mmu.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <asm/page.h>
  34. #include <asm/cmpxchg.h>
  35. #include <asm/io.h>
  36. #include <asm/vmx.h>
  37. /*
  38. * When setting this variable to true it enables Two-Dimensional-Paging
  39. * where the hardware walks 2 page tables:
  40. * 1. the guest-virtual to guest-physical
  41. * 2. while doing 1. it walks guest-physical to host-physical
  42. * If the hardware supports that we don't need to do shadow paging.
  43. */
  44. bool tdp_enabled = false;
  45. #undef MMU_DEBUG
  46. #undef AUDIT
  47. #ifdef AUDIT
  48. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  49. #else
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  51. #endif
  52. #ifdef MMU_DEBUG
  53. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  54. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  55. #else
  56. #define pgprintk(x...) do { } while (0)
  57. #define rmap_printk(x...) do { } while (0)
  58. #endif
  59. #if defined(MMU_DEBUG) || defined(AUDIT)
  60. static int dbg = 0;
  61. module_param(dbg, bool, 0644);
  62. #endif
  63. static int oos_shadow = 1;
  64. module_param(oos_shadow, bool, 0644);
  65. #ifndef MMU_DEBUG
  66. #define ASSERT(x) do { } while (0)
  67. #else
  68. #define ASSERT(x) \
  69. if (!(x)) { \
  70. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  71. __FILE__, __LINE__, #x); \
  72. }
  73. #endif
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  77. #define PT64_LEVEL_BITS 9
  78. #define PT64_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  80. #define PT64_LEVEL_MASK(level) \
  81. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  82. #define PT64_INDEX(address, level)\
  83. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  84. #define PT32_LEVEL_BITS 10
  85. #define PT32_LEVEL_SHIFT(level) \
  86. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  87. #define PT32_LEVEL_MASK(level) \
  88. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  89. #define PT32_LVL_OFFSET_MASK(level) \
  90. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  91. * PT32_LEVEL_BITS))) - 1))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT64_LVL_ADDR_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT64_LVL_OFFSET_MASK(level) \
  101. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  102. * PT64_LEVEL_BITS))) - 1))
  103. #define PT32_BASE_ADDR_MASK PAGE_MASK
  104. #define PT32_DIR_BASE_ADDR_MASK \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  106. #define PT32_LVL_ADDR_MASK(level) \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT32_LEVEL_BITS))) - 1))
  109. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  110. | PT64_NX_MASK)
  111. #define RMAP_EXT 4
  112. #define ACC_EXEC_MASK 1
  113. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  114. #define ACC_USER_MASK PT_USER_MASK
  115. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  116. #include <trace/events/kvm.h>
  117. #define CREATE_TRACE_POINTS
  118. #include "mmutrace.h"
  119. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  120. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  121. struct kvm_rmap_desc {
  122. u64 *sptes[RMAP_EXT];
  123. struct kvm_rmap_desc *more;
  124. };
  125. struct kvm_shadow_walk_iterator {
  126. u64 addr;
  127. hpa_t shadow_addr;
  128. int level;
  129. u64 *sptep;
  130. unsigned index;
  131. };
  132. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  133. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  134. shadow_walk_okay(&(_walker)); \
  135. shadow_walk_next(&(_walker)))
  136. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  137. static struct kmem_cache *pte_chain_cache;
  138. static struct kmem_cache *rmap_desc_cache;
  139. static struct kmem_cache *mmu_page_header_cache;
  140. static u64 __read_mostly shadow_trap_nonpresent_pte;
  141. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  142. static u64 __read_mostly shadow_base_present_pte;
  143. static u64 __read_mostly shadow_nx_mask;
  144. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  145. static u64 __read_mostly shadow_user_mask;
  146. static u64 __read_mostly shadow_accessed_mask;
  147. static u64 __read_mostly shadow_dirty_mask;
  148. static inline u64 rsvd_bits(int s, int e)
  149. {
  150. return ((1ULL << (e - s + 1)) - 1) << s;
  151. }
  152. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  153. {
  154. shadow_trap_nonpresent_pte = trap_pte;
  155. shadow_notrap_nonpresent_pte = notrap_pte;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  158. void kvm_mmu_set_base_ptes(u64 base_pte)
  159. {
  160. shadow_base_present_pte = base_pte;
  161. }
  162. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  163. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  164. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  165. {
  166. shadow_user_mask = user_mask;
  167. shadow_accessed_mask = accessed_mask;
  168. shadow_dirty_mask = dirty_mask;
  169. shadow_nx_mask = nx_mask;
  170. shadow_x_mask = x_mask;
  171. }
  172. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  173. static int is_write_protection(struct kvm_vcpu *vcpu)
  174. {
  175. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  176. }
  177. static int is_cpuid_PSE36(void)
  178. {
  179. return 1;
  180. }
  181. static int is_nx(struct kvm_vcpu *vcpu)
  182. {
  183. return vcpu->arch.efer & EFER_NX;
  184. }
  185. static int is_shadow_present_pte(u64 pte)
  186. {
  187. return pte != shadow_trap_nonpresent_pte
  188. && pte != shadow_notrap_nonpresent_pte;
  189. }
  190. static int is_large_pte(u64 pte)
  191. {
  192. return pte & PT_PAGE_SIZE_MASK;
  193. }
  194. static int is_writable_pte(unsigned long pte)
  195. {
  196. return pte & PT_WRITABLE_MASK;
  197. }
  198. static int is_dirty_gpte(unsigned long pte)
  199. {
  200. return pte & PT_DIRTY_MASK;
  201. }
  202. static int is_rmap_spte(u64 pte)
  203. {
  204. return is_shadow_present_pte(pte);
  205. }
  206. static int is_last_spte(u64 pte, int level)
  207. {
  208. if (level == PT_PAGE_TABLE_LEVEL)
  209. return 1;
  210. if (is_large_pte(pte))
  211. return 1;
  212. return 0;
  213. }
  214. static pfn_t spte_to_pfn(u64 pte)
  215. {
  216. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  217. }
  218. static gfn_t pse36_gfn_delta(u32 gpte)
  219. {
  220. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  221. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  222. }
  223. static void __set_spte(u64 *sptep, u64 spte)
  224. {
  225. #ifdef CONFIG_X86_64
  226. set_64bit((unsigned long *)sptep, spte);
  227. #else
  228. set_64bit((unsigned long long *)sptep, spte);
  229. #endif
  230. }
  231. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  232. struct kmem_cache *base_cache, int min)
  233. {
  234. void *obj;
  235. if (cache->nobjs >= min)
  236. return 0;
  237. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  238. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  239. if (!obj)
  240. return -ENOMEM;
  241. cache->objects[cache->nobjs++] = obj;
  242. }
  243. return 0;
  244. }
  245. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  246. {
  247. while (mc->nobjs)
  248. kfree(mc->objects[--mc->nobjs]);
  249. }
  250. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  251. int min)
  252. {
  253. struct page *page;
  254. if (cache->nobjs >= min)
  255. return 0;
  256. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  257. page = alloc_page(GFP_KERNEL);
  258. if (!page)
  259. return -ENOMEM;
  260. cache->objects[cache->nobjs++] = page_address(page);
  261. }
  262. return 0;
  263. }
  264. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  265. {
  266. while (mc->nobjs)
  267. free_page((unsigned long)mc->objects[--mc->nobjs]);
  268. }
  269. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  270. {
  271. int r;
  272. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  273. pte_chain_cache, 4);
  274. if (r)
  275. goto out;
  276. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  277. rmap_desc_cache, 4);
  278. if (r)
  279. goto out;
  280. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  284. mmu_page_header_cache, 4);
  285. out:
  286. return r;
  287. }
  288. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  289. {
  290. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  291. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  292. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  293. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  294. }
  295. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  296. size_t size)
  297. {
  298. void *p;
  299. BUG_ON(!mc->nobjs);
  300. p = mc->objects[--mc->nobjs];
  301. return p;
  302. }
  303. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  304. {
  305. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  306. sizeof(struct kvm_pte_chain));
  307. }
  308. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  309. {
  310. kfree(pc);
  311. }
  312. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  313. {
  314. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  315. sizeof(struct kvm_rmap_desc));
  316. }
  317. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  318. {
  319. kfree(rd);
  320. }
  321. /*
  322. * Return the pointer to the largepage write count for a given
  323. * gfn, handling slots that are not large page aligned.
  324. */
  325. static int *slot_largepage_idx(gfn_t gfn,
  326. struct kvm_memory_slot *slot,
  327. int level)
  328. {
  329. unsigned long idx;
  330. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  331. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  332. return &slot->lpage_info[level - 2][idx].write_count;
  333. }
  334. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  335. {
  336. struct kvm_memory_slot *slot;
  337. int *write_count;
  338. int i;
  339. gfn = unalias_gfn(kvm, gfn);
  340. slot = gfn_to_memslot_unaliased(kvm, gfn);
  341. for (i = PT_DIRECTORY_LEVEL;
  342. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  343. write_count = slot_largepage_idx(gfn, slot, i);
  344. *write_count += 1;
  345. }
  346. }
  347. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  348. {
  349. struct kvm_memory_slot *slot;
  350. int *write_count;
  351. int i;
  352. gfn = unalias_gfn(kvm, gfn);
  353. for (i = PT_DIRECTORY_LEVEL;
  354. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  355. slot = gfn_to_memslot_unaliased(kvm, gfn);
  356. write_count = slot_largepage_idx(gfn, slot, i);
  357. *write_count -= 1;
  358. WARN_ON(*write_count < 0);
  359. }
  360. }
  361. static int has_wrprotected_page(struct kvm *kvm,
  362. gfn_t gfn,
  363. int level)
  364. {
  365. struct kvm_memory_slot *slot;
  366. int *largepage_idx;
  367. gfn = unalias_gfn(kvm, gfn);
  368. slot = gfn_to_memslot_unaliased(kvm, gfn);
  369. if (slot) {
  370. largepage_idx = slot_largepage_idx(gfn, slot, level);
  371. return *largepage_idx;
  372. }
  373. return 1;
  374. }
  375. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  376. {
  377. unsigned long page_size;
  378. int i, ret = 0;
  379. page_size = kvm_host_page_size(kvm, gfn);
  380. for (i = PT_PAGE_TABLE_LEVEL;
  381. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  382. if (page_size >= KVM_HPAGE_SIZE(i))
  383. ret = i;
  384. else
  385. break;
  386. }
  387. return ret;
  388. }
  389. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  390. {
  391. struct kvm_memory_slot *slot;
  392. int host_level, level, max_level;
  393. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  394. if (slot && slot->dirty_bitmap)
  395. return PT_PAGE_TABLE_LEVEL;
  396. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  397. if (host_level == PT_PAGE_TABLE_LEVEL)
  398. return host_level;
  399. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  400. kvm_x86_ops->get_lpage_level() : host_level;
  401. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  402. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  403. break;
  404. return level - 1;
  405. }
  406. /*
  407. * Take gfn and return the reverse mapping to it.
  408. * Note: gfn must be unaliased before this function get called
  409. */
  410. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  411. {
  412. struct kvm_memory_slot *slot;
  413. unsigned long idx;
  414. slot = gfn_to_memslot(kvm, gfn);
  415. if (likely(level == PT_PAGE_TABLE_LEVEL))
  416. return &slot->rmap[gfn - slot->base_gfn];
  417. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  418. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  419. return &slot->lpage_info[level - 2][idx].rmap_pde;
  420. }
  421. /*
  422. * Reverse mapping data structures:
  423. *
  424. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  425. * that points to page_address(page).
  426. *
  427. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  428. * containing more mappings.
