  1111. udelay(150); /* wait for warmup */
  1112. I915_WRITE(reg, val);
  1113. POSTING_READ(reg);
  1114. udelay(150); /* wait for warmup */
  1115. }
  1116. /**
  1117. * intel_disable_pll - disable a PLL
  1118. * @dev_priv: i915 private structure
  1119. * @pipe: pipe PLL to disable
  1120. *
  1121. * Disable the PLL for @pipe, making sure the pipe is off first.
  1122. *
  1123. * Note! This is for pre-ILK only.
  1124. */
  1125. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1126. {
  1127. int reg;
  1128. u32 val;
  1129. /* Don't disable pipe A or pipe A PLLs if needed */
  1130. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1131. return;
  1132. /* Make sure the pipe isn't still relying on us */
  1133. assert_pipe_disabled(dev_priv, pipe);
  1134. reg = DPLL(pipe);
  1135. val = I915_READ(reg);
  1136. val &= ~DPLL_VCO_ENABLE;
  1137. I915_WRITE(reg, val);
  1138. POSTING_READ(reg);
  1139. }
  1140. /**
  1141. * intel_enable_pch_pll - enable PCH PLL
  1142. * @dev_priv: i915 private structure
  1143. * @pipe: pipe PLL to enable
  1144. *
  1145. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1146. * drives the transcoder clock.
  1147. */
  1148. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1149. {
  1150. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1151. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1152. int reg;
  1153. u32 val;
  1154. /* PCH only available on ILK+ */
  1155. BUG_ON(dev_priv->info->gen < 5);
  1156. BUG_ON(pll == NULL);
  1157. BUG_ON(pll->refcount == 0);
  1158. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1159. pll->pll_reg, pll->active, pll->on,
  1160. intel_crtc->base.base.id);
  1161. /* PCH refclock must be enabled first */
  1162. assert_pch_refclk_enabled(dev_priv);
  1163. if (pll->active++ && pll->on) {
  1164. assert_pch_pll_enabled(dev_priv, intel_crtc);
  1165. return;
  1166. }
  1167. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1168. reg = pll->pll_reg;
  1169. val = I915_READ(reg);
  1170. val |= DPLL_VCO_ENABLE;
  1171. I915_WRITE(reg, val);
  1172. POSTING_READ(reg);
  1173. udelay(200);
  1174. pll->on = true;
  1175. }
  1176. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1177. {
  1178. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1179. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1180. int reg;
  1181. u32 val;
  1182. /* PCH only available on ILK+ */
  1183. BUG_ON(dev_priv->info->gen < 5);
  1184. if (pll == NULL)
  1185. return;
  1186. BUG_ON(pll->refcount == 0);
  1187. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1188. pll->pll_reg, pll->active, pll->on,
  1189. intel_crtc->base.base.id);
  1190. BUG_ON(pll->active == 0);
  1191. if (--pll->active) {
  1192. assert_pch_pll_enabled(dev_priv, intel_crtc);
  1193. return;
  1194. }
  1195. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1196. /* Make sure transcoder isn't still depending on us */
  1197. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1198. reg = pll->pll_reg;
  1199. val = I915_READ(reg);
  1200. val &= ~DPLL_VCO_ENABLE;
  1201. I915_WRITE(reg, val);
  1202. POSTING_READ(reg);
  1203. udelay(200);
  1204. pll->on = false;
  1205. }
  1206. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1207. enum pipe pipe)
  1208. {
  1209. int reg;
  1210. u32 val, pipeconf_val;
  1211. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1212. /* PCH only available on ILK+ */
  1213. BUG_ON(dev_priv->info->gen < 5);
  1214. /* Make sure PCH DPLL is enabled */
  1215. assert_pch_pll_enabled(dev_priv, to_intel_crtc(crtc));
  1216. /* FDI must be feeding us bits for PCH ports */
  1217. assert_fdi_tx_enabled(dev_priv, pipe);
  1218. assert_fdi_rx_enabled(dev_priv, pipe);
  1219. reg = TRANSCONF(pipe);
  1220. val = I915_READ(reg);
  1221. pipeconf_val = I915_READ(PIPECONF(pipe));
  1222. if (HAS_PCH_IBX(dev_priv->dev)) {
  1223. /*
  1224. * make the BPC in transcoder be consistent with
  1225. * that in pipeconf reg.
  1226. */
  1227. val &= ~PIPE_BPC_MASK;
  1228. val |= pipeconf_val & PIPE_BPC_MASK;
  1229. }
  1230. val &= ~TRANS_INTERLACE_MASK;
  1231. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1232. if (HAS_PCH_IBX(dev_priv->dev) &&
  1233. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1234. val |= TRANS_LEGACY_INTERLACED_ILK;
  1235. else
  1236. val |= TRANS_INTERLACED;
  1237. else
  1238. val |= TRANS_PROGRESSIVE;
  1239. I915_WRITE(reg, val | TRANS_ENABLE);
  1240. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1241. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1242. }
  1243. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1244. enum pipe pipe)
  1245. {
  1246. int reg;
  1247. u32 val;
  1248. /* FDI relies on the transcoder */
  1249. assert_fdi_tx_disabled(dev_priv, pipe);
  1250. assert_fdi_rx_disabled(dev_priv, pipe);
  1251. /* Ports must be off as well */
  1252. assert_pch_ports_disabled(dev_priv, pipe);
  1253. reg = TRANSCONF(pipe);
  1254. val = I915_READ(reg);
  1255. val &= ~TRANS_ENABLE;
  1256. I915_WRITE(reg, val);
  1257. /* wait for PCH transcoder off, transcoder state */
  1258. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1259. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1260. }
  1261. /**
  1262. * intel_enable_pipe - enable a pipe, asserting requirements
  1263. * @dev_priv: i915 private structure
  1264. * @pipe: pipe to enable
  1265. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1266. *
  1267. * Enable @pipe, making sure that various hardware specific requirements
  1268. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1269. *
  1270. * @pipe should be %PIPE_A or %PIPE_B.
  1271. *
  1272. * Will wait until the pipe is actually running (i.e. first vblank) before
  1273. * returning.
  1274. */
  1275. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1276. bool pch_port)
  1277. {
  1278. int reg;
  1279. u32 val;
  1280. /*
  1281. * A pipe without a PLL won't actually be able to drive bits from
  1282. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1283. * need the check.
  1284. */
  1285. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1286. assert_pll_enabled(dev_priv, pipe);
  1287. else {
  1288. if (pch_port) {
  1289. /* if driving the PCH, we need FDI enabled */
  1290. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1291. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1292. }
  1293. /* FIXME: assert CPU port conditions for SNB+ */
  1294. }
  1295. reg = PIPECONF(pipe);
  1296. val = I915_READ(reg);
  1297. if (val & PIPECONF_ENABLE)
  1298. return;
  1299. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1300. intel_wait_for_vblank(dev_priv->dev, pipe);
  1301. }
  1302. /**
  1303. * intel_disable_pipe - disable a pipe, asserting requirements
  1304. * @dev_priv: i915 private structure
  1305. * @pipe: pipe to disable
  1306. *
  1307. * Disable @pipe, making sure that various hardware specific requirements
  1308. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1309. *
  1310. * @pipe should be %PIPE_A or %PIPE_B.
  1311. *
  1312. * Will wait until the pipe has shut down before returning.
  1313. */
  1314. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1315. enum pipe pipe)
  1316. {
  1317. int reg;
  1318. u32 val;
  1319. /*
  1320. * Make sure planes won't keep trying to pump pixels to us,
  1321. * or we might hang the display.
  1322. */
  1323. assert_planes_disabled(dev_priv, pipe);
  1324. /* Don't disable pipe A or pipe A PLLs if needed */
  1325. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1326. return;
  1327. reg = PIPECONF(pipe);
  1328. val = I915_READ(reg);
  1329. if ((val & PIPECONF_ENABLE) == 0)
  1330. return;
  1331. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1332. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1333. }
  1334. /*
  1335. * Plane regs are double buffered, going from enabled->disabled needs a
  1336. * trigger in order to latch. The display address reg provides this.
  1337. */
  1338. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1339. enum plane plane)
  1340. {
  1341. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1342. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1343. }
  1344. /**
  1345. * intel_enable_plane - enable a display plane on a given pipe
  1346. * @dev_priv: i915 private structure
  1347. * @plane: plane to enable
  1348. * @pipe: pipe being fed
  1349. *
  1350. * Enable @plane on @pipe, making sure that @pipe is running first.
  1351. */
  1352. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1353. enum plane plane, enum pipe pipe)
  1354. {
  1355. int reg;
  1356. u32 val;
  1357. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1358. assert_pipe_enabled(dev_priv, pipe);
  1359. reg = DSPCNTR(plane);
  1360. val = I915_READ(reg);
  1361. if (val & DISPLAY_PLANE_ENABLE)
  1362. return;
  1363. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1364. intel_flush_display_plane(dev_priv, plane);
  1365. intel_wait_for_vblank(dev_priv->dev, pipe);
  1366. }
  1367. /**
  1368. * intel_disable_plane - disable a display plane
  1369. * @dev_priv: i915 private structure
  1370. * @plane: plane to disable
  1371. * @pipe: pipe consuming the data
  1372. *
  1373. * Disable @plane; should be an independent operation.
  1374. */
  1375. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1376. enum plane plane, enum pipe pipe)
  1377. {
  1378. int reg;
  1379. u32 val;
  1380. reg = DSPCNTR(plane);
  1381. val = I915_READ(reg);
  1382. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1383. return;
  1384. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1385. intel_flush_display_plane(dev_priv, plane);
  1386. intel_wait_for_vblank(dev_priv->dev, pipe);
  1387. }
  1388. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1389. enum pipe pipe, int reg, u32 port_sel)
  1390. {
  1391. u32 val = I915_READ(reg);
  1392. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1393. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1394. I915_WRITE(reg, val & ~DP_PORT_EN);
  1395. }
  1396. }
  1397. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1398. enum pipe pipe, int reg)
  1399. {
  1400. u32 val = I915_READ(reg);
  1401. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1402. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1403. reg, pipe);
  1404. I915_WRITE(reg, val & ~PORT_ENABLE);
  1405. }
  1406. }
  1407. /* Disable any ports connected to this transcoder */
  1408. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1409. enum pipe pipe)
  1410. {
  1411. u32 reg, val;
  1412. val = I915_READ(PCH_PP_CONTROL);
  1413. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1414. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1415. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1416. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1417. reg = PCH_ADPA;
  1418. val = I915_READ(reg);
  1419. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1420. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1421. reg = PCH_LVDS;
  1422. val = I915_READ(reg);
  1423. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1424. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1425. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1426. POSTING_READ(reg);
  1427. udelay(100);
  1428. }
  1429. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1430. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1431. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1432. }
  1433. int
  1434. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1435. struct drm_i915_gem_object *obj,
  1436. struct intel_ring_buffer *pipelined)
  1437. {
  1438. struct drm_i915_private *dev_priv = dev->dev_private;
  1439. u32 alignment;
  1440. int ret;
  1441. switch (obj->tiling_mode) {
  1442. case I915_TILING_NONE:
  1443. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1444. alignment = 128 * 1024;
  1445. else if (INTEL_INFO(dev)->gen >= 4)
  1446. alignment = 4 * 1024;
  1447. else
  1448. alignment = 64 * 1024;
  1449. break;
  1450. case I915_TILING_X:
  1451. /* pin() will align the object as required by fence */
  1452. alignment = 0;
  1453. break;
  1454. case I915_TILING_Y:
  1455. /* FIXME: Is this true? */
  1456. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1457. return -EINVAL;
  1458. default:
  1459. BUG();
  1460. }
  1461. dev_priv->mm.interruptible = false;
  1462. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1463. if (ret)
  1464. goto err_interruptible;
  1465. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1466. * fence, whereas 965+ only requires a fence if using
  1467. * framebuffer compression. For simplicity, we always install
  1468. * a fence as the cost is not that onerous.
  1469. */
  1470. ret = i915_gem_object_get_fence(obj);
  1471. if (ret)
  1472. goto err_unpin;
  1473. i915_gem_object_pin_fence(obj);
  1474. dev_priv->mm.interruptible = true;
  1475. return 0;
  1476. err_unpin:
  1477. i915_gem_object_unpin(obj);
  1478. err_interruptible:
  1479. dev_priv->mm.interruptible = true;
  1480. return ret;
  1481. }
  1482. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1483. {
  1484. i915_gem_object_unpin_fence(obj);
  1485. i915_gem_object_unpin(obj);
  1486. }
  1487. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1488. int x, int y)
  1489. {
  1490. struct drm_device *dev = crtc->dev;
  1491. struct drm_i915_private *dev_priv = dev->dev_private;
  1492. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1493. struct intel_framebuffer *intel_fb;
  1494. struct drm_i915_gem_object *obj;
  1495. int plane = intel_crtc->plane;
  1496. unsigned long Start, Offset;
  1497. u32 dspcntr;
  1498. u32 reg;
  1499. switch (plane) {
  1500. case 0:
  1501. case 1:
  1502. break;
  1503. default:
  1504. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1505. return -EINVAL;
  1506. }
  1507. intel_fb = to_intel_framebuffer(fb);
  1508. obj = intel_fb->obj;
  1509. reg = DSPCNTR(plane);
  1510. dspcntr = I915_READ(reg);
  1511. /* Mask out pixel format bits in case we change it */
  1512. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1513. switch (fb->bits_per_pixel) {
  1514. case 8:
  1515. dspcntr |= DISPPLANE_8BPP;
  1516. break;
  1517. case 16:
  1518. if (fb->depth == 15)
  1519. dspcntr |= DISPPLANE_15_16BPP;
  1520. else
  1521. dspcntr |= DISPPLANE_16BPP;
  1522. break;
  1523. case 24:
  1524. case 32:
  1525. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1526. break;
  1527. default:
  1528. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1529. return -EINVAL;
  1530. }
  1531. if (INTEL_INFO(dev)->gen >= 4) {
  1532. if (obj->tiling_mode != I915_TILING_NONE)
  1533. dspcntr |= DISPPLANE_TILED;
  1534. else
  1535. dspcntr &= ~DISPPLANE_TILED;
  1536. }
  1537. I915_WRITE(reg, dspcntr);
  1538. Start = obj->gtt_offset;
  1539. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1540. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1541. Start, Offset, x, y, fb->pitches[0]);
  1542. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1543. if (INTEL_INFO(dev)->gen >= 4) {
  1544. I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
  1545. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1546. I915_WRITE(DSPADDR(plane), Offset);
  1547. } else
  1548. I915_WRITE(DSPADDR(plane), Start + Offset);
  1549. POSTING_READ(reg);
  1550. return 0;
  1551. }
  1552. static int ironlake_update_plane(struct drm_crtc *crtc,
  1553. struct drm_framebuffer *fb, int x, int y)
  1554. {
  1555. struct drm_device *dev = crtc->dev;
  1556. struct drm_i915_private *dev_priv = dev->dev_private;
  1557. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1558. struct intel_framebuffer *intel_fb;
  1559. struct drm_i915_gem_object *obj;
  1560. int plane = intel_crtc->plane;
  1561. unsigned long Start, Offset;
  1562. u32 dspcntr;
  1563. u32 reg;
  1564. switch (plane) {
  1565. case 0:
  1566. case 1:
  1567. case 2:
  1568. break;
  1569. default:
  1570. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1571. return -EINVAL;
  1572. }
  1573. intel_fb = to_intel_framebuffer(fb);
  1574. obj = intel_fb->obj;
  1575. reg = DSPCNTR(plane);
  1576. dspcntr = I915_READ(reg);
  1577. /* Mask out pixel format bits in case we change it */
  1578. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1579. switch (fb->bits_per_pixel) {
  1580. case 8:
  1581. dspcntr |= DISPPLANE_8BPP;
  1582. break;
  1583. case 16:
  1584. if (fb->depth != 16)
  1585. return -EINVAL;
  1586. dspcntr |= DISPPLANE_16BPP;
  1587. break;
  1588. case 24:
  1589. case 32:
  1590. if (fb->depth == 24)
  1591. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1592. else if (fb->depth == 30)
  1593. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1594. else
  1595. return -EINVAL;
  1596. break;
  1597. default:
  1598. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1599. return -EINVAL;
  1600. }
  1601. if (obj->tiling_mode != I915_TILING_NONE)
  1602. dspcntr |= DISPPLANE_TILED;
  1603. else
  1604. dspcntr &= ~DISPPLANE_TILED;
  1605. /* must disable */
  1606. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1607. I915_WRITE(reg, dspcntr);
  1608. Start = obj->gtt_offset;
  1609. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1610. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1611. Start, Offset, x, y, fb->pitches[0]);
  1612. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1613. I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
  1614. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1615. I915_WRITE(DSPADDR(plane), Offset);
  1616. POSTING_READ(reg);
  1617. return 0;
  1618. }
  1619. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1620. static int
  1621. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1622. int x, int y, enum mode_set_atomic state)
  1623. {
  1624. struct drm_device *dev = crtc->dev;
  1625. struct drm_i915_private *dev_priv = dev->dev_private;
  1626. if (dev_priv->display.disable_fbc)
  1627. dev_priv->display.disable_fbc(dev);
  1628. intel_increase_pllclock(crtc);
  1629. return dev_priv->display.update_plane(crtc, fb, x, y);
  1630. }
  1631. static int
  1632. intel_finish_fb(struct drm_framebuffer *old_fb)
  1633. {
  1634. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1635. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1636. bool was_interruptible = dev_priv->mm.interruptible;
  1637. int ret;
  1638. wait_event(dev_priv->pending_flip_queue,
  1639. atomic_read(&dev_priv->mm.wedged) ||
  1640. atomic_read(&obj->pending_flip) == 0);
  1641. /* Big Hammer, we also need to ensure that any pending
  1642. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1643. * current scanout is retired before unpinning the old
  1644. * framebuffer.
  1645. *
  1646. * This should only fail upon a hung GPU, in which case we
  1647. * can safely continue.
