delayed-inode.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  77. struct inode *inode)
  78. {
  79. struct btrfs_delayed_node *node;
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. int ret;
  84. again:
  85. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  86. if (node) {
  87. atomic_inc(&node->refs); /* can be accessed */
  88. return node;
  89. }
  90. spin_lock(&root->inode_lock);
  91. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  92. if (node) {
  93. if (btrfs_inode->delayed_node) {
  94. spin_unlock(&root->inode_lock);
  95. goto again;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  105. if (!node)
  106. return ERR_PTR(-ENOMEM);
  107. btrfs_init_delayed_node(node, root, ino);
  108. atomic_inc(&node->refs); /* cached in the btrfs inode */
  109. atomic_inc(&node->refs); /* can be accessed */
  110. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  111. if (ret) {
  112. kmem_cache_free(delayed_node_cache, node);
  113. return ERR_PTR(ret);
  114. }
  115. spin_lock(&root->inode_lock);
  116. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  117. if (ret == -EEXIST) {
  118. kmem_cache_free(delayed_node_cache, node);
  119. spin_unlock(&root->inode_lock);
  120. radix_tree_preload_end();
  121. goto again;
  122. }
  123. btrfs_inode->delayed_node = node;
  124. spin_unlock(&root->inode_lock);
  125. radix_tree_preload_end();
  126. return node;
  127. }
  128. /*
  129. * Call it when holding delayed_node->mutex
  130. *
  131. * If mod = 1, add this node into the prepared list.
  132. */
  133. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  134. struct btrfs_delayed_node *node,
  135. int mod)
  136. {
  137. spin_lock(&root->lock);
  138. if (node->in_list) {
  139. if (!list_empty(&node->p_list))
  140. list_move_tail(&node->p_list, &root->prepare_list);
  141. else if (mod)
  142. list_add_tail(&node->p_list, &root->prepare_list);
  143. } else {
  144. list_add_tail(&node->n_list, &root->node_list);
  145. list_add_tail(&node->p_list, &root->prepare_list);
  146. atomic_inc(&node->refs); /* inserted into list */
  147. root->nodes++;
  148. node->in_list = 1;
  149. }
  150. spin_unlock(&root->lock);
  151. }
  152. /* Call it when holding delayed_node->mutex */
  153. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  154. struct btrfs_delayed_node *node)
  155. {
  156. spin_lock(&root->lock);
  157. if (node->in_list) {
  158. root->nodes--;
  159. atomic_dec(&node->refs); /* not in the list */
  160. list_del_init(&node->n_list);
  161. if (!list_empty(&node->p_list))
  162. list_del_init(&node->p_list);
  163. node->in_list = 0;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. struct btrfs_delayed_node *btrfs_first_delayed_node(
  168. struct btrfs_delayed_root *delayed_root)
  169. {
  170. struct list_head *p;
  171. struct btrfs_delayed_node *node = NULL;
  172. spin_lock(&delayed_root->lock);
  173. if (list_empty(&delayed_root->node_list))
  174. goto out;
  175. p = delayed_root->node_list.next;
  176. node = list_entry(p, struct btrfs_delayed_node, n_list);
  177. atomic_inc(&node->refs);
  178. out:
  179. spin_unlock(&delayed_root->lock);
  180. return node;
  181. }
  182. struct btrfs_delayed_node *btrfs_next_delayed_node(
  183. struct btrfs_delayed_node *node)
  184. {
  185. struct btrfs_delayed_root *delayed_root;
  186. struct list_head *p;
  187. struct btrfs_delayed_node *next = NULL;
  188. delayed_root = node->root->fs_info->delayed_root;
  189. spin_lock(&delayed_root->lock);
  190. if (!node->in_list) { /* not in the list */
  191. if (list_empty(&delayed_root->node_list))
  192. goto out;
  193. p = delayed_root->node_list.next;
  194. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  195. goto out;
  196. else
  197. p = node->n_list.next;
  198. next = list_entry(p, struct btrfs_delayed_node, n_list);
  199. atomic_inc(&next->refs);
  200. out:
  201. spin_unlock(&delayed_root->lock);
  202. return next;
  203. }
  204. static void __btrfs_release_delayed_node(
  205. struct btrfs_delayed_node *delayed_node,
  206. int mod)
  207. {
  208. struct btrfs_delayed_root *delayed_root;
  209. if (!delayed_node)
  210. return;
  211. delayed_root = delayed_node->root->fs_info->delayed_root;
  212. mutex_lock(&delayed_node->mutex);
  213. if (delayed_node->count)
  214. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  215. else
  216. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  217. mutex_unlock(&delayed_node->mutex);
  218. if (atomic_dec_and_test(&delayed_node->refs)) {
  219. struct btrfs_root *root = delayed_node->root;
  220. spin_lock(&root->inode_lock);
  221. if (atomic_read(&delayed_node->refs) == 0) {
  222. radix_tree_delete(&root->delayed_nodes_tree,
  223. delayed_node->inode_id);
  224. kmem_cache_free(delayed_node_cache, delayed_node);
  225. }
  226. spin_unlock(&root->inode_lock);
  227. }
  228. }
  229. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  230. {
  231. __btrfs_release_delayed_node(node, 0);
  232. }
  233. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  234. struct btrfs_delayed_root *delayed_root)
  235. {
  236. struct list_head *p;
  237. struct btrfs_delayed_node *node = NULL;
  238. spin_lock(&delayed_root->lock);
  239. if (list_empty(&delayed_root->prepare_list))
  240. goto out;
  241. p = delayed_root->prepare_list.next;
  242. list_del_init(p);
  243. node = list_entry(p, struct btrfs_delayed_node, p_list);
  244. atomic_inc(&node->refs);
  245. out:
  246. spin_unlock(&delayed_root->lock);
  247. return node;
  248. }
  249. static inline void btrfs_release_prepared_delayed_node(
  250. struct btrfs_delayed_node *node)
  251. {
  252. __btrfs_release_delayed_node(node, 1);
  253. }
  254. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  255. {
  256. struct btrfs_delayed_item *item;
  257. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  258. if (item) {
  259. item->data_len = data_len;
  260. item->ins_or_del = 0;
  261. item->bytes_reserved = 0;
  262. item->delayed_node = NULL;
  263. atomic_set(&item->refs, 