  429. *
  430. * Returns the number of rmap entries before the spte was added or zero if
  431. * the spte was not added.
  432. *
  433. */
  434. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  435. {
  436. struct kvm_mmu_page *sp;
  437. struct kvm_rmap_desc *desc;
  438. unsigned long *rmapp;
  439. int i, count = 0;
  440. if (!is_rmap_spte(*spte))
  441. return count;
  442. gfn = unalias_gfn(vcpu->kvm, gfn);
  443. sp = page_header(__pa(spte));
  444. sp->gfns[spte - sp->spt] = gfn;
  445. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  446. if (!*rmapp) {
  447. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  448. *rmapp = (unsigned long)spte;
  449. } else if (!(*rmapp & 1)) {
  450. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  451. desc = mmu_alloc_rmap_desc(vcpu);
  452. desc->sptes[0] = (u64 *)*rmapp;
  453. desc->sptes[1] = spte;
  454. *rmapp = (unsigned long)desc | 1;
  455. } else {
  456. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  457. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  458. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  459. desc = desc->more;
  460. count += RMAP_EXT;
  461. }
  462. if (desc->sptes[RMAP_EXT-1]) {
  463. desc->more = mmu_alloc_rmap_desc(vcpu);
  464. desc = desc->more;
  465. }
  466. for (i = 0; desc->sptes[i]; ++i)
  467. ;
  468. desc->sptes[i] = spte;
  469. }
  470. return count;
  471. }
  472. static void rmap_desc_remove_entry(unsigned long *rmapp,
  473. struct kvm_rmap_desc *desc,
  474. int i,
  475. struct kvm_rmap_desc *prev_desc)
  476. {
  477. int j;
  478. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  479. ;
  480. desc->sptes[i] = desc->sptes[j];
  481. desc->sptes[j] = NULL;
  482. if (j != 0)
  483. return;
  484. if (!prev_desc && !desc->more)
  485. *rmapp = (unsigned long)desc->sptes[0];
  486. else
  487. if (prev_desc)
  488. prev_desc->more = desc->more;
  489. else
  490. *rmapp = (unsigned long)desc->more | 1;
  491. mmu_free_rmap_desc(desc);
  492. }
  493. static void rmap_remove(struct kvm *kvm, u64 *spte)
  494. {
  495. struct kvm_rmap_desc *desc;
  496. struct kvm_rmap_desc *prev_desc;
  497. struct kvm_mmu_page *sp;
  498. pfn_t pfn;
  499. unsigned long *rmapp;
  500. int i;
  501. if (!is_rmap_spte(*spte))
  502. return;
  503. sp = page_header(__pa(spte));
  504. pfn = spte_to_pfn(*spte);
  505. if (*spte & shadow_accessed_mask)
  506. kvm_set_pfn_accessed(pfn);
  507. if (is_writable_pte(*spte))
  508. kvm_set_pfn_dirty(pfn);
  509. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  510. if (!*rmapp) {
  511. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  512. BUG();
  513. } else if (!(*rmapp & 1)) {
  514. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  515. if ((u64 *)*rmapp != spte) {
  516. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  517. spte, *spte);
  518. BUG();
  519. }
  520. *rmapp = 0;
  521. } else {
  522. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  523. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  524. prev_desc = NULL;
  525. while (desc) {
  526. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  527. if (desc->sptes[i] == spte) {
  528. rmap_desc_remove_entry(rmapp,
  529. desc, i,
  530. prev_desc);
  531. return;
  532. }
  533. prev_desc = desc;
  534. desc = desc->more;
  535. }
  536. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  537. BUG();
  538. }
  539. }
  540. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  541. {
  542. struct kvm_rmap_desc *desc;
  543. struct kvm_rmap_desc *prev_desc;
  544. u64 *prev_spte;
  545. int i;
  546. if (!*rmapp)
  547. return NULL;
  548. else if (!(*rmapp & 1)) {
  549. if (!spte)
  550. return (u64 *)*rmapp;
  551. return NULL;
  552. }
  553. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  554. prev_desc = NULL;
  555. prev_spte = NULL;
  556. while (desc) {
  557. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  558. if (prev_spte == spte)
  559. return desc->sptes[i];
  560. prev_spte = desc->sptes[i];
  561. }
  562. desc = desc->more;
  563. }
  564. return NULL;
  565. }
  566. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  567. {
  568. unsigned long *rmapp;
  569. u64 *spte;
  570. int i, write_protected = 0;
  571. gfn = unalias_gfn(kvm, gfn);
  572. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  573. spte = rmap_next(kvm, rmapp, NULL);
  574. while (spte) {
  575. BUG_ON(!spte);
  576. BUG_ON(!(*spte & PT_PRESENT_MASK));
  577. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  578. if (is_writable_pte(*spte)) {
  579. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  580. write_protected = 1;
  581. }
  582. spte = rmap_next(kvm, rmapp, spte);
  583. }
  584. if (write_protected) {
  585. pfn_t pfn;
  586. spte = rmap_next(kvm, rmapp, NULL);
  587. pfn = spte_to_pfn(*spte);
  588. kvm_set_pfn_dirty(pfn);
  589. }
  590. /* check for huge page mappings */
  591. for (i = PT_DIRECTORY_LEVEL;
  592. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  593. rmapp = gfn_to_rmap(kvm, gfn, i);
  594. spte = rmap_next(kvm, rmapp, NULL);
  595. while (spte) {
  596. BUG_ON(!spte);
  597. BUG_ON(!(*spte & PT_PRESENT_MASK));
  598. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  599. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  600. if (is_writable_pte(*spte)) {
  601. rmap_remove(kvm, spte);
  602. --kvm->stat.lpages;
  603. __set_spte(spte, shadow_trap_nonpresent_pte);
  604. spte = NULL;
  605. write_protected = 1;
  606. }
  607. spte = rmap_next(kvm, rmapp, spte);
  608. }
  609. }
  610. return write_protected;
  611. }
  612. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  613. unsigned long data)
  614. {
  615. u64 *spte;
  616. int need_tlb_flush = 0;
  617. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  618. BUG_ON(!(*spte & PT_PRESENT_MASK));
  619. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  620. rmap_remove(kvm, spte);
  621. __set_spte(spte, shadow_trap_nonpresent_pte);
  622. need_tlb_flush = 1;
  623. }
  624. return need_tlb_flush;
  625. }
  626. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  627. unsigned long data)
  628. {
  629. int need_flush = 0;
  630. u64 *spte, new_spte;
  631. pte_t *ptep = (pte_t *)data;
  632. pfn_t new_pfn;
  633. WARN_ON(pte_huge(*ptep));
  634. new_pfn = pte_pfn(*ptep);
  635. spte = rmap_next(kvm, rmapp, NULL);
  636. while (spte) {
  637. BUG_ON(!is_shadow_present_pte(*spte));
  638. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  639. need_flush = 1;
  640. if (pte_write(*ptep)) {
  641. rmap_remove(kvm, spte);
  642. __set_spte(spte, shadow_trap_nonpresent_pte);
  643. spte = rmap_next(kvm, rmapp, NULL);
  644. } else {
  645. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  646. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  647. new_spte &= ~PT_WRITABLE_MASK;
  648. new_spte &= ~SPTE_HOST_WRITEABLE;
  649. if (is_writable_pte(*spte))
  650. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  651. __set_spte(spte, new_spte);
  652. spte = rmap_next(kvm, rmapp, spte);
  653. }
  654. }
  655. if (need_flush)
  656. kvm_flush_remote_tlbs(kvm);
  657. return 0;
  658. }
  659. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  660. unsigned long data,
  661. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  662. unsigned long data))
  663. {
  664. int i, j;
  665. int ret;
  666. int retval = 0;
  667. struct kvm_memslots *slots;
  668. slots = kvm_memslots(kvm);
  669. for (i = 0; i < slots->nmemslots; i++) {
  670. struct kvm_memory_slot *memslot = &slots->memslots[i];
  671. unsigned long start = memslot->userspace_addr;
  672. unsigned long end;
  673. end = start + (memslot->npages << PAGE_SHIFT);
  674. if (hva >= start && hva < end) {
  675. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  676. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  677. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  678. int idx = gfn_offset;
  679. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  680. ret |= handler(kvm,
  681. &memslot->lpage_info[j][idx].rmap_pde,
  682. data);
  683. }
  684. trace_kvm_age_page(hva, memslot, ret);
  685. retval |= ret;
  686. }
  687. }
  688. return retval;
  689. }
  690. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  691. {
  692. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  693. }
  694. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  695. {
  696. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  697. }
  698. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  699. unsigned long data)
  700. {
  701. u64 *spte;
  702. int young = 0;
  703. /*
  704. * Emulate the accessed bit for EPT, by checking if this page has
  705. * an EPT mapping, and clearing it if it does. On the next access,
  706. * a new EPT mapping will be established.
  707. * This has some overhead, but not as much as the cost of swapping
  708. * out actively used pages or breaking up actively used hugepages.