  1648. */
  1649. dev_priv->mm.interruptible = false;
  1650. ret = i915_gem_object_finish_gpu(obj);
  1651. dev_priv->mm.interruptible = was_interruptible;
  1652. return ret;
  1653. }
  1654. static int
  1655. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1656. struct drm_framebuffer *old_fb)
  1657. {
  1658. struct drm_device *dev = crtc->dev;
  1659. struct drm_i915_private *dev_priv = dev->dev_private;
  1660. struct drm_i915_master_private *master_priv;
  1661. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1662. int ret;
  1663. /* no fb bound */
  1664. if (!crtc->fb) {
  1665. DRM_ERROR("No FB bound\n");
  1666. return 0;
  1667. }
  1668. switch (intel_crtc->plane) {
  1669. case 0:
  1670. case 1:
  1671. break;
  1672. case 2:
  1673. if (IS_IVYBRIDGE(dev))
  1674. break;
  1675. /* fall through otherwise */
  1676. default:
  1677. DRM_ERROR("no plane for crtc\n");
  1678. return -EINVAL;
  1679. }
  1680. mutex_lock(&dev->struct_mutex);
  1681. ret = intel_pin_and_fence_fb_obj(dev,
  1682. to_intel_framebuffer(crtc->fb)->obj,
  1683. NULL);
  1684. if (ret != 0) {
  1685. mutex_unlock(&dev->struct_mutex);
  1686. DRM_ERROR("pin & fence failed\n");
  1687. return ret;
  1688. }
  1689. if (old_fb)
  1690. intel_finish_fb(old_fb);
  1691. ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
  1692. if (ret) {
  1693. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  1694. mutex_unlock(&dev->struct_mutex);
  1695. DRM_ERROR("failed to update base address\n");
  1696. return ret;
  1697. }
  1698. if (old_fb) {
  1699. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1700. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1701. }
  1702. intel_update_fbc(dev);
  1703. mutex_unlock(&dev->struct_mutex);
  1704. if (!dev->primary->master)
  1705. return 0;
  1706. master_priv = dev->primary->master->driver_priv;
  1707. if (!master_priv->sarea_priv)
  1708. return 0;
  1709. if (intel_crtc->pipe) {
  1710. master_priv->sarea_priv->pipeB_x = x;
  1711. master_priv->sarea_priv->pipeB_y = y;
  1712. } else {
  1713. master_priv->sarea_priv->pipeA_x = x;
  1714. master_priv->sarea_priv->pipeA_y = y;
  1715. }
  1716. return 0;
  1717. }
  1718. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1719. {
  1720. struct drm_device *dev = crtc->dev;
  1721. struct drm_i915_private *dev_priv = dev->dev_private;
  1722. u32 dpa_ctl;
  1723. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1724. dpa_ctl = I915_READ(DP_A);
  1725. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1726. if (clock < 200000) {
  1727. u32 temp;
  1728. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1729. /* workaround for 160Mhz:
  1730. 1) program 0x4600c bits 15:0 = 0x8124
  1731. 2) program 0x46010 bit 0 = 1
  1732. 3) program 0x46034 bit 24 = 1
  1733. 4) program 0x64000 bit 14 = 1
  1734. */
  1735. temp = I915_READ(0x4600c);
  1736. temp &= 0xffff0000;
  1737. I915_WRITE(0x4600c, temp | 0x8124);
  1738. temp = I915_READ(0x46010);
  1739. I915_WRITE(0x46010, temp | 1);
  1740. temp = I915_READ(0x46034);
  1741. I915_WRITE(0x46034, temp | (1 << 24));
  1742. } else {
  1743. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1744. }
  1745. I915_WRITE(DP_A, dpa_ctl);
  1746. POSTING_READ(DP_A);
  1747. udelay(500);
  1748. }
  1749. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1750. {
  1751. struct drm_device *dev = crtc->dev;
  1752. struct drm_i915_private *dev_priv = dev->dev_private;
  1753. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1754. int pipe = intel_crtc->pipe;
  1755. u32 reg, temp;
  1756. /* enable normal train */
  1757. reg = FDI_TX_CTL(pipe);
  1758. temp = I915_READ(reg);
  1759. if (IS_IVYBRIDGE(dev)) {
  1760. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1761. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1762. } else {
  1763. temp &= ~FDI_LINK_TRAIN_NONE;
  1764. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1765. }
  1766. I915_WRITE(reg, temp);
  1767. reg = FDI_RX_CTL(pipe);
  1768. temp = I915_READ(reg);
  1769. if (HAS_PCH_CPT(dev)) {
  1770. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1771. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1772. } else {
  1773. temp &= ~FDI_LINK_TRAIN_NONE;
  1774. temp |= FDI_LINK_TRAIN_NONE;
  1775. }
  1776. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1777. /* wait one idle pattern time */
  1778. POSTING_READ(reg);
  1779. udelay(1000);
  1780. /* IVB wants error correction enabled */
  1781. if (IS_IVYBRIDGE(dev))
  1782. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1783. FDI_FE_ERRC_ENABLE);
  1784. }
  1785. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  1786. {
  1787. struct drm_i915_private *dev_priv = dev->dev_private;
  1788. u32 flags = I915_READ(SOUTH_CHICKEN1);
  1789. flags |= FDI_PHASE_SYNC_OVR(pipe);
  1790. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  1791. flags |= FDI_PHASE_SYNC_EN(pipe);
  1792. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  1793. POSTING_READ(SOUTH_CHICKEN1);
  1794. }
  1795. /* The FDI link training functions for ILK/Ibexpeak. */
  1796. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1797. {
  1798. struct drm_device *dev = crtc->dev;
  1799. struct drm_i915_private *dev_priv = dev->dev_private;
  1800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1801. int pipe = intel_crtc->pipe;
  1802. int plane = intel_crtc->plane;
  1803. u32 reg, temp, tries;
  1804. /* FDI needs bits from pipe & plane first */
  1805. assert_pipe_enabled(dev_priv, pipe);
  1806. assert_plane_enabled(dev_priv, plane);
  1807. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1808. for train result */
  1809. reg = FDI_RX_IMR(pipe);
  1810. temp = I915_READ(reg);
  1811. temp &= ~FDI_RX_SYMBOL_LOCK;
  1812. temp &= ~FDI_RX_BIT_LOCK;
  1813. I915_WRITE(reg, temp);
  1814. I915_READ(reg);
  1815. udelay(150);
  1816. /* enable CPU FDI TX and PCH FDI RX */
  1817. reg = FDI_TX_CTL(pipe);
  1818. temp = I915_READ(reg);
  1819. temp &= ~(7 << 19);
  1820. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1821. temp &= ~FDI_LINK_TRAIN_NONE;
  1822. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1823. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1824. reg = FDI_RX_CTL(pipe);
  1825. temp = I915_READ(reg);
  1826. temp &= ~FDI_LINK_TRAIN_NONE;
  1827. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1828. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1829. POSTING_READ(reg);
  1830. udelay(150);
  1831. /* Ironlake workaround, enable clock pointer after FDI enable*/
  1832. if (HAS_PCH_IBX(dev)) {
  1833. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  1834. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  1835. FDI_RX_PHASE_SYNC_POINTER_EN);
  1836. }
  1837. reg = FDI_RX_IIR(pipe);
  1838. for (tries = 0; tries < 5; tries++) {
  1839. temp = I915_READ(reg);
  1840. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1841. if ((temp & FDI_RX_BIT_LOCK)) {
  1842. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1843. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1844. break;
  1845. }
  1846. }
  1847. if (tries == 5)
  1848. DRM_ERROR("FDI train 1 fail!\n");
  1849. /* Train 2 */
  1850. reg = FDI_TX_CTL(pipe);
  1851. temp = I915_READ(reg);
  1852. temp &= ~FDI_LINK_TRAIN_NONE;
  1853. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1854. I915_WRITE(reg, temp);
  1855. reg = FDI_RX_CTL(pipe);
  1856. temp = I915_READ(reg);
  1857. temp &= ~FDI_LINK_TRAIN_NONE;
  1858. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1859. I915_WRITE(reg, temp);
  1860. POSTING_READ(reg);
  1861. udelay(150);
  1862. reg = FDI_RX_IIR(pipe);
  1863. for (tries = 0; tries < 5; tries++) {
  1864. temp = I915_READ(reg);
  1865. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1866. if (temp & FDI_RX_SYMBOL_LOCK) {
  1867. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1868. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1869. break;
  1870. }
  1871. }
  1872. if (tries == 5)
  1873. DRM_ERROR("FDI train 2 fail!\n");
  1874. DRM_DEBUG_KMS("FDI train done\n");
  1875. }
  1876. static const int snb_b_fdi_train_param[] = {
  1877. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1878. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1879. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1880. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1881. };
  1882. /* The FDI link training functions for SNB/Cougarpoint. */
  1883. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1884. {
  1885. struct drm_device *dev = crtc->dev;
  1886. struct drm_i915_private *dev_priv = dev->dev_private;
  1887. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1888. int pipe = intel_crtc->pipe;
  1889. u32 reg, temp, i, retry;
  1890. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1891. for train result */
  1892. reg = FDI_RX_IMR(pipe);
  1893. temp = I915_READ(reg);
  1894. temp &= ~FDI_RX_SYMBOL_LOCK;
  1895. temp &= ~FDI_RX_BIT_LOCK;
  1896. I915_WRITE(reg, temp);
  1897. POSTING_READ(reg);
  1898. udelay(150);
  1899. /* enable CPU FDI TX and PCH FDI RX */
  1900. reg = FDI_TX_CTL(pipe);
  1901. temp = I915_READ(reg);
  1902. temp &= ~(7 << 19);
  1903. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1904. temp &= ~FDI_LINK_TRAIN_NONE;
  1905. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1906. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1907. /* SNB-B */
  1908. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1909. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1910. reg = FDI_RX_CTL(pipe);
  1911. temp = I915_READ(reg);
  1912. if (HAS_PCH_CPT(dev)) {
  1913. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1914. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1915. } else {
  1916. temp &= ~FDI_LINK_TRAIN_NONE;
  1917. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1918. }
  1919. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1920. POSTING_READ(reg);
  1921. udelay(150);
  1922. if (HAS_PCH_CPT(dev))
  1923. cpt_phase_pointer_enable(dev, pipe);
  1924. for (i = 0; i < 4; i++) {
  1925. reg = FDI_TX_CTL(pipe);
  1926. temp = I915_READ(reg);
  1927. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1928. temp |= snb_b_fdi_train_param[i];
  1929. I915_WRITE(reg, temp);
  1930. POSTING_READ(reg);
  1931. udelay(500);
  1932. for (retry = 0; retry < 5; retry++) {
  1933. reg = FDI_RX_IIR(pipe);
  1934. temp = I915_READ(reg);
  1935. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1936. if (temp & FDI_RX_BIT_LOCK) {
  1937. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1938. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1939. break;
  1940. }
  1941. udelay(50);
  1942. }
  1943. if (retry < 5)
  1944. break;
  1945. }
  1946. if (i == 4)
  1947. DRM_ERROR("FDI train 1 fail!\n");
  1948. /* Train 2 */
  1949. reg = FDI_TX_CTL(pipe);
  1950. temp = I915_READ(reg);
  1951. temp &= ~FDI_LINK_TRAIN_NONE;
  1952. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1953. if (IS_GEN6(dev)) {
  1954. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1955. /* SNB-B */
  1956. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1957. }
  1958. I915_WRITE(reg, temp);
  1959. reg = FDI_RX_CTL(pipe);
  1960. temp = I915_READ(reg);
  1961. if (HAS_PCH_CPT(dev)) {
  1962. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1963. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1964. } else {
  1965. temp &= ~FDI_LINK_TRAIN_NONE;
  1966. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1967. }
  1968. I915_WRITE(reg, temp);
  1969. POSTING_READ(reg);
  1970. udelay(150);
  1971. for (i = 0; i < 4; i++) {
  1972. reg = FDI_TX_CTL(pipe);
  1973. temp = I915_READ(reg);
  1974. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1975. temp |= snb_b_fdi_train_param[i];
  1976. I915_WRITE(reg, temp);
  1977. POSTING_READ(reg);
  1978. udelay(500);
  1979. for (retry = 0; retry < 5; retry++) {
  1980. reg = FDI_RX_IIR(pipe);
  1981. temp = I915_READ(reg);
  1982. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1983. if (temp & FDI_RX_SYMBOL_LOCK) {
  1984. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1985. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1986. break;
  1987. }
  1988. udelay(50);
  1989. }
  1990. if (retry < 5)
  1991. break;
  1992. }
  1993. if (i == 4)
  1994. DRM_ERROR("FDI train 2 fail!\n");
  1995. DRM_DEBUG_KMS("FDI train done.\n");
  1996. }
  1997. /* Manual link training for Ivy Bridge A0 parts */
  1998. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  1999. {
  2000. struct drm_device *dev = crtc->dev;
  2001. struct drm_i915_private *dev_priv = dev->dev_private;
  2002. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2003. int pipe = intel_crtc->pipe;
  2004. u32 reg, temp, i;
  2005. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2006. for train result */
  2007. reg = FDI_RX_IMR(pipe);
  2008. temp = I915_READ(reg);
  2009. temp &= ~FDI_RX_SYMBOL_LOCK;
  2010. temp &= ~FDI_RX_BIT_LOCK;
  2011. I915_WRITE(reg, temp);
  2012. POSTING_READ(reg);
  2013. udelay(150);
  2014. /* enable CPU FDI TX and PCH FDI RX */
  2015. reg = FDI_TX_CTL(pipe);
  2016. temp = I915_READ(reg);
  2017. temp &= ~(7 << 19);
  2018. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2019. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2020. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2021. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2022. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2023. temp |= FDI_COMPOSITE_SYNC;
  2024. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2025. reg = FDI_RX_CTL(pipe);
  2026. temp = I915_READ(reg);
  2027. temp &= ~FDI_LINK_TRAIN_AUTO;
  2028. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2029. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2030. temp |= FDI_COMPOSITE_SYNC;
  2031. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2032. POSTING_READ(reg);
  2033. udelay(150);
  2034. if (HAS_PCH_CPT(dev))
  2035. cpt_phase_pointer_enable(dev, pipe);
  2036. for (i = 0; i < 4; i++) {
  2037. reg = FDI_TX_CTL(pipe);
  2038. temp = I915_READ(reg);
  2039. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2040. temp |= snb_b_fdi_train_param[i];
  2041. I915_WRITE(reg, temp);
  2042. POSTING_READ(reg);
  2043. udelay(500);
  2044. reg = FDI_RX_IIR(pipe);
  2045. temp = I915_READ(reg);
  2046. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2047. if (temp & FDI_RX_BIT_LOCK ||
  2048. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2049. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2050. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2051. break;
  2052. }
  2053. }
  2054. if (i == 4)
  2055. DRM_ERROR("FDI train 1 fail!\n");
  2056. /* Train 2 */
  2057. reg = FDI_TX_CTL(pipe);
  2058. temp = I915_READ(reg);
  2059. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2060. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2061. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2062. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2063. I915_WRITE(reg, temp);
  2064. reg = FDI_RX_CTL(pipe);
  2065. temp = I915_READ(reg);
  2066. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2067. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2068. I915_WRITE(reg, temp);
  2069. POSTING_READ(reg);
  2070. udelay(150);
  2071. for (i = 0; i < 4; i++) {
  2072. reg = FDI_TX_CTL(pipe);
  2073. temp = I915_READ(reg);
  2074. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2075. temp |= snb_b_fdi_train_param[i];
  2076. I915_WRITE(reg, temp);
  2077. POSTING_READ(reg);
  2078. udelay(500);
  2079. reg = FDI_RX_IIR(pipe);
  2080. temp = I915_READ(reg);
  2081. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2082. if (temp & FDI_RX_SYMBOL_LOCK) {
  2083. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2084. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2085. break;
  2086. }
  2087. }
  2088. if (i == 4)
  2089. DRM_ERROR("FDI train 2 fail!\n");
  2090. DRM_DEBUG_KMS("FDI train done.\n");
  2091. }
  2092. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2093. {
  2094. struct drm_device *dev = crtc->dev;
  2095. struct drm_i915_private *dev_priv = dev->dev_private;
  2096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2097. int pipe = intel_crtc->pipe;
  2098. u32 reg, temp;
  2099. /* Write the TU size bits so error detection works */
  2100. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2101. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2102. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2103. reg = FDI_RX_CTL(pipe);
  2104. temp = I915_READ(reg);
  2105. temp &= ~((0x7 << 19) | (0x7 << 16));
  2106. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2107. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2108. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2109. POSTING_READ(reg);
  2110. udelay(200);
  2111. /* Switch from Rawclk to PCDclk */
  2112. temp = I915_READ(reg);
  2113. I915_WRITE(reg, temp | FDI_PCDCLK);
  2114. POSTING_READ(reg);
  2115. udelay(200);
  2116. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2117. reg = FDI_TX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2120. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2121. POSTING_READ(reg);
  2122. udelay(100);
  2123. }
  2124. }
  2125. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2126. {
  2127. struct drm_i915_private *dev_priv = dev->dev_private;
  2128. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2129. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2130. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2131. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2132. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2133. POSTING_READ(SOUTH_CHICKEN1);
  2134. }
  2135. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2136. {
  2137. struct drm_device *dev = crtc->dev;
  2138. struct drm_i915_private *dev_priv = dev->dev_private;
  2139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2140. int pipe = intel_crtc->pipe;
  2141. u32 reg, temp;
  2142. /* disable CPU FDI tx and PCH FDI rx */
  2143. reg = FDI_TX_CTL(pipe);
  2144. temp = I915_READ(reg);
  2145. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2146. POSTING_READ(reg);
  2147. reg = FDI_RX_CTL(pipe);
  2148. temp = I915_READ(reg);
  2149. temp &= ~(0x7 << 16);
  2150. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2151. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2152. POSTING_READ(reg);
  2153. udelay(100);
  2154. /* Ironlake workaround, disable clock pointer after downing FDI */
  2155. if (HAS_PCH_IBX(dev)) {
  2156. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2157. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2158. I915_READ(FDI_RX_CHICKEN(pipe) &
  2159. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2160. } else if (HAS_PCH_CPT(dev)) {
  2161. cpt_phase_pointer_disable(dev, pipe);
  2162. }
  2163. /* still set train pattern 1 */
  2164. reg = FDI_TX_CTL(pipe);
  2165. temp = I915_READ(reg);
  2166. temp &= ~FDI_LINK_TRAIN_NONE;
  2167. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2168. I915_WRITE(reg, temp);
  2169. reg = FDI_RX_CTL(pipe);
  2170. temp = I915_READ(reg);
  2171. if (HAS_PCH_CPT(dev)) {
  2172. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2173. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2174. } else {
  2175. temp &= ~FDI_LINK_TRAIN_NONE;
  2176. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2177. }
  2178. /* BPC in FDI rx is consistent with that in PIPECONF */
  2179. temp &= ~(0x07 << 16);
  2180. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2181. I915_WRITE(reg, temp);
  2182. POSTING_READ(reg);
  2183. udelay(100);
  2184. }
  2185. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2186. {
  2187. struct drm_device *dev = crtc->dev;
  2188. if (crtc->fb == NULL)
  2189. return;
  2190. mutex_lock(&dev->struct_mutex);
  2191. intel_finish_fb(crtc->fb);
  2192. mutex_unlock(&dev->struct_mutex);
  2193. }
  2194. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2195. {
  2196. struct drm_device *dev = crtc->dev;
  2197. struct drm_mode_config *mode_config = &dev->mode_config;
  2198. struct intel_encoder *encoder;
  2199. /*
  2200. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2201. * must be driven by its own crtc; no sharing is possible.
  2202. */
  2203. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2204. if (encoder->base.crtc != crtc)
  2205. continue;
  2206. switch (encoder->type) {
  2207. case INTEL_OUTPUT_EDP:
  2208. if (!intel_encoder_is_pch_edp(&encoder->base))
  2209. return false;
  2210. continue;
  2211. }
  2212. }
  2213. return true;
  2214. }
  2215. /*
  2216. * Enable PCH resources required for PCH ports:
  2217. * - PCH PLLs
  2218. * - FDI training & RX/TX
  2219. * - update transcoder timings
  2220. * - DP transcoding bits
  2221. * - transcoder
  2222. */
  2223. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2224. {
  2225. struct drm_device *dev = crtc->dev;
  2226. struct drm_i915_private *dev_priv = dev->dev_private;
  2227. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2228. int pipe = intel_crtc->pipe;
  2229. u32 reg, temp;
  2230. /* For PCH output, training FDI link */
  2231. dev_priv->display.fdi_link_train(crtc);
  2232. intel_enable_pch_pll(intel_crtc);
  2233. if (HAS_PCH_CPT(dev)) {
  2234. u32 sel;
  2235. temp = I915_READ(PCH_DPLL_SEL);
  2236. switch (pipe) {
  2237. default:
  2238. case 0:
  2239. temp |= TRANSA_DPLL_ENABLE;
  2240. sel = TRANSA_DPLLB_SEL;
  2241. break;
  2242. case 1:
  2243. temp |= TRANSB_DPLL_ENABLE;
  2244. sel = TRANSB_DPLLB_SEL;
  2245. break;
  2246. case 2:
  2247. temp |= TRANSC_DPLL_ENABLE;
  2248. sel = TRANSC_DPLLB_SEL;
  2249. break;
  2250. }
  2251. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2252. temp |= sel;
  2253. else
  2254. temp &= ~sel;
  2255. I915_WRITE(PCH_DPLL_SEL, temp);
  2256. }
  2257. /* set transcoder timing, panel must allow it */
  2258. assert_panel_unlocked(dev_priv, pipe);
  2259. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2260. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2261. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2262. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2263. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2264. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2265. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2266. intel_fdi_normal_train(crtc);
  2267. /* For PCH DP, enable TRANS_DP_CTL */
  2268. if (HAS_PCH_CPT(dev) &&
  2269. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2270. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2271. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2272. reg = TRANS_DP_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2275. TRANS_DP_SYNC_MASK |
  2276. TRANS_DP_BPC_MASK);
  2277. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2278. TRANS_DP_ENH_FRAMING);
  2279. temp |= bpc << 9; /* same format but at 11:9 */
  2280. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2281. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2282. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2283. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2284. switch (intel_trans_dp_port_sel(crtc)) {
  2285. case PCH_DP_B:
  2286. temp |= TRANS_DP_PORT_SEL_B;
  2287. break;
  2288. case PCH_DP_C:
  2289. temp |= TRANS_DP_PORT_SEL_C;
  2290. break;
  2291. case PCH_DP_D:
  2292. temp |= TRANS_DP_PORT_SEL_D;
  2293. break;
  2294. default:
  2295. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2296. temp |= TRANS_DP_PORT_SEL_B;
  2297. break;
  2298. }
  2299. I915_WRITE(reg, temp);
  2300. }
  2301. intel_enable_transcoder(dev_priv, pipe);
  2302. }
  2303. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2304. {
  2305. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2306. if (pll == NULL)
  2307. return;
  2308. if (pll->refcount == 0) {
  2309. WARN(1, "bad PCH PLL refcount\n");
  2310. return;
  2311. }
  2312. --pll->refcount;
  2313. intel_crtc->pch_pll = NULL;
  2314. }
  2315. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2316. {
  2317. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2318. struct intel_pch_pll *pll;
  2319. int i;
  2320. pll = intel_crtc->pch_pll;
  2321. if (pll) {
  2322. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2323. intel_crtc->base.base.id, pll->pll_reg);
  2324. goto prepare;
  2325. }
  2326. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2327. pll = &dev_priv->pch_plls[i];
  2328. /* Only want to check enabled timings first */
  2329. if (pll->refcount == 0)
  2330. continue;
  2331. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2332. fp == I915_READ(pll->fp0_reg)) {
  2333. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2334. intel_crtc->base.base.id,
  2335. pll->pll_reg, pll->refcount, pll->active);
  2336. goto found;
  2337. }
  2338. }
  2339. /* Ok no matching timings, maybe there's a free one? */
  2340. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2341. pll = &dev_priv->pch_plls[i];
  2342. if (pll->refcount == 0) {
  2343. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2344. intel_crtc->base.base.id, pll->pll_reg);
  2345. goto found;
  2346. }
  2347. }
  2348. return NULL;
  2349. found:
  2350. intel_crtc->pch_pll = pll;
  2351. pll->refcount++;
  2352. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2353. prepare: /* separate function? */
  2354. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2355. /* Wait for the clocks to stabilize before rewriting the regs */
  2356. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2357. POSTING_READ(pll->pll_reg);
  2358. udelay(150);
  2359. I915_WRITE(pll->fp0_reg, fp);
  2360. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2361. pll->on = false;
  2362. return pll;
  2363. }
  2364. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2365. {
  2366. struct drm_i915_private *dev_priv = dev->dev_private;
  2367. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2368. u32 temp;
  2369. temp = I915_READ(dslreg);
  2370. udelay(500);
  2371. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2372. /* Without this, mode sets may fail silently on FDI */
  2373. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2374. udelay(250);
  2375. I915_WRITE(tc2reg, 0);
  2376. if (wait_for(I915_READ(dslreg) != temp, 5))
  2377. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2378. }
  2379. }
  2380. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2381. {
  2382. struct drm_device *dev = crtc->dev;
  2383. struct drm_i915_private *dev_priv = dev->dev_private;
  2384. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2385. int pipe = intel_crtc->pipe;
  2386. int plane = intel_crtc->plane;
  2387. u32 temp;
  2388. bool is_pch_port;
  2389. if (intel_crtc->active)
  2390. return;
  2391. intel_crtc->active = true;
  2392. intel_update_watermarks(dev);
  2393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2394. temp = I915_READ(PCH_LVDS);
  2395. if ((temp & LVDS_PORT_EN) == 0)
  2396. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2397. }
  2398. is_pch_port = intel_crtc_driving_pch(crtc);
  2399. if (is_pch_port)
  2400. ironlake_fdi_pll_enable(crtc);
  2401. else
  2402. ironlake_fdi_disable(crtc);
  2403. /* Enable panel fitting for LVDS */
  2404. if (dev_priv->pch_pf_size &&
  2405. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2406. /* Force use of hard-coded filter coefficients
  2407. * as some pre-programmed values are broken,
  2408. * e.g. x201.
