s5pv210-cpufreq.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * Copyright (c) 2010 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * CPU frequency scaling for S5PC110/S5PV210
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/types.h>
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/err.h>
  15. #include <linux/clk.h>
  16. #include <linux/io.h>
  17. #include <linux/cpufreq.h>
  18. #include <mach/map.h>
  19. #include <mach/regs-clock.h>
  20. static struct clk *cpu_clk;
  21. static struct clk *dmc0_clk;
  22. static struct clk *dmc1_clk;
  23. static struct cpufreq_freqs freqs;
  24. /* APLL M,P,S values for 1G/800Mhz */
  25. #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1)
  26. #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1)
  27. /*
  28. * relation has an additional symantics other than the standard of cpufreq
  29. * DISALBE_FURTHER_CPUFREQ: disable further access to target
  30. * ENABLE_FURTUER_CPUFREQ: enable access to target
  31. */
  32. enum cpufreq_access {
  33. DISABLE_FURTHER_CPUFREQ = 0x10,
  34. ENABLE_FURTHER_CPUFREQ = 0x20,
  35. };
  36. static bool no_cpufreq_access;
  37. /*
  38. * DRAM configurations to calculate refresh counter for changing
  39. * frequency of memory.
  40. */
  41. struct dram_conf {
  42. unsigned long freq; /* HZ */
  43. unsigned long refresh; /* DRAM refresh counter * 1000 */
  44. };
  45. /* DRAM configuration (DMC0 and DMC1) */
  46. static struct dram_conf s5pv210_dram_conf[2];
  47. enum perf_level {
  48. L0, L1, L2, L3, L4,
  49. };
  50. enum s5pv210_mem_type {
  51. LPDDR = 0x1,
  52. LPDDR2 = 0x2,
  53. DDR2 = 0x4,
  54. };
  55. enum s5pv210_dmc_port {
  56. DMC0 = 0,
  57. DMC1,
  58. };
  59. static struct cpufreq_frequency_table s5pv210_freq_table[] = {
  60. {L0, 1000*1000},
  61. {L1, 800*1000},
  62. {L2, 400*1000},
  63. {L3, 200*1000},
  64. {L4, 100*1000},
  65. {0, CPUFREQ_TABLE_END},
  66. };
  67. static u32 clkdiv_val[5][11] = {
  68. /*
  69. * Clock divider value for following
  70. * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
  71. * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
  72. * ONEDRAM, MFC, G3D }
  73. */
  74. /* L0 : [1000/200/100][166/83][133/66][200/200] */
  75. {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
  76. /* L1 : [800/200/100][166/83][133/66][200/200] */
  77. {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
  78. /* L2 : [400/200/100][166/83][133/66][200/200] */
  79. {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  80. /* L3 : [200/200/100][166/83][133/66][200/200] */
  81. {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  82. /* L4 : [100/100/100][83/83][66/66][100/100] */
  83. {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
  84. };
  85. /*
  86. * This function set DRAM refresh counter
  87. * accoriding to operating frequency of DRAM
  88. * ch: DMC port number 0 or 1
  89. * freq: Operating frequency of DRAM(KHz)
  90. */
  91. static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
  92. {
  93. unsigned long tmp, tmp1;
  94. void __iomem *reg = NULL;
  95. if (ch == DMC0) {
  96. reg = (S5P_VA_DMC0 + 0x30);
  97. } else if (ch == DMC1) {
  98. reg = (S5P_VA_DMC1 + 0x30);
  99. } else {
  100. printk(KERN_ERR "Cannot find DMC port\n");
  101. return;
  102. }
  103. /* Find current DRAM frequency */
  104. tmp = s5pv210_dram_conf[ch].freq;
  105. do_div(tmp, freq);
  106. tmp1 = s5pv210_dram_conf[ch].refresh;
  107. do_div(tmp1, tmp);
  108. __raw_writel(tmp1, reg);
  109. }
  110. int s5pv210_verify_speed(struct cpufreq_policy *policy)
  111. {
  112. if (policy->cpu)
  113. return -EINVAL;