  709. */
  710. if (!shadow_accessed_mask)
  711. return kvm_unmap_rmapp(kvm, rmapp, data);
  712. spte = rmap_next(kvm, rmapp, NULL);
  713. while (spte) {
  714. int _young;
  715. u64 _spte = *spte;
  716. BUG_ON(!(_spte & PT_PRESENT_MASK));
  717. _young = _spte & PT_ACCESSED_MASK;
  718. if (_young) {
  719. young = 1;
  720. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  721. }
  722. spte = rmap_next(kvm, rmapp, spte);
  723. }
  724. return young;
  725. }
  726. #define RMAP_RECYCLE_THRESHOLD 1000
  727. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  728. {
  729. unsigned long *rmapp;
  730. struct kvm_mmu_page *sp;
  731. sp = page_header(__pa(spte));
  732. gfn = unalias_gfn(vcpu->kvm, gfn);
  733. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  734. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  735. kvm_flush_remote_tlbs(vcpu->kvm);
  736. }
  737. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  738. {
  739. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  740. }
  741. #ifdef MMU_DEBUG
  742. static int is_empty_shadow_page(u64 *spt)
  743. {
  744. u64 *pos;
  745. u64 *end;
  746. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  747. if (is_shadow_present_pte(*pos)) {
  748. printk(KERN_ERR "%s: %p %llx\n", __func__,
  749. pos, *pos);
  750. return 0;
  751. }
  752. return 1;
  753. }
  754. #endif
  755. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  756. {
  757. ASSERT(is_empty_shadow_page(sp->spt));
  758. list_del(&sp->link);
  759. __free_page(virt_to_page(sp->spt));
  760. __free_page(virt_to_page(sp->gfns));
  761. kfree(sp);
  762. ++kvm->arch.n_free_mmu_pages;
  763. }
  764. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  765. {
  766. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  767. }
  768. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  769. u64 *parent_pte)
  770. {
  771. struct kvm_mmu_page *sp;
  772. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  773. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  774. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  775. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  776. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  777. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  778. sp->multimapped = 0;
  779. sp->parent_pte = parent_pte;
  780. --vcpu->kvm->arch.n_free_mmu_pages;
  781. return sp;
  782. }
  783. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  784. struct kvm_mmu_page *sp, u64 *parent_pte)
  785. {
  786. struct kvm_pte_chain *pte_chain;
  787. struct hlist_node *node;
  788. int i;
  789. if (!parent_pte)
  790. return;
  791. if (!sp->multimapped) {
  792. u64 *old = sp->parent_pte;
  793. if (!old) {
  794. sp->parent_pte = parent_pte;
  795. return;
  796. }
  797. sp->multimapped = 1;
  798. pte_chain = mmu_alloc_pte_chain(vcpu);
  799. INIT_HLIST_HEAD(&sp->parent_ptes);
  800. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  801. pte_chain->parent_ptes[0] = old;
  802. }
  803. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  804. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  805. continue;
  806. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  807. if (!pte_chain->parent_ptes[i]) {
  808. pte_chain->parent_ptes[i] = parent_pte;
  809. return;
  810. }
  811. }
  812. pte_chain = mmu_alloc_pte_chain(vcpu);
  813. BUG_ON(!pte_chain);
  814. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  815. pte_chain->parent_ptes[0] = parent_pte;
  816. }
  817. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  818. u64 *parent_pte)
  819. {
  820. struct kvm_pte_chain *pte_chain;
  821. struct hlist_node *node;
  822. int i;
  823. if (!sp->multimapped) {
  824. BUG_ON(sp->parent_pte != parent_pte);
  825. sp->parent_pte = NULL;
  826. return;
  827. }
  828. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  829. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  830. if (!pte_chain->parent_ptes[i])
  831. break;
  832. if (pte_chain->parent_ptes[i] != parent_pte)
  833. continue;
  834. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  835. && pte_chain->parent_ptes[i + 1]) {
  836. pte_chain->parent_ptes[i]
  837. = pte_chain->parent_ptes[i + 1];
  838. ++i;
  839. }
  840. pte_chain->parent_ptes[i] = NULL;
  841. if (i == 0) {
  842. hlist_del(&pte_chain->link);
  843. mmu_free_pte_chain(pte_chain);
  844. if (hlist_empty(&sp->parent_ptes)) {
  845. sp->multimapped = 0;
  846. sp->parent_pte = NULL;
  847. }
  848. }
  849. return;
  850. }
  851. BUG();
  852. }
  853. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  854. {
  855. struct kvm_pte_chain *pte_chain;
  856. struct hlist_node *node;
  857. struct kvm_mmu_page *parent_sp;
  858. int i;
  859. if (!sp->multimapped && sp->parent_pte) {
  860. parent_sp = page_header(__pa(sp->parent_pte));
  861. fn(parent_sp);
  862. mmu_parent_walk(parent_sp, fn);
  863. return;
  864. }
  865. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  866. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  867. if (!pte_chain->parent_ptes[i])
  868. break;
  869. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  870. fn(parent_sp);
  871. mmu_parent_walk(parent_sp, fn);
  872. }
  873. }
  874. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  875. {
  876. unsigned int index;
  877. struct kvm_mmu_page *sp = page_header(__pa(spte));
  878. index = spte - sp->spt;
  879. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  880. sp->unsync_children++;
  881. WARN_ON(!sp->unsync_children);
  882. }
  883. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  884. {
  885. struct kvm_pte_chain *pte_chain;
  886. struct hlist_node *node;
  887. int i;
  888. if (!sp->parent_pte)
  889. return;
  890. if (!sp->multimapped) {
  891. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  892. return;
  893. }
  894. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  895. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  896. if (!pte_chain->parent_ptes[i])
  897. break;
  898. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  899. }
  900. }
  901. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  902. {
  903. kvm_mmu_update_parents_unsync(sp);
  904. return 1;
  905. }
  906. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  907. {
  908. mmu_parent_walk(sp, unsync_walk_fn);
  909. kvm_mmu_update_parents_unsync(sp);
  910. }
  911. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  912. struct kvm_mmu_page *sp)
  913. {
  914. int i;
  915. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  916. sp->spt[i] = shadow_trap_nonpresent_pte;
  917. }
  918. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  919. struct kvm_mmu_page *sp)
  920. {
  921. return 1;
  922. }
  923. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  924. {
  925. }
  926. #define KVM_PAGE_ARRAY_NR 16
  927. struct kvm_mmu_pages {
  928. struct mmu_page_and_offset {
  929. struct kvm_mmu_page *sp;
  930. unsigned int idx;
  931. } page[KVM_PAGE_ARRAY_NR];
  932. unsigned int nr;
  933. };
  934. #define for_each_unsync_children(bitmap, idx) \
  935. for (idx = find_first_bit(bitmap, 512); \
  936. idx < 512; \
  937. idx = find_next_bit(bitmap, 512, idx+1))
  938. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  939. int idx)
  940. {
  941. int i;
  942. if (sp->unsync)
  943. for (i=0; i < pvec->nr; i++)
  944. if (pvec->page[i].sp == sp)
  945. return 0;
  946. pvec->page[pvec->nr].sp = sp;
  947. pvec->page[pvec->nr].idx = idx;
  948. pvec->nr++;
  949. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  950. }
  951. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  952. struct kvm_mmu_pages *pvec)
  953. {
  954. int i, ret, nr_unsync_leaf = 0;
  955. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  956. u64 ent = sp->spt[i];
  957. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  958. struct kvm_mmu_page *child;
  959. child = page_header(ent & PT64_BASE_ADDR_MASK);
  960. if (child->unsync_children) {
  961. if (mmu_pages_add(pvec, child, i))
  962. return -ENOSPC;
  963. ret = __mmu_unsync_walk(child, pvec);
  964. if (!ret)
  965. __clear_bit(i, sp->unsync_child_bitmap);
  966. else if (ret > 0)
  967. nr_unsync_leaf += ret;
  968. else
  969. return ret;
  970. }
  971. if (child->unsync) {
  972. nr_unsync_leaf++;
  973. if (mmu_pages_add(pvec, child, i))
  974. return -ENOSPC;
  975. }
  976. }
  977. }
  978. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  979. sp->unsync_children = 0;
  980. return nr_unsync_leaf;
  981. }
  982. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  983. struct kvm_mmu_pages *pvec)
  984. {
  985. if (!sp->unsync_children)
  986. return 0;
  987. mmu_pages_add(pvec, sp, 0);
  988. return __mmu_unsync_walk(sp, pvec);
  989. }
  990. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  991. {
  992. unsigned index;
  993. struct hlist_head *bucket;
  994. struct kvm_mmu_page *sp;
  995. struct hlist_node *node;
  996. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  997. index = kvm_page_table_hashfn(gfn);
  998. bucket = &kvm->arch.mmu_page_hash[index];
  999. hlist_for_each_entry(sp, node, bucket, hash_link)
  1000. if (sp->gfn == gfn && !sp->role.direct
  1001. && !sp->role.invalid) {
  1002. pgprintk("%s: found role %x\n",
  1003. __func__, sp->role.word);
  1004. return sp;
  1005. }
  1006. return NULL;
  1007. }
  1008. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1009. {
  1010. WARN_ON(!sp->unsync);
  1011. sp->unsync = 0;
  1012. --kvm->stat.mmu_unsync;
  1013. }
  1014. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1015. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1016. {
  1017. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1018. kvm_mmu_zap_page(vcpu->kvm, sp);
  1019. return 1;
  1020. }
  1021. trace_kvm_mmu_sync_page(sp);
  1022. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1023. kvm_flush_remote_tlbs(vcpu->kvm);
  1024. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1025. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1026. kvm_mmu_zap_page(vcpu->kvm, sp);
  1027. return 1;
  1028. }
  1029. kvm_mmu_flush_tlb(vcpu);
  1030. return 0;
  1031. }
  1032. struct mmu_page_path {
  1033. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1034. unsigned int idx[PT64_ROOT_LEVEL-1];
  1035. };
  1036. #define for_each_sp(pvec, sp, parents, i) \
  1037. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1038. sp = pvec.page[i].sp; \
  1039. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1040. i = mmu_pages_next(&pvec, &parents, i))
  1041. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1042. struct mmu_page_path *parents,
  1043. int i)
  1044. {
  1045. int n;
  1046. for (n = i+1; n < pvec->nr; n++) {
  1047. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1048. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1049. parents->idx[0] = pvec->page[n].idx;
  1050. return n;
  1051. }
  1052. parents->parent[sp->role.level-2] = sp;
  1053. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1054. }
  1055. return n;
  1056. }
  1057. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1058. {
  1059. struct kvm_mmu_page *sp;
  1060. unsigned int level = 0;
  1061. do {
  1062. unsigned int idx = parents->idx[level];
  1063. sp = parents->parent[level];
  1064. if (!sp)
  1065. return;
  1066. --sp->unsync_children;
  1067. WARN_ON((int)sp->unsync_children < 0);
  1068. __clear_bit(idx, sp->unsync_child_bitmap);
  1069. level++;
  1070. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1071. }
  1072. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1073. struct mmu_page_path *parents,
  1074. struct kvm_mmu_pages *pvec)
  1075. {
  1076. parents->parent[parent->role.level-1] = NULL;
  1077. pvec->nr = 0;
  1078. }
  1079. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1080. struct kvm_mmu_page *parent)
  1081. {
  1082. int i;
  1083. struct kvm_mmu_page *sp;
  1084. struct mmu_page_path parents;
  1085. struct kvm_mmu_pages pages;
  1086. kvm_mmu_pages_init(parent, &parents, &pages);
  1087. while (mmu_unsync_walk(parent, &pages)) {
  1088. int protected = 0;
  1089. for_each_sp(pages, sp, parents, i)
  1090. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1091. if (protected)
  1092. kvm_flush_remote_tlbs(vcpu->kvm);
  1093. for_each_sp(pages, sp, parents, i) {
  1094. kvm_sync_page(vcpu, sp);
  1095. mmu_pages_clear_parents(&parents);
  1096. }
  1097. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1098. kvm_mmu_pages_init(parent, &parents, &pages);
  1099. }
  1100. }
  1101. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1102. gfn_t gfn,
  1103. gva_t gaddr,
  1104. unsigned level,
  1105. int direct,
  1106. unsigned access,
  1107. u64 *parent_pte)
  1108. {
  1109. union kvm_mmu_page_role role;
  1110. unsigned index;
  1111. unsigned quadrant;
  1112. struct hlist_head *bucket;
  1113. struct kvm_mmu_page *sp;
  1114. struct hlist_node *node, *tmp;
  1115. role = vcpu->arch.mmu.base_role;
  1116. role.level = level;
  1117. role.direct = direct;
  1118. if (role.direct)
  1119. role.cr4_pae = 0;
  1120. role.access = access;
  1121. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1122. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1123. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1124. role.quadrant = quadrant;
  1125. }
  1126. index = kvm_page_table_hashfn(gfn);
