spi-s3c64xx.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342
  1. /*
  2. * Copyright (C) 2009 Samsung Electronics Ltd.
  3. * Jaswinder Singh <jassi.brar@samsung.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/workqueue.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/spi/spi.h>
  29. #include <mach/dma.h>
  30. #include <plat/s3c64xx-spi.h>
  31. /* Registers and bit-fields */
  32. #define S3C64XX_SPI_CH_CFG 0x00
  33. #define S3C64XX_SPI_CLK_CFG 0x04
  34. #define S3C64XX_SPI_MODE_CFG 0x08
  35. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  36. #define S3C64XX_SPI_INT_EN 0x10
  37. #define S3C64XX_SPI_STATUS 0x14
  38. #define S3C64XX_SPI_TX_DATA 0x18
  39. #define S3C64XX_SPI_RX_DATA 0x1C
  40. #define S3C64XX_SPI_PACKET_CNT 0x20
  41. #define S3C64XX_SPI_PENDING_CLR 0x24
  42. #define S3C64XX_SPI_SWAP_CFG 0x28
  43. #define S3C64XX_SPI_FB_CLK 0x2C
  44. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  45. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  46. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  47. #define S3C64XX_SPI_CPOL_L (1<<3)
  48. #define S3C64XX_SPI_CPHA_B (1<<2)
  49. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  50. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  51. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  52. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  53. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  54. #define S3C64XX_SPI_PSR_MASK 0xff
  55. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  58. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  62. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  63. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  64. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  65. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  66. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  67. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  68. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  69. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  70. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  71. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  72. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  73. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  74. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  75. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  76. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  77. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  78. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  79. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  80. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  81. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  82. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  83. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  84. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  85. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  86. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  87. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  88. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  89. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  90. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  91. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  92. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  93. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  94. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  95. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  96. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  97. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  98. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  99. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  100. (((i)->fifo_lvl_mask + 1))) \
  101. ? 1 : 0)
  102. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & (1 << (i)->tx_st_done)) ? 1 : 0)
  103. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  104. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  105. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  106. #define S3C64XX_SPI_TRAILCNT_OFF 19
  107. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  108. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  109. #define SUSPND (1<<0)
  110. #define SPIBUSY (1<<1)
  111. #define RXBUSY (1<<2)
  112. #define TXBUSY (1<<3)
  113. struct s3c64xx_spi_dma_data {
  114. unsigned ch;
  115. enum dma_data_direction direction;
  116. enum dma_ch dmach;
  117. };
  118. /**
  119. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  120. * @clk: Pointer to the spi clock.
  121. * @src_clk: Pointer to the clock used to generate SPI signals.
  122. * @master: Pointer to the SPI Protocol master.
  123. * @workqueue: Work queue for the SPI xfer requests.
  124. * @cntrlr_info: Platform specific data for the controller this driver manages.
  125. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  126. * @work: Work
  127. * @queue: To log SPI xfer requests.
  128. * @lock: Controller specific lock.
  129. * @state: Set of FLAGS to indicate status.
  130. * @rx_dmach: Controller's DMA channel for Rx.
  131. * @tx_dmach: Controller's DMA channel for Tx.
  132. * @sfr_start: BUS address of SPI controller regs.
  133. * @regs: Pointer to ioremap'ed controller registers.
  134. * @irq: interrupt
  135. * @xfer_completion: To indicate completion of xfer task.
  136. * @cur_mode: Stores the active configuration of the controller.
  137. * @cur_bpw: Stores the active bits per word settings.
  138. * @cur_speed: Stores the active xfer clock speed.