  114. return cpufreq_frequency_table_verify(policy, s5pv210_freq_table);
  115. }
  116. unsigned int s5pv210_getspeed(unsigned int cpu)
  117. {
  118. if (cpu)
  119. return 0;
  120. return clk_get_rate(cpu_clk) / 1000;
  121. }
  122. static int s5pv210_target(struct cpufreq_policy *policy,
  123. unsigned int target_freq,
  124. unsigned int relation)
  125. {
  126. unsigned long reg;
  127. unsigned int index, priv_index;
  128. unsigned int pll_changing = 0;
  129. unsigned int bus_speed_changing = 0;
  130. if (relation & ENABLE_FURTHER_CPUFREQ)
  131. no_cpufreq_access = false;
  132. if (no_cpufreq_access) {
  133. #ifdef CONFIG_PM_VERBOSE
  134. pr_err("%s:%d denied access to %s as it is disabled"
  135. "temporarily\n", __FILE__, __LINE__, __func__);
  136. #endif
  137. return -EINVAL;
  138. }
  139. if (relation & DISABLE_FURTHER_CPUFREQ)
  140. no_cpufreq_access = true;
  141. relation &= ~(ENABLE_FURTHER_CPUFREQ | DISABLE_FURTHER_CPUFREQ);
  142. freqs.old = s5pv210_getspeed(0);
  143. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  144. target_freq, relation, &index))
  145. return -EINVAL;
  146. freqs.new = s5pv210_freq_table[index].frequency;
  147. freqs.cpu = 0;
  148. if (freqs.new == freqs.old)
  149. return 0;
  150. /* Finding current running level index */
  151. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  152. freqs.old, relation, &priv_index))
  153. return -EINVAL;
  154. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  155. if (freqs.new > freqs.old) {
  156. /* Voltage up: will be implemented */
  157. }
  158. /* Check if there need to change PLL */
  159. if ((index == L0) || (priv_index == L0))
  160. pll_changing = 1;
  161. /* Check if there need to change System bus clock */
  162. if ((index == L4) || (priv_index == L4))
  163. bus_speed_changing = 1;
  164. if (bus_speed_changing) {
  165. /*
  166. * Reconfigure DRAM refresh counter value for minimum
  167. * temporary clock while changing divider.
  168. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
  169. */
  170. if (pll_changing)
  171. s5pv210_set_refresh(DMC1, 83000);
  172. else
  173. s5pv210_set_refresh(DMC1, 100000);
  174. s5pv210_set_refresh(DMC0, 83000);
  175. }
  176. /*
  177. * APLL should be changed in this level
  178. * APLL -> MPLL(for stable transition) -> APLL
  179. * Some clock source's clock API are not prepared.
  180. * Do not use clock API in below code.
  181. */
  182. if (pll_changing) {
  183. /*
  184. * 1. Temporary Change divider for MFC and G3D
  185. * SCLKA2M(200/1=200)->(200/4=50)Mhz
  186. */
  187. reg = __raw_readl(S5P_CLK_DIV2);
  188. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  189. reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
  190. (3 << S5P_CLKDIV2_MFC_SHIFT);
  191. __raw_writel(reg, S5P_CLK_DIV2);
  192. /* For MFC, G3D dividing */
  193. do {
  194. reg = __raw_readl(S5P_CLKDIV_STAT0);
  195. } while (reg & ((1 << 16) | (1 << 17)));
  196. /*
  197. * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
  198. * (200/4=50)->(667/4=166)Mhz
  199. */
  200. reg = __raw_readl(S5P_CLK_SRC2);
  201. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  202. reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
  203. (1 << S5P_CLKSRC2_MFC_SHIFT);
  204. __raw_writel(reg, S5P_CLK_SRC2);
  205. do {
  206. reg = __raw_readl(S5P_CLKMUX_STAT1);
  207. } while (reg & ((1 << 7) | (1 << 3)));
  208. /*
  209. * 3. DMC1 refresh count for 133Mhz if (index == L4) is
  210. * true refresh counter is already programed in upper
  211. * code. 0x287@83Mhz
  212. */
  213. if (!bus_speed_changing)
  214. s5pv210_set_refresh(DMC1, 133000);
  215. /* 4. SCLKAPLL -> SCLKMPLL */