  1127. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1128. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1129. if (sp->gfn == gfn) {
  1130. if (sp->unsync)
  1131. if (kvm_sync_page(vcpu, sp))
  1132. continue;
  1133. if (sp->role.word != role.word)
  1134. continue;
  1135. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1136. if (sp->unsync_children) {
  1137. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1138. kvm_mmu_mark_parents_unsync(sp);
  1139. }
  1140. trace_kvm_mmu_get_page(sp, false);
  1141. return sp;
  1142. }
  1143. ++vcpu->kvm->stat.mmu_cache_miss;
  1144. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1145. if (!sp)
  1146. return sp;
  1147. sp->gfn = gfn;
  1148. sp->role = role;
  1149. hlist_add_head(&sp->hash_link, bucket);
  1150. if (!direct) {
  1151. if (rmap_write_protect(vcpu->kvm, gfn))
  1152. kvm_flush_remote_tlbs(vcpu->kvm);
  1153. account_shadowed(vcpu->kvm, gfn);
  1154. }
  1155. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1156. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1157. else
  1158. nonpaging_prefetch_page(vcpu, sp);
  1159. trace_kvm_mmu_get_page(sp, true);
  1160. return sp;
  1161. }
  1162. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1163. struct kvm_vcpu *vcpu, u64 addr)
  1164. {
  1165. iterator->addr = addr;
  1166. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1167. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1168. if (iterator->level == PT32E_ROOT_LEVEL) {
  1169. iterator->shadow_addr
  1170. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1171. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1172. --iterator->level;
  1173. if (!iterator->shadow_addr)
  1174. iterator->level = 0;
  1175. }
  1176. }
  1177. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1178. {
  1179. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1180. return false;
  1181. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1182. if (is_large_pte(*iterator->sptep))
  1183. return false;
  1184. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1185. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1186. return true;
  1187. }
  1188. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1189. {
  1190. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1191. --iterator->level;
  1192. }
  1193. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1194. struct kvm_mmu_page *sp)
  1195. {
  1196. unsigned i;
  1197. u64 *pt;
  1198. u64 ent;
  1199. pt = sp->spt;
  1200. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1201. ent = pt[i];
  1202. if (is_shadow_present_pte(ent)) {
  1203. if (!is_last_spte(ent, sp->role.level)) {
  1204. ent &= PT64_BASE_ADDR_MASK;
  1205. mmu_page_remove_parent_pte(page_header(ent),
  1206. &pt[i]);
  1207. } else {
  1208. if (is_large_pte(ent))
  1209. --kvm->stat.lpages;
  1210. rmap_remove(kvm, &pt[i]);
  1211. }
  1212. }
  1213. pt[i] = shadow_trap_nonpresent_pte;
  1214. }
  1215. }
  1216. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1217. {
  1218. mmu_page_remove_parent_pte(sp, parent_pte);
  1219. }
  1220. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1221. {
  1222. int i;
  1223. struct kvm_vcpu *vcpu;
  1224. kvm_for_each_vcpu(i, vcpu, kvm)
  1225. vcpu->arch.last_pte_updated = NULL;
  1226. }
  1227. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1228. {
  1229. u64 *parent_pte;
  1230. while (sp->multimapped || sp->parent_pte) {
  1231. if (!sp->multimapped)
  1232. parent_pte = sp->parent_pte;
  1233. else {
  1234. struct kvm_pte_chain *chain;
  1235. chain = container_of(sp->parent_ptes.first,
  1236. struct kvm_pte_chain, link);
  1237. parent_pte = chain->parent_ptes[0];
  1238. }
  1239. BUG_ON(!parent_pte);
  1240. kvm_mmu_put_page(sp, parent_pte);
  1241. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1242. }
  1243. }
  1244. static int mmu_zap_unsync_children(struct kvm *kvm,
  1245. struct kvm_mmu_page *parent)
  1246. {
  1247. int i, zapped = 0;
  1248. struct mmu_page_path parents;
  1249. struct kvm_mmu_pages pages;
  1250. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1251. return 0;
  1252. kvm_mmu_pages_init(parent, &parents, &pages);
  1253. while (mmu_unsync_walk(parent, &pages)) {
  1254. struct kvm_mmu_page *sp;
  1255. for_each_sp(pages, sp, parents, i) {
  1256. kvm_mmu_zap_page(kvm, sp);
  1257. mmu_pages_clear_parents(&parents);
  1258. zapped++;
  1259. }
  1260. kvm_mmu_pages_init(parent, &parents, &pages);
  1261. }
  1262. return zapped;
  1263. }
  1264. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1265. {
  1266. int ret;
  1267. trace_kvm_mmu_zap_page(sp);
  1268. ++kvm->stat.mmu_shadow_zapped;
  1269. ret = mmu_zap_unsync_children(kvm, sp);
  1270. kvm_mmu_page_unlink_children(kvm, sp);
  1271. kvm_mmu_unlink_parents(kvm, sp);
  1272. kvm_flush_remote_tlbs(kvm);
  1273. if (!sp->role.invalid && !sp->role.direct)
  1274. unaccount_shadowed(kvm, sp->gfn);
  1275. if (sp->unsync)
  1276. kvm_unlink_unsync_page(kvm, sp);
  1277. if (!sp->root_count) {
  1278. hlist_del(&sp->hash_link);
  1279. kvm_mmu_free_page(kvm, sp);
  1280. } else {
  1281. sp->role.invalid = 1;
  1282. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1283. kvm_reload_remote_mmus(kvm);
  1284. }
  1285. kvm_mmu_reset_last_pte_updated(kvm);
  1286. return ret;
  1287. }
  1288. /*
  1289. * Changing the number of mmu pages allocated to the vm
  1290. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1291. */
  1292. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1293. {
  1294. int used_pages;
  1295. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1296. used_pages = max(0, used_pages);
  1297. /*
  1298. * If we set the number of mmu pages to be smaller be than the
  1299. * number of actived pages , we must to free some mmu pages before we
  1300. * change the value
  1301. */
  1302. if (used_pages > kvm_nr_mmu_pages) {
  1303. while (used_pages > kvm_nr_mmu_pages &&
  1304. !list_empty(&kvm->arch.active_mmu_pages)) {
  1305. struct kvm_mmu_page *page;
  1306. page = container_of(kvm->arch.active_mmu_pages.prev,
  1307. struct kvm_mmu_page, link);
  1308. used_pages -= kvm_mmu_zap_page(kvm, page);
  1309. used_pages--;
  1310. }
  1311. kvm_nr_mmu_pages = used_pages;
  1312. kvm->arch.n_free_mmu_pages = 0;
  1313. }
  1314. else
  1315. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1316. - kvm->arch.n_alloc_mmu_pages;
  1317. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1318. }
  1319. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1320. {
  1321. unsigned index;
  1322. struct hlist_head *bucket;
  1323. struct kvm_mmu_page *sp;
  1324. struct hlist_node *node, *n;
  1325. int r;
  1326. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1327. r = 0;
  1328. index = kvm_page_table_hashfn(gfn);
  1329. bucket = &kvm->arch.mmu_page_hash[index];
  1330. restart:
  1331. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1332. if (sp->gfn == gfn && !sp->role.direct) {
  1333. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1334. sp->role.word);
  1335. r = 1;
  1336. if (kvm_mmu_zap_page(kvm, sp))
  1337. goto restart;
  1338. }
  1339. return r;
  1340. }
  1341. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1342. {
  1343. unsigned index;
  1344. struct hlist_head *bucket;
  1345. struct kvm_mmu_page *sp;
  1346. struct hlist_node *node, *nn;
  1347. index = kvm_page_table_hashfn(gfn);
  1348. bucket = &kvm->arch.mmu_page_hash[index];
  1349. restart:
  1350. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1351. if (sp->gfn == gfn && !sp->role.direct
  1352. && !sp->role.invalid) {
  1353. pgprintk("%s: zap %lx %x\n",
  1354. __func__, gfn, sp->role.word);
  1355. if (kvm_mmu_zap_page(kvm, sp))
  1356. goto restart;
  1357. }
  1358. }
  1359. }
  1360. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1361. {
  1362. int slot = memslot_id(kvm, gfn);
  1363. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1364. __set_bit(slot, sp->slot_bitmap);
  1365. }
  1366. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1367. {
  1368. int i;
  1369. u64 *pt = sp->spt;
  1370. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1371. return;
  1372. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1373. if (pt[i] == shadow_notrap_nonpresent_pte)
  1374. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1375. }
  1376. }
  1377. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1378. {
  1379. struct page *page;
  1380. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  1381. if (gpa == UNMAPPED_GVA)
  1382. return NULL;
  1383. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1384. return page;
  1385. }
  1386. /*
  1387. * The function is based on mtrr_type_lookup() in
  1388. * arch/x86/kernel/cpu/mtrr/generic.c
  1389. */
  1390. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1391. u64 start, u64 end)
  1392. {
  1393. int i;
  1394. u64 base, mask;
  1395. u8 prev_match, curr_match;
  1396. int num_var_ranges = KVM_NR_VAR_MTRR;
  1397. if (!mtrr_state->enabled)
  1398. return 0xFF;
  1399. /* Make end inclusive end, instead of exclusive */
  1400. end--;
  1401. /* Look in fixed ranges. Just return the type as per start */
  1402. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1403. int idx;
  1404. if (start < 0x80000) {
  1405. idx = 0;
  1406. idx += (start >> 16);
  1407. return mtrr_state->fixed_ranges[idx];
  1408. } else if (start < 0xC0000) {
  1409. idx = 1 * 8;
  1410. idx += ((start - 0x80000) >> 14);
  1411. return mtrr_state->fixed_ranges[idx];
  1412. } else if (start < 0x1000000) {
  1413. idx = 3 * 8;
  1414. idx += ((start - 0xC0000) >> 12);
  1415. return mtrr_state->fixed_ranges[idx];
  1416. }
  1417. }
  1418. /*
  1419. * Look in variable ranges
  1420. * Look of multiple ranges matching this address and pick type
  1421. * as per MTRR precedence
  1422. */
  1423. if (!(mtrr_state->enabled & 2))
  1424. return mtrr_state->def_type;
  1425. prev_match = 0xFF;
  1426. for (i = 0; i < num_var_ranges; ++i) {
  1427. unsigned short start_state, end_state;
  1428. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1429. continue;
  1430. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1431. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1432. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1433. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1434. start_state = ((start & mask) == (base & mask));
  1435. end_state = ((end & mask) == (base & mask));
  1436. if (start_state != end_state)
  1437. return 0xFE;
  1438. if ((start & mask) != (base & mask))
  1439. continue;
  1440. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1441. if (prev_match == 0xFF) {
  1442. prev_match = curr_match;
  1443. continue;
  1444. }
  1445. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1446. curr_match == MTRR_TYPE_UNCACHABLE)
  1447. return MTRR_TYPE_UNCACHABLE;
  1448. if ((prev_match == MTRR_TYPE_WRBACK &&
  1449. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1450. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1451. curr_match == MTRR_TYPE_WRBACK)) {
  1452. prev_match = MTRR_TYPE_WRTHROUGH;
  1453. curr_match = MTRR_TYPE_WRTHROUGH;
  1454. }
  1455. if (prev_match != curr_match)
  1456. return MTRR_TYPE_UNCACHABLE;
  1457. }
  1458. if (prev_match != 0xFF)
  1459. return prev_match;
  1460. return mtrr_state->def_type;
  1461. }
  1462. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1463. {
  1464. u8 mtrr;
  1465. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1466. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1467. if (mtrr == 0xfe || mtrr == 0xff)
  1468. mtrr = MTRR_TYPE_WRBACK;
  1469. return mtrr;
  1470. }
  1471. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1472. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1473. {
  1474. unsigned index;
  1475. struct hlist_head *bucket;
  1476. struct kvm_mmu_page *s;
  1477. struct hlist_node *node, *n;
  1478. trace_kvm_mmu_unsync_page(sp);
  1479. index = kvm_page_table_hashfn(sp->gfn);
  1480. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1481. /* don't unsync if pagetable is shadowed with multiple roles */
  1482. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1483. if (s->gfn != sp->gfn || s->role.direct)
  1484. continue;
  1485. if (s->role.word != sp->role.word)
  1486. return 1;
  1487. }
  1488. ++vcpu->kvm->stat.mmu_unsync;
  1489. sp->unsync = 1;
  1490. kvm_mmu_mark_parents_unsync(sp);
  1491. mmu_convert_notrap(sp);
  1492. return 0;
  1493. }
  1494. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1495. bool can_unsync)
  1496. {
  1497. struct kvm_mmu_page *shadow;
  1498. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1499. if (shadow) {
  1500. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1501. return 1;
  1502. if (shadow->unsync)
  1503. return 0;
  1504. if (can_unsync && oos_shadow)
  1505. return kvm_unsync_page(vcpu, shadow);
  1506. return 1;
  1507. }
  1508. return 0;
  1509. }
  1510. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1511. unsigned pte_access, int user_fault,
  1512. int write_fault, int dirty, int level,
  1513. gfn_t gfn, pfn_t pfn, bool speculative,
  1514. bool can_unsync, bool reset_host_protection)
  1515. {
  1516. u64 spte;
  1517. int ret = 0;
  1518. /*
  1519. * We don't set the accessed bit, since we sometimes want to see
  1520. * whether the guest actually used the pte (in order to detect
  1521. * demand paging).