  2409. */
  2410. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2411. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2412. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2413. }
  2414. /*
  2415. * On ILK+ LUT must be loaded before the pipe is running but with
  2416. * clocks enabled
  2417. */
  2418. intel_crtc_load_lut(crtc);
  2419. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2420. intel_enable_plane(dev_priv, plane, pipe);
  2421. if (is_pch_port)
  2422. ironlake_pch_enable(crtc);
  2423. mutex_lock(&dev->struct_mutex);
  2424. intel_update_fbc(dev);
  2425. mutex_unlock(&dev->struct_mutex);
  2426. intel_crtc_update_cursor(crtc, true);
  2427. }
  2428. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2429. {
  2430. struct drm_device *dev = crtc->dev;
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2433. int pipe = intel_crtc->pipe;
  2434. int plane = intel_crtc->plane;
  2435. u32 reg, temp;
  2436. if (!intel_crtc->active)
  2437. return;
  2438. intel_crtc_wait_for_pending_flips(crtc);
  2439. drm_vblank_off(dev, pipe);
  2440. intel_crtc_update_cursor(crtc, false);
  2441. intel_disable_plane(dev_priv, plane, pipe);
  2442. if (dev_priv->cfb_plane == plane)
  2443. intel_disable_fbc(dev);
  2444. intel_disable_pipe(dev_priv, pipe);
  2445. /* Disable PF */
  2446. I915_WRITE(PF_CTL(pipe), 0);
  2447. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2448. ironlake_fdi_disable(crtc);
  2449. /* This is a horrible layering violation; we should be doing this in
  2450. * the connector/encoder ->prepare instead, but we don't always have
  2451. * enough information there about the config to know whether it will
  2452. * actually be necessary or just cause undesired flicker.
  2453. */
  2454. intel_disable_pch_ports(dev_priv, pipe);
  2455. intel_disable_transcoder(dev_priv, pipe);
  2456. if (HAS_PCH_CPT(dev)) {
  2457. /* disable TRANS_DP_CTL */
  2458. reg = TRANS_DP_CTL(pipe);
  2459. temp = I915_READ(reg);
  2460. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2461. temp |= TRANS_DP_PORT_SEL_NONE;
  2462. I915_WRITE(reg, temp);
  2463. /* disable DPLL_SEL */
  2464. temp = I915_READ(PCH_DPLL_SEL);
  2465. switch (pipe) {
  2466. case 0:
  2467. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2468. break;
  2469. case 1:
  2470. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2471. break;
  2472. case 2:
  2473. /* C shares PLL A or B */
  2474. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2475. break;
  2476. default:
  2477. BUG(); /* wtf */
  2478. }
  2479. I915_WRITE(PCH_DPLL_SEL, temp);
  2480. }
  2481. /* disable PCH DPLL */
  2482. intel_disable_pch_pll(intel_crtc);
  2483. /* Switch from PCDclk to Rawclk */
  2484. reg = FDI_RX_CTL(pipe);
  2485. temp = I915_READ(reg);
  2486. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2487. /* Disable CPU FDI TX PLL */
  2488. reg = FDI_TX_CTL(pipe);
  2489. temp = I915_READ(reg);
  2490. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2491. POSTING_READ(reg);
  2492. udelay(100);
  2493. reg = FDI_RX_CTL(pipe);
  2494. temp = I915_READ(reg);
  2495. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2496. /* Wait for the clocks to turn off. */
  2497. POSTING_READ(reg);
  2498. udelay(100);
  2499. intel_crtc->active = false;
  2500. intel_update_watermarks(dev);
  2501. mutex_lock(&dev->struct_mutex);
  2502. intel_update_fbc(dev);
  2503. mutex_unlock(&dev->struct_mutex);
  2504. }
  2505. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2506. {
  2507. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2508. int pipe = intel_crtc->pipe;
  2509. int plane = intel_crtc->plane;
  2510. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2511. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2512. */
  2513. switch (mode) {
  2514. case DRM_MODE_DPMS_ON:
  2515. case DRM_MODE_DPMS_STANDBY:
  2516. case DRM_MODE_DPMS_SUSPEND:
  2517. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2518. ironlake_crtc_enable(crtc);
  2519. break;
  2520. case DRM_MODE_DPMS_OFF:
  2521. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2522. ironlake_crtc_disable(crtc);
  2523. break;
  2524. }
  2525. }
  2526. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2527. {
  2528. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2529. intel_put_pch_pll(intel_crtc);
  2530. }
  2531. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2532. {
  2533. if (!enable && intel_crtc->overlay) {
  2534. struct drm_device *dev = intel_crtc->base.dev;
  2535. struct drm_i915_private *dev_priv = dev->dev_private;
  2536. mutex_lock(&dev->struct_mutex);
  2537. dev_priv->mm.interruptible = false;
  2538. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2539. dev_priv->mm.interruptible = true;
  2540. mutex_unlock(&dev->struct_mutex);
  2541. }
  2542. /* Let userspace switch the overlay on again. In most cases userspace
  2543. * has to recompute where to put it anyway.
  2544. */
  2545. }
  2546. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2547. {
  2548. struct drm_device *dev = crtc->dev;
  2549. struct drm_i915_private *dev_priv = dev->dev_private;
  2550. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2551. int pipe = intel_crtc->pipe;
  2552. int plane = intel_crtc->plane;
  2553. if (intel_crtc->active)
  2554. return;
  2555. intel_crtc->active = true;
  2556. intel_update_watermarks(dev);
  2557. intel_enable_pll(dev_priv, pipe);
  2558. intel_enable_pipe(dev_priv, pipe, false);
  2559. intel_enable_plane(dev_priv, plane, pipe);
  2560. intel_crtc_load_lut(crtc);
  2561. intel_update_fbc(dev);
  2562. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2563. intel_crtc_dpms_overlay(intel_crtc, true);
  2564. intel_crtc_update_cursor(crtc, true);
  2565. }
  2566. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2567. {
  2568. struct drm_device *dev = crtc->dev;
  2569. struct drm_i915_private *dev_priv = dev->dev_private;
  2570. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2571. int pipe = intel_crtc->pipe;
  2572. int plane = intel_crtc->plane;
  2573. if (!intel_crtc->active)
  2574. return;
  2575. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2576. intel_crtc_wait_for_pending_flips(crtc);
  2577. drm_vblank_off(dev, pipe);
  2578. intel_crtc_dpms_overlay(intel_crtc, false);
  2579. intel_crtc_update_cursor(crtc, false);
  2580. if (dev_priv->cfb_plane == plane)
  2581. intel_disable_fbc(dev);
  2582. intel_disable_plane(dev_priv, plane, pipe);
  2583. intel_disable_pipe(dev_priv, pipe);
  2584. intel_disable_pll(dev_priv, pipe);
  2585. intel_crtc->active = false;
  2586. intel_update_fbc(dev);
  2587. intel_update_watermarks(dev);
  2588. }
  2589. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2590. {
  2591. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2592. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2593. */
  2594. switch (mode) {
  2595. case DRM_MODE_DPMS_ON:
  2596. case DRM_MODE_DPMS_STANDBY:
  2597. case DRM_MODE_DPMS_SUSPEND:
  2598. i9xx_crtc_enable(crtc);
  2599. break;
  2600. case DRM_MODE_DPMS_OFF:
  2601. i9xx_crtc_disable(crtc);
  2602. break;
  2603. }
  2604. }
  2605. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2606. {
  2607. }
  2608. /**
  2609. * Sets the power management mode of the pipe and plane.
  2610. */
  2611. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2612. {
  2613. struct drm_device *dev = crtc->dev;
  2614. struct drm_i915_private *dev_priv = dev->dev_private;
  2615. struct drm_i915_master_private *master_priv;
  2616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2617. int pipe = intel_crtc->pipe;
  2618. bool enabled;
  2619. if (intel_crtc->dpms_mode == mode)
  2620. return;
  2621. intel_crtc->dpms_mode = mode;
  2622. dev_priv->display.dpms(crtc, mode);
  2623. if (!dev->primary->master)
  2624. return;
  2625. master_priv = dev->primary->master->driver_priv;
  2626. if (!master_priv->sarea_priv)
  2627. return;
  2628. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2629. switch (pipe) {
  2630. case 0:
  2631. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2632. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2633. break;
  2634. case 1:
  2635. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2636. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2637. break;
  2638. default:
  2639. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2640. break;
  2641. }
  2642. }
  2643. static void intel_crtc_disable(struct drm_crtc *crtc)
  2644. {
  2645. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2646. struct drm_device *dev = crtc->dev;
  2647. struct drm_i915_private *dev_priv = dev->dev_private;
  2648. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2649. dev_priv->display.off(crtc);
  2650. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  2651. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  2652. if (crtc->fb) {
  2653. mutex_lock(&dev->struct_mutex);
  2654. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2655. mutex_unlock(&dev->struct_mutex);
  2656. }
  2657. }
  2658. /* Prepare for a mode set.
  2659. *
  2660. * Note we could be a lot smarter here. We need to figure out which outputs
  2661. * will be enabled, which disabled (in short, how the config will changes)
  2662. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2663. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2664. * panel fitting is in the proper state, etc.
  2665. */
  2666. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2667. {
  2668. i9xx_crtc_disable(crtc);
  2669. }
  2670. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2671. {
  2672. i9xx_crtc_enable(crtc);
  2673. }
  2674. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2675. {
  2676. ironlake_crtc_disable(crtc);
  2677. }
  2678. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2679. {
  2680. ironlake_crtc_enable(crtc);
  2681. }
  2682. void intel_encoder_prepare(struct drm_encoder *encoder)
  2683. {
  2684. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2685. /* lvds has its own version of prepare see intel_lvds_prepare */
  2686. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2687. }
  2688. void intel_encoder_commit(struct drm_encoder *encoder)
  2689. {
  2690. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2691. struct drm_device *dev = encoder->dev;
  2692. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2693. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2694. /* lvds has its own version of commit see intel_lvds_commit */
  2695. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2696. if (HAS_PCH_CPT(dev))
  2697. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2698. }
  2699. void intel_encoder_destroy(struct drm_encoder *encoder)
  2700. {
  2701. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2702. drm_encoder_cleanup(encoder);
  2703. kfree(intel_encoder);
  2704. }
  2705. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2706. struct drm_display_mode *mode,
  2707. struct drm_display_mode *adjusted_mode)
  2708. {
  2709. struct drm_device *dev = crtc->dev;
  2710. if (HAS_PCH_SPLIT(dev)) {
  2711. /* FDI link clock is fixed at 2.7G */
  2712. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2713. return false;
  2714. }
  2715. /* All interlaced capable intel hw wants timings in frames. */
  2716. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2717. return true;
  2718. }
  2719. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  2720. {
  2721. return 400000; /* FIXME */
  2722. }
  2723. static int i945_get_display_clock_speed(struct drm_device *dev)
  2724. {
  2725. return 400000;
  2726. }
  2727. static int i915_get_display_clock_speed(struct drm_device *dev)
  2728. {
  2729. return 333000;
  2730. }
  2731. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2732. {
  2733. return 200000;
  2734. }
  2735. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2736. {
  2737. u16 gcfgc = 0;
  2738. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2739. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2740. return 133000;
  2741. else {
  2742. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2743. case GC_DISPLAY_CLOCK_333_MHZ:
  2744. return 333000;
  2745. default:
  2746. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2747. return 190000;
  2748. }
  2749. }
  2750. }
  2751. static int i865_get_display_clock_speed(struct drm_device *dev)
  2752. {
  2753. return 266000;
  2754. }
  2755. static int i855_get_display_clock_speed(struct drm_device *dev)
  2756. {
  2757. u16 hpllcc = 0;
  2758. /* Assume that the hardware is in the high speed state. This
  2759. * should be the default.
  2760. */
  2761. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2762. case GC_CLOCK_133_200:
  2763. case GC_CLOCK_100_200:
  2764. return 200000;
  2765. case GC_CLOCK_166_250:
  2766. return 250000;
  2767. case GC_CLOCK_100_133:
  2768. return 133000;
  2769. }
  2770. /* Shouldn't happen */
  2771. return 0;
  2772. }
  2773. static int i830_get_display_clock_speed(struct drm_device *dev)
  2774. {
  2775. return 133000;
  2776. }
  2777. struct fdi_m_n {
  2778. u32 tu;
  2779. u32 gmch_m;
  2780. u32 gmch_n;
  2781. u32 link_m;
  2782. u32 link_n;
  2783. };
  2784. static void
  2785. fdi_reduce_ratio(u32 *num, u32 *den)
  2786. {
  2787. while (*num > 0xffffff || *den > 0xffffff) {
  2788. *num >>= 1;
  2789. *den >>= 1;
  2790. }
  2791. }
  2792. static void
  2793. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2794. int link_clock, struct fdi_m_n *m_n)
  2795. {
  2796. m_n->tu = 64; /* default size */
  2797. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  2798. m_n->gmch_m = bits_per_pixel * pixel_clock;
  2799. m_n->gmch_n = link_clock * nlanes * 8;
  2800. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2801. m_n->link_m = pixel_clock;
  2802. m_n->link_n = link_clock;
  2803. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2804. }
  2805. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  2806. {
  2807. if (i915_panel_use_ssc >= 0)
  2808. return i915_panel_use_ssc != 0;
  2809. return dev_priv->lvds_use_ssc
  2810. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  2811. }
  2812. /**
  2813. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  2814. * @crtc: CRTC structure
  2815. * @mode: requested mode
  2816. *
  2817. * A pipe may be connected to one or more outputs. Based on the depth of the
  2818. * attached framebuffer, choose a good color depth to use on the pipe.
  2819. *
  2820. * If possible, match the pipe depth to the fb depth. In some cases, this
  2821. * isn't ideal, because the connected output supports a lesser or restricted
  2822. * set of depths. Resolve that here:
  2823. * LVDS typically supports only 6bpc, so clamp down in that case
  2824. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  2825. * Displays may support a restricted set as well, check EDID and clamp as
  2826. * appropriate.
  2827. * DP may want to dither down to 6bpc to fit larger modes
  2828. *
  2829. * RETURNS:
  2830. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  2831. * true if they don't match).
  2832. */
  2833. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  2834. unsigned int *pipe_bpp,
  2835. struct drm_display_mode *mode)
  2836. {
  2837. struct drm_device *dev = crtc->dev;
  2838. struct drm_i915_private *dev_priv = dev->dev_private;
  2839. struct drm_encoder *encoder;
  2840. struct drm_connector *connector;
  2841. unsigned int display_bpc = UINT_MAX, bpc;
  2842. /* Walk the encoders & connectors on this crtc, get min bpc */
  2843. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2844. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2845. if (encoder->crtc != crtc)
  2846. continue;
  2847. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  2848. unsigned int lvds_bpc;
  2849. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  2850. LVDS_A3_POWER_UP)
  2851. lvds_bpc = 8;
  2852. else
  2853. lvds_bpc = 6;
  2854. if (lvds_bpc < display_bpc) {
  2855. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  2856. display_bpc = lvds_bpc;
  2857. }
  2858. continue;
  2859. }
  2860. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  2861. /* Use VBT settings if we have an eDP panel */
  2862. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  2863. if (edp_bpc < display_bpc) {
  2864. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  2865. display_bpc = edp_bpc;
  2866. }
  2867. continue;
  2868. }
  2869. /* Not one of the known troublemakers, check the EDID */
  2870. list_for_each_entry(connector, &dev->mode_config.connector_list,
  2871. head) {
  2872. if (connector->encoder != encoder)
  2873. continue;
  2874. /* Don't use an invalid EDID bpc value */
  2875. if (connector->display_info.bpc &&
  2876. connector->display_info.bpc < display_bpc) {
  2877. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  2878. display_bpc = connector->display_info.bpc;
  2879. }
  2880. }
  2881. /*
  2882. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  2883. * through, clamp it down. (Note: >12bpc will be caught below.)
  2884. */
  2885. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  2886. if (display_bpc > 8 && display_bpc < 12) {
  2887. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  2888. display_bpc = 12;
  2889. } else {
  2890. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  2891. display_bpc = 8;
  2892. }
  2893. }
  2894. }
  2895. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  2896. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  2897. display_bpc = 6;
  2898. }
  2899. /*
  2900. * We could just drive the pipe at the highest bpc all the time and
  2901. * enable dithering as needed, but that costs bandwidth. So choose
  2902. * the minimum value that expresses the full color range of the fb but
  2903. * also stays within the max display bpc discovered above.
  2904. */
  2905. switch (crtc->fb->depth) {
  2906. case 8:
  2907. bpc = 8; /* since we go through a colormap */
  2908. break;
  2909. case 15:
  2910. case 16:
  2911. bpc = 6; /* min is 18bpp */
  2912. break;
  2913. case 24:
  2914. bpc = 8;
  2915. break;
  2916. case 30:
  2917. bpc = 10;
  2918. break;
  2919. case 48:
  2920. bpc = 12;
  2921. break;
  2922. default:
  2923. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  2924. bpc = min((unsigned int)8, display_bpc);
  2925. break;
  2926. }
  2927. display_bpc = min(display_bpc, bpc);
  2928. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  2929. bpc, display_bpc);
  2930. *pipe_bpp = display_bpc * 3;
  2931. return display_bpc != bpc;
  2932. }
  2933. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  2934. {
  2935. struct drm_device *dev = crtc->dev;
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. int refclk;
  2938. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  2939. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  2940. refclk = dev_priv->lvds_ssc_freq * 1000;
  2941. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  2942. refclk / 1000);
  2943. } else if (!IS_GEN2(dev)) {
  2944. refclk = 96000;
  2945. } else {
  2946. refclk = 48000;
  2947. }
  2948. return refclk;
  2949. }
  2950. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  2951. intel_clock_t *clock)
  2952. {
  2953. /* SDVO TV has fixed PLL values depend on its clock range,
  2954. this mirrors vbios setting. */
  2955. if (adjusted_mode->clock >= 100000
  2956. && adjusted_mode->clock < 140500) {
  2957. clock->p1 = 2;
  2958. clock->p2 = 10;
  2959. clock->n = 3;
  2960. clock->m1 = 16;
  2961. clock->m2 = 8;
  2962. } else if (adjusted_mode->clock >= 140500
  2963. && adjusted_mode->clock <= 200000) {
  2964. clock->p1 = 1;
  2965. clock->p2 = 10;
  2966. clock->n = 6;
  2967. clock->m1 = 12;
  2968. clock->m2 = 8;
  2969. }
  2970. }
  2971. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  2972. intel_clock_t *clock,
  2973. intel_clock_t *reduced_clock)
  2974. {
  2975. struct drm_device *dev = crtc->dev;
  2976. struct drm_i915_private *dev_priv = dev->dev_private;
  2977. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2978. int pipe = intel_crtc->pipe;
  2979. u32 fp, fp2 = 0;
  2980. if (IS_PINEVIEW(dev)) {
  2981. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  2982. if (reduced_clock)
  2983. fp2 = (1 << reduced_clock->n) << 16 |
  2984. reduced_clock->m1 << 8 | reduced_clock->m2;
  2985. } else {
  2986. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  2987. if (reduced_clock)
  2988. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  2989. reduced_clock->m2;
  2990. }
  2991. I915_WRITE(FP0(pipe), fp);
  2992. intel_crtc->lowfreq_avail = false;
  2993. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  2994. reduced_clock && i915_powersave) {
  2995. I915_WRITE(FP1(pipe), fp2);
  2996. intel_crtc->lowfreq_avail = true;
  2997. } else {
  2998. I915_WRITE(FP1(pipe), fp);
  2999. }
  3000. }
  3001. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3002. struct drm_display_mode *adjusted_mode)
  3003. {
  3004. struct drm_device *dev = crtc->dev;
  3005. struct drm_i915_private *dev_priv = dev->dev_private;
  3006. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3007. int pipe = intel_crtc->pipe;
  3008. u32 temp;
  3009. temp = I915_READ(LVDS);
  3010. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3011. if (pipe == 1) {
  3012. temp |= LVDS_PIPEB_SELECT;
  3013. } else {
  3014. temp &= ~LVDS_PIPEB_SELECT;
  3015. }
  3016. /* set the corresponsding LVDS_BORDER bit */
  3017. temp |= dev_priv->lvds_border_bits;
  3018. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3019. * set the DPLLs for dual-channel mode or not.