  139. */
  140. struct s3c64xx_spi_driver_data {
  141. void __iomem *regs;
  142. struct clk *clk;
  143. struct clk *src_clk;
  144. struct platform_device *pdev;
  145. struct spi_master *master;
  146. struct workqueue_struct *workqueue;
  147. struct s3c64xx_spi_info *cntrlr_info;
  148. struct spi_device *tgl_spi;
  149. struct work_struct work;
  150. struct list_head queue;
  151. spinlock_t lock;
  152. unsigned long sfr_start;
  153. struct completion xfer_completion;
  154. unsigned state;
  155. unsigned cur_mode, cur_bpw;
  156. unsigned cur_speed;
  157. struct s3c64xx_spi_dma_data rx_dma;
  158. struct s3c64xx_spi_dma_data tx_dma;
  159. struct samsung_dma_ops *ops;
  160. };
  161. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  162. .name = "samsung-spi-dma",
  163. };
  164. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  165. {
  166. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  167. void __iomem *regs = sdd->regs;
  168. unsigned long loops;
  169. u32 val;
  170. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  171. val = readl(regs + S3C64XX_SPI_CH_CFG);
  172. val |= S3C64XX_SPI_CH_SW_RST;
  173. val &= ~S3C64XX_SPI_CH_HS_EN;
  174. writel(val, regs + S3C64XX_SPI_CH_CFG);
  175. /* Flush TxFIFO*/
  176. loops = msecs_to_loops(1);
  177. do {
  178. val = readl(regs + S3C64XX_SPI_STATUS);
  179. } while (TX_FIFO_LVL(val, sci) && loops--);
  180. if (loops == 0)
  181. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  182. /* Flush RxFIFO*/
  183. loops = msecs_to_loops(1);
  184. do {
  185. val = readl(regs + S3C64XX_SPI_STATUS);
  186. if (RX_FIFO_LVL(val, sci))
  187. readl(regs + S3C64XX_SPI_RX_DATA);
  188. else
  189. break;
  190. } while (loops--);
  191. if (loops == 0)
  192. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  193. val = readl(regs + S3C64XX_SPI_CH_CFG);
  194. val &= ~S3C64XX_SPI_CH_SW_RST;
  195. writel(val, regs + S3C64XX_SPI_CH_CFG);
  196. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  197. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  198. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  199. val = readl(regs + S3C64XX_SPI_CH_CFG);
  200. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  201. writel(val, regs + S3C64XX_SPI_CH_CFG);
  202. }
  203. static void s3c64xx_spi_dmacb(void *data)
  204. {
  205. struct s3c64xx_spi_driver_data *sdd;
  206. struct s3c64xx_spi_dma_data *dma = data;
  207. unsigned long flags;
  208. if (dma->direction == DMA_FROM_DEVICE)
  209. sdd = container_of(data,
  210. struct s3c64xx_spi_driver_data, rx_dma);
  211. else
  212. sdd = container_of(data,
  213. struct s3c64xx_spi_driver_data, tx_dma);
  214. spin_lock_irqsave(&sdd->lock, flags);
  215. if (dma->direction == DMA_FROM_DEVICE) {
  216. sdd->state &= ~RXBUSY;
  217. if (!(sdd->state & TXBUSY))
  218. complete(&sdd->xfer_completion);
  219. } else {
  220. sdd->state &= ~TXBUSY;
  221. if (!(sdd->state & RXBUSY))
  222. complete(&sdd->xfer_completion);
  223. }
  224. spin_unlock_irqrestore(&sdd->lock, flags);
  225. }
  226. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  227. unsigned len, dma_addr_t buf)
  228. {
  229. struct s3c64xx_spi_driver_data *sdd;
  230. struct samsung_dma_prep_info info;
  231. if (dma->direction == DMA_FROM_DEVICE)
  232. sdd = container_of((void *)dma,
  233. struct s3c64xx_spi_driver_data, rx_dma);
  234. else
  235. sdd = container_of((void *)dma,
  236. struct s3c64xx_spi_driver_data, tx_dma);
  237. info.cap = DMA_SLAVE;
  238. info.len = len;
  239. info.fp = s3c64xx_spi_dmacb;
  240. info.fp_param = dma;
  241. info.direction = dma->direction;
  242. info.buf = buf;
  243. sdd->ops->prepare(dma->ch, &info);
  244. sdd->ops->trigger(dma->ch);
  245. }
  246. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  247. {
  248. struct samsung_dma_info info;
  249. sdd->ops = samsung_dma_get_ops();
  250. info.cap = DMA_SLAVE;
  251. info.client = &s3c64xx_spi_dma_client;
  252. info.width = sdd->cur_bpw / 8;
  253. info.direction = sdd->rx_dma.direction;
  254. info.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  255. sdd->rx_dma.ch = sdd->ops->request(sdd->rx_dma.dmach, &info);
  256. info.direction = sdd->tx_dma.direction;
  257. info.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  258. sdd->tx_dma.ch = sdd->ops->request(sdd->tx_dma.dmach, &info);
  259. return 1;
  260. }
  261. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  262. struct spi_device *spi,
  263. struct spi_transfer *xfer, int dma_mode)
  264. {
  265. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  266. void __iomem *regs = sdd->regs;
  267. u32 modecfg, chcfg;
  268. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  269. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  270. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  271. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  272. if (dma_mode) {
  273. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  274. } else {
  275. /* Always shift in data in FIFO, even if xfer is Tx only,
  276. * this helps setting PCKT_CNT value for generating clocks
  277. * as exactly needed.