  1522. */
  1523. spte = shadow_base_present_pte | shadow_dirty_mask;
  1524. if (!speculative)
  1525. spte |= shadow_accessed_mask;
  1526. if (!dirty)
  1527. pte_access &= ~ACC_WRITE_MASK;
  1528. if (pte_access & ACC_EXEC_MASK)
  1529. spte |= shadow_x_mask;
  1530. else
  1531. spte |= shadow_nx_mask;
  1532. if (pte_access & ACC_USER_MASK)
  1533. spte |= shadow_user_mask;
  1534. if (level > PT_PAGE_TABLE_LEVEL)
  1535. spte |= PT_PAGE_SIZE_MASK;
  1536. if (tdp_enabled)
  1537. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1538. kvm_is_mmio_pfn(pfn));
  1539. if (reset_host_protection)
  1540. spte |= SPTE_HOST_WRITEABLE;
  1541. spte |= (u64)pfn << PAGE_SHIFT;
  1542. if ((pte_access & ACC_WRITE_MASK)
  1543. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1544. if (level > PT_PAGE_TABLE_LEVEL &&
  1545. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1546. ret = 1;
  1547. spte = shadow_trap_nonpresent_pte;
  1548. goto set_pte;
  1549. }
  1550. spte |= PT_WRITABLE_MASK;
  1551. /*
  1552. * Optimization: for pte sync, if spte was writable the hash
  1553. * lookup is unnecessary (and expensive). Write protection
  1554. * is responsibility of mmu_get_page / kvm_sync_page.
  1555. * Same reasoning can be applied to dirty page accounting.
  1556. */
  1557. if (!can_unsync && is_writable_pte(*sptep))
  1558. goto set_pte;
  1559. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1560. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1561. __func__, gfn);
  1562. ret = 1;
  1563. pte_access &= ~ACC_WRITE_MASK;
  1564. if (is_writable_pte(spte))
  1565. spte &= ~PT_WRITABLE_MASK;
  1566. }
  1567. }
  1568. if (pte_access & ACC_WRITE_MASK)
  1569. mark_page_dirty(vcpu->kvm, gfn);
  1570. set_pte:
  1571. __set_spte(sptep, spte);
  1572. return ret;
  1573. }
  1574. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1575. unsigned pt_access, unsigned pte_access,
  1576. int user_fault, int write_fault, int dirty,
  1577. int *ptwrite, int level, gfn_t gfn,
  1578. pfn_t pfn, bool speculative,
  1579. bool reset_host_protection)
  1580. {
  1581. int was_rmapped = 0;
  1582. int was_writable = is_writable_pte(*sptep);
  1583. int rmap_count;
  1584. pgprintk("%s: spte %llx access %x write_fault %d"
  1585. " user_fault %d gfn %lx\n",
  1586. __func__, *sptep, pt_access,
  1587. write_fault, user_fault, gfn);
  1588. if (is_rmap_spte(*sptep)) {
  1589. /*
  1590. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1591. * the parent of the now unreachable PTE.
  1592. */
  1593. if (level > PT_PAGE_TABLE_LEVEL &&
  1594. !is_large_pte(*sptep)) {
  1595. struct kvm_mmu_page *child;
  1596. u64 pte = *sptep;
  1597. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1598. mmu_page_remove_parent_pte(child, sptep);
  1599. } else if (pfn != spte_to_pfn(*sptep)) {
  1600. pgprintk("hfn old %lx new %lx\n",
  1601. spte_to_pfn(*sptep), pfn);
  1602. rmap_remove(vcpu->kvm, sptep);
  1603. } else
  1604. was_rmapped = 1;
  1605. }
  1606. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1607. dirty, level, gfn, pfn, speculative, true,
  1608. reset_host_protection)) {
  1609. if (write_fault)
  1610. *ptwrite = 1;
  1611. kvm_x86_ops->tlb_flush(vcpu);
  1612. }
  1613. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1614. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1615. is_large_pte(*sptep)? "2MB" : "4kB",
  1616. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1617. *sptep, sptep);
  1618. if (!was_rmapped && is_large_pte(*sptep))
  1619. ++vcpu->kvm->stat.lpages;
  1620. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1621. if (!was_rmapped) {
  1622. rmap_count = rmap_add(vcpu, sptep, gfn);
  1623. kvm_release_pfn_clean(pfn);
  1624. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1625. rmap_recycle(vcpu, sptep, gfn);
  1626. } else {
  1627. if (was_writable)
  1628. kvm_release_pfn_dirty(pfn);
  1629. else
  1630. kvm_release_pfn_clean(pfn);
  1631. }
  1632. if (speculative) {
  1633. vcpu->arch.last_pte_updated = sptep;
  1634. vcpu->arch.last_pte_gfn = gfn;
  1635. }
  1636. }
  1637. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1638. {
  1639. }
  1640. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1641. int level, gfn_t gfn, pfn_t pfn)
  1642. {
  1643. struct kvm_shadow_walk_iterator iterator;
  1644. struct kvm_mmu_page *sp;
  1645. int pt_write = 0;
  1646. gfn_t pseudo_gfn;
  1647. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1648. if (iterator.level == level) {
  1649. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1650. 0, write, 1, &pt_write,
  1651. level, gfn, pfn, false, true);
  1652. ++vcpu->stat.pf_fixed;
  1653. break;
  1654. }
  1655. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1656. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1657. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1658. iterator.level - 1,
  1659. 1, ACC_ALL, iterator.sptep);
  1660. if (!sp) {
  1661. pgprintk("nonpaging_map: ENOMEM\n");
  1662. kvm_release_pfn_clean(pfn);
  1663. return -ENOMEM;
  1664. }
  1665. __set_spte(iterator.sptep,
  1666. __pa(sp->spt)
  1667. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1668. | shadow_user_mask | shadow_x_mask);
  1669. }
  1670. }
  1671. return pt_write;
  1672. }
  1673. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1674. {
  1675. int r;
  1676. int level;
  1677. pfn_t pfn;
  1678. unsigned long mmu_seq;
  1679. level = mapping_level(vcpu, gfn);
  1680. /*
  1681. * This path builds a PAE pagetable - so we can map 2mb pages at
  1682. * maximum. Therefore check if the level is larger than that.
  1683. */
  1684. if (level > PT_DIRECTORY_LEVEL)
  1685. level = PT_DIRECTORY_LEVEL;
  1686. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1687. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1688. smp_rmb();
  1689. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1690. /* mmio */
  1691. if (is_error_pfn(pfn)) {
  1692. kvm_release_pfn_clean(pfn);
  1693. return 1;
  1694. }
  1695. spin_lock(&vcpu->kvm->mmu_lock);
  1696. if (mmu_notifier_retry(vcpu, mmu_seq))
  1697. goto out_unlock;
  1698. kvm_mmu_free_some_pages(vcpu);
  1699. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1700. spin_unlock(&vcpu->kvm->mmu_lock);
  1701. return r;
  1702. out_unlock:
  1703. spin_unlock(&vcpu->kvm->mmu_lock);
  1704. kvm_release_pfn_clean(pfn);
  1705. return 0;
  1706. }
  1707. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1708. {
  1709. int i;
  1710. struct kvm_mmu_page *sp;
  1711. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1712. return;
  1713. spin_lock(&vcpu->kvm->mmu_lock);
  1714. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1715. hpa_t root = vcpu->arch.mmu.root_hpa;
  1716. sp = page_header(root);
  1717. --sp->root_count;
  1718. if (!sp->root_count && sp->role.invalid)
  1719. kvm_mmu_zap_page(vcpu->kvm, sp);
  1720. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1721. spin_unlock(&vcpu->kvm->mmu_lock);
  1722. return;
  1723. }
  1724. for (i = 0; i < 4; ++i) {
  1725. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1726. if (root) {
  1727. root &= PT64_BASE_ADDR_MASK;
  1728. sp = page_header(root);
  1729. --sp->root_count;
  1730. if (!sp->root_count && sp->role.invalid)
  1731. kvm_mmu_zap_page(vcpu->kvm, sp);
  1732. }
  1733. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1734. }
  1735. spin_unlock(&vcpu->kvm->mmu_lock);
  1736. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1737. }
  1738. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1739. {
  1740. int ret = 0;
  1741. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1742. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1743. ret = 1;
  1744. }
  1745. return ret;
  1746. }
  1747. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1748. {
  1749. int i;
  1750. gfn_t root_gfn;
  1751. struct kvm_mmu_page *sp;
  1752. int direct = 0;
  1753. u64 pdptr;
  1754. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1755. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1756. hpa_t root = vcpu->arch.mmu.root_hpa;
  1757. ASSERT(!VALID_PAGE(root));
  1758. if (tdp_enabled)
  1759. direct = 1;
  1760. if (mmu_check_root(vcpu, root_gfn))
  1761. return 1;
  1762. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1763. PT64_ROOT_LEVEL, direct,
  1764. ACC_ALL, NULL);
  1765. root = __pa(sp->spt);
  1766. ++sp->root_count;
  1767. vcpu->arch.mmu.root_hpa = root;
  1768. return 0;
  1769. }
  1770. direct = !is_paging(vcpu);
  1771. if (tdp_enabled)
  1772. direct = 1;
  1773. for (i = 0; i < 4; ++i) {
  1774. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1775. ASSERT(!VALID_PAGE(root));
  1776. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1777. pdptr = kvm_pdptr_read(vcpu, i);
  1778. if (!is_present_gpte(pdptr)) {
  1779. vcpu->arch.mmu.pae_root[i] = 0;
  1780. continue;
  1781. }
  1782. root_gfn = pdptr >> PAGE_SHIFT;
  1783. } else if (vcpu->arch.mmu.root_level == 0)
  1784. root_gfn = 0;
  1785. if (mmu_check_root(vcpu, root_gfn))
  1786. return 1;
  1787. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1788. PT32_ROOT_LEVEL, direct,
  1789. ACC_ALL, NULL);
  1790. root = __pa(sp->spt);
  1791. ++sp->root_count;
  1792. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1793. }
  1794. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1795. return 0;
  1796. }
  1797. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1798. {
  1799. int i;
  1800. struct kvm_mmu_page *sp;
  1801. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1802. return;
  1803. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1804. hpa_t root = vcpu->arch.mmu.root_hpa;
  1805. sp = page_header(root);
  1806. mmu_sync_children(vcpu, sp);
  1807. return;
  1808. }
  1809. for (i = 0; i < 4; ++i) {
  1810. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1811. if (root && VALID_PAGE(root)) {
  1812. root &= PT64_BASE_ADDR_MASK;
  1813. sp = page_header(root);
  1814. mmu_sync_children(vcpu, sp);
  1815. }
  1816. }
  1817. }
  1818. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1819. {
  1820. spin_lock(&vcpu->kvm->mmu_lock);
  1821. mmu_sync_roots(vcpu);
  1822. spin_unlock(&vcpu->kvm->mmu_lock);
  1823. }
  1824. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1825. u32 access, u32 *error)
  1826. {
  1827. if (error)
  1828. *error = 0;
  1829. return vaddr;
  1830. }
  1831. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1832. u32 error_code)
  1833. {
  1834. gfn_t gfn;
  1835. int r;
  1836. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1837. r = mmu_topup_memory_caches(vcpu);
  1838. if (r)
  1839. return r;
  1840. ASSERT(vcpu);
  1841. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1842. gfn = gva >> PAGE_SHIFT;
  1843. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1844. error_code & PFERR_WRITE_MASK, gfn);
  1845. }
  1846. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1847. u32 error_code)
  1848. {
  1849. pfn_t pfn;
  1850. int r;
  1851. int level;
  1852. gfn_t gfn = gpa >> PAGE_SHIFT;
  1853. unsigned long mmu_seq;
  1854. ASSERT(vcpu);
  1855. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1856. r = mmu_topup_memory_caches(vcpu);
  1857. if (r)
  1858. return r;
  1859. level = mapping_level(vcpu, gfn);
  1860. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1861. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1862. smp_rmb();
  1863. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1864. if (is_error_pfn(pfn)) {
  1865. kvm_release_pfn_clean(pfn);
  1866. return 1;
  1867. }
  1868. spin_lock(&vcpu->kvm->mmu_lock);
  1869. if (mmu_notifier_retry(vcpu, mmu_seq))
  1870. goto out_unlock;
  1871. kvm_mmu_free_some_pages(vcpu);
  1872. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1873. level, gfn, pfn);
  1874. spin_unlock(&vcpu->kvm->mmu_lock);
  1875. return r;
  1876. out_unlock:
  1877. spin_unlock(&vcpu->kvm->mmu_lock);
  1878. kvm_release_pfn_clean(pfn);
  1879. return 0;
  1880. }
  1881. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1882. {
  1883. mmu_free_roots(vcpu);
  1884. }
  1885. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1886. {
  1887. struct kvm_mmu *context = &vcpu->arch.mmu;
  1888. context->new_cr3 = nonpaging_new_cr3;