  216. reg = __raw_readl(S5P_CLK_SRC0);
  217. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  218. reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
  219. __raw_writel(reg, S5P_CLK_SRC0);
  220. do {
  221. reg = __raw_readl(S5P_CLKMUX_STAT0);
  222. } while (reg & (0x1 << 18));
  223. }
  224. /* Change divider */
  225. reg = __raw_readl(S5P_CLK_DIV0);
  226. reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
  227. S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
  228. S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
  229. S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
  230. reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
  231. (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
  232. (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
  233. (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
  234. (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
  235. (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
  236. (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
  237. (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
  238. __raw_writel(reg, S5P_CLK_DIV0);
  239. do {
  240. reg = __raw_readl(S5P_CLKDIV_STAT0);
  241. } while (reg & 0xff);
  242. /* ARM MCS value changed */
  243. reg = __raw_readl(S5P_ARM_MCS_CON);
  244. reg &= ~0x3;
  245. if (index >= L3)
  246. reg |= 0x3;
  247. else
  248. reg |= 0x1;
  249. __raw_writel(reg, S5P_ARM_MCS_CON);
  250. if (pll_changing) {
  251. /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
  252. __raw_writel(0x2cf, S5P_APLL_LOCK);
  253. /*
  254. * 6. Turn on APLL
  255. * 6-1. Set PMS values
  256. * 6-2. Wait untile the PLL is locked
  257. */
  258. if (index == L0)
  259. __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
  260. else
  261. __raw_writel(APLL_VAL_800, S5P_APLL_CON);
  262. do {
  263. reg = __raw_readl(S5P_APLL_CON);
  264. } while (!(reg & (0x1 << 29)));
  265. /*
  266. * 7. Change souce clock from SCLKMPLL(667Mhz)
  267. * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
  268. * (667/4=166)->(200/4=50)Mhz
  269. */
  270. reg = __raw_readl(S5P_CLK_SRC2);
  271. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  272. reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
  273. (0 << S5P_CLKSRC2_MFC_SHIFT);
  274. __raw_writel(reg, S5P_CLK_SRC2);
  275. do {
  276. reg = __raw_readl(S5P_CLKMUX_STAT1);
  277. } while (reg & ((1 << 7) | (1 << 3)));
  278. /*
  279. * 8. Change divider for MFC and G3D
  280. * (200/4=50)->(200/1=200)Mhz
  281. */
  282. reg = __raw_readl(S5P_CLK_DIV2);
  283. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  284. reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
  285. (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
  286. __raw_writel(reg, S5P_CLK_DIV2);
  287. /* For MFC, G3D dividing */
  288. do {
  289. reg = __raw_readl(S5P_CLKDIV_STAT0);
  290. } while (reg & ((1 << 16) | (1 << 17)));
  291. /* 9. Change MPLL to APLL in MSYS_MUX */
  292. reg = __raw_readl(S5P_CLK_SRC0);
  293. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  294. reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
  295. __raw_writel(reg, S5P_CLK_SRC0);
  296. do {
  297. reg = __raw_readl(S5P_CLKMUX_STAT0);
  298. } while (reg & (0x1 << 18));
  299. /*
  300. * 10. DMC1 refresh counter
  301. * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
  302. * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
  303. */
  304. if (!bus_speed_changing)
  305. s5pv210_set_refresh(DMC1, 200000);
  306. }
  307. /*
  308. * L4 level need to change memory bus speed, hence onedram clock divier