  3020. */
  3021. if (clock->p2 == 7)
  3022. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3023. else
  3024. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3025. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3026. * appropriately here, but we need to look more thoroughly into how
  3027. * panels behave in the two modes.
  3028. */
  3029. /* set the dithering flag on LVDS as needed */
  3030. if (INTEL_INFO(dev)->gen >= 4) {
  3031. if (dev_priv->lvds_dither)
  3032. temp |= LVDS_ENABLE_DITHER;
  3033. else
  3034. temp &= ~LVDS_ENABLE_DITHER;
  3035. }
  3036. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3037. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3038. temp |= LVDS_HSYNC_POLARITY;
  3039. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3040. temp |= LVDS_VSYNC_POLARITY;
  3041. I915_WRITE(LVDS, temp);
  3042. }
  3043. static void i9xx_update_pll(struct drm_crtc *crtc,
  3044. struct drm_display_mode *mode,
  3045. struct drm_display_mode *adjusted_mode,
  3046. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3047. int num_connectors)
  3048. {
  3049. struct drm_device *dev = crtc->dev;
  3050. struct drm_i915_private *dev_priv = dev->dev_private;
  3051. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3052. int pipe = intel_crtc->pipe;
  3053. u32 dpll;
  3054. bool is_sdvo;
  3055. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3056. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3057. dpll = DPLL_VGA_MODE_DIS;
  3058. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3059. dpll |= DPLLB_MODE_LVDS;
  3060. else
  3061. dpll |= DPLLB_MODE_DAC_SERIAL;
  3062. if (is_sdvo) {
  3063. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3064. if (pixel_multiplier > 1) {
  3065. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3066. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3067. }
  3068. dpll |= DPLL_DVO_HIGH_SPEED;
  3069. }
  3070. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3071. dpll |= DPLL_DVO_HIGH_SPEED;
  3072. /* compute bitmask from p1 value */
  3073. if (IS_PINEVIEW(dev))
  3074. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3075. else {
  3076. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3077. if (IS_G4X(dev) && reduced_clock)
  3078. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3079. }
  3080. switch (clock->p2) {
  3081. case 5:
  3082. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3083. break;
  3084. case 7:
  3085. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3086. break;
  3087. case 10:
  3088. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3089. break;
  3090. case 14:
  3091. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3092. break;
  3093. }
  3094. if (INTEL_INFO(dev)->gen >= 4)
  3095. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3096. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3097. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3098. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3099. /* XXX: just matching BIOS for now */
  3100. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3101. dpll |= 3;
  3102. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3103. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3104. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3105. else
  3106. dpll |= PLL_REF_INPUT_DREFCLK;
  3107. dpll |= DPLL_VCO_ENABLE;
  3108. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3109. POSTING_READ(DPLL(pipe));
  3110. udelay(150);
  3111. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3112. * This is an exception to the general rule that mode_set doesn't turn
  3113. * things on.
  3114. */
  3115. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3116. intel_update_lvds(crtc, clock, adjusted_mode);
  3117. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3118. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3119. I915_WRITE(DPLL(pipe), dpll);
  3120. /* Wait for the clocks to stabilize. */
  3121. POSTING_READ(DPLL(pipe));
  3122. udelay(150);
  3123. if (INTEL_INFO(dev)->gen >= 4) {
  3124. u32 temp = 0;
  3125. if (is_sdvo) {
  3126. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3127. if (temp > 1)
  3128. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3129. else
  3130. temp = 0;
  3131. }
  3132. I915_WRITE(DPLL_MD(pipe), temp);
  3133. } else {
  3134. /* The pixel multiplier can only be updated once the
  3135. * DPLL is enabled and the clocks are stable.
  3136. *
  3137. * So write it again.
  3138. */
  3139. I915_WRITE(DPLL(pipe), dpll);
  3140. }
  3141. }
  3142. static void i8xx_update_pll(struct drm_crtc *crtc,
  3143. struct drm_display_mode *adjusted_mode,
  3144. intel_clock_t *clock,
  3145. int num_connectors)
  3146. {
  3147. struct drm_device *dev = crtc->dev;
  3148. struct drm_i915_private *dev_priv = dev->dev_private;
  3149. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3150. int pipe = intel_crtc->pipe;
  3151. u32 dpll;
  3152. dpll = DPLL_VGA_MODE_DIS;
  3153. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3154. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3155. } else {
  3156. if (clock->p1 == 2)
  3157. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3158. else
  3159. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3160. if (clock->p2 == 4)
  3161. dpll |= PLL_P2_DIVIDE_BY_4;
  3162. }
  3163. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3164. /* XXX: just matching BIOS for now */
  3165. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3166. dpll |= 3;
  3167. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3168. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3169. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3170. else
  3171. dpll |= PLL_REF_INPUT_DREFCLK;
  3172. dpll |= DPLL_VCO_ENABLE;
  3173. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3174. POSTING_READ(DPLL(pipe));
  3175. udelay(150);
  3176. I915_WRITE(DPLL(pipe), dpll);
  3177. /* Wait for the clocks to stabilize. */
  3178. POSTING_READ(DPLL(pipe));
  3179. udelay(150);
  3180. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3181. * This is an exception to the general rule that mode_set doesn't turn
  3182. * things on.
  3183. */
  3184. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3185. intel_update_lvds(crtc, clock, adjusted_mode);
  3186. /* The pixel multiplier can only be updated once the
  3187. * DPLL is enabled and the clocks are stable.
  3188. *
  3189. * So write it again.
  3190. */
  3191. I915_WRITE(DPLL(pipe), dpll);
  3192. }
  3193. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3194. struct drm_display_mode *mode,
  3195. struct drm_display_mode *adjusted_mode,
  3196. int x, int y,
  3197. struct drm_framebuffer *old_fb)
  3198. {
  3199. struct drm_device *dev = crtc->dev;
  3200. struct drm_i915_private *dev_priv = dev->dev_private;
  3201. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3202. int pipe = intel_crtc->pipe;
  3203. int plane = intel_crtc->plane;
  3204. int refclk, num_connectors = 0;
  3205. intel_clock_t clock, reduced_clock;
  3206. u32 dspcntr, pipeconf, vsyncshift;
  3207. bool ok, has_reduced_clock = false, is_sdvo = false;
  3208. bool is_lvds = false, is_tv = false, is_dp = false;
  3209. struct drm_mode_config *mode_config = &dev->mode_config;
  3210. struct intel_encoder *encoder;
  3211. const intel_limit_t *limit;
  3212. int ret;
  3213. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  3214. if (encoder->base.crtc != crtc)
  3215. continue;
  3216. switch (encoder->type) {
  3217. case INTEL_OUTPUT_LVDS:
  3218. is_lvds = true;
  3219. break;
  3220. case INTEL_OUTPUT_SDVO:
  3221. case INTEL_OUTPUT_HDMI:
  3222. is_sdvo = true;
  3223. if (encoder->needs_tv_clock)
  3224. is_tv = true;
  3225. break;
  3226. case INTEL_OUTPUT_TVOUT:
  3227. is_tv = true;
  3228. break;
  3229. case INTEL_OUTPUT_DISPLAYPORT:
  3230. is_dp = true;
  3231. break;
  3232. }
  3233. num_connectors++;
  3234. }
  3235. refclk = i9xx_get_refclk(crtc, num_connectors);
  3236. /*
  3237. * Returns a set of divisors for the desired target clock with the given
  3238. * refclk, or FALSE. The returned values represent the clock equation:
  3239. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3240. */
  3241. limit = intel_limit(crtc, refclk);
  3242. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3243. &clock);
  3244. if (!ok) {
  3245. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3246. return -EINVAL;
  3247. }
  3248. /* Ensure that the cursor is valid for the new mode before changing... */
  3249. intel_crtc_update_cursor(crtc, true);
  3250. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3251. /*
  3252. * Ensure we match the reduced clock's P to the target clock.
  3253. * If the clocks don't match, we can't switch the display clock
  3254. * by using the FP0/FP1. In such case we will disable the LVDS
  3255. * downclock feature.
  3256. */
  3257. has_reduced_clock = limit->find_pll(limit, crtc,
  3258. dev_priv->lvds_downclock,
  3259. refclk,
  3260. &clock,
  3261. &reduced_clock);
  3262. }
  3263. if (is_sdvo && is_tv)
  3264. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3265. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  3266. &reduced_clock : NULL);
  3267. if (IS_GEN2(dev))
  3268. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  3269. else
  3270. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3271. has_reduced_clock ? &reduced_clock : NULL,
  3272. num_connectors);
  3273. /* setup pipeconf */
  3274. pipeconf = I915_READ(PIPECONF(pipe));
  3275. /* Set up the display plane register */
  3276. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3277. if (pipe == 0)
  3278. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3279. else
  3280. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3281. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3282. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3283. * core speed.
  3284. *
  3285. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3286. * pipe == 0 check?
  3287. */
  3288. if (mode->clock >
  3289. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3290. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3291. else
  3292. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3293. }
  3294. /* default to 8bpc */
  3295. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3296. if (is_dp) {
  3297. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3298. pipeconf |= PIPECONF_BPP_6 |
  3299. PIPECONF_DITHER_EN |
  3300. PIPECONF_DITHER_TYPE_SP;
  3301. }
  3302. }
  3303. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3304. drm_mode_debug_printmodeline(mode);
  3305. if (HAS_PIPE_CXSR(dev)) {
  3306. if (intel_crtc->lowfreq_avail) {
  3307. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3308. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3309. } else {
  3310. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3311. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3312. }
  3313. }
  3314. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3315. if (!IS_GEN2(dev) &&
  3316. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3317. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3318. /* the chip adds 2 halflines automatically */
  3319. adjusted_mode->crtc_vtotal -= 1;
  3320. adjusted_mode->crtc_vblank_end -= 1;
  3321. vsyncshift = adjusted_mode->crtc_hsync_start
  3322. - adjusted_mode->crtc_htotal/2;
  3323. } else {
  3324. pipeconf |= PIPECONF_PROGRESSIVE;
  3325. vsyncshift = 0;
  3326. }
  3327. if (!IS_GEN3(dev))
  3328. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3329. I915_WRITE(HTOTAL(pipe),
  3330. (adjusted_mode->crtc_hdisplay - 1) |
  3331. ((adjusted_mode->crtc_htotal - 1) << 16));
  3332. I915_WRITE(HBLANK(pipe),
  3333. (adjusted_mode->crtc_hblank_start - 1) |
  3334. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3335. I915_WRITE(HSYNC(pipe),
  3336. (adjusted_mode->crtc_hsync_start - 1) |
  3337. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3338. I915_WRITE(VTOTAL(pipe),
  3339. (adjusted_mode->crtc_vdisplay - 1) |
  3340. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3341. I915_WRITE(VBLANK(pipe),
  3342. (adjusted_mode->crtc_vblank_start - 1) |
  3343. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3344. I915_WRITE(VSYNC(pipe),
  3345. (adjusted_mode->crtc_vsync_start - 1) |
  3346. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3347. /* pipesrc and dspsize control the size that is scaled from,
  3348. * which should always be the user's requested size.
  3349. */
  3350. I915_WRITE(DSPSIZE(plane),
  3351. ((mode->vdisplay - 1) << 16) |
  3352. (mode->hdisplay - 1));
  3353. I915_WRITE(DSPPOS(plane), 0);
  3354. I915_WRITE(PIPESRC(pipe),
  3355. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3356. I915_WRITE(PIPECONF(pipe), pipeconf);
  3357. POSTING_READ(PIPECONF(pipe));
  3358. intel_enable_pipe(dev_priv, pipe, false);
  3359. intel_wait_for_vblank(dev, pipe);
  3360. I915_WRITE(DSPCNTR(plane), dspcntr);
  3361. POSTING_READ(DSPCNTR(plane));
  3362. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3363. intel_update_watermarks(dev);
  3364. return ret;
  3365. }
  3366. /*
  3367. * Initialize reference clocks when the driver loads
  3368. */
  3369. void ironlake_init_pch_refclk(struct drm_device *dev)
  3370. {
  3371. struct drm_i915_private *dev_priv = dev->dev_private;
  3372. struct drm_mode_config *mode_config = &dev->mode_config;
  3373. struct intel_encoder *encoder;
  3374. u32 temp;
  3375. bool has_lvds = false;
  3376. bool has_cpu_edp = false;
  3377. bool has_pch_edp = false;
  3378. bool has_panel = false;
  3379. bool has_ck505 = false;
  3380. bool can_ssc = false;
  3381. /* We need to take the global config into account */
  3382. list_for_each_entry(encoder, &mode_config->encoder_list,
  3383. base.head) {
  3384. switch (encoder->type) {
  3385. case INTEL_OUTPUT_LVDS:
  3386. has_panel = true;
  3387. has_lvds = true;
  3388. break;
  3389. case INTEL_OUTPUT_EDP:
  3390. has_panel = true;
  3391. if (intel_encoder_is_pch_edp(&encoder->base))
  3392. has_pch_edp = true;
  3393. else
  3394. has_cpu_edp = true;
  3395. break;
  3396. }
  3397. }
  3398. if (HAS_PCH_IBX(dev)) {
  3399. has_ck505 = dev_priv->display_clock_mode;
  3400. can_ssc = has_ck505;
  3401. } else {
  3402. has_ck505 = false;
  3403. can_ssc = true;
  3404. }
  3405. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3406. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3407. has_ck505);
  3408. /* Ironlake: try to setup display ref clock before DPLL
  3409. * enabling. This is only under driver's control after
  3410. * PCH B stepping, previous chipset stepping should be
  3411. * ignoring this setting.
  3412. */
  3413. temp = I915_READ(PCH_DREF_CONTROL);
  3414. /* Always enable nonspread source */
  3415. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3416. if (has_ck505)
  3417. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3418. else
  3419. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3420. if (has_panel) {
  3421. temp &= ~DREF_SSC_SOURCE_MASK;
  3422. temp |= DREF_SSC_SOURCE_ENABLE;
  3423. /* SSC must be turned on before enabling the CPU output */
  3424. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3425. DRM_DEBUG_KMS("Using SSC on panel\n");
  3426. temp |= DREF_SSC1_ENABLE;
  3427. } else
  3428. temp &= ~DREF_SSC1_ENABLE;
  3429. /* Get SSC going before enabling the outputs */
  3430. I915_WRITE(PCH_DREF_CONTROL, temp);
  3431. POSTING_READ(PCH_DREF_CONTROL);
  3432. udelay(200);
  3433. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3434. /* Enable CPU source on CPU attached eDP */
  3435. if (has_cpu_edp) {
  3436. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3437. DRM_DEBUG_KMS("Using SSC on eDP\n");
  3438. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3439. }
  3440. else
  3441. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3442. } else
  3443. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3444. I915_WRITE(PCH_DREF_CONTROL, temp);
  3445. POSTING_READ(PCH_DREF_CONTROL);
  3446. udelay(200);
  3447. } else {
  3448. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  3449. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3450. /* Turn off CPU output */
  3451. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3452. I915_WRITE(PCH_DREF_CONTROL, temp);
  3453. POSTING_READ(PCH_DREF_CONTROL);
  3454. udelay(200);
  3455. /* Turn off the SSC source */
  3456. temp &= ~DREF_SSC_SOURCE_MASK;
  3457. temp |= DREF_SSC_SOURCE_DISABLE;
  3458. /* Turn off SSC1 */
  3459. temp &= ~ DREF_SSC1_ENABLE;
  3460. I915_WRITE(PCH_DREF_CONTROL, temp);
  3461. POSTING_READ(PCH_DREF_CONTROL);
  3462. udelay(200);
  3463. }
  3464. }
  3465. static int ironlake_get_refclk(struct drm_crtc *crtc)
  3466. {
  3467. struct drm_device *dev = crtc->dev;
  3468. struct drm_i915_private *dev_priv = dev->dev_private;
  3469. struct intel_encoder *encoder;
  3470. struct drm_mode_config *mode_config = &dev->mode_config;
  3471. struct intel_encoder *edp_encoder = NULL;
  3472. int num_connectors = 0;
  3473. bool is_lvds = false;
  3474. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  3475. if (encoder->base.crtc != crtc)
  3476. continue;
  3477. switch (encoder->type) {
  3478. case INTEL_OUTPUT_LVDS:
  3479. is_lvds = true;
  3480. break;
  3481. case INTEL_OUTPUT_EDP:
  3482. edp_encoder = encoder;
  3483. break;
  3484. }
  3485. num_connectors++;
  3486. }
  3487. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3488. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3489. dev_priv->lvds_ssc_freq);
  3490. return dev_priv->lvds_ssc_freq * 1000;
  3491. }
  3492. return 120000;
  3493. }
  3494. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  3495. struct drm_display_mode *mode,
  3496. struct drm_display_mode *adjusted_mode,
  3497. int x, int y,
  3498. struct drm_framebuffer *old_fb)
  3499. {
  3500. struct drm_device *dev = crtc->dev;
  3501. struct drm_i915_private *dev_priv = dev->dev_private;
  3502. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3503. int pipe = intel_crtc->pipe;
  3504. int plane = intel_crtc->plane;
  3505. int refclk, num_connectors = 0;
  3506. intel_clock_t clock, reduced_clock;
  3507. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3508. bool ok, has_reduced_clock = false, is_sdvo = false;
  3509. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3510. struct drm_mode_config *mode_config = &dev->mode_config;
  3511. struct intel_encoder *encoder, *edp_encoder = NULL;
  3512. const intel_limit_t *limit;
  3513. int ret;
  3514. struct fdi_m_n m_n = {0};
  3515. u32 temp;
  3516. int target_clock, pixel_multiplier, lane, link_bw, factor;
  3517. unsigned int pipe_bpp;
  3518. bool dither;
  3519. bool is_cpu_edp = false, is_pch_edp = false;
  3520. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  3521. if (encoder->base.crtc != crtc)
  3522. continue;
  3523. switch (encoder->type) {
  3524. case INTEL_OUTPUT_LVDS:
  3525. is_lvds = true;
  3526. break;
  3527. case INTEL_OUTPUT_SDVO:
  3528. case INTEL_OUTPUT_HDMI:
  3529. is_sdvo = true;
  3530. if (encoder->needs_tv_clock)
  3531. is_tv = true;
  3532. break;
  3533. case INTEL_OUTPUT_TVOUT:
  3534. is_tv = true;
  3535. break;
  3536. case INTEL_OUTPUT_ANALOG:
  3537. is_crt = true;
  3538. break;
  3539. case INTEL_OUTPUT_DISPLAYPORT:
  3540. is_dp = true;
  3541. break;
  3542. case INTEL_OUTPUT_EDP:
  3543. is_dp = true;
  3544. if (intel_encoder_is_pch_edp(&encoder->base))
  3545. is_pch_edp = true;
  3546. else
  3547. is_cpu_edp = true;
  3548. edp_encoder = encoder;
  3549. break;
  3550. }
  3551. num_connectors++;
  3552. }
  3553. refclk = ironlake_get_refclk(crtc);
  3554. /*
  3555. * Returns a set of divisors for the desired target clock with the given
  3556. * refclk, or FALSE. The returned values represent the clock equation:
  3557. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3558. */
  3559. limit = intel_limit(crtc, refclk);
  3560. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3561. &clock);
  3562. if (!ok) {
  3563. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3564. return -EINVAL;
  3565. }
  3566. /* Ensure that the cursor is valid for the new mode before changing... */
  3567. intel_crtc_update_cursor(crtc, true);
  3568. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3569. /*
  3570. * Ensure we match the reduced clock's P to the target clock.
  3571. * If the clocks don't match, we can't switch the display clock
  3572. * by using the FP0/FP1. In such case we will disable the LVDS
  3573. * downclock feature.