  278. */
  279. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  280. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  281. | S3C64XX_SPI_PACKET_CNT_EN,
  282. regs + S3C64XX_SPI_PACKET_CNT);
  283. }
  284. if (xfer->tx_buf != NULL) {
  285. sdd->state |= TXBUSY;
  286. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  287. if (dma_mode) {
  288. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  289. prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
  290. } else {
  291. switch (sdd->cur_bpw) {
  292. case 32:
  293. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  294. xfer->tx_buf, xfer->len / 4);
  295. break;
  296. case 16:
  297. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  298. xfer->tx_buf, xfer->len / 2);
  299. break;
  300. default:
  301. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  302. xfer->tx_buf, xfer->len);
  303. break;
  304. }
  305. }
  306. }
  307. if (xfer->rx_buf != NULL) {
  308. sdd->state |= RXBUSY;
  309. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  310. && !(sdd->cur_mode & SPI_CPHA))
  311. chcfg |= S3C64XX_SPI_CH_HS_EN;
  312. if (dma_mode) {
  313. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  314. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  315. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  316. | S3C64XX_SPI_PACKET_CNT_EN,
  317. regs + S3C64XX_SPI_PACKET_CNT);
  318. prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
  319. }
  320. }
  321. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  322. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  323. }
  324. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  325. struct spi_device *spi)
  326. {
  327. struct s3c64xx_spi_csinfo *cs;
  328. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  329. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  330. /* Deselect the last toggled device */
  331. cs = sdd->tgl_spi->controller_data;
  332. cs->set_level(cs->line,
  333. spi->mode & SPI_CS_HIGH ? 0 : 1);
  334. }
  335. sdd->tgl_spi = NULL;
  336. }
  337. cs = spi->controller_data;
  338. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  339. }
  340. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  341. struct spi_transfer *xfer, int dma_mode)
  342. {
  343. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  344. void __iomem *regs = sdd->regs;
  345. unsigned long val;
  346. int ms;
  347. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  348. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  349. ms += 10; /* some tolerance */
  350. if (dma_mode) {
  351. val = msecs_to_jiffies(ms) + 10;
  352. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  353. } else {
  354. u32 status;
  355. val = msecs_to_loops(ms);
  356. do {
  357. status = readl(regs + S3C64XX_SPI_STATUS);
  358. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  359. }
  360. if (!val)
  361. return -EIO;
  362. if (dma_mode) {
  363. u32 status;
  364. /*
  365. * DmaTx returns after simply writing data in the FIFO,
  366. * w/o waiting for real transmission on the bus to finish.
  367. * DmaRx returns only after Dma read data from FIFO which
  368. * needs bus transmission to finish, so we don't worry if
  369. * Xfer involved Rx(with or without Tx).
  370. */
  371. if (xfer->rx_buf == NULL) {
  372. val = msecs_to_loops(10);
  373. status = readl(regs + S3C64XX_SPI_STATUS);
  374. while ((TX_FIFO_LVL(status, sci)
  375. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  376. && --val) {
  377. cpu_relax();
  378. status = readl(regs + S3C64XX_SPI_STATUS);
  379. }
  380. if (!val)
  381. return -EIO;
  382. }
  383. } else {
  384. /* If it was only Tx */
  385. if (xfer->rx_buf == NULL) {
  386. sdd->state &= ~TXBUSY;
  387. return 0;
  388. }
  389. switch (sdd->cur_bpw) {
  390. case 32:
  391. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  392. xfer->rx_buf, xfer->len / 4);
  393. break;
  394. case 16:
  395. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  396. xfer->rx_buf, xfer->len / 2);
  397. break;
  398. default:
  399. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  400. xfer->rx_buf, xfer->len);
  401. break;
  402. }
  403. sdd->state &= ~RXBUSY;
  404. }
  405. return 0;
  406. }
  407. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  408. struct spi_device *spi)
  409. {
  410. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  411. if (sdd->tgl_spi == spi)
  412. sdd->tgl_spi = NULL;
  413. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  414. }
  415. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  416. {
  417. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  418. void __iomem *regs = sdd->regs;
  419. u32 val;
  420. /* Disable Clock */
  421. if (sci->clk_from_cmu) {
  422. clk_disable(sdd->src_clk);
  423. } else {