  309. * and memory refresh parameter should be changed
  310. */
  311. if (bus_speed_changing) {
  312. reg = __raw_readl(S5P_CLK_DIV6);
  313. reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
  314. reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
  315. __raw_writel(reg, S5P_CLK_DIV6);
  316. do {
  317. reg = __raw_readl(S5P_CLKDIV_STAT1);
  318. } while (reg & (1 << 15));
  319. /* Reconfigure DRAM refresh counter value */
  320. if (index != L4) {
  321. /*
  322. * DMC0 : 166Mhz
  323. * DMC1 : 200Mhz
  324. */
  325. s5pv210_set_refresh(DMC0, 166000);
  326. s5pv210_set_refresh(DMC1, 200000);
  327. } else {
  328. /*
  329. * DMC0 : 83Mhz
  330. * DMC1 : 100Mhz
  331. */
  332. s5pv210_set_refresh(DMC0, 83000);
  333. s5pv210_set_refresh(DMC1, 100000);
  334. }
  335. }
  336. if (freqs.new < freqs.old) {
  337. /* Voltage down: will be implemented */
  338. }
  339. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  340. printk(KERN_DEBUG "Perf changed[L%d]\n", index);
  341. return 0;
  342. }
  343. #ifdef CONFIG_PM
  344. static int s5pv210_cpufreq_suspend(struct cpufreq_policy *policy)
  345. {
  346. return 0;
  347. }
  348. static int s5pv210_cpufreq_resume(struct cpufreq_policy *policy)
  349. {
  350. return 0;
  351. }
  352. #endif
  353. static int check_mem_type(void __iomem *dmc_reg)
  354. {
  355. unsigned long val;
  356. val = __raw_readl(dmc_reg + 0x4);
  357. val = (val & (0xf << 8));
  358. return val >> 8;
  359. }
  360. static int __init s5pv210_cpu_init(struct cpufreq_policy *policy)
  361. {
  362. unsigned long mem_type;
  363. int ret;
  364. cpu_clk = clk_get(NULL, "armclk");
  365. if (IS_ERR(cpu_clk))
  366. return PTR_ERR(cpu_clk);
  367. dmc0_clk = clk_get(NULL, "sclk_dmc0");
  368. if (IS_ERR(dmc0_clk)) {
  369. ret = PTR_ERR(dmc0_clk);
  370. goto out_dmc0;
  371. }
  372. dmc1_clk = clk_get(NULL, "hclk_msys");
  373. if (IS_ERR(dmc1_clk)) {
  374. ret = PTR_ERR(dmc1_clk);
  375. goto out_dmc1;
  376. }
  377. if (policy->cpu != 0) {
  378. ret = -EINVAL;
  379. goto out_dmc1;
  380. }
  381. /*
  382. * check_mem_type : This driver only support LPDDR & LPDDR2.
  383. * other memory type is not supported.
  384. */
  385. mem_type = check_mem_type(S5P_VA_DMC0);
  386. if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
  387. printk(KERN_ERR "CPUFreq doesn't support this memory type\n");
  388. ret = -EINVAL;
  389. goto out_dmc1;
  390. }
  391. /* Find current refresh counter and frequency each DMC */
  392. s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000);
  393. s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
  394. s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000);
  395. s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
  396. policy->cur = policy->min = policy->max = s5pv210_getspeed(0);
  397. cpufreq_frequency_table_get_attr(s5pv210_freq_table, policy->cpu);
  398. policy->cpuinfo.transition_latency = 40000;
  399. return cpufreq_frequency_table_cpuinfo(policy, s5pv210_freq_table);
  400. out_dmc1:
  401. clk_put(dmc0_clk);
  402. out_dmc0:
  403. clk_put(cpu_clk);
  404. return ret;
  405. }
  406. static struct cpufreq_driver s5pv210_driver = {
  407. .flags = CPUFREQ_STICKY,
  408. .verify = s5pv210_verify_speed,
  409. .target = s5pv210_target,
  410. .get = s5pv210_getspeed,
  411. .init = s5pv210_cpu_init,
  412. .name = "s5pv210",
  413. #ifdef CONFIG_PM
  414. .suspend = s5pv210_cpufreq_suspend,
  415. .resume = s5pv210_cpufreq_resume,
  416. #endif
  417. };
  418. static int __init s5pv210_cpufreq_init(void)
  419. {
  420. return cpufreq_register_driver(&s5pv210_driver);
  421. }
  422. late_initcall(s5pv210_cpufreq_init);