  3574. */
  3575. has_reduced_clock = limit->find_pll(limit, crtc,
  3576. dev_priv->lvds_downclock,
  3577. refclk,
  3578. &clock,
  3579. &reduced_clock);
  3580. }
  3581. /* SDVO TV has fixed PLL values depend on its clock range,
  3582. this mirrors vbios setting. */
  3583. if (is_sdvo && is_tv) {
  3584. if (adjusted_mode->clock >= 100000
  3585. && adjusted_mode->clock < 140500) {
  3586. clock.p1 = 2;
  3587. clock.p2 = 10;
  3588. clock.n = 3;
  3589. clock.m1 = 16;
  3590. clock.m2 = 8;
  3591. } else if (adjusted_mode->clock >= 140500
  3592. && adjusted_mode->clock <= 200000) {
  3593. clock.p1 = 1;
  3594. clock.p2 = 10;
  3595. clock.n = 6;
  3596. clock.m1 = 12;
  3597. clock.m2 = 8;
  3598. }
  3599. }
  3600. /* FDI link */
  3601. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3602. lane = 0;
  3603. /* CPU eDP doesn't require FDI link, so just set DP M/N
  3604. according to current link config */
  3605. if (is_cpu_edp) {
  3606. target_clock = mode->clock;
  3607. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  3608. } else {
  3609. /* [e]DP over FDI requires target mode clock
  3610. instead of link clock */
  3611. if (is_dp)
  3612. target_clock = mode->clock;
  3613. else
  3614. target_clock = adjusted_mode->clock;
  3615. /* FDI is a binary signal running at ~2.7GHz, encoding
  3616. * each output octet as 10 bits. The actual frequency
  3617. * is stored as a divider into a 100MHz clock, and the
  3618. * mode pixel clock is stored in units of 1KHz.
  3619. * Hence the bw of each lane in terms of the mode signal
  3620. * is:
  3621. */
  3622. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3623. }
  3624. /* determine panel color depth */
  3625. temp = I915_READ(PIPECONF(pipe));
  3626. temp &= ~PIPE_BPC_MASK;
  3627. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  3628. switch (pipe_bpp) {
  3629. case 18:
  3630. temp |= PIPE_6BPC;
  3631. break;
  3632. case 24:
  3633. temp |= PIPE_8BPC;
  3634. break;
  3635. case 30:
  3636. temp |= PIPE_10BPC;
  3637. break;
  3638. case 36:
  3639. temp |= PIPE_12BPC;
  3640. break;
  3641. default:
  3642. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  3643. pipe_bpp);
  3644. temp |= PIPE_8BPC;
  3645. pipe_bpp = 24;
  3646. break;
  3647. }
  3648. intel_crtc->bpp = pipe_bpp;
  3649. I915_WRITE(PIPECONF(pipe), temp);
  3650. if (!lane) {
  3651. /*
  3652. * Account for spread spectrum to avoid
  3653. * oversubscribing the link. Max center spread
  3654. * is 2.5%; use 5% for safety's sake.
  3655. */
  3656. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  3657. lane = bps / (link_bw * 8) + 1;
  3658. }
  3659. intel_crtc->fdi_lanes = lane;
  3660. if (pixel_multiplier > 1)
  3661. link_bw *= pixel_multiplier;
  3662. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  3663. &m_n);
  3664. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3665. if (has_reduced_clock)
  3666. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3667. reduced_clock.m2;
  3668. /* Enable autotuning of the PLL clock (if permissible) */
  3669. factor = 21;
  3670. if (is_lvds) {
  3671. if ((intel_panel_use_ssc(dev_priv) &&
  3672. dev_priv->lvds_ssc_freq == 100) ||
  3673. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  3674. factor = 25;
  3675. } else if (is_sdvo && is_tv)
  3676. factor = 20;
  3677. if (clock.m < factor * clock.n)
  3678. fp |= FP_CB_TUNE;
  3679. dpll = 0;
  3680. if (is_lvds)
  3681. dpll |= DPLLB_MODE_LVDS;
  3682. else
  3683. dpll |= DPLLB_MODE_DAC_SERIAL;
  3684. if (is_sdvo) {
  3685. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3686. if (pixel_multiplier > 1) {
  3687. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3688. }
  3689. dpll |= DPLL_DVO_HIGH_SPEED;
  3690. }
  3691. if (is_dp && !is_cpu_edp)
  3692. dpll |= DPLL_DVO_HIGH_SPEED;
  3693. /* compute bitmask from p1 value */
  3694. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3695. /* also FPA1 */
  3696. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3697. switch (clock.p2) {
  3698. case 5:
  3699. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3700. break;
  3701. case 7:
  3702. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3703. break;
  3704. case 10:
  3705. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3706. break;
  3707. case 14:
  3708. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3709. break;
  3710. }
  3711. if (is_sdvo && is_tv)
  3712. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3713. else if (is_tv)
  3714. /* XXX: just matching BIOS for now */
  3715. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3716. dpll |= 3;
  3717. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3718. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3719. else
  3720. dpll |= PLL_REF_INPUT_DREFCLK;
  3721. /* setup pipeconf */
  3722. pipeconf = I915_READ(PIPECONF(pipe));
  3723. /* Set up the display plane register */
  3724. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3725. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  3726. drm_mode_debug_printmodeline(mode);
  3727. /* CPU eDP is the only output that doesn't need a PCH PLL of its own */
  3728. if (!is_cpu_edp) {
  3729. struct intel_pch_pll *pll;
  3730. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  3731. if (pll == NULL) {
  3732. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  3733. pipe);
  3734. return -EINVAL;
  3735. }
  3736. } else
  3737. intel_put_pch_pll(intel_crtc);
  3738. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3739. * This is an exception to the general rule that mode_set doesn't turn
  3740. * things on.
  3741. */
  3742. if (is_lvds) {
  3743. temp = I915_READ(PCH_LVDS);
  3744. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3745. if (HAS_PCH_CPT(dev)) {
  3746. temp &= ~PORT_TRANS_SEL_MASK;
  3747. temp |= PORT_TRANS_SEL_CPT(pipe);
  3748. } else {
  3749. if (pipe == 1)
  3750. temp |= LVDS_PIPEB_SELECT;
  3751. else
  3752. temp &= ~LVDS_PIPEB_SELECT;
  3753. }
  3754. /* set the corresponsding LVDS_BORDER bit */
  3755. temp |= dev_priv->lvds_border_bits;
  3756. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3757. * set the DPLLs for dual-channel mode or not.
  3758. */
  3759. if (clock.p2 == 7)
  3760. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3761. else
  3762. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3763. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3764. * appropriately here, but we need to look more thoroughly into how
  3765. * panels behave in the two modes.
  3766. */
  3767. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3768. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3769. temp |= LVDS_HSYNC_POLARITY;
  3770. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3771. temp |= LVDS_VSYNC_POLARITY;
  3772. I915_WRITE(PCH_LVDS, temp);
  3773. }
  3774. pipeconf &= ~PIPECONF_DITHER_EN;
  3775. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  3776. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  3777. pipeconf |= PIPECONF_DITHER_EN;
  3778. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  3779. }
  3780. if (is_dp && !is_cpu_edp) {
  3781. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3782. } else {
  3783. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3784. I915_WRITE(TRANSDATA_M1(pipe), 0);
  3785. I915_WRITE(TRANSDATA_N1(pipe), 0);
  3786. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  3787. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  3788. }
  3789. if (intel_crtc->pch_pll) {
  3790. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  3791. /* Wait for the clocks to stabilize. */
  3792. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  3793. udelay(150);
  3794. /* The pixel multiplier can only be updated once the
  3795. * DPLL is enabled and the clocks are stable.
  3796. *
  3797. * So write it again.
  3798. */
  3799. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  3800. }
  3801. intel_crtc->lowfreq_avail = false;
  3802. if (intel_crtc->pch_pll) {
  3803. if (is_lvds && has_reduced_clock && i915_powersave) {
  3804. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  3805. intel_crtc->lowfreq_avail = true;
  3806. if (HAS_PIPE_CXSR(dev)) {
  3807. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3808. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3809. }
  3810. } else {
  3811. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  3812. if (HAS_PIPE_CXSR(dev)) {
  3813. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3814. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3815. }
  3816. }
  3817. }
  3818. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3819. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3820. pipeconf |= PIPECONF_INTERLACED_ILK;
  3821. /* the chip adds 2 halflines automatically */
  3822. adjusted_mode->crtc_vtotal -= 1;
  3823. adjusted_mode->crtc_vblank_end -= 1;
  3824. I915_WRITE(VSYNCSHIFT(pipe),
  3825. adjusted_mode->crtc_hsync_start
  3826. - adjusted_mode->crtc_htotal/2);
  3827. } else {
  3828. pipeconf |= PIPECONF_PROGRESSIVE;
  3829. I915_WRITE(VSYNCSHIFT(pipe), 0);
  3830. }
  3831. I915_WRITE(HTOTAL(pipe),
  3832. (adjusted_mode->crtc_hdisplay - 1) |
  3833. ((adjusted_mode->crtc_htotal - 1) << 16));
  3834. I915_WRITE(HBLANK(pipe),
  3835. (adjusted_mode->crtc_hblank_start - 1) |
  3836. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3837. I915_WRITE(HSYNC(pipe),
  3838. (adjusted_mode->crtc_hsync_start - 1) |
  3839. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3840. I915_WRITE(VTOTAL(pipe),
  3841. (adjusted_mode->crtc_vdisplay - 1) |
  3842. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3843. I915_WRITE(VBLANK(pipe),
  3844. (adjusted_mode->crtc_vblank_start - 1) |
  3845. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3846. I915_WRITE(VSYNC(pipe),
  3847. (adjusted_mode->crtc_vsync_start - 1) |
  3848. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3849. /* pipesrc controls the size that is scaled from, which should
  3850. * always be the user's requested size.
  3851. */
  3852. I915_WRITE(PIPESRC(pipe),
  3853. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3854. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  3855. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  3856. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  3857. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  3858. if (is_cpu_edp)
  3859. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3860. I915_WRITE(PIPECONF(pipe), pipeconf);
  3861. POSTING_READ(PIPECONF(pipe));
  3862. intel_wait_for_vblank(dev, pipe);
  3863. I915_WRITE(DSPCNTR(plane), dspcntr);
  3864. POSTING_READ(DSPCNTR(plane));
  3865. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3866. intel_update_watermarks(dev);
  3867. return ret;
  3868. }
  3869. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  3870. struct drm_display_mode *mode,
  3871. struct drm_display_mode *adjusted_mode,
  3872. int x, int y,
  3873. struct drm_framebuffer *old_fb)
  3874. {
  3875. struct drm_device *dev = crtc->dev;
  3876. struct drm_i915_private *dev_priv = dev->dev_private;
  3877. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3878. int pipe = intel_crtc->pipe;
  3879. int ret;
  3880. drm_vblank_pre_modeset(dev, pipe);
  3881. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  3882. x, y, old_fb);
  3883. drm_vblank_post_modeset(dev, pipe);
  3884. if (ret)
  3885. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  3886. else
  3887. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  3888. return ret;
  3889. }
  3890. static bool intel_eld_uptodate(struct drm_connector *connector,
  3891. int reg_eldv, uint32_t bits_eldv,
  3892. int reg_elda, uint32_t bits_elda,
  3893. int reg_edid)
  3894. {
  3895. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  3896. uint8_t *eld = connector->eld;
  3897. uint32_t i;
  3898. i = I915_READ(reg_eldv);
  3899. i &= bits_eldv;
  3900. if (!eld[0])
  3901. return !i;
  3902. if (!i)
  3903. return false;
  3904. i = I915_READ(reg_elda);
  3905. i &= ~bits_elda;
  3906. I915_WRITE(reg_elda, i);
  3907. for (i = 0; i < eld[2]; i++)
  3908. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  3909. return false;
  3910. return true;
  3911. }
  3912. static void g4x_write_eld(struct drm_connector *connector,
  3913. struct drm_crtc *crtc)
  3914. {
  3915. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  3916. uint8_t *eld = connector->eld;
  3917. uint32_t eldv;
  3918. uint32_t len;
  3919. uint32_t i;
  3920. i = I915_READ(G4X_AUD_VID_DID);
  3921. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  3922. eldv = G4X_ELDV_DEVCL_DEVBLC;
  3923. else
  3924. eldv = G4X_ELDV_DEVCTG;
  3925. if (intel_eld_uptodate(connector,
  3926. G4X_AUD_CNTL_ST, eldv,
  3927. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  3928. G4X_HDMIW_HDMIEDID))
  3929. return;
  3930. i = I915_READ(G4X_AUD_CNTL_ST);
  3931. i &= ~(eldv | G4X_ELD_ADDR);
  3932. len = (i >> 9) & 0x1f; /* ELD buffer size */
  3933. I915_WRITE(G4X_AUD_CNTL_ST, i);
  3934. if (!eld[0])
  3935. return;
  3936. len = min_t(uint8_t, eld[2], len);
  3937. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  3938. for (i = 0; i < len; i++)
  3939. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  3940. i = I915_READ(G4X_AUD_CNTL_ST);
  3941. i |= eldv;
  3942. I915_WRITE(G4X_AUD_CNTL_ST, i);
  3943. }
  3944. static void ironlake_write_eld(struct drm_connector *connector,
  3945. struct drm_crtc *crtc)
  3946. {
  3947. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  3948. uint8_t *eld = connector->eld;
  3949. uint32_t eldv;
  3950. uint32_t i;
  3951. int len;
  3952. int hdmiw_hdmiedid;
  3953. int aud_config;
  3954. int aud_cntl_st;
  3955. int aud_cntrl_st2;
  3956. if (HAS_PCH_IBX(connector->dev)) {
  3957. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  3958. aud_config = IBX_AUD_CONFIG_A;
  3959. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  3960. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  3961. } else {
  3962. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  3963. aud_config = CPT_AUD_CONFIG_A;
  3964. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  3965. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  3966. }
  3967. i = to_intel_crtc(crtc)->pipe;
  3968. hdmiw_hdmiedid += i * 0x100;
  3969. aud_cntl_st += i * 0x100;
  3970. aud_config += i * 0x100;
  3971. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  3972. i = I915_READ(aud_cntl_st);
  3973. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  3974. if (!i) {
  3975. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  3976. /* operate blindly on all ports */
  3977. eldv = IBX_ELD_VALIDB;
  3978. eldv |= IBX_ELD_VALIDB << 4;
  3979. eldv |= IBX_ELD_VALIDB << 8;
  3980. } else {
  3981. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  3982. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  3983. }
  3984. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  3985. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  3986. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  3987. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  3988. } else
  3989. I915_WRITE(aud_config, 0);
  3990. if (intel_eld_uptodate(connector,
  3991. aud_cntrl_st2, eldv,
  3992. aud_cntl_st, IBX_ELD_ADDRESS,
  3993. hdmiw_hdmiedid))
  3994. return;
  3995. i = I915_READ(aud_cntrl_st2);
  3996. i &= ~eldv;
  3997. I915_WRITE(aud_cntrl_st2, i);
  3998. if (!eld[0])
  3999. return;
  4000. i = I915_READ(aud_cntl_st);
  4001. i &= ~IBX_ELD_ADDRESS;
  4002. I915_WRITE(aud_cntl_st, i);
  4003. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4004. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4005. for (i = 0; i < len; i++)
  4006. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4007. i = I915_READ(aud_cntrl_st2);
  4008. i |= eldv;
  4009. I915_WRITE(aud_cntrl_st2, i);
  4010. }
  4011. void intel_write_eld(struct drm_encoder *encoder,
  4012. struct drm_display_mode *mode)
  4013. {
  4014. struct drm_crtc *crtc = encoder->crtc;
  4015. struct drm_connector *connector;
  4016. struct drm_device *dev = encoder->dev;
  4017. struct drm_i915_private *dev_priv = dev->dev_private;
  4018. connector = drm_select_eld(encoder, mode);
  4019. if (!connector)
  4020. return;
  4021. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4022. connector->base.id,
  4023. drm_get_connector_name(connector),
  4024. connector->encoder->base.id,
  4025. drm_get_encoder_name(connector->encoder));
  4026. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4027. if (dev_priv->display.write_eld)
  4028. dev_priv->display.write_eld(connector, crtc);
  4029. }
  4030. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4031. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4032. {
  4033. struct drm_device *dev = crtc->dev;
  4034. struct drm_i915_private *dev_priv = dev->dev_private;
  4035. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4036. int palreg = PALETTE(intel_crtc->pipe);
  4037. int i;
  4038. /* The clocks have to be on to load the palette. */
  4039. if (!crtc->enabled || !intel_crtc->active)
  4040. return;
  4041. /* use legacy palette for Ironlake */
  4042. if (HAS_PCH_SPLIT(dev))
  4043. palreg = LGC_PALETTE(intel_crtc->pipe);
  4044. for (i = 0; i < 256; i++) {
  4045. I915_WRITE(palreg + 4 * i,
  4046. (intel_crtc->lut_r[i] << 16) |
  4047. (intel_crtc->lut_g[i] << 8) |
  4048. intel_crtc->lut_b[i]);
  4049. }
  4050. }
  4051. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4052. {
  4053. struct drm_device *dev = crtc->dev;
  4054. struct drm_i915_private *dev_priv = dev->dev_private;
  4055. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4056. bool visible = base != 0;
  4057. u32 cntl;
  4058. if (intel_crtc->cursor_visible == visible)
  4059. return;
  4060. cntl = I915_READ(_CURACNTR);
  4061. if (visible) {
  4062. /* On these chipsets we can only modify the base whilst
  4063. * the cursor is disabled.