  424. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  425. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  426. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  427. }
  428. /* Set Polarity and Phase */
  429. val = readl(regs + S3C64XX_SPI_CH_CFG);
  430. val &= ~(S3C64XX_SPI_CH_SLAVE |
  431. S3C64XX_SPI_CPOL_L |
  432. S3C64XX_SPI_CPHA_B);
  433. if (sdd->cur_mode & SPI_CPOL)
  434. val |= S3C64XX_SPI_CPOL_L;
  435. if (sdd->cur_mode & SPI_CPHA)
  436. val |= S3C64XX_SPI_CPHA_B;
  437. writel(val, regs + S3C64XX_SPI_CH_CFG);
  438. /* Set Channel & DMA Mode */
  439. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  440. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  441. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  442. switch (sdd->cur_bpw) {
  443. case 32:
  444. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  445. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  446. break;
  447. case 16:
  448. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  449. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  450. break;
  451. default:
  452. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  453. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  454. break;
  455. }
  456. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  457. if (sci->clk_from_cmu) {
  458. /* Configure Clock */
  459. /* There is half-multiplier before the SPI */
  460. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  461. /* Enable Clock */
  462. clk_enable(sdd->src_clk);
  463. } else {
  464. /* Configure Clock */
  465. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  466. val &= ~S3C64XX_SPI_PSR_MASK;
  467. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  468. & S3C64XX_SPI_PSR_MASK);
  469. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  470. /* Enable Clock */
  471. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  472. val |= S3C64XX_SPI_ENCLK_ENABLE;
  473. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  474. }
  475. }
  476. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  477. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  478. struct spi_message *msg)
  479. {
  480. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  481. struct device *dev = &sdd->pdev->dev;
  482. struct spi_transfer *xfer;
  483. if (msg->is_dma_mapped)
  484. return 0;
  485. /* First mark all xfer unmapped */
  486. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  487. xfer->rx_dma = XFER_DMAADDR_INVALID;
  488. xfer->tx_dma = XFER_DMAADDR_INVALID;
  489. }
  490. /* Map until end or first fail */
  491. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  492. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  493. continue;
  494. if (xfer->tx_buf != NULL) {
  495. xfer->tx_dma = dma_map_single(dev,
  496. (void *)xfer->tx_buf, xfer->len,
  497. DMA_TO_DEVICE);
  498. if (dma_mapping_error(dev, xfer->tx_dma)) {
  499. dev_err(dev, "dma_map_single Tx failed\n");
  500. xfer->tx_dma = XFER_DMAADDR_INVALID;
  501. return -ENOMEM;
  502. }
  503. }
  504. if (xfer->rx_buf != NULL) {
  505. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  506. xfer->len, DMA_FROM_DEVICE);
  507. if (dma_mapping_error(dev, xfer->rx_dma)) {
  508. dev_err(dev, "dma_map_single Rx failed\n");
  509. dma_unmap_single(dev, xfer->tx_dma,
  510. xfer->len, DMA_TO_DEVICE);
  511. xfer->tx_dma = XFER_DMAADDR_INVALID;
  512. xfer->rx_dma = XFER_DMAADDR_INVALID;
  513. return -ENOMEM;
  514. }
  515. }
  516. }
  517. return 0;
  518. }
  519. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  520. struct spi_message *msg)
  521. {
  522. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  523. struct device *dev = &sdd->pdev->dev;
  524. struct spi_transfer *xfer;
  525. if (msg->is_dma_mapped)
  526. return;
  527. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  528. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  529. continue;
  530. if (xfer->rx_buf != NULL
  531. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  532. dma_unmap_single(dev, xfer->rx_dma,
  533. xfer->len, DMA_FROM_DEVICE);
  534. if (xfer->tx_buf != NULL
  535. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  536. dma_unmap_single(dev, xfer->tx_dma,
  537. xfer->len, DMA_TO_DEVICE);
  538. }
  539. }
  540. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  541. struct spi_message *msg)
  542. {
  543. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  544. struct spi_device *spi = msg->spi;
  545. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  546. struct spi_transfer *xfer;
  547. int status = 0, cs_toggle = 0;
  548. u32 speed;
  549. u8 bpw;
  550. /* If Master's(controller) state differs from that needed by Slave */
  551. if (sdd->cur_speed != spi->max_speed_hz
  552. || sdd->cur_mode != spi->mode
  553. || sdd->cur_bpw != spi->bits_per_word) {
  554. sdd->cur_bpw = spi->bits_per_word;