  1889. context->page_fault = nonpaging_page_fault;
  1890. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1891. context->free = nonpaging_free;
  1892. context->prefetch_page = nonpaging_prefetch_page;
  1893. context->sync_page = nonpaging_sync_page;
  1894. context->invlpg = nonpaging_invlpg;
  1895. context->root_level = 0;
  1896. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1897. context->root_hpa = INVALID_PAGE;
  1898. return 0;
  1899. }
  1900. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1901. {
  1902. ++vcpu->stat.tlb_flush;
  1903. kvm_x86_ops->tlb_flush(vcpu);
  1904. }
  1905. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1906. {
  1907. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1908. mmu_free_roots(vcpu);
  1909. }
  1910. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1911. u64 addr,
  1912. u32 err_code)
  1913. {
  1914. kvm_inject_page_fault(vcpu, addr, err_code);
  1915. }
  1916. static void paging_free(struct kvm_vcpu *vcpu)
  1917. {
  1918. nonpaging_free(vcpu);
  1919. }
  1920. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1921. {
  1922. int bit7;
  1923. bit7 = (gpte >> 7) & 1;
  1924. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1925. }
  1926. #define PTTYPE 64
  1927. #include "paging_tmpl.h"
  1928. #undef PTTYPE
  1929. #define PTTYPE 32
  1930. #include "paging_tmpl.h"
  1931. #undef PTTYPE
  1932. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1933. {
  1934. struct kvm_mmu *context = &vcpu->arch.mmu;
  1935. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1936. u64 exb_bit_rsvd = 0;
  1937. if (!is_nx(vcpu))
  1938. exb_bit_rsvd = rsvd_bits(63, 63);
  1939. switch (level) {
  1940. case PT32_ROOT_LEVEL:
  1941. /* no rsvd bits for 2 level 4K page table entries */
  1942. context->rsvd_bits_mask[0][1] = 0;
  1943. context->rsvd_bits_mask[0][0] = 0;
  1944. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1945. if (!is_pse(vcpu)) {
  1946. context->rsvd_bits_mask[1][1] = 0;
  1947. break;
  1948. }
  1949. if (is_cpuid_PSE36())
  1950. /* 36bits PSE 4MB page */
  1951. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1952. else
  1953. /* 32 bits PSE 4MB page */
  1954. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1955. break;
  1956. case PT32E_ROOT_LEVEL:
  1957. context->rsvd_bits_mask[0][2] =
  1958. rsvd_bits(maxphyaddr, 63) |
  1959. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1960. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1961. rsvd_bits(maxphyaddr, 62); /* PDE */
  1962. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1963. rsvd_bits(maxphyaddr, 62); /* PTE */
  1964. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1965. rsvd_bits(maxphyaddr, 62) |
  1966. rsvd_bits(13, 20); /* large page */
  1967. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1968. break;
  1969. case PT64_ROOT_LEVEL:
  1970. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1971. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1972. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1973. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1974. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1975. rsvd_bits(maxphyaddr, 51);
  1976. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1977. rsvd_bits(maxphyaddr, 51);
  1978. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1979. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1980. rsvd_bits(maxphyaddr, 51) |
  1981. rsvd_bits(13, 29);
  1982. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1983. rsvd_bits(maxphyaddr, 51) |
  1984. rsvd_bits(13, 20); /* large page */
  1985. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1986. break;
  1987. }
  1988. }
  1989. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1990. {
  1991. struct kvm_mmu *context = &vcpu->arch.mmu;
  1992. ASSERT(is_pae(vcpu));
  1993. context->new_cr3 = paging_new_cr3;
  1994. context->page_fault = paging64_page_fault;
  1995. context->gva_to_gpa = paging64_gva_to_gpa;
  1996. context->prefetch_page = paging64_prefetch_page;
  1997. context->sync_page = paging64_sync_page;
  1998. context->invlpg = paging64_invlpg;
  1999. context->free = paging_free;
  2000. context->root_level = level;
  2001. context->shadow_root_level = level;
  2002. context->root_hpa = INVALID_PAGE;
  2003. return 0;
  2004. }
  2005. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2006. {
  2007. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2008. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2009. }
  2010. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2011. {
  2012. struct kvm_mmu *context = &vcpu->arch.mmu;
  2013. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2014. context->new_cr3 = paging_new_cr3;
  2015. context->page_fault = paging32_page_fault;
  2016. context->gva_to_gpa = paging32_gva_to_gpa;
  2017. context->free = paging_free;
  2018. context->prefetch_page = paging32_prefetch_page;
  2019. context->sync_page = paging32_sync_page;
  2020. context->invlpg = paging32_invlpg;
  2021. context->root_level = PT32_ROOT_LEVEL;
  2022. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2023. context->root_hpa = INVALID_PAGE;
  2024. return 0;
  2025. }
  2026. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2027. {
  2028. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2029. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2030. }
  2031. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2032. {
  2033. struct kvm_mmu *context = &vcpu->arch.mmu;
  2034. context->new_cr3 = nonpaging_new_cr3;
  2035. context->page_fault = tdp_page_fault;
  2036. context->free = nonpaging_free;
  2037. context->prefetch_page = nonpaging_prefetch_page;
  2038. context->sync_page = nonpaging_sync_page;
  2039. context->invlpg = nonpaging_invlpg;
  2040. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2041. context->root_hpa = INVALID_PAGE;
  2042. if (!is_paging(vcpu)) {
  2043. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2044. context->root_level = 0;
  2045. } else if (is_long_mode(vcpu)) {
  2046. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2047. context->gva_to_gpa = paging64_gva_to_gpa;
  2048. context->root_level = PT64_ROOT_LEVEL;
  2049. } else if (is_pae(vcpu)) {
  2050. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2051. context->gva_to_gpa = paging64_gva_to_gpa;
  2052. context->root_level = PT32E_ROOT_LEVEL;
  2053. } else {
  2054. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2055. context->gva_to_gpa = paging32_gva_to_gpa;
  2056. context->root_level = PT32_ROOT_LEVEL;
  2057. }
  2058. return 0;
  2059. }
  2060. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2061. {
  2062. int r;
  2063. ASSERT(vcpu);
  2064. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2065. if (!is_paging(vcpu))
  2066. r = nonpaging_init_context(vcpu);
  2067. else if (is_long_mode(vcpu))
  2068. r = paging64_init_context(vcpu);
  2069. else if (is_pae(vcpu))
  2070. r = paging32E_init_context(vcpu);
  2071. else
  2072. r = paging32_init_context(vcpu);
  2073. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2074. return r;
  2075. }
  2076. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2077. {
  2078. vcpu->arch.update_pte.pfn = bad_pfn;
  2079. if (tdp_enabled)
  2080. return init_kvm_tdp_mmu(vcpu);
  2081. else
  2082. return init_kvm_softmmu(vcpu);
  2083. }
  2084. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2085. {
  2086. ASSERT(vcpu);
  2087. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2088. vcpu->arch.mmu.free(vcpu);
  2089. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2090. }
  2091. }
  2092. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2093. {
  2094. destroy_kvm_mmu(vcpu);
  2095. return init_kvm_mmu(vcpu);
  2096. }
  2097. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2098. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2099. {
  2100. int r;
  2101. r = mmu_topup_memory_caches(vcpu);
  2102. if (r)
  2103. goto out;
  2104. spin_lock(&vcpu->kvm->mmu_lock);
  2105. kvm_mmu_free_some_pages(vcpu);
  2106. r = mmu_alloc_roots(vcpu);
  2107. mmu_sync_roots(vcpu);
  2108. spin_unlock(&vcpu->kvm->mmu_lock);
  2109. if (r)
  2110. goto out;
  2111. /* set_cr3() should ensure TLB has been flushed */
  2112. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2113. out:
  2114. return r;
  2115. }
  2116. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2117. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2118. {
  2119. mmu_free_roots(vcpu);
  2120. }
  2121. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2122. struct kvm_mmu_page *sp,
  2123. u64 *spte)
  2124. {
  2125. u64 pte;
  2126. struct kvm_mmu_page *child;
  2127. pte = *spte;
  2128. if (is_shadow_present_pte(pte)) {
  2129. if (is_last_spte(pte, sp->role.level))
  2130. rmap_remove(vcpu->kvm, spte);
  2131. else {
  2132. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2133. mmu_page_remove_parent_pte(child, spte);
  2134. }
  2135. }
  2136. __set_spte(spte, shadow_trap_nonpresent_pte);
  2137. if (is_large_pte(pte))
  2138. --vcpu->kvm->stat.lpages;
  2139. }
  2140. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2141. struct kvm_mmu_page *sp,
  2142. u64 *spte,
  2143. const void *new)
  2144. {
  2145. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2146. ++vcpu->kvm->stat.mmu_pde_zapped;
  2147. return;
  2148. }
  2149. ++vcpu->kvm->stat.mmu_pte_updated;
  2150. if (!sp->role.cr4_pae)
  2151. paging32_update_pte(vcpu, sp, spte, new);
  2152. else
  2153. paging64_update_pte(vcpu, sp, spte, new);
  2154. }
  2155. static bool need_remote_flush(u64 old, u64 new)
  2156. {
  2157. if (!is_shadow_present_pte(old))
  2158. return false;
  2159. if (!is_shadow_present_pte(new))
  2160. return true;
  2161. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2162. return true;
  2163. old ^= PT64_NX_MASK;
  2164. new ^= PT64_NX_MASK;
  2165. return (old & ~new & PT64_PERM_MASK) != 0;
  2166. }
  2167. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2168. {
  2169. if (need_remote_flush(old, new))
  2170. kvm_flush_remote_tlbs(vcpu->kvm);
  2171. else
  2172. kvm_mmu_flush_tlb(vcpu);
  2173. }
  2174. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2175. {
  2176. u64 *spte = vcpu->arch.last_pte_updated;
  2177. return !!(spte && (*spte & shadow_accessed_mask));
  2178. }
  2179. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2180. u64 gpte)
  2181. {
  2182. gfn_t gfn;
  2183. pfn_t pfn;
  2184. if (!is_present_gpte(gpte))
  2185. return;
  2186. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2187. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2188. smp_rmb();
  2189. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2190. if (is_error_pfn(pfn)) {
  2191. kvm_release_pfn_clean(pfn);
  2192. return;
  2193. }
  2194. vcpu->arch.update_pte.gfn = gfn;
  2195. vcpu->arch.update_pte.pfn = pfn;
  2196. }
  2197. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2198. {
  2199. u64 *spte = vcpu->arch.last_pte_updated;
  2200. if (spte
  2201. && vcpu->arch.last_pte_gfn == gfn
  2202. && shadow_accessed_mask
  2203. && !(*spte & shadow_accessed_mask)
  2204. && is_shadow_present_pte(*spte))
  2205. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2206. }
  2207. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2208. const u8 *new, int bytes,
  2209. bool guest_initiated)
  2210. {
  2211. gfn_t gfn = gpa >> PAGE_SHIFT;
  2212. struct kvm_mmu_page *sp;
  2213. struct hlist_node *node, *n;
  2214. struct hlist_head *bucket;
  2215. unsigned index;
  2216. u64 entry, gentry;
  2217. u64 *spte;
  2218. unsigned offset = offset_in_page(gpa);
  2219. unsigned pte_size;
  2220. unsigned page_offset;
  2221. unsigned misaligned;
  2222. unsigned quadrant;
  2223. int level;
  2224. int flooded = 0;
  2225. int npte;
  2226. int r;
  2227. int invlpg_counter;
  2228. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2229. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2230. /*
  2231. * Assume that the pte write on a page table of the same type
  2232. * as the current vcpu paging mode. This is nearly always true
  2233. * (might be false while changing modes). Note it is verified later
  2234. * by update_pte().