  4064. */
  4065. I915_WRITE(_CURABASE, base);
  4066. cntl &= ~(CURSOR_FORMAT_MASK);
  4067. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4068. cntl |= CURSOR_ENABLE |
  4069. CURSOR_GAMMA_ENABLE |
  4070. CURSOR_FORMAT_ARGB;
  4071. } else
  4072. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4073. I915_WRITE(_CURACNTR, cntl);
  4074. intel_crtc->cursor_visible = visible;
  4075. }
  4076. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4077. {
  4078. struct drm_device *dev = crtc->dev;
  4079. struct drm_i915_private *dev_priv = dev->dev_private;
  4080. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4081. int pipe = intel_crtc->pipe;
  4082. bool visible = base != 0;
  4083. if (intel_crtc->cursor_visible != visible) {
  4084. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4085. if (base) {
  4086. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4087. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4088. cntl |= pipe << 28; /* Connect to correct pipe */
  4089. } else {
  4090. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4091. cntl |= CURSOR_MODE_DISABLE;
  4092. }
  4093. I915_WRITE(CURCNTR(pipe), cntl);
  4094. intel_crtc->cursor_visible = visible;
  4095. }
  4096. /* and commit changes on next vblank */
  4097. I915_WRITE(CURBASE(pipe), base);
  4098. }
  4099. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4100. {
  4101. struct drm_device *dev = crtc->dev;
  4102. struct drm_i915_private *dev_priv = dev->dev_private;
  4103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4104. int pipe = intel_crtc->pipe;
  4105. bool visible = base != 0;
  4106. if (intel_crtc->cursor_visible != visible) {
  4107. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4108. if (base) {
  4109. cntl &= ~CURSOR_MODE;
  4110. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4111. } else {
  4112. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4113. cntl |= CURSOR_MODE_DISABLE;
  4114. }
  4115. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4116. intel_crtc->cursor_visible = visible;
  4117. }
  4118. /* and commit changes on next vblank */
  4119. I915_WRITE(CURBASE_IVB(pipe), base);
  4120. }
  4121. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4122. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4123. bool on)
  4124. {
  4125. struct drm_device *dev = crtc->dev;
  4126. struct drm_i915_private *dev_priv = dev->dev_private;
  4127. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4128. int pipe = intel_crtc->pipe;
  4129. int x = intel_crtc->cursor_x;
  4130. int y = intel_crtc->cursor_y;
  4131. u32 base, pos;
  4132. bool visible;
  4133. pos = 0;
  4134. if (on && crtc->enabled && crtc->fb) {
  4135. base = intel_crtc->cursor_addr;
  4136. if (x > (int) crtc->fb->width)
  4137. base = 0;
  4138. if (y > (int) crtc->fb->height)
  4139. base = 0;
  4140. } else
  4141. base = 0;
  4142. if (x < 0) {
  4143. if (x + intel_crtc->cursor_width < 0)
  4144. base = 0;
  4145. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4146. x = -x;
  4147. }
  4148. pos |= x << CURSOR_X_SHIFT;
  4149. if (y < 0) {
  4150. if (y + intel_crtc->cursor_height < 0)
  4151. base = 0;
  4152. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4153. y = -y;
  4154. }
  4155. pos |= y << CURSOR_Y_SHIFT;
  4156. visible = base != 0;
  4157. if (!visible && !intel_crtc->cursor_visible)
  4158. return;
  4159. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4160. I915_WRITE(CURPOS_IVB(pipe), pos);
  4161. ivb_update_cursor(crtc, base);
  4162. } else {
  4163. I915_WRITE(CURPOS(pipe), pos);
  4164. if (IS_845G(dev) || IS_I865G(dev))
  4165. i845_update_cursor(crtc, base);
  4166. else
  4167. i9xx_update_cursor(crtc, base);
  4168. }
  4169. }
  4170. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4171. struct drm_file *file,
  4172. uint32_t handle,
  4173. uint32_t width, uint32_t height)
  4174. {
  4175. struct drm_device *dev = crtc->dev;
  4176. struct drm_i915_private *dev_priv = dev->dev_private;
  4177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4178. struct drm_i915_gem_object *obj;
  4179. uint32_t addr;
  4180. int ret;
  4181. DRM_DEBUG_KMS("\n");
  4182. /* if we want to turn off the cursor ignore width and height */
  4183. if (!handle) {
  4184. DRM_DEBUG_KMS("cursor off\n");
  4185. addr = 0;
  4186. obj = NULL;
  4187. mutex_lock(&dev->struct_mutex);
  4188. goto finish;
  4189. }
  4190. /* Currently we only support 64x64 cursors */
  4191. if (width != 64 || height != 64) {
  4192. DRM_ERROR("we currently only support 64x64 cursors\n");
  4193. return -EINVAL;
  4194. }
  4195. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4196. if (&obj->base == NULL)
  4197. return -ENOENT;
  4198. if (obj->base.size < width * height * 4) {
  4199. DRM_ERROR("buffer is to small\n");
  4200. ret = -ENOMEM;
  4201. goto fail;
  4202. }
  4203. /* we only need to pin inside GTT if cursor is non-phy */
  4204. mutex_lock(&dev->struct_mutex);
  4205. if (!dev_priv->info->cursor_needs_physical) {
  4206. if (obj->tiling_mode) {
  4207. DRM_ERROR("cursor cannot be tiled\n");
  4208. ret = -EINVAL;
  4209. goto fail_locked;
  4210. }
  4211. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  4212. if (ret) {
  4213. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4214. goto fail_locked;
  4215. }
  4216. ret = i915_gem_object_put_fence(obj);
  4217. if (ret) {
  4218. DRM_ERROR("failed to release fence for cursor");
  4219. goto fail_unpin;
  4220. }
  4221. addr = obj->gtt_offset;
  4222. } else {
  4223. int align = IS_I830(dev) ? 16 * 1024 : 256;
  4224. ret = i915_gem_attach_phys_object(dev, obj,
  4225. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  4226. align);
  4227. if (ret) {
  4228. DRM_ERROR("failed to attach phys object\n");
  4229. goto fail_locked;
  4230. }
  4231. addr = obj->phys_obj->handle->busaddr;
  4232. }
  4233. if (IS_GEN2(dev))
  4234. I915_WRITE(CURSIZE, (height << 12) | width);
  4235. finish:
  4236. if (intel_crtc->cursor_bo) {
  4237. if (dev_priv->info->cursor_needs_physical) {
  4238. if (intel_crtc->cursor_bo != obj)
  4239. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  4240. } else
  4241. i915_gem_object_unpin(intel_crtc->cursor_bo);
  4242. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  4243. }
  4244. mutex_unlock(&dev->struct_mutex);
  4245. intel_crtc->cursor_addr = addr;
  4246. intel_crtc->cursor_bo = obj;
  4247. intel_crtc->cursor_width = width;
  4248. intel_crtc->cursor_height = height;
  4249. intel_crtc_update_cursor(crtc, true);
  4250. return 0;
  4251. fail_unpin:
  4252. i915_gem_object_unpin(obj);
  4253. fail_locked:
  4254. mutex_unlock(&dev->struct_mutex);
  4255. fail:
  4256. drm_gem_object_unreference_unlocked(&obj->base);
  4257. return ret;
  4258. }
  4259. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  4260. {
  4261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4262. intel_crtc->cursor_x = x;
  4263. intel_crtc->cursor_y = y;
  4264. intel_crtc_update_cursor(crtc, true);
  4265. return 0;
  4266. }
  4267. /** Sets the color ramps on behalf of RandR */
  4268. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  4269. u16 blue, int regno)
  4270. {
  4271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4272. intel_crtc->lut_r[regno] = red >> 8;
  4273. intel_crtc->lut_g[regno] = green >> 8;
  4274. intel_crtc->lut_b[regno] = blue >> 8;
  4275. }
  4276. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  4277. u16 *blue, int regno)
  4278. {
  4279. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4280. *red = intel_crtc->lut_r[regno] << 8;
  4281. *green = intel_crtc->lut_g[regno] << 8;
  4282. *blue = intel_crtc->lut_b[regno] << 8;
  4283. }
  4284. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  4285. u16 *blue, uint32_t start, uint32_t size)
  4286. {
  4287. int end = (start + size > 256) ? 256 : start + size, i;
  4288. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4289. for (i = start; i < end; i++) {
  4290. intel_crtc->lut_r[i] = red[i] >> 8;
  4291. intel_crtc->lut_g[i] = green[i] >> 8;
  4292. intel_crtc->lut_b[i] = blue[i] >> 8;
  4293. }
  4294. intel_crtc_load_lut(crtc);
  4295. }
  4296. /**
  4297. * Get a pipe with a simple mode set on it for doing load-based monitor
  4298. * detection.
  4299. *
  4300. * It will be up to the load-detect code to adjust the pipe as appropriate for
  4301. * its requirements. The pipe will be connected to no other encoders.
  4302. *
  4303. * Currently this code will only succeed if there is a pipe with no encoders
  4304. * configured for it. In the future, it could choose to temporarily disable
  4305. * some outputs to free up a pipe for its use.
  4306. *
  4307. * \return crtc, or NULL if no pipes are available.
  4308. */
  4309. /* VESA 640x480x72Hz mode to set on the pipe */
  4310. static struct drm_display_mode load_detect_mode = {
  4311. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  4312. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  4313. };
  4314. static struct drm_framebuffer *
  4315. intel_framebuffer_create(struct drm_device *dev,
  4316. struct drm_mode_fb_cmd2 *mode_cmd,
  4317. struct drm_i915_gem_object *obj)
  4318. {
  4319. struct intel_framebuffer *intel_fb;
  4320. int ret;
  4321. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4322. if (!intel_fb) {
  4323. drm_gem_object_unreference_unlocked(&obj->base);
  4324. return ERR_PTR(-ENOMEM);
  4325. }
  4326. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  4327. if (ret) {
  4328. drm_gem_object_unreference_unlocked(&obj->base);
  4329. kfree(intel_fb);
  4330. return ERR_PTR(ret);
  4331. }
  4332. return &intel_fb->base;
  4333. }
  4334. static u32
  4335. intel_framebuffer_pitch_for_width(int width, int bpp)
  4336. {
  4337. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  4338. return ALIGN(pitch, 64);
  4339. }
  4340. static u32
  4341. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  4342. {
  4343. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  4344. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  4345. }
  4346. static struct drm_framebuffer *
  4347. intel_framebuffer_create_for_mode(struct drm_device *dev,
  4348. struct drm_display_mode *mode,
  4349. int depth, int bpp)
  4350. {
  4351. struct drm_i915_gem_object *obj;
  4352. struct drm_mode_fb_cmd2 mode_cmd;
  4353. obj = i915_gem_alloc_object(dev,
  4354. intel_framebuffer_size_for_mode(mode, bpp));
  4355. if (obj == NULL)
  4356. return ERR_PTR(-ENOMEM);
  4357. mode_cmd.width = mode->hdisplay;
  4358. mode_cmd.height = mode->vdisplay;
  4359. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  4360. bpp);
  4361. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  4362. return intel_framebuffer_create(dev, &mode_cmd, obj);
  4363. }
  4364. static struct drm_framebuffer *
  4365. mode_fits_in_fbdev(struct drm_device *dev,
  4366. struct drm_display_mode *mode)
  4367. {
  4368. struct drm_i915_private *dev_priv = dev->dev_private;
  4369. struct drm_i915_gem_object *obj;
  4370. struct drm_framebuffer *fb;
  4371. if (dev_priv->fbdev == NULL)
  4372. return NULL;
  4373. obj = dev_priv->fbdev->ifb.obj;
  4374. if (obj == NULL)
  4375. return NULL;
  4376. fb = &dev_priv->fbdev->ifb.base;
  4377. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  4378. fb->bits_per_pixel))
  4379. return NULL;
  4380. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  4381. return NULL;
  4382. return fb;
  4383. }
  4384. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  4385. struct drm_connector *connector,
  4386. struct drm_display_mode *mode,
  4387. struct intel_load_detect_pipe *old)
  4388. {
  4389. struct intel_crtc *intel_crtc;
  4390. struct drm_crtc *possible_crtc;
  4391. struct drm_encoder *encoder = &intel_encoder->base;
  4392. struct drm_crtc *crtc = NULL;
  4393. struct drm_device *dev = encoder->dev;
  4394. struct drm_framebuffer *old_fb;
  4395. int i = -1;
  4396. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4397. connector->base.id, drm_get_connector_name(connector),
  4398. encoder->base.id, drm_get_encoder_name(encoder));
  4399. /*
  4400. * Algorithm gets a little messy:
  4401. *
  4402. * - if the connector already has an assigned crtc, use it (but make
  4403. * sure it's on first)
  4404. *
  4405. * - try to find the first unused crtc that can drive this connector,
  4406. * and use that if we find one
  4407. */
  4408. /* See if we already have a CRTC for this connector */
  4409. if (encoder->crtc) {
  4410. crtc = encoder->crtc;
  4411. intel_crtc = to_intel_crtc(crtc);
  4412. old->dpms_mode = intel_crtc->dpms_mode;
  4413. old->load_detect_temp = false;
  4414. /* Make sure the crtc and connector are running */
  4415. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  4416. struct drm_encoder_helper_funcs *encoder_funcs;
  4417. struct drm_crtc_helper_funcs *crtc_funcs;
  4418. crtc_funcs = crtc->helper_private;
  4419. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  4420. encoder_funcs = encoder->helper_private;
  4421. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  4422. }
  4423. return true;
  4424. }
  4425. /* Find an unused one (if possible) */
  4426. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  4427. i++;
  4428. if (!(encoder->possible_crtcs & (1 << i)))
  4429. continue;
  4430. if (!possible_crtc->enabled) {
  4431. crtc = possible_crtc;
  4432. break;
  4433. }
  4434. }
  4435. /*
  4436. * If we didn't find an unused CRTC, don't use any.
  4437. */
  4438. if (!crtc) {
  4439. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  4440. return false;
  4441. }
  4442. encoder->crtc = crtc;
  4443. connector->encoder = encoder;
  4444. intel_crtc = to_intel_crtc(crtc);
  4445. old->dpms_mode = intel_crtc->dpms_mode;
  4446. old->load_detect_temp = true;
  4447. old->release_fb = NULL;
  4448. if (!mode)
  4449. mode = &load_detect_mode;
  4450. old_fb = crtc->fb;
  4451. /* We need a framebuffer large enough to accommodate all accesses
  4452. * that the plane may generate whilst we perform load detection.
  4453. * We can not rely on the fbcon either being present (we get called
  4454. * during its initialisation to detect all boot displays, or it may
  4455. * not even exist) or that it is large enough to satisfy the
  4456. * requested mode.
  4457. */
  4458. crtc->fb = mode_fits_in_fbdev(dev, mode);
  4459. if (crtc->fb == NULL) {
  4460. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  4461. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  4462. old->release_fb = crtc->fb;
  4463. } else
  4464. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  4465. if (IS_ERR(crtc->fb)) {
  4466. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  4467. crtc->fb = old_fb;
  4468. return false;
  4469. }
  4470. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  4471. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  4472. if (old->release_fb)
  4473. old->release_fb->funcs->destroy(old->release_fb);
  4474. crtc->fb = old_fb;
  4475. return false;
  4476. }
  4477. /* let the connector get through one full cycle before testing */
  4478. intel_wait_for_vblank(dev, intel_crtc->pipe);
  4479. return true;
  4480. }
  4481. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  4482. struct drm_connector *connector,
  4483. struct intel_load_detect_pipe *old)
  4484. {
  4485. struct drm_encoder *encoder = &intel_encoder->base;
  4486. struct drm_device *dev = encoder->dev;
  4487. struct drm_crtc *crtc = encoder->crtc;
  4488. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  4489. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  4490. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4491. connector->base.id, drm_get_connector_name(connector),
  4492. encoder->base.id, drm_get_encoder_name(encoder));
  4493. if (old->load_detect_temp) {
  4494. connector->encoder = NULL;
  4495. drm_helper_disable_unused_functions(dev);
  4496. if (old->release_fb)
  4497. old->release_fb->funcs->destroy(old->release_fb);
  4498. return;
  4499. }
  4500. /* Switch crtc and encoder back off if necessary */
  4501. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  4502. encoder_funcs->dpms(encoder, old->dpms_mode);
  4503. crtc_funcs->dpms(crtc, old->dpms_mode);
  4504. }
  4505. }
  4506. /* Returns the clock of the currently programmed mode of the given pipe. */
  4507. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  4508. {
  4509. struct drm_i915_private *dev_priv = dev->dev_private;
  4510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4511. int pipe = intel_crtc->pipe;
  4512. u32 dpll = I915_READ(DPLL(pipe));
  4513. u32 fp;
  4514. intel_clock_t clock;
  4515. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  4516. fp = I915_READ(FP0(pipe));
  4517. else
  4518. fp = I915_READ(FP1(pipe));
  4519. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  4520. if (IS_PINEVIEW(dev)) {
  4521. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  4522. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  4523. } else {
  4524. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  4525. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  4526. }
  4527. if (!IS_GEN2(dev)) {
  4528. if (IS_PINEVIEW(dev))
  4529. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  4530. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  4531. else
  4532. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  4533. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4534. switch (dpll & DPLL_MODE_MASK) {
  4535. case DPLLB_MODE_DAC_SERIAL:
  4536. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  4537. 5 : 10;
  4538. break;
  4539. case DPLLB_MODE_LVDS:
  4540. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  4541. 7 : 14;
  4542. break;
  4543. default:
  4544. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  4545. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  4546. return 0;
  4547. }
  4548. /* XXX: Handle the 100Mhz refclk */
  4549. intel_clock(dev, 96000, &clock);
  4550. } else {
  4551. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  4552. if (is_lvds) {
  4553. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  4554. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4555. clock.p2 = 14;
  4556. if ((dpll & PLL_REF_INPUT_MASK) ==
  4557. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  4558. /* XXX: might not be 66MHz */
  4559. intel_clock(dev, 66000, &clock);
  4560. } else
  4561. intel_clock(dev, 48000, &clock);
  4562. } else {
  4563. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  4564. clock.p1 = 2;
  4565. else {
  4566. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  4567. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  4568. }
  4569. if (dpll & PLL_P2_DIVIDE_BY_4)
  4570. clock.p2 = 4;
  4571. else
  4572. clock.p2 = 2;
  4573. intel_clock(dev, 48000, &clock);
  4574. }
  4575. }
  4576. /* XXX: It would be nice to validate the clocks, but we can't reuse
  4577. * i830PllIsValid() because it relies on the xf86_config connector
  4578. * configuration being accurate, which it isn't necessarily.
  4579. */
  4580. return clock.dot;
  4581. }
  4582. /** Returns the currently programmed mode of the given pipe. */
  4583. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  4584. struct drm_crtc *crtc)
  4585. {
  4586. struct drm_i915_private *dev_priv = dev->dev_private;
  4587. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4588. int pipe = intel_crtc->pipe;
  4589. struct drm_display_mode *mode;
  4590. int htot = I915_READ(HTOTAL(pipe));
  4591. int hsync = I915_READ(HSYNC(pipe));
  4592. int vtot = I915_READ(VTOTAL(pipe));
  4593. int vsync = I915_READ(VSYNC(pipe));
  4594. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  4595. if (!mode)
  4596. return NULL;
  4597. mode->clock = intel_crtc_clock_get(dev, crtc);
  4598. mode->hdisplay = (htot & 0xffff) + 1;
  4599. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  4600. mode->hsync_start = (hsync & 0xffff) + 1;
  4601. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  4602. mode->vdisplay = (vtot & 0xffff) + 1;
  4603. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  4604. mode->vsync_start = (vsync & 0xffff) + 1;
  4605. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  4606. drm_mode_set_name(mode);
  4607. drm_mode_set_crtcinfo(mode, 0);
  4608. return mode;
  4609. }
  4610. #define GPU_IDLE_TIMEOUT 500 /* ms */
  4611. /* When this timer fires, we've been idle for awhile */
  4612. static void intel_gpu_idle_timer(unsigned long arg)
  4613. {
  4614. struct drm_device *dev = (struct drm_device *)arg;
  4615. drm_i915_private_t *dev_priv = dev->dev_private;
  4616. if (!list_empty(&dev_priv->mm.active_list)) {
  4617. /* Still processing requests, so just re-arm the timer. */
  4618. mod_timer(&dev_priv->idle_timer, jiffies +
  4619. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4620. return;
  4621. }
  4622. dev_priv->busy = false;
  4623. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4624. }
  4625. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  4626. static void intel_crtc_idle_timer(unsigned long arg)
  4627. {
  4628. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  4629. struct drm_crtc *crtc = &intel_crtc->base;
  4630. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  4631. struct intel_framebuffer *intel_fb;
  4632. intel_fb = to_intel_framebuffer(crtc->fb);
  4633. if (intel_fb && intel_fb->obj->active) {
  4634. /* The framebuffer is still being accessed by the GPU. */
  4635. mod_timer(&intel_crtc->idle_timer, jiffies +
  4636. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4637. return;
  4638. }
  4639. intel_crtc->busy = false;
  4640. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4641. }
  4642. static void intel_increase_pllclock(struct drm_crtc *crtc)
  4643. {
  4644. struct drm_device *dev = crtc->dev;
  4645. drm_i915_private_t *dev_priv = dev->dev_private;
  4646. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4647. int pipe = intel_crtc->pipe;
  4648. int dpll_reg = DPLL(pipe);
  4649. int dpll;
  4650. if (HAS_PCH_SPLIT(dev))
  4651. return;
  4652. if (!dev_priv->lvds_downclock_avail)
  4653. return;
  4654. dpll = I915_READ(dpll_reg);
  4655. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  4656. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  4657. assert_panel_unlocked(dev_priv, pipe);
  4658. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  4659. I915_WRITE(dpll_reg, dpll);
  4660. intel_wait_for_vblank(dev, pipe);
  4661. dpll = I915_READ(dpll_reg);
  4662. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  4663. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  4664. }
  4665. /* Schedule downclock */
  4666. mod_timer(&intel_crtc->idle_timer, jiffies +
  4667. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4668. }
  4669. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  4670. {
  4671. struct drm_device *dev = crtc->dev;
  4672. drm_i915_private_t *dev_priv = dev->dev_private;
  4673. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4674. int pipe = intel_crtc->pipe;
  4675. int dpll_reg = DPLL(pipe);
  4676. int dpll = I915_READ(dpll_reg);
  4677. if (HAS_PCH_SPLIT(dev))
  4678. return;
  4679. if (!dev_priv->lvds_downclock_avail)
  4680. return;
  4681. /*
  4682. * Since this is called by a timer, we should never get here in
  4683. * the manual case.
  4684. */
  4685. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  4686. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  4687. assert_panel_unlocked(dev_priv, pipe);
  4688. dpll |= DISPLAY_RATE_SELECT_FPA1;
  4689. I915_WRITE(dpll_reg, dpll);
  4690. intel_wait_for_vblank(dev, pipe);
  4691. dpll = I915_READ(dpll_reg);
  4692. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  4693. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  4694. }
  4695. }
  4696. /**
  4697. * intel_idle_update - adjust clocks for idleness
  4698. * @work: work struct
  4699. *
  4700. * Either the GPU or display (or both) went idle. Check the busy status
  4701. * here and adjust the CRTC and GPU clocks as necessary.
  4702. */
  4703. static void intel_idle_update(struct work_struct *work)
  4704. {
  4705. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  4706. idle_work);
  4707. struct drm_device *dev = dev_priv->dev;
  4708. struct drm_crtc *crtc;
  4709. struct intel_crtc *intel_crtc;
  4710. if (!i915_powersave)
  4711. return;
  4712. mutex_lock(&dev->struct_mutex);
  4713. i915_update_gfx_val(dev_priv);
  4714. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4715. /* Skip inactive CRTCs */
  4716. if (!crtc->fb)
  4717. continue;
  4718. intel_crtc = to_intel_crtc(crtc);
  4719. if (!intel_crtc->busy)
  4720. intel_decrease_pllclock(crtc);
  4721. }
  4722. mutex_unlock(&dev->struct_mutex);
  4723. }
  4724. /**
  4725. * intel_mark_busy - mark the GPU and possibly the display busy
  4726. * @dev: drm device
  4727. * @obj: object we're operating on
  4728. *
  4729. * Callers can use this function to indicate that the GPU is busy processing
  4730. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  4731. * buffer), we'll also mark the display as busy, so we know to increase its
  4732. * clock frequency.