  555. sdd->cur_speed = spi->max_speed_hz;
  556. sdd->cur_mode = spi->mode;
  557. s3c64xx_spi_config(sdd);
  558. }
  559. /* Map all the transfers if needed */
  560. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  561. dev_err(&spi->dev,
  562. "Xfer: Unable to map message buffers!\n");
  563. status = -ENOMEM;
  564. goto out;
  565. }
  566. /* Configure feedback delay */
  567. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  568. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  569. unsigned long flags;
  570. int use_dma;
  571. INIT_COMPLETION(sdd->xfer_completion);
  572. /* Only BPW and Speed may change across transfers */
  573. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  574. speed = xfer->speed_hz ? : spi->max_speed_hz;
  575. if (xfer->len % (bpw / 8)) {
  576. dev_err(&spi->dev,
  577. "Xfer length(%u) not a multiple of word size(%u)\n",
  578. xfer->len, bpw / 8);
  579. status = -EIO;
  580. goto out;
  581. }
  582. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  583. sdd->cur_bpw = bpw;
  584. sdd->cur_speed = speed;
  585. s3c64xx_spi_config(sdd);
  586. }
  587. /* Polling method for xfers not bigger than FIFO capacity */
  588. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  589. use_dma = 0;
  590. else
  591. use_dma = 1;
  592. spin_lock_irqsave(&sdd->lock, flags);
  593. /* Pending only which is to be done */
  594. sdd->state &= ~RXBUSY;
  595. sdd->state &= ~TXBUSY;
  596. enable_datapath(sdd, spi, xfer, use_dma);
  597. /* Slave Select */
  598. enable_cs(sdd, spi);
  599. /* Start the signals */
  600. S3C64XX_SPI_ACT(sdd);
  601. spin_unlock_irqrestore(&sdd->lock, flags);
  602. status = wait_for_xfer(sdd, xfer, use_dma);
  603. /* Quiese the signals */
  604. S3C64XX_SPI_DEACT(sdd);
  605. if (status) {
  606. dev_err(&spi->dev, "I/O Error: "
  607. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  608. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  609. (sdd->state & RXBUSY) ? 'f' : 'p',
  610. (sdd->state & TXBUSY) ? 'f' : 'p',
  611. xfer->len);
  612. if (use_dma) {
  613. if (xfer->tx_buf != NULL
  614. && (sdd->state & TXBUSY))
  615. sdd->ops->stop(sdd->tx_dma.ch);
  616. if (xfer->rx_buf != NULL
  617. && (sdd->state & RXBUSY))
  618. sdd->ops->stop(sdd->rx_dma.ch);
  619. }
  620. goto out;
  621. }
  622. if (xfer->delay_usecs)
  623. udelay(xfer->delay_usecs);
  624. if (xfer->cs_change) {
  625. /* Hint that the next mssg is gonna be
  626. for the same device */
  627. if (list_is_last(&xfer->transfer_list,
  628. &msg->transfers))
  629. cs_toggle = 1;
  630. else
  631. disable_cs(sdd, spi);
  632. }
  633. msg->actual_length += xfer->len;
  634. flush_fifo(sdd);
  635. }
  636. out:
  637. if (!cs_toggle || status)
  638. disable_cs(sdd, spi);
  639. else
  640. sdd->tgl_spi = spi;
  641. s3c64xx_spi_unmap_mssg(sdd, msg);
  642. msg->status = status;
  643. if (msg->complete)
  644. msg->complete(msg->context);
  645. }
  646. static void s3c64xx_spi_work(struct work_struct *work)
  647. {
  648. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  649. struct s3c64xx_spi_driver_data, work);
  650. unsigned long flags;
  651. /* Acquire DMA channels */
  652. while (!acquire_dma(sdd))
  653. msleep(10);
  654. pm_runtime_get_sync(&sdd->pdev->dev);
  655. spin_lock_irqsave(&sdd->lock, flags);
  656. while (!list_empty(&sdd->queue)
  657. && !(sdd->state & SUSPND)) {
  658. struct spi_message *msg;
  659. msg = container_of(sdd->queue.next, struct spi_message, queue);
  660. list_del_init(&msg->queue);
  661. /* Set Xfer busy flag */
  662. sdd->state |= SPIBUSY;
  663. spin_unlock_irqrestore(&sdd->lock, flags);
  664. handle_msg(sdd, msg);
  665. spin_lock_irqsave(&sdd->lock, flags);
  666. sdd->state &= ~SPIBUSY;
  667. }
  668. spin_unlock_irqrestore(&sdd->lock, flags);
  669. /* Free DMA channels */
  670. sdd->ops->release(sdd->rx_dma.ch, &s3c64xx_spi_dma_client);
  671. sdd->ops->release(sdd->tx_dma.ch, &s3c64xx_spi_dma_client);
  672. pm_runtime_put(&sdd->pdev->dev);
  673. }
  674. static int s3c64xx_spi_transfer(struct spi_device *spi,
  675. struct spi_message *msg)
  676. {
  677. struct s3c64xx_spi_driver_data *sdd;
  678. unsigned long flags;
  679. sdd = spi_master_get_devdata(spi->master);
  680. spin_lock_irqsave(&sdd->lock, flags);
  681. if (sdd->state & SUSPND) {
  682. spin_unlock_irqrestore(&sdd->lock, flags);
  683. return -ESHUTDOWN;
  684. }
  685. msg->status = -EINPROGRESS;
  686. msg->actual_length = 0;
  687. list_add_tail(&msg->queue, &sdd->queue);
  688. queue_work(sdd->workqueue, &sdd->work);
  689. spin_unlock_irqrestore(&sdd->lock, flags);
  690. return 0;
  691. }
  692. /*
  693. * Here we only check the validity of requested configuration
  694. * and save the configuration in a local data-structure.
  695. * The controller is actually configured only just before we
  696. * get a message to transfer.