  2235. */
  2236. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2237. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2238. if (is_pae(vcpu)) {
  2239. gpa &= ~(gpa_t)7;
  2240. bytes = 8;
  2241. }
  2242. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2243. if (r)
  2244. gentry = 0;
  2245. new = (const u8 *)&gentry;
  2246. }
  2247. switch (bytes) {
  2248. case 4:
  2249. gentry = *(const u32 *)new;
  2250. break;
  2251. case 8:
  2252. gentry = *(const u64 *)new;
  2253. break;
  2254. default:
  2255. gentry = 0;
  2256. break;
  2257. }
  2258. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2259. spin_lock(&vcpu->kvm->mmu_lock);
  2260. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2261. gentry = 0;
  2262. kvm_mmu_access_page(vcpu, gfn);
  2263. kvm_mmu_free_some_pages(vcpu);
  2264. ++vcpu->kvm->stat.mmu_pte_write;
  2265. kvm_mmu_audit(vcpu, "pre pte write");
  2266. if (guest_initiated) {
  2267. if (gfn == vcpu->arch.last_pt_write_gfn
  2268. && !last_updated_pte_accessed(vcpu)) {
  2269. ++vcpu->arch.last_pt_write_count;
  2270. if (vcpu->arch.last_pt_write_count >= 3)
  2271. flooded = 1;
  2272. } else {
  2273. vcpu->arch.last_pt_write_gfn = gfn;
  2274. vcpu->arch.last_pt_write_count = 1;
  2275. vcpu->arch.last_pte_updated = NULL;
  2276. }
  2277. }
  2278. index = kvm_page_table_hashfn(gfn);
  2279. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2280. restart:
  2281. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2282. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2283. continue;
  2284. pte_size = sp->role.cr4_pae ? 8 : 4;
  2285. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2286. misaligned |= bytes < 4;
  2287. if (misaligned || flooded) {
  2288. /*
  2289. * Misaligned accesses are too much trouble to fix
  2290. * up; also, they usually indicate a page is not used
  2291. * as a page table.
  2292. *
  2293. * If we're seeing too many writes to a page,
  2294. * it may no longer be a page table, or we may be
  2295. * forking, in which case it is better to unmap the
  2296. * page.
  2297. */
  2298. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2299. gpa, bytes, sp->role.word);
  2300. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2301. goto restart;
  2302. ++vcpu->kvm->stat.mmu_flooded;
  2303. continue;
  2304. }
  2305. page_offset = offset;
  2306. level = sp->role.level;
  2307. npte = 1;
  2308. if (!sp->role.cr4_pae) {
  2309. page_offset <<= 1; /* 32->64 */
  2310. /*
  2311. * A 32-bit pde maps 4MB while the shadow pdes map
  2312. * only 2MB. So we need to double the offset again
  2313. * and zap two pdes instead of one.
  2314. */
  2315. if (level == PT32_ROOT_LEVEL) {
  2316. page_offset &= ~7; /* kill rounding error */
  2317. page_offset <<= 1;
  2318. npte = 2;
  2319. }
  2320. quadrant = page_offset >> PAGE_SHIFT;
  2321. page_offset &= ~PAGE_MASK;
  2322. if (quadrant != sp->role.quadrant)
  2323. continue;
  2324. }
  2325. spte = &sp->spt[page_offset / sizeof(*spte)];
  2326. while (npte--) {
  2327. entry = *spte;
  2328. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2329. if (gentry)
  2330. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2331. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2332. ++spte;
  2333. }
  2334. }
  2335. kvm_mmu_audit(vcpu, "post pte write");
  2336. spin_unlock(&vcpu->kvm->mmu_lock);
  2337. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2338. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2339. vcpu->arch.update_pte.pfn = bad_pfn;
  2340. }
  2341. }
  2342. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2343. {
  2344. gpa_t gpa;
  2345. int r;
  2346. if (tdp_enabled)
  2347. return 0;
  2348. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2349. spin_lock(&vcpu->kvm->mmu_lock);
  2350. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2351. spin_unlock(&vcpu->kvm->mmu_lock);
  2352. return r;
  2353. }
  2354. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2355. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2356. {
  2357. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2358. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2359. struct kvm_mmu_page *sp;
  2360. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2361. struct kvm_mmu_page, link);
  2362. kvm_mmu_zap_page(vcpu->kvm, sp);
  2363. ++vcpu->kvm->stat.mmu_recycled;
  2364. }
  2365. }
  2366. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2367. {
  2368. int r;
  2369. enum emulation_result er;
  2370. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2371. if (r < 0)
  2372. goto out;
  2373. if (!r) {
  2374. r = 1;
  2375. goto out;
  2376. }
  2377. r = mmu_topup_memory_caches(vcpu);
  2378. if (r)
  2379. goto out;
  2380. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2381. switch (er) {
  2382. case EMULATE_DONE:
  2383. return 1;
  2384. case EMULATE_DO_MMIO:
  2385. ++vcpu->stat.mmio_exits;
  2386. return 0;
  2387. case EMULATE_FAIL:
  2388. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2389. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2390. vcpu->run->internal.ndata = 0;
  2391. return 0;
  2392. default:
  2393. BUG();
  2394. }
  2395. out:
  2396. return r;
  2397. }
  2398. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2399. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2400. {
  2401. vcpu->arch.mmu.invlpg(vcpu, gva);
  2402. kvm_mmu_flush_tlb(vcpu);
  2403. ++vcpu->stat.invlpg;
  2404. }
  2405. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2406. void kvm_enable_tdp(void)
  2407. {
  2408. tdp_enabled = true;
  2409. }
  2410. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2411. void kvm_disable_tdp(void)
  2412. {
  2413. tdp_enabled = false;
  2414. }
  2415. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2416. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2417. {
  2418. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2419. }
  2420. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2421. {
  2422. struct page *page;
  2423. int i;
  2424. ASSERT(vcpu);
  2425. /*
  2426. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2427. * Therefore we need to allocate shadow page tables in the first
  2428. * 4GB of memory, which happens to fit the DMA32 zone.
  2429. */
  2430. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2431. if (!page)
  2432. return -ENOMEM;
  2433. vcpu->arch.mmu.pae_root = page_address(page);
  2434. for (i = 0; i < 4; ++i)
  2435. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2436. return 0;
  2437. }
  2438. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2439. {
  2440. ASSERT(vcpu);
  2441. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2442. return alloc_mmu_pages(vcpu);
  2443. }
  2444. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2445. {
  2446. ASSERT(vcpu);
  2447. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2448. return init_kvm_mmu(vcpu);
  2449. }
  2450. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2451. {
  2452. ASSERT(vcpu);
  2453. destroy_kvm_mmu(vcpu);
  2454. free_mmu_pages(vcpu);
  2455. mmu_free_memory_caches(vcpu);
  2456. }
  2457. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2458. {
  2459. struct kvm_mmu_page *sp;
  2460. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2461. int i;
  2462. u64 *pt;
  2463. if (!test_bit(slot, sp->slot_bitmap))
  2464. continue;
  2465. pt = sp->spt;
  2466. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2467. /* avoid RMW */
  2468. if (pt[i] & PT_WRITABLE_MASK)
  2469. pt[i] &= ~PT_WRITABLE_MASK;
  2470. }
  2471. kvm_flush_remote_tlbs(kvm);
  2472. }
  2473. void kvm_mmu_zap_all(struct kvm *kvm)
  2474. {
  2475. struct kvm_mmu_page *sp, *node;
  2476. spin_lock(&kvm->mmu_lock);
  2477. restart:
  2478. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2479. if (kvm_mmu_zap_page(kvm, sp))
  2480. goto restart;
  2481. spin_unlock(&kvm->mmu_lock);
  2482. kvm_flush_remote_tlbs(kvm);
  2483. }
  2484. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2485. {
  2486. struct kvm_mmu_page *page;
  2487. page = container_of(kvm->arch.active_mmu_pages.prev,
  2488. struct kvm_mmu_page, link);
  2489. kvm_mmu_zap_page(kvm, page);
  2490. }
  2491. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2492. {
  2493. struct kvm *kvm;
  2494. struct kvm *kvm_freed = NULL;
  2495. int cache_count = 0;
  2496. spin_lock(&kvm_lock);
  2497. list_for_each_entry(kvm, &vm_list, vm_list) {
  2498. int npages, idx;
  2499. idx = srcu_read_lock(&kvm->srcu);
  2500. spin_lock(&kvm->mmu_lock);
  2501. npages = kvm->arch.n_alloc_mmu_pages -
  2502. kvm->arch.n_free_mmu_pages;
  2503. cache_count += npages;
  2504. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2505. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2506. cache_count--;
  2507. kvm_freed = kvm;
  2508. }
  2509. nr_to_scan--;
  2510. spin_unlock(&kvm->mmu_lock);
  2511. srcu_read_unlock(&kvm->srcu, idx);
  2512. }
  2513. if (kvm_freed)
  2514. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2515. spin_unlock(&kvm_lock);
  2516. return cache_count;
  2517. }
  2518. static struct shrinker mmu_shrinker = {
  2519. .shrink = mmu_shrink,
  2520. .seeks = DEFAULT_SEEKS * 10,
  2521. };
  2522. static void mmu_destroy_caches(void)
  2523. {
  2524. if (pte_chain_cache)
  2525. kmem_cache_destroy(pte_chain_cache);
  2526. if (rmap_desc_cache)
  2527. kmem_cache_destroy(rmap_desc_cache);
  2528. if (mmu_page_header_cache)
  2529. kmem_cache_destroy(mmu_page_header_cache);
  2530. }
  2531. void kvm_mmu_module_exit(void)
  2532. {
  2533. mmu_destroy_caches();
  2534. unregister_shrinker(&mmu_shrinker);
  2535. }
  2536. int kvm_mmu_module_init(void)
  2537. {
  2538. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2539. sizeof(struct kvm_pte_chain),
  2540. 0, 0, NULL);
  2541. if (!pte_chain_cache)
  2542. goto nomem;
  2543. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2544. sizeof(struct kvm_rmap_desc),
  2545. 0, 0, NULL);
  2546. if (!rmap_desc_cache)
  2547. goto nomem;
  2548. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2549. sizeof(struct kvm_mmu_page),
  2550. 0, 0, NULL);
  2551. if (!mmu_page_header_cache)
  2552. goto nomem;
  2553. register_shrinker(&mmu_shrinker);
  2554. return 0;
  2555. nomem:
  2556. mmu_destroy_caches();
  2557. return -ENOMEM;
  2558. }
  2559. /*
  2560. * Caculate mmu pages needed for kvm.