  4733. */
  4734. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  4735. {
  4736. drm_i915_private_t *dev_priv = dev->dev_private;
  4737. struct drm_crtc *crtc = NULL;
  4738. struct intel_framebuffer *intel_fb;
  4739. struct intel_crtc *intel_crtc;
  4740. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4741. return;
  4742. if (!dev_priv->busy) {
  4743. intel_sanitize_pm(dev);
  4744. dev_priv->busy = true;
  4745. } else
  4746. mod_timer(&dev_priv->idle_timer, jiffies +
  4747. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4748. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4749. if (!crtc->fb)
  4750. continue;
  4751. intel_crtc = to_intel_crtc(crtc);
  4752. intel_fb = to_intel_framebuffer(crtc->fb);
  4753. if (intel_fb->obj == obj) {
  4754. if (!intel_crtc->busy) {
  4755. /* Non-busy -> busy, upclock */
  4756. intel_increase_pllclock(crtc);
  4757. intel_crtc->busy = true;
  4758. } else {
  4759. /* Busy -> busy, put off timer */
  4760. mod_timer(&intel_crtc->idle_timer, jiffies +
  4761. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4762. }
  4763. }
  4764. }
  4765. }
  4766. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4767. {
  4768. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4769. struct drm_device *dev = crtc->dev;
  4770. struct intel_unpin_work *work;
  4771. unsigned long flags;
  4772. spin_lock_irqsave(&dev->event_lock, flags);
  4773. work = intel_crtc->unpin_work;
  4774. intel_crtc->unpin_work = NULL;
  4775. spin_unlock_irqrestore(&dev->event_lock, flags);
  4776. if (work) {
  4777. cancel_work_sync(&work->work);
  4778. kfree(work);
  4779. }
  4780. drm_crtc_cleanup(crtc);
  4781. kfree(intel_crtc);
  4782. }
  4783. static void intel_unpin_work_fn(struct work_struct *__work)
  4784. {
  4785. struct intel_unpin_work *work =
  4786. container_of(__work, struct intel_unpin_work, work);
  4787. mutex_lock(&work->dev->struct_mutex);
  4788. intel_unpin_fb_obj(work->old_fb_obj);
  4789. drm_gem_object_unreference(&work->pending_flip_obj->base);
  4790. drm_gem_object_unreference(&work->old_fb_obj->base);
  4791. intel_update_fbc(work->dev);
  4792. mutex_unlock(&work->dev->struct_mutex);
  4793. kfree(work);
  4794. }
  4795. static void do_intel_finish_page_flip(struct drm_device *dev,
  4796. struct drm_crtc *crtc)
  4797. {
  4798. drm_i915_private_t *dev_priv = dev->dev_private;
  4799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4800. struct intel_unpin_work *work;
  4801. struct drm_i915_gem_object *obj;
  4802. struct drm_pending_vblank_event *e;
  4803. struct timeval tnow, tvbl;
  4804. unsigned long flags;
  4805. /* Ignore early vblank irqs */
  4806. if (intel_crtc == NULL)
  4807. return;
  4808. do_gettimeofday(&tnow);
  4809. spin_lock_irqsave(&dev->event_lock, flags);
  4810. work = intel_crtc->unpin_work;
  4811. if (work == NULL || !work->pending) {
  4812. spin_unlock_irqrestore(&dev->event_lock, flags);
  4813. return;
  4814. }
  4815. intel_crtc->unpin_work = NULL;
  4816. if (work->event) {
  4817. e = work->event;
  4818. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  4819. /* Called before vblank count and timestamps have
  4820. * been updated for the vblank interval of flip
  4821. * completion? Need to increment vblank count and
  4822. * add one videorefresh duration to returned timestamp
  4823. * to account for this. We assume this happened if we
  4824. * get called over 0.9 frame durations after the last
  4825. * timestamped vblank.
  4826. *
  4827. * This calculation can not be used with vrefresh rates
  4828. * below 5Hz (10Hz to be on the safe side) without
  4829. * promoting to 64 integers.
  4830. */
  4831. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  4832. 9 * crtc->framedur_ns) {
  4833. e->event.sequence++;
  4834. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  4835. crtc->framedur_ns);
  4836. }
  4837. e->event.tv_sec = tvbl.tv_sec;
  4838. e->event.tv_usec = tvbl.tv_usec;
  4839. list_add_tail(&e->base.link,
  4840. &e->base.file_priv->event_list);
  4841. wake_up_interruptible(&e->base.file_priv->event_wait);
  4842. }
  4843. drm_vblank_put(dev, intel_crtc->pipe);
  4844. spin_unlock_irqrestore(&dev->event_lock, flags);
  4845. obj = work->old_fb_obj;
  4846. atomic_clear_mask(1 << intel_crtc->plane,
  4847. &obj->pending_flip.counter);
  4848. if (atomic_read(&obj->pending_flip) == 0)
  4849. wake_up(&dev_priv->pending_flip_queue);
  4850. schedule_work(&work->work);
  4851. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  4852. }
  4853. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4854. {
  4855. drm_i915_private_t *dev_priv = dev->dev_private;
  4856. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4857. do_intel_finish_page_flip(dev, crtc);
  4858. }
  4859. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4860. {
  4861. drm_i915_private_t *dev_priv = dev->dev_private;
  4862. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4863. do_intel_finish_page_flip(dev, crtc);
  4864. }
  4865. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4866. {
  4867. drm_i915_private_t *dev_priv = dev->dev_private;
  4868. struct intel_crtc *intel_crtc =
  4869. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4870. unsigned long flags;
  4871. spin_lock_irqsave(&dev->event_lock, flags);
  4872. if (intel_crtc->unpin_work) {
  4873. if ((++intel_crtc->unpin_work->pending) > 1)
  4874. DRM_ERROR("Prepared flip multiple times\n");
  4875. } else {
  4876. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4877. }
  4878. spin_unlock_irqrestore(&dev->event_lock, flags);
  4879. }
  4880. static int intel_gen2_queue_flip(struct drm_device *dev,
  4881. struct drm_crtc *crtc,
  4882. struct drm_framebuffer *fb,
  4883. struct drm_i915_gem_object *obj)
  4884. {
  4885. struct drm_i915_private *dev_priv = dev->dev_private;
  4886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4887. unsigned long offset;
  4888. u32 flip_mask;
  4889. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  4890. int ret;
  4891. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  4892. if (ret)
  4893. goto err;
  4894. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4895. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  4896. ret = intel_ring_begin(ring, 6);
  4897. if (ret)
  4898. goto err_unpin;
  4899. /* Can't queue multiple flips, so wait for the previous
  4900. * one to finish before executing the next.
  4901. */
  4902. if (intel_crtc->plane)
  4903. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  4904. else
  4905. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  4906. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  4907. intel_ring_emit(ring, MI_NOOP);
  4908. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  4909. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4910. intel_ring_emit(ring, fb->pitches[0]);
  4911. intel_ring_emit(ring, obj->gtt_offset + offset);
  4912. intel_ring_emit(ring, 0); /* aux display base address, unused */
  4913. intel_ring_advance(ring);
  4914. return 0;
  4915. err_unpin:
  4916. intel_unpin_fb_obj(obj);
  4917. err:
  4918. return ret;
  4919. }
  4920. static int intel_gen3_queue_flip(struct drm_device *dev,
  4921. struct drm_crtc *crtc,
  4922. struct drm_framebuffer *fb,
  4923. struct drm_i915_gem_object *obj)
  4924. {
  4925. struct drm_i915_private *dev_priv = dev->dev_private;
  4926. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4927. unsigned long offset;
  4928. u32 flip_mask;
  4929. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  4930. int ret;
  4931. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  4932. if (ret)
  4933. goto err;
  4934. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4935. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  4936. ret = intel_ring_begin(ring, 6);
  4937. if (ret)
  4938. goto err_unpin;
  4939. if (intel_crtc->plane)
  4940. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  4941. else
  4942. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  4943. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  4944. intel_ring_emit(ring, MI_NOOP);
  4945. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  4946. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4947. intel_ring_emit(ring, fb->pitches[0]);
  4948. intel_ring_emit(ring, obj->gtt_offset + offset);
  4949. intel_ring_emit(ring, MI_NOOP);
  4950. intel_ring_advance(ring);
  4951. return 0;
  4952. err_unpin:
  4953. intel_unpin_fb_obj(obj);
  4954. err:
  4955. return ret;
  4956. }
  4957. static int intel_gen4_queue_flip(struct drm_device *dev,
  4958. struct drm_crtc *crtc,
  4959. struct drm_framebuffer *fb,
  4960. struct drm_i915_gem_object *obj)
  4961. {
  4962. struct drm_i915_private *dev_priv = dev->dev_private;
  4963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4964. uint32_t pf, pipesrc;
  4965. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  4966. int ret;
  4967. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  4968. if (ret)
  4969. goto err;
  4970. ret = intel_ring_begin(ring, 4);
  4971. if (ret)
  4972. goto err_unpin;
  4973. /* i965+ uses the linear or tiled offsets from the
  4974. * Display Registers (which do not change across a page-flip)
  4975. * so we need only reprogram the base address.
  4976. */
  4977. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  4978. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4979. intel_ring_emit(ring, fb->pitches[0]);
  4980. intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
  4981. /* XXX Enabling the panel-fitter across page-flip is so far
  4982. * untested on non-native modes, so ignore it for now.
  4983. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  4984. */
  4985. pf = 0;
  4986. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  4987. intel_ring_emit(ring, pf | pipesrc);
  4988. intel_ring_advance(ring);
  4989. return 0;
  4990. err_unpin:
  4991. intel_unpin_fb_obj(obj);
  4992. err:
  4993. return ret;
  4994. }
  4995. static int intel_gen6_queue_flip(struct drm_device *dev,
  4996. struct drm_crtc *crtc,
  4997. struct drm_framebuffer *fb,
  4998. struct drm_i915_gem_object *obj)
  4999. {
  5000. struct drm_i915_private *dev_priv = dev->dev_private;
  5001. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5002. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5003. uint32_t pf, pipesrc;
  5004. int ret;
  5005. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5006. if (ret)
  5007. goto err;
  5008. ret = intel_ring_begin(ring, 4);
  5009. if (ret)
  5010. goto err_unpin;
  5011. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5012. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5013. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5014. intel_ring_emit(ring, obj->gtt_offset);
  5015. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5016. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5017. intel_ring_emit(ring, pf | pipesrc);
  5018. intel_ring_advance(ring);
  5019. return 0;
  5020. err_unpin:
  5021. intel_unpin_fb_obj(obj);
  5022. err:
  5023. return ret;
  5024. }
  5025. /*
  5026. * On gen7 we currently use the blit ring because (in early silicon at least)
  5027. * the render ring doesn't give us interrpts for page flip completion, which
  5028. * means clients will hang after the first flip is queued. Fortunately the
  5029. * blit ring generates interrupts properly, so use it instead.
  5030. */
  5031. static int intel_gen7_queue_flip(struct drm_device *dev,
  5032. struct drm_crtc *crtc,
  5033. struct drm_framebuffer *fb,
  5034. struct drm_i915_gem_object *obj)
  5035. {
  5036. struct drm_i915_private *dev_priv = dev->dev_private;
  5037. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5038. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5039. int ret;
  5040. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5041. if (ret)
  5042. goto err;
  5043. ret = intel_ring_begin(ring, 4);
  5044. if (ret)
  5045. goto err_unpin;
  5046. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  5047. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5048. intel_ring_emit(ring, (obj->gtt_offset));
  5049. intel_ring_emit(ring, (MI_NOOP));
  5050. intel_ring_advance(ring);
  5051. return 0;
  5052. err_unpin:
  5053. intel_unpin_fb_obj(obj);
  5054. err:
  5055. return ret;
  5056. }
  5057. static int intel_default_queue_flip(struct drm_device *dev,
  5058. struct drm_crtc *crtc,
  5059. struct drm_framebuffer *fb,
  5060. struct drm_i915_gem_object *obj)
  5061. {
  5062. return -ENODEV;
  5063. }
  5064. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5065. struct drm_framebuffer *fb,
  5066. struct drm_pending_vblank_event *event)
  5067. {
  5068. struct drm_device *dev = crtc->dev;
  5069. struct drm_i915_private *dev_priv = dev->dev_private;
  5070. struct intel_framebuffer *intel_fb;
  5071. struct drm_i915_gem_object *obj;
  5072. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5073. struct intel_unpin_work *work;
  5074. unsigned long flags;
  5075. int ret;
  5076. work = kzalloc(sizeof *work, GFP_KERNEL);
  5077. if (work == NULL)
  5078. return -ENOMEM;
  5079. work->event = event;
  5080. work->dev = crtc->dev;
  5081. intel_fb = to_intel_framebuffer(crtc->fb);
  5082. work->old_fb_obj = intel_fb->obj;
  5083. INIT_WORK(&work->work, intel_unpin_work_fn);
  5084. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5085. if (ret)
  5086. goto free_work;
  5087. /* We borrow the event spin lock for protecting unpin_work */
  5088. spin_lock_irqsave(&dev->event_lock, flags);
  5089. if (intel_crtc->unpin_work) {
  5090. spin_unlock_irqrestore(&dev->event_lock, flags);
  5091. kfree(work);
  5092. drm_vblank_put(dev, intel_crtc->pipe);
  5093. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5094. return -EBUSY;
  5095. }
  5096. intel_crtc->unpin_work = work;
  5097. spin_unlock_irqrestore(&dev->event_lock, flags);
  5098. intel_fb = to_intel_framebuffer(fb);
  5099. obj = intel_fb->obj;
  5100. mutex_lock(&dev->struct_mutex);
  5101. /* Reference the objects for the scheduled work. */
  5102. drm_gem_object_reference(&work->old_fb_obj->base);
  5103. drm_gem_object_reference(&obj->base);
  5104. crtc->fb = fb;
  5105. work->pending_flip_obj = obj;
  5106. work->enable_stall_check = true;
  5107. /* Block clients from rendering to the new back buffer until
  5108. * the flip occurs and the object is no longer visible.
  5109. */
  5110. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5111. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5112. if (ret)
  5113. goto cleanup_pending;
  5114. intel_disable_fbc(dev);
  5115. mutex_unlock(&dev->struct_mutex);
  5116. trace_i915_flip_request(intel_crtc->plane, obj);
  5117. return 0;
  5118. cleanup_pending:
  5119. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5120. drm_gem_object_unreference(&work->old_fb_obj->base);
  5121. drm_gem_object_unreference(&obj->base);
  5122. mutex_unlock(&dev->struct_mutex);
  5123. spin_lock_irqsave(&dev->event_lock, flags);
  5124. intel_crtc->unpin_work = NULL;
  5125. spin_unlock_irqrestore(&dev->event_lock, flags);
  5126. drm_vblank_put(dev, intel_crtc->pipe);
  5127. free_work:
  5128. kfree(work);
  5129. return ret;
  5130. }
  5131. static void intel_sanitize_modesetting(struct drm_device *dev,
  5132. int pipe, int plane)
  5133. {
  5134. struct drm_i915_private *dev_priv = dev->dev_private;
  5135. u32 reg, val;
  5136. /* Clear any frame start delays used for debugging left by the BIOS */
  5137. for_each_pipe(pipe) {
  5138. reg = PIPECONF(pipe);
  5139. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  5140. }
  5141. if (HAS_PCH_SPLIT(dev))
  5142. return;
  5143. /* Who knows what state these registers were left in by the BIOS or
  5144. * grub?
  5145. *
  5146. * If we leave the registers in a conflicting state (e.g. with the
  5147. * display plane reading from the other pipe than the one we intend
  5148. * to use) then when we attempt to teardown the active mode, we will
  5149. * not disable the pipes and planes in the correct order -- leaving
  5150. * a plane reading from a disabled pipe and possibly leading to
  5151. * undefined behaviour.
  5152. */
  5153. reg = DSPCNTR(plane);
  5154. val = I915_READ(reg);
  5155. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  5156. return;
  5157. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  5158. return;
  5159. /* This display plane is active and attached to the other CPU pipe. */
  5160. pipe = !pipe;
  5161. /* Disable the plane and wait for it to stop reading from the pipe. */
  5162. intel_disable_plane(dev_priv, plane, pipe);
  5163. intel_disable_pipe(dev_priv, pipe);
  5164. }
  5165. static void intel_crtc_reset(struct drm_crtc *crtc)
  5166. {
  5167. struct drm_device *dev = crtc->dev;
  5168. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5169. /* Reset flags back to the 'unknown' status so that they
  5170. * will be correctly set on the initial modeset.
  5171. */
  5172. intel_crtc->dpms_mode = -1;
  5173. /* We need to fix up any BIOS configuration that conflicts with
  5174. * our expectations.