  697. */
  698. static int s3c64xx_spi_setup(struct spi_device *spi)
  699. {
  700. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  701. struct s3c64xx_spi_driver_data *sdd;
  702. struct s3c64xx_spi_info *sci;
  703. struct spi_message *msg;
  704. unsigned long flags;
  705. int err = 0;
  706. if (cs == NULL || cs->set_level == NULL) {
  707. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  708. return -ENODEV;
  709. }
  710. sdd = spi_master_get_devdata(spi->master);
  711. sci = sdd->cntrlr_info;
  712. spin_lock_irqsave(&sdd->lock, flags);
  713. list_for_each_entry(msg, &sdd->queue, queue) {
  714. /* Is some mssg is already queued for this device */
  715. if (msg->spi == spi) {
  716. dev_err(&spi->dev,
  717. "setup: attempt while mssg in queue!\n");
  718. spin_unlock_irqrestore(&sdd->lock, flags);
  719. return -EBUSY;
  720. }
  721. }
  722. if (sdd->state & SUSPND) {
  723. spin_unlock_irqrestore(&sdd->lock, flags);
  724. dev_err(&spi->dev,
  725. "setup: SPI-%d not active!\n", spi->master->bus_num);
  726. return -ESHUTDOWN;
  727. }
  728. spin_unlock_irqrestore(&sdd->lock, flags);
  729. if (spi->bits_per_word != 8
  730. && spi->bits_per_word != 16
  731. && spi->bits_per_word != 32) {
  732. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  733. spi->bits_per_word);
  734. err = -EINVAL;
  735. goto setup_exit;
  736. }
  737. pm_runtime_get_sync(&sdd->pdev->dev);
  738. /* Check if we can provide the requested rate */
  739. if (!sci->clk_from_cmu) {
  740. u32 psr, speed;
  741. /* Max possible */
  742. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  743. if (spi->max_speed_hz > speed)
  744. spi->max_speed_hz = speed;
  745. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  746. psr &= S3C64XX_SPI_PSR_MASK;
  747. if (psr == S3C64XX_SPI_PSR_MASK)
  748. psr--;
  749. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  750. if (spi->max_speed_hz < speed) {
  751. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  752. psr++;
  753. } else {
  754. err = -EINVAL;
  755. goto setup_exit;
  756. }
  757. }
  758. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  759. if (spi->max_speed_hz >= speed)
  760. spi->max_speed_hz = speed;
  761. else
  762. err = -EINVAL;
  763. }
  764. pm_runtime_put(&sdd->pdev->dev);
  765. setup_exit:
  766. /* setup() returns with device de-selected */
  767. disable_cs(sdd, spi);
  768. return err;
  769. }
  770. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  771. {
  772. struct s3c64xx_spi_driver_data *sdd = data;
  773. struct spi_master *spi = sdd->master;
  774. unsigned int val;
  775. val = readl(sdd->regs + S3C64XX_SPI_PENDING_CLR);
  776. val &= S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  777. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  778. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  779. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  780. writel(val, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  781. if (val & S3C64XX_SPI_PND_RX_OVERRUN_CLR)
  782. dev_err(&spi->dev, "RX overrun\n");
  783. if (val & S3C64XX_SPI_PND_RX_UNDERRUN_CLR)
  784. dev_err(&spi->dev, "RX underrun\n");
  785. if (val & S3C64XX_SPI_PND_TX_OVERRUN_CLR)
  786. dev_err(&spi->dev, "TX overrun\n");
  787. if (val & S3C64XX_SPI_PND_TX_UNDERRUN_CLR)
  788. dev_err(&spi->dev, "TX underrun\n");
  789. return IRQ_HANDLED;
  790. }
  791. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  792. {
  793. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  794. void __iomem *regs = sdd->regs;
  795. unsigned int val;
  796. sdd->cur_speed = 0;
  797. S3C64XX_SPI_DEACT(sdd);
  798. /* Disable Interrupts - we use Polling if not DMA mode */
  799. writel(0, regs + S3C64XX_SPI_INT_EN);
  800. if (!sci->clk_from_cmu)
  801. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  802. regs + S3C64XX_SPI_CLK_CFG);
  803. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  804. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  805. /* Clear any irq pending bits */
  806. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  807. regs + S3C64XX_SPI_PENDING_CLR);
  808. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  809. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  810. val &= ~S3C64XX_SPI_MODE_4BURST;
  811. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  812. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  813. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  814. flush_fifo(sdd);
  815. }
  816. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  817. {
  818. struct resource *mem_res, *dmatx_res, *dmarx_res;
  819. struct s3c64xx_spi_driver_data *sdd;