  2561. */
  2562. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2563. {
  2564. int i;
  2565. unsigned int nr_mmu_pages;
  2566. unsigned int nr_pages = 0;
  2567. struct kvm_memslots *slots;
  2568. slots = kvm_memslots(kvm);
  2569. for (i = 0; i < slots->nmemslots; i++)
  2570. nr_pages += slots->memslots[i].npages;
  2571. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2572. nr_mmu_pages = max(nr_mmu_pages,
  2573. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2574. return nr_mmu_pages;
  2575. }
  2576. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2577. unsigned len)
  2578. {
  2579. if (len > buffer->len)
  2580. return NULL;
  2581. return buffer->ptr;
  2582. }
  2583. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2584. unsigned len)
  2585. {
  2586. void *ret;
  2587. ret = pv_mmu_peek_buffer(buffer, len);
  2588. if (!ret)
  2589. return ret;
  2590. buffer->ptr += len;
  2591. buffer->len -= len;
  2592. buffer->processed += len;
  2593. return ret;
  2594. }
  2595. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2596. gpa_t addr, gpa_t value)
  2597. {
  2598. int bytes = 8;
  2599. int r;
  2600. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2601. bytes = 4;
  2602. r = mmu_topup_memory_caches(vcpu);
  2603. if (r)
  2604. return r;
  2605. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2606. return -EFAULT;
  2607. return 1;
  2608. }
  2609. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2610. {
  2611. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2612. return 1;
  2613. }
  2614. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2615. {
  2616. spin_lock(&vcpu->kvm->mmu_lock);
  2617. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2618. spin_unlock(&vcpu->kvm->mmu_lock);
  2619. return 1;
  2620. }
  2621. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2622. struct kvm_pv_mmu_op_buffer *buffer)
  2623. {
  2624. struct kvm_mmu_op_header *header;
  2625. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2626. if (!header)
  2627. return 0;
  2628. switch (header->op) {
  2629. case KVM_MMU_OP_WRITE_PTE: {
  2630. struct kvm_mmu_op_write_pte *wpte;
  2631. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2632. if (!wpte)
  2633. return 0;
  2634. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2635. wpte->pte_val);
  2636. }
  2637. case KVM_MMU_OP_FLUSH_TLB: {
  2638. struct kvm_mmu_op_flush_tlb *ftlb;
  2639. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2640. if (!ftlb)
  2641. return 0;
  2642. return kvm_pv_mmu_flush_tlb(vcpu);
  2643. }
  2644. case KVM_MMU_OP_RELEASE_PT: {
  2645. struct kvm_mmu_op_release_pt *rpt;
  2646. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2647. if (!rpt)
  2648. return 0;
  2649. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2650. }
  2651. default: return 0;
  2652. }
  2653. }
  2654. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2655. gpa_t addr, unsigned long *ret)
  2656. {
  2657. int r;
  2658. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2659. buffer->ptr = buffer->buf;
  2660. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2661. buffer->processed = 0;
  2662. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2663. if (r)
  2664. goto out;
  2665. while (buffer->len) {
  2666. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2667. if (r < 0)
  2668. goto out;
  2669. if (r == 0)
  2670. break;
  2671. }
  2672. r = 1;
  2673. out:
  2674. *ret = buffer->processed;
  2675. return r;
  2676. }
  2677. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2678. {
  2679. struct kvm_shadow_walk_iterator iterator;
  2680. int nr_sptes = 0;
  2681. spin_lock(&vcpu->kvm->mmu_lock);
  2682. for_each_shadow_entry(vcpu, addr, iterator) {
  2683. sptes[iterator.level-1] = *iterator.sptep;
  2684. nr_sptes++;
  2685. if (!is_shadow_present_pte(*iterator.sptep))
  2686. break;
  2687. }
  2688. spin_unlock(&vcpu->kvm->mmu_lock);
  2689. return nr_sptes;
  2690. }
  2691. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2692. #ifdef AUDIT
  2693. static const char *audit_msg;
  2694. static gva_t canonicalize(gva_t gva)
  2695. {
  2696. #ifdef CONFIG_X86_64
  2697. gva = (long long)(gva << 16) >> 16;
  2698. #endif
  2699. return gva;
  2700. }
  2701. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2702. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2703. inspect_spte_fn fn)
  2704. {
  2705. int i;
  2706. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2707. u64 ent = sp->spt[i];
  2708. if (is_shadow_present_pte(ent)) {
  2709. if (!is_last_spte(ent, sp->role.level)) {
  2710. struct kvm_mmu_page *child;
  2711. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2712. __mmu_spte_walk(kvm, child, fn);
  2713. } else
  2714. fn(kvm, &sp->spt[i]);
  2715. }
  2716. }
  2717. }
  2718. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2719. {
  2720. int i;
  2721. struct kvm_mmu_page *sp;
  2722. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2723. return;
  2724. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2725. hpa_t root = vcpu->arch.mmu.root_hpa;
  2726. sp = page_header(root);
  2727. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2728. return;
  2729. }
  2730. for (i = 0; i < 4; ++i) {
  2731. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2732. if (root && VALID_PAGE(root)) {
  2733. root &= PT64_BASE_ADDR_MASK;
  2734. sp = page_header(root);
  2735. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2736. }
  2737. }
  2738. return;
  2739. }
  2740. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2741. gva_t va, int level)
  2742. {
  2743. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2744. int i;
  2745. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2746. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2747. u64 ent = pt[i];
  2748. if (ent == shadow_trap_nonpresent_pte)
  2749. continue;
  2750. va = canonicalize(va);
  2751. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2752. audit_mappings_page(vcpu, ent, va, level - 1);
  2753. else {
  2754. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2755. gfn_t gfn = gpa >> PAGE_SHIFT;
  2756. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2757. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2758. if (is_error_pfn(pfn)) {
  2759. kvm_release_pfn_clean(pfn);
  2760. continue;
  2761. }
  2762. if (is_shadow_present_pte(ent)
  2763. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2764. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2765. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2766. audit_msg, vcpu->arch.mmu.root_level,
  2767. va, gpa, hpa, ent,
  2768. is_shadow_present_pte(ent));
  2769. else if (ent == shadow_notrap_nonpresent_pte
  2770. && !is_error_hpa(hpa))
  2771. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2772. " valid guest gva %lx\n", audit_msg, va);
  2773. kvm_release_pfn_clean(pfn);
  2774. }
  2775. }
  2776. }
  2777. static void audit_mappings(struct kvm_vcpu *vcpu)
  2778. {
  2779. unsigned i;
  2780. if (vcpu->arch.mmu.root_level == 4)
  2781. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2782. else
  2783. for (i = 0; i < 4; ++i)
  2784. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2785. audit_mappings_page(vcpu,
  2786. vcpu->arch.mmu.pae_root[i],
  2787. i << 30,
  2788. 2);
  2789. }
  2790. static int count_rmaps(struct kvm_vcpu *vcpu)
  2791. {
  2792. struct kvm *kvm = vcpu->kvm;
  2793. struct kvm_memslots *slots;
  2794. int nmaps = 0;
  2795. int i, j, k, idx;
  2796. idx = srcu_read_lock(&kvm->srcu);
  2797. slots = kvm_memslots(kvm);
  2798. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2799. struct kvm_memory_slot *m = &slots->memslots[i];
  2800. struct kvm_rmap_desc *d;
  2801. for (j = 0; j < m->npages; ++j) {
  2802. unsigned long *rmapp = &m->rmap[j];
  2803. if (!*rmapp)
  2804. continue;
  2805. if (!(*rmapp & 1)) {
  2806. ++nmaps;
  2807. continue;
  2808. }
  2809. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2810. while (d) {
  2811. for (k = 0; k < RMAP_EXT; ++k)
  2812. if (d->sptes[k])
  2813. ++nmaps;
  2814. else
  2815. break;
  2816. d = d->more;
  2817. }
  2818. }
  2819. }
  2820. srcu_read_unlock(&kvm->srcu, idx);
  2821. return nmaps;
  2822. }
  2823. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2824. {
  2825. unsigned long *rmapp;
  2826. struct kvm_mmu_page *rev_sp;
  2827. gfn_t gfn;
  2828. if (*sptep & PT_WRITABLE_MASK) {
  2829. rev_sp = page_header(__pa(sptep));
  2830. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2831. if (!gfn_to_memslot(kvm, gfn)) {
  2832. if (!printk_ratelimit())
  2833. return;
  2834. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2835. audit_msg, gfn);
  2836. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2837. audit_msg, (long int)(sptep - rev_sp->spt),
  2838. rev_sp->gfn);
  2839. dump_stack();
  2840. return;
  2841. }
  2842. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2843. rev_sp->role.level);
  2844. if (!*rmapp) {
  2845. if (!printk_ratelimit())
  2846. return;
  2847. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2848. audit_msg, *sptep);
  2849. dump_stack();
  2850. }
  2851. }
  2852. }
  2853. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2854. {
  2855. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2856. }
  2857. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2858. {
  2859. struct kvm_mmu_page *sp;
  2860. int i;
  2861. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2862. u64 *pt = sp->spt;
  2863. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2864. continue;
  2865. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2866. u64 ent = pt[i];
  2867. if (!(ent & PT_PRESENT_MASK))
  2868. continue;
  2869. if (!(ent & PT_WRITABLE_MASK))
  2870. continue;
  2871. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2872. }
  2873. }
  2874. return;
  2875. }
  2876. static void audit_rmap(struct kvm_vcpu *vcpu)
  2877. {
  2878. check_writable_mappings_rmap(vcpu);
  2879. count_rmaps(vcpu);
  2880. }
  2881. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2882. {
  2883. struct kvm_mmu_page *sp;
  2884. struct kvm_memory_slot *slot;
  2885. unsigned long *rmapp;
  2886. u64 *spte;
  2887. gfn_t gfn;
  2888. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2889. if (sp->role.direct)
  2890. continue;
  2891. if (sp->unsync)
  2892. continue;
  2893. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2894. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2895. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2896. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2897. while (spte) {
  2898. if (*spte & PT_WRITABLE_MASK)
  2899. printk(KERN_ERR "%s: (%s) shadow page has "
  2900. "writable mappings: gfn %lx role %x\n",
  2901. __func__, audit_msg, sp->gfn,
  2902. sp->role.word);
  2903. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2904. }
  2905. }
  2906. }
  2907. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2908. {
  2909. int olddbg = dbg;
  2910. dbg = 0;
  2911. audit_msg = msg;
  2912. audit_rmap(vcpu);
  2913. audit_write_protection(vcpu);
  2914. if (strcmp("pre pte write", audit_msg) != 0)
  2915. audit_mappings(vcpu);
  2916. audit_writable_sptes_have_rmaps(vcpu);
  2917. dbg = olddbg;
  2918. }
  2919. #endif