  5175. */
  5176. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  5177. }
  5178. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5179. .dpms = intel_crtc_dpms,
  5180. .mode_fixup = intel_crtc_mode_fixup,
  5181. .mode_set = intel_crtc_mode_set,
  5182. .mode_set_base = intel_pipe_set_base,
  5183. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5184. .load_lut = intel_crtc_load_lut,
  5185. .disable = intel_crtc_disable,
  5186. };
  5187. static const struct drm_crtc_funcs intel_crtc_funcs = {
  5188. .reset = intel_crtc_reset,
  5189. .cursor_set = intel_crtc_cursor_set,
  5190. .cursor_move = intel_crtc_cursor_move,
  5191. .gamma_set = intel_crtc_gamma_set,
  5192. .set_config = drm_crtc_helper_set_config,
  5193. .destroy = intel_crtc_destroy,
  5194. .page_flip = intel_crtc_page_flip,
  5195. };
  5196. static void intel_pch_pll_init(struct drm_device *dev)
  5197. {
  5198. drm_i915_private_t *dev_priv = dev->dev_private;
  5199. int i;
  5200. if (dev_priv->num_pch_pll == 0) {
  5201. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  5202. return;
  5203. }
  5204. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  5205. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  5206. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  5207. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  5208. }
  5209. }
  5210. static void intel_crtc_init(struct drm_device *dev, int pipe)
  5211. {
  5212. drm_i915_private_t *dev_priv = dev->dev_private;
  5213. struct intel_crtc *intel_crtc;
  5214. int i;
  5215. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  5216. if (intel_crtc == NULL)
  5217. return;
  5218. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  5219. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  5220. for (i = 0; i < 256; i++) {
  5221. intel_crtc->lut_r[i] = i;
  5222. intel_crtc->lut_g[i] = i;
  5223. intel_crtc->lut_b[i] = i;
  5224. }
  5225. /* Swap pipes & planes for FBC on pre-965 */
  5226. intel_crtc->pipe = pipe;
  5227. intel_crtc->plane = pipe;
  5228. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  5229. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  5230. intel_crtc->plane = !pipe;
  5231. }
  5232. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  5233. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  5234. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  5235. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  5236. intel_crtc_reset(&intel_crtc->base);
  5237. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  5238. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  5239. if (HAS_PCH_SPLIT(dev)) {
  5240. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  5241. intel_helper_funcs.commit = ironlake_crtc_commit;
  5242. } else {
  5243. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  5244. intel_helper_funcs.commit = i9xx_crtc_commit;
  5245. }
  5246. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  5247. intel_crtc->busy = false;
  5248. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  5249. (unsigned long)intel_crtc);
  5250. }
  5251. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  5252. struct drm_file *file)
  5253. {
  5254. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  5255. struct drm_mode_object *drmmode_obj;
  5256. struct intel_crtc *crtc;
  5257. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5258. return -ENODEV;
  5259. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  5260. DRM_MODE_OBJECT_CRTC);
  5261. if (!drmmode_obj) {
  5262. DRM_ERROR("no such CRTC id\n");
  5263. return -EINVAL;
  5264. }
  5265. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  5266. pipe_from_crtc_id->pipe = crtc->pipe;
  5267. return 0;
  5268. }
  5269. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  5270. {
  5271. struct intel_encoder *encoder;
  5272. int index_mask = 0;
  5273. int entry = 0;
  5274. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  5275. if (type_mask & encoder->clone_mask)
  5276. index_mask |= (1 << entry);
  5277. entry++;
  5278. }
  5279. return index_mask;
  5280. }
  5281. static bool has_edp_a(struct drm_device *dev)
  5282. {
  5283. struct drm_i915_private *dev_priv = dev->dev_private;
  5284. if (!IS_MOBILE(dev))
  5285. return false;
  5286. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  5287. return false;
  5288. if (IS_GEN5(dev) &&
  5289. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  5290. return false;
  5291. return true;
  5292. }
  5293. static void intel_setup_outputs(struct drm_device *dev)
  5294. {
  5295. struct drm_i915_private *dev_priv = dev->dev_private;
  5296. struct intel_encoder *encoder;
  5297. bool dpd_is_edp = false;
  5298. bool has_lvds;
  5299. has_lvds = intel_lvds_init(dev);
  5300. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  5301. /* disable the panel fitter on everything but LVDS */
  5302. I915_WRITE(PFIT_CONTROL, 0);
  5303. }
  5304. if (HAS_PCH_SPLIT(dev)) {
  5305. dpd_is_edp = intel_dpd_is_edp(dev);
  5306. if (has_edp_a(dev))
  5307. intel_dp_init(dev, DP_A);
  5308. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  5309. intel_dp_init(dev, PCH_DP_D);
  5310. }
  5311. intel_crt_init(dev);
  5312. if (HAS_PCH_SPLIT(dev)) {
  5313. int found;
  5314. if (I915_READ(HDMIB) & PORT_DETECTED) {
  5315. /* PCH SDVOB multiplex with HDMIB */
  5316. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  5317. if (!found)
  5318. intel_hdmi_init(dev, HDMIB);
  5319. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  5320. intel_dp_init(dev, PCH_DP_B);
  5321. }
  5322. if (I915_READ(HDMIC) & PORT_DETECTED)
  5323. intel_hdmi_init(dev, HDMIC);
  5324. if (I915_READ(HDMID) & PORT_DETECTED)
  5325. intel_hdmi_init(dev, HDMID);
  5326. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  5327. intel_dp_init(dev, PCH_DP_C);
  5328. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  5329. intel_dp_init(dev, PCH_DP_D);
  5330. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  5331. bool found = false;
  5332. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  5333. DRM_DEBUG_KMS("probing SDVOB\n");
  5334. found = intel_sdvo_init(dev, SDVOB, true);
  5335. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  5336. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  5337. intel_hdmi_init(dev, SDVOB);
  5338. }
  5339. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  5340. DRM_DEBUG_KMS("probing DP_B\n");
  5341. intel_dp_init(dev, DP_B);
  5342. }
  5343. }
  5344. /* Before G4X SDVOC doesn't have its own detect register */
  5345. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  5346. DRM_DEBUG_KMS("probing SDVOC\n");
  5347. found = intel_sdvo_init(dev, SDVOC, false);
  5348. }
  5349. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  5350. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  5351. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  5352. intel_hdmi_init(dev, SDVOC);
  5353. }
  5354. if (SUPPORTS_INTEGRATED_DP(dev)) {
  5355. DRM_DEBUG_KMS("probing DP_C\n");
  5356. intel_dp_init(dev, DP_C);
  5357. }
  5358. }
  5359. if (SUPPORTS_INTEGRATED_DP(dev) &&
  5360. (I915_READ(DP_D) & DP_DETECTED)) {
  5361. DRM_DEBUG_KMS("probing DP_D\n");
  5362. intel_dp_init(dev, DP_D);
  5363. }
  5364. } else if (IS_GEN2(dev))
  5365. intel_dvo_init(dev);
  5366. if (SUPPORTS_TV(dev))
  5367. intel_tv_init(dev);
  5368. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  5369. encoder->base.possible_crtcs = encoder->crtc_mask;
  5370. encoder->base.possible_clones =
  5371. intel_encoder_clones(dev, encoder->clone_mask);
  5372. }
  5373. /* disable all the possible outputs/crtcs before entering KMS mode */
  5374. drm_helper_disable_unused_functions(dev);
  5375. if (HAS_PCH_SPLIT(dev))
  5376. ironlake_init_pch_refclk(dev);
  5377. }
  5378. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  5379. {
  5380. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  5381. drm_framebuffer_cleanup(fb);
  5382. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  5383. kfree(intel_fb);
  5384. }
  5385. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  5386. struct drm_file *file,
  5387. unsigned int *handle)
  5388. {
  5389. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  5390. struct drm_i915_gem_object *obj = intel_fb->obj;
  5391. return drm_gem_handle_create(file, &obj->base, handle);
  5392. }
  5393. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  5394. .destroy = intel_user_framebuffer_destroy,
  5395. .create_handle = intel_user_framebuffer_create_handle,
  5396. };
  5397. int intel_framebuffer_init(struct drm_device *dev,
  5398. struct intel_framebuffer *intel_fb,
  5399. struct drm_mode_fb_cmd2 *mode_cmd,
  5400. struct drm_i915_gem_object *obj)
  5401. {
  5402. int ret;
  5403. if (obj->tiling_mode == I915_TILING_Y)
  5404. return -EINVAL;
  5405. if (mode_cmd->pitches[0] & 63)
  5406. return -EINVAL;
  5407. switch (mode_cmd->pixel_format) {
  5408. case DRM_FORMAT_RGB332:
  5409. case DRM_FORMAT_RGB565:
  5410. case DRM_FORMAT_XRGB8888:
  5411. case DRM_FORMAT_XBGR8888:
  5412. case DRM_FORMAT_ARGB8888:
  5413. case DRM_FORMAT_XRGB2101010:
  5414. case DRM_FORMAT_ARGB2101010:
  5415. /* RGB formats are common across chipsets */
  5416. break;
  5417. case DRM_FORMAT_YUYV:
  5418. case DRM_FORMAT_UYVY:
  5419. case DRM_FORMAT_YVYU:
  5420. case DRM_FORMAT_VYUY:
  5421. break;
  5422. default:
  5423. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  5424. mode_cmd->pixel_format);
  5425. return -EINVAL;
  5426. }
  5427. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  5428. if (ret) {
  5429. DRM_ERROR("framebuffer init failed %d\n", ret);
  5430. return ret;
  5431. }
  5432. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  5433. intel_fb->obj = obj;
  5434. return 0;
  5435. }
  5436. static struct drm_framebuffer *
  5437. intel_user_framebuffer_create(struct drm_device *dev,
  5438. struct drm_file *filp,
  5439. struct drm_mode_fb_cmd2 *mode_cmd)
  5440. {
  5441. struct drm_i915_gem_object *obj;
  5442. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  5443. mode_cmd->handles[0]));
  5444. if (&obj->base == NULL)
  5445. return ERR_PTR(-ENOENT);
  5446. return intel_framebuffer_create(dev, mode_cmd, obj);
  5447. }
  5448. static const struct drm_mode_config_funcs intel_mode_funcs = {
  5449. .fb_create = intel_user_framebuffer_create,
  5450. .output_poll_changed = intel_fb_output_poll_changed,
  5451. };
  5452. /* Set up chip specific display functions */
  5453. static void intel_init_display(struct drm_device *dev)
  5454. {
  5455. struct drm_i915_private *dev_priv = dev->dev_private;
  5456. /* We always want a DPMS function */
  5457. if (HAS_PCH_SPLIT(dev)) {
  5458. dev_priv->display.dpms = ironlake_crtc_dpms;
  5459. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  5460. dev_priv->display.off = ironlake_crtc_off;
  5461. dev_priv->display.update_plane = ironlake_update_plane;
  5462. } else {
  5463. dev_priv->display.dpms = i9xx_crtc_dpms;
  5464. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  5465. dev_priv->display.off = i9xx_crtc_off;
  5466. dev_priv->display.update_plane = i9xx_update_plane;
  5467. }
  5468. /* Returns the core display clock speed */
  5469. if (IS_VALLEYVIEW(dev))
  5470. dev_priv->display.get_display_clock_speed =
  5471. valleyview_get_display_clock_speed;
  5472. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  5473. dev_priv->display.get_display_clock_speed =
  5474. i945_get_display_clock_speed;
  5475. else if (IS_I915G(dev))
  5476. dev_priv->display.get_display_clock_speed =
  5477. i915_get_display_clock_speed;
  5478. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  5479. dev_priv->display.get_display_clock_speed =
  5480. i9xx_misc_get_display_clock_speed;
  5481. else if (IS_I915GM(dev))
  5482. dev_priv->display.get_display_clock_speed =
  5483. i915gm_get_display_clock_speed;
  5484. else if (IS_I865G(dev))
  5485. dev_priv->display.get_display_clock_speed =
  5486. i865_get_display_clock_speed;
  5487. else if (IS_I85X(dev))
  5488. dev_priv->display.get_display_clock_speed =
  5489. i855_get_display_clock_speed;
  5490. else /* 852, 830 */
  5491. dev_priv->display.get_display_clock_speed =
  5492. i830_get_display_clock_speed;
  5493. if (HAS_PCH_SPLIT(dev)) {
  5494. if (IS_GEN5(dev)) {
  5495. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  5496. dev_priv->display.write_eld = ironlake_write_eld;
  5497. } else if (IS_GEN6(dev)) {
  5498. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  5499. dev_priv->display.write_eld = ironlake_write_eld;
  5500. } else if (IS_IVYBRIDGE(dev)) {
  5501. /* FIXME: detect B0+ stepping and use auto training */
  5502. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  5503. dev_priv->display.write_eld = ironlake_write_eld;
  5504. } else
  5505. dev_priv->display.update_wm = NULL;
  5506. } else if (IS_VALLEYVIEW(dev)) {
  5507. dev_priv->display.force_wake_get = vlv_force_wake_get;
  5508. dev_priv->display.force_wake_put = vlv_force_wake_put;
  5509. } else if (IS_G4X(dev)) {
  5510. dev_priv->display.write_eld = g4x_write_eld;
  5511. }
  5512. /* Default just returns -ENODEV to indicate unsupported */
  5513. dev_priv->display.queue_flip = intel_default_queue_flip;
  5514. switch (INTEL_INFO(dev)->gen) {
  5515. case 2:
  5516. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  5517. break;
  5518. case 3:
  5519. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  5520. break;
  5521. case 4:
  5522. case 5:
  5523. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  5524. break;
  5525. case 6:
  5526. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  5527. break;
  5528. case 7:
  5529. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  5530. break;
  5531. }
  5532. }
  5533. /*
  5534. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  5535. * resume, or other times. This quirk makes sure that's the case for
  5536. * affected systems.
  5537. */
  5538. static void quirk_pipea_force(struct drm_device *dev)
  5539. {
  5540. struct drm_i915_private *dev_priv = dev->dev_private;
  5541. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  5542. DRM_INFO("applying pipe a force quirk\n");
  5543. }
  5544. /*
  5545. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  5546. */
  5547. static void quirk_ssc_force_disable(struct drm_device *dev)
  5548. {
  5549. struct drm_i915_private *dev_priv = dev->dev_private;
  5550. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  5551. DRM_INFO("applying lvds SSC disable quirk\n");
  5552. }
  5553. /*
  5554. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  5555. * brightness value
  5556. */
  5557. static void quirk_invert_brightness(struct drm_device *dev)
  5558. {
  5559. struct drm_i915_private *dev_priv = dev->dev_private;
  5560. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  5561. DRM_INFO("applying inverted panel brightness quirk\n");
  5562. }
  5563. struct intel_quirk {
  5564. int device;
  5565. int subsystem_vendor;
  5566. int subsystem_device;
  5567. void (*hook)(struct drm_device *dev);
  5568. };
  5569. static struct intel_quirk intel_quirks[] = {
  5570. /* HP Mini needs pipe A force quirk (LP: #322104) */
  5571. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  5572. /* Thinkpad R31 needs pipe A force quirk */
  5573. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  5574. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  5575. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  5576. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  5577. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  5578. /* ThinkPad X40 needs pipe A force quirk */
  5579. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  5580. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  5581. /* 855 & before need to leave pipe A & dpll A up */
  5582. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5583. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5584. /* Lenovo U160 cannot use SSC on LVDS */
  5585. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  5586. /* Sony Vaio Y cannot use SSC on LVDS */
  5587. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  5588. /* Acer Aspire 5734Z must invert backlight brightness */
  5589. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  5590. };
  5591. static void intel_init_quirks(struct drm_device *dev)
  5592. {
  5593. struct pci_dev *d = dev->pdev;
  5594. int i;
  5595. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  5596. struct intel_quirk *q = &intel_quirks[i];
  5597. if (d->device == q->device &&
  5598. (d->subsystem_vendor == q->subsystem_vendor ||
  5599. q->subsystem_vendor == PCI_ANY_ID) &&
  5600. (d->subsystem_device == q->subsystem_device ||
  5601. q->subsystem_device == PCI_ANY_ID))
  5602. q->hook(dev);
  5603. }
  5604. }
  5605. /* Disable the VGA plane that we never use */
  5606. static void i915_disable_vga(struct drm_device *dev)
  5607. {
  5608. struct drm_i915_private *dev_priv = dev->dev_private;
  5609. u8 sr1;
  5610. u32 vga_reg;
  5611. if (HAS_PCH_SPLIT(dev))
  5612. vga_reg = CPU_VGACNTRL;
  5613. else
  5614. vga_reg = VGACNTRL;
  5615. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5616. outb(SR01, VGA_SR_INDEX);
  5617. sr1 = inb(VGA_SR_DATA);
  5618. outb(sr1 | 1<<5, VGA_SR_DATA);
  5619. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5620. udelay(300);
  5621. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  5622. POSTING_READ(vga_reg);
  5623. }
  5624. static void ivb_pch_pwm_override(struct drm_device *dev)
  5625. {
  5626. struct drm_i915_private *dev_priv = dev->dev_private;
  5627. /*
  5628. * IVB has CPU eDP backlight regs too, set things up to let the
  5629. * PCH regs control the backlight
  5630. */
  5631. I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
  5632. I915_WRITE(BLC_PWM_CPU_CTL, 0);
  5633. I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
  5634. }
  5635. void intel_modeset_init_hw(struct drm_device *dev)
  5636. {
  5637. struct drm_i915_private *dev_priv = dev->dev_private;
  5638. intel_init_clock_gating(dev);
  5639. if (IS_IRONLAKE_M(dev)) {
  5640. ironlake_enable_drps(dev);
  5641. intel_init_emon(dev);
  5642. }
  5643. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  5644. gen6_enable_rps(dev_priv);
  5645. gen6_update_ring_freq(dev_priv);
  5646. }
  5647. if (IS_IVYBRIDGE(dev))
  5648. ivb_pch_pwm_override(dev);
  5649. }
  5650. void intel_modeset_init(struct drm_device *dev)
  5651. {
  5652. struct drm_i915_private *dev_priv = dev->dev_private;
  5653. int i, ret;
  5654. drm_mode_config_init(dev);
  5655. dev->mode_config.min_width = 0;
  5656. dev->mode_config.min_height = 0;
  5657. dev->mode_config.preferred_depth = 24;
  5658. dev->mode_config.prefer_shadow = 1;
  5659. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  5660. intel_init_quirks(dev);
  5661. intel_init_pm(dev);
  5662. intel_init_display(dev);
  5663. if (IS_GEN2(dev)) {
  5664. dev->mode_config.max_width = 2048;
  5665. dev->mode_config.max_height = 2048;
  5666. } else if (IS_GEN3(dev)) {
  5667. dev->mode_config.max_width = 4096;
  5668. dev->mode_config.max_height = 4096;
  5669. } else {
  5670. dev->mode_config.max_width = 8192;
  5671. dev->mode_config.max_height = 8192;
  5672. }
  5673. dev->mode_config.fb_base = dev->agp->base;
  5674. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  5675. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  5676. for (i = 0; i < dev_priv->num_pipe; i++) {
  5677. intel_crtc_init(dev, i);
  5678. ret = intel_plane_init(dev, i);
  5679. if (ret)
  5680. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  5681. }
  5682. intel_pch_pll_init(dev);
  5683. /* Just disable it once at startup */
  5684. i915_disable_vga(dev);
  5685. intel_setup_outputs(dev);
  5686. intel_modeset_init_hw(dev);
  5687. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  5688. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  5689. (unsigned long)dev);
  5690. }
  5691. void intel_modeset_gem_init(struct drm_device *dev)
  5692. {
  5693. if (IS_IRONLAKE_M(dev))
  5694. ironlake_enable_rc6(dev);
  5695. intel_setup_overlay(dev);
  5696. }
  5697. void intel_modeset_cleanup(struct drm_device *dev)
  5698. {
  5699. struct drm_i915_private *dev_priv = dev->dev_private;
  5700. struct drm_crtc *crtc;
  5701. struct intel_crtc *intel_crtc;
  5702. drm_kms_helper_poll_fini(dev);
  5703. mutex_lock(&dev->struct_mutex);
  5704. intel_unregister_dsm_handler();
  5705. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5706. /* Skip inactive CRTCs */
  5707. if (!crtc->fb)
  5708. continue;
  5709. intel_crtc = to_intel_crtc(crtc);
  5710. intel_increase_pllclock(crtc);
  5711. }
  5712. intel_disable_fbc(dev);
  5713. if (IS_IRONLAKE_M(dev))
  5714. ironlake_disable_drps(dev);
  5715. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
  5716. gen6_disable_rps(dev);
  5717. if (IS_IRONLAKE_M(dev))
  5718. ironlake_disable_rc6(dev);
  5719. if (IS_VALLEYVIEW(dev))
  5720. vlv_init_dpio(dev);
  5721. mutex_unlock(&dev->struct_mutex);
  5722. /* Disable the irq before mode object teardown, for the irq might
  5723. * enqueue unpin/hotplug work. */
  5724. drm_irq_uninstall(dev);
  5725. cancel_work_sync(&dev_priv->hotplug_work);
  5726. cancel_work_sync(&dev_priv->rps_work);
  5727. /* flush any delayed tasks or pending work */
  5728. flush_scheduled_work();
  5729. /* Shut off idle work before the crtcs get freed. */
  5730. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5731. intel_crtc = to_intel_crtc(crtc);
  5732. del_timer_sync(&intel_crtc->idle_timer);
  5733. }
  5734. del_timer_sync(&dev_priv->idle_timer);
  5735. cancel_work_sync(&dev_priv->idle_work);
  5736. drm_mode_config_cleanup(dev);
  5737. }
  5738. /*
  5739. * Return which encoder is currently attached for connector.
  5740. */
  5741. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  5742. {
  5743. return &intel_attached_encoder(connector)->base;
  5744. }
  5745. void intel_connector_attach_encoder(struct intel_connector *connector,
  5746. struct intel_encoder *encoder)
  5747. {
  5748. connector->encoder = encoder;
  5749. drm_mode_connector_attach_encoder(&connector->base,
  5750. &encoder->base);
  5751. }
  5752. /*
  5753. * set vga decode state - true == enable VGA decode
  5754. */
  5755. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  5756. {
  5757. struct drm_i915_private *dev_priv = dev->dev_private;
  5758. u16 gmch_ctrl;
  5759. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  5760. if (state)
  5761. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  5762. else
  5763. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  5764. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  5765. return 0;
  5766. }
  5767. #ifdef CONFIG_DEBUG_FS
  5768. #include <linux/seq_file.h>
  5769. struct intel_display_error_state {
  5770. struct intel_cursor_error_state {
  5771. u32 control;
  5772. u32 position;
  5773. u32 base;
  5774. u32 size;
  5775. } cursor[2];
  5776. struct intel_pipe_error_state {
  5777. u32 conf;
  5778. u32 source;
  5779. u32 htotal;
  5780. u32 hblank;
  5781. u32 hsync;
  5782. u32 vtotal;
  5783. u32 vblank;
  5784. u32 vsync;
  5785. } pipe[2];
  5786. struct intel_plane_error_state {
  5787. u32 control;
  5788. u32 stride;
  5789. u32 size;
  5790. u32 pos;
  5791. u32 addr;
  5792. u32 surface;
  5793. u32 tile_offset;
  5794. } plane[2];
  5795. };
  5796. struct intel_display_error_state *
  5797. intel_display_capture_error_state(struct drm_device *dev)
  5798. {
  5799. drm_i915_private_t *dev_priv = dev->dev_private;
  5800. struct intel_display_error_state *error;
  5801. int i;
  5802. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  5803. if (error == NULL)
  5804. return NULL;
  5805. for (i = 0; i < 2; i++) {
  5806. error->cursor[i].control = I915_READ(CURCNTR(i));
  5807. error->cursor[i].position = I915_READ(CURPOS(i));
  5808. error->cursor[i].base = I915_READ(CURBASE(i));
  5809. error->plane[i].control = I915_READ(DSPCNTR(i));
  5810. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  5811. error->plane[i].size = I915_READ(DSPSIZE(i));
  5812. error->plane[i].pos = I915_READ(DSPPOS(i));
  5813. error->plane[i].addr = I915_READ(DSPADDR(i));
  5814. if (INTEL_INFO(dev)->gen >= 4) {
  5815. error->plane[i].surface = I915_READ(DSPSURF(i));
  5816. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  5817. }
  5818. error->pipe[i].conf = I915_READ(PIPECONF(i));
  5819. error->pipe[i].source = I915_READ(PIPESRC(i));
  5820. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  5821. error->pipe[i].hblank = I915_READ(HBLANK(i));
  5822. error->pipe[i].hsync = I915_READ(HSYNC(i));
  5823. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  5824. error->pipe[i].vblank = I915_READ(VBLANK(i));
  5825. error->pipe[i].vsync = I915_READ(VSYNC(i));
  5826. }
  5827. return error;
  5828. }
  5829. void
  5830. intel_display_print_error_state(struct seq_file *m,
  5831. struct drm_device *dev,
  5832. struct intel_display_error_state *error)
  5833. {
  5834. int i;
  5835. for (i = 0; i < 2; i++) {
  5836. seq_printf(m, "Pipe [%d]:\n", i);
  5837. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  5838. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  5839. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  5840. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  5841. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  5842. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  5843. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  5844. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  5845. seq_printf(m, "Plane [%d]:\n", i);
  5846. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  5847. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  5848. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  5849. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  5850. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  5851. if (INTEL_INFO(dev)->gen >= 4) {
  5852. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  5853. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  5854. }
  5855. seq_printf(m, "Cursor [%d]:\n", i);
  5856. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  5857. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  5858. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  5859. }
  5860. }
  5861. #endif