  820. struct s3c64xx_spi_info *sci;
  821. struct spi_master *master;
  822. int ret, irq;
  823. char clk_name[16];
  824. if (pdev->id < 0) {
  825. dev_err(&pdev->dev,
  826. "Invalid platform device id-%d\n", pdev->id);
  827. return -ENODEV;
  828. }
  829. if (pdev->dev.platform_data == NULL) {
  830. dev_err(&pdev->dev, "platform_data missing!\n");
  831. return -ENODEV;
  832. }
  833. sci = pdev->dev.platform_data;
  834. /* Check for availability of necessary resource */
  835. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  836. if (dmatx_res == NULL) {
  837. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  838. return -ENXIO;
  839. }
  840. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  841. if (dmarx_res == NULL) {
  842. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  843. return -ENXIO;
  844. }
  845. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  846. if (mem_res == NULL) {
  847. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  848. return -ENXIO;
  849. }
  850. irq = platform_get_irq(pdev, 0);
  851. if (irq < 0) {
  852. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  853. return irq;
  854. }
  855. master = spi_alloc_master(&pdev->dev,
  856. sizeof(struct s3c64xx_spi_driver_data));
  857. if (master == NULL) {
  858. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  859. return -ENOMEM;
  860. }
  861. platform_set_drvdata(pdev, master);
  862. sdd = spi_master_get_devdata(master);
  863. sdd->master = master;
  864. sdd->cntrlr_info = sci;
  865. sdd->pdev = pdev;
  866. sdd->sfr_start = mem_res->start;
  867. sdd->tx_dma.dmach = dmatx_res->start;
  868. sdd->tx_dma.direction = DMA_TO_DEVICE;
  869. sdd->rx_dma.dmach = dmarx_res->start;
  870. sdd->rx_dma.direction = DMA_FROM_DEVICE;
  871. sdd->cur_bpw = 8;
  872. master->bus_num = pdev->id;
  873. master->setup = s3c64xx_spi_setup;
  874. master->transfer = s3c64xx_spi_transfer;
  875. master->num_chipselect = sci->num_cs;
  876. master->dma_alignment = 8;
  877. /* the spi->mode bits understood by this driver: */
  878. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  879. if (request_mem_region(mem_res->start,
  880. resource_size(mem_res), pdev->name) == NULL) {
  881. dev_err(&pdev->dev, "Req mem region failed\n");
  882. ret = -ENXIO;
  883. goto err0;
  884. }
  885. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  886. if (sdd->regs == NULL) {
  887. dev_err(&pdev->dev, "Unable to remap IO\n");
  888. ret = -ENXIO;
  889. goto err1;
  890. }
  891. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  892. dev_err(&pdev->dev, "Unable to config gpio\n");
  893. ret = -EBUSY;
  894. goto err2;
  895. }
  896. /* Setup clocks */
  897. sdd->clk = clk_get(&pdev->dev, "spi");
  898. if (IS_ERR(sdd->clk)) {
  899. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  900. ret = PTR_ERR(sdd->clk);
  901. goto err3;
  902. }
  903. if (clk_enable(sdd->clk)) {
  904. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  905. ret = -EBUSY;
  906. goto err4;
  907. }
  908. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  909. sdd->src_clk = clk_get(&pdev->dev, clk_name);
  910. if (IS_ERR(sdd->src_clk)) {
  911. dev_err(&pdev->dev,
  912. "Unable to acquire clock '%s'\n", clk_name);
  913. ret = PTR_ERR(sdd->src_clk);
  914. goto err5;
  915. }
  916. if (clk_enable(sdd->src_clk)) {
  917. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  918. ret = -EBUSY;
  919. goto err6;
  920. }
  921. sdd->workqueue = create_singlethread_workqueue(
  922. dev_name(master->dev.parent));
  923. if (sdd->workqueue == NULL) {
  924. dev_err(&pdev->dev, "Unable to create workqueue\n");
  925. ret = -ENOMEM;
  926. goto err7;
  927. }
  928. /* Setup Deufult Mode */
  929. s3c64xx_spi_hwinit(sdd, pdev->id);
  930. spin_lock_init(&sdd->lock);
  931. init_completion(&sdd->xfer_completion);
  932. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  933. INIT_LIST_HEAD(&sdd->queue);
  934. ret = request_irq(irq, s3c64xx_spi_irq, 0, "spi-s3c64xx", sdd);
  935. if (ret != 0) {
  936. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  937. irq, ret);
  938. goto err8;
  939. }
  940. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  941. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  942. sdd->regs + S3C64XX_SPI_INT_EN);
  943. if (spi_register_master(master)) {
  944. dev_err(&pdev->dev, "cannot register SPI master\n");
  945. ret = -EBUSY;
  946. goto err9;
  947. }
  948. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  949. "with %d Slaves attached\n",
  950. pdev->id, master->num_chipselect);
  951. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  952. mem_res->end, mem_res->start,
  953. sdd->rx_dma.dmach, sdd->tx_dma.dmach);
  954. pm_runtime_enable(&pdev->dev);
  955. return 0;
  956. err9:
  957. free_irq(irq, sdd);
  958. err8:
  959. destroy_workqueue(sdd->workqueue);
  960. err7:
  961. clk_disable(sdd->src_clk);
  962. err6:
  963. clk_put(sdd->src_clk);
  964. err5:
  965. clk_disable(sdd->clk);
  966. err4:
  967. clk_put(sdd->clk);
  968. err3:
  969. err2:
  970. iounmap((void *) sdd->regs);
  971. err1:
  972. release_mem_region(mem_res->start, resource_size(mem_res));
  973. err0:
  974. platform_set_drvdata(pdev, NULL);
  975. spi_master_put(master);
  976. return ret;
  977. }
  978. static int s3c64xx_spi_remove(struct platform_device *pdev)
  979. {
  980. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  981. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  982. struct resource *mem_res;
  983. unsigned long flags;
  984. pm_runtime_disable(&pdev->dev);
  985. spin_lock_irqsave(&sdd->lock, flags);
  986. sdd->state |= SUSPND;
  987. spin_unlock_irqrestore(&sdd->lock, flags);
  988. while (sdd->state & SPIBUSY)
  989. msleep(10);
  990. spi_unregister_master(master);
  991. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  992. free_irq(platform_get_irq(pdev, 0), sdd);
  993. destroy_workqueue(sdd->workqueue);
  994. clk_disable(sdd->src_clk);
  995. clk_put(sdd->src_clk);
  996. clk_disable(sdd->clk);
  997. clk_put(sdd->clk);
  998. iounmap((void *) sdd->regs);
  999. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1000. if (mem_res != NULL)
  1001. release_mem_region(mem_res->start, resource_size(mem_res));
  1002. platform_set_drvdata(pdev, NULL);
  1003. spi_master_put(master);
  1004. return 0;
  1005. }
  1006. #ifdef CONFIG_PM
  1007. static int s3c64xx_spi_suspend(struct device *dev)
  1008. {
  1009. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1010. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1011. unsigned long flags;
  1012. spin_lock_irqsave(&sdd->lock, flags);
  1013. sdd->state |= SUSPND;
  1014. spin_unlock_irqrestore(&sdd->lock, flags);
  1015. while (sdd->state & SPIBUSY)
  1016. msleep(10);
  1017. /* Disable the clock */
  1018. clk_disable(sdd->src_clk);
  1019. clk_disable(sdd->clk);
  1020. sdd->cur_speed = 0; /* Output Clock is stopped */
  1021. return 0;
  1022. }
  1023. static int s3c64xx_spi_resume(struct device *dev)
  1024. {
  1025. struct platform_device *pdev = to_platform_device(dev);
  1026. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1027. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1028. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  1029. unsigned long flags;
  1030. sci->cfg_gpio(pdev);
  1031. /* Enable the clock */
  1032. clk_enable(sdd->src_clk);
  1033. clk_enable(sdd->clk);
  1034. s3c64xx_spi_hwinit(sdd, pdev->id);
  1035. spin_lock_irqsave(&sdd->lock, flags);
  1036. sdd->state &= ~SUSPND;
  1037. spin_unlock_irqrestore(&sdd->lock, flags);
  1038. return 0;
  1039. }
  1040. #endif /* CONFIG_PM */
  1041. #ifdef CONFIG_PM_RUNTIME
  1042. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  1043. {
  1044. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1045. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1046. clk_disable(sdd->clk);
  1047. clk_disable(sdd->src_clk);
  1048. return 0;
  1049. }
  1050. static int s3c64xx_spi_runtime_resume(struct device *dev)
  1051. {
  1052. struct spi_master *master = spi_master_get(dev_get_drvdata(dev));
  1053. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1054. clk_enable(sdd->src_clk);
  1055. clk_enable(sdd->clk);
  1056. return 0;
  1057. }
  1058. #endif /* CONFIG_PM_RUNTIME */
  1059. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1060. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1061. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1062. s3c64xx_spi_runtime_resume, NULL)
  1063. };
  1064. static struct platform_driver s3c64xx_spi_driver = {
  1065. .driver = {
  1066. .name = "s3c64xx-spi",
  1067. .owner = THIS_MODULE,
  1068. .pm = &s3c64xx_spi_pm,
  1069. },
  1070. .remove = s3c64xx_spi_remove,
  1071. };
  1072. MODULE_ALIAS("platform:s3c64xx-spi");
  1073. static int __init s3c64xx_spi_init(void)
  1074. {
  1075. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  1076. }
  1077. subsys_initcall(s3c64xx_spi_init);
  1078. static void __exit s3c64xx_spi_exit(void)
  1079. {
  1080. platform_driver_unregister(&s3c64xx_spi_driver);
  1081. }
  1082. module_exit(s3c64xx_spi_exit);
  1083. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1084. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1085. MODULE_LICENSE("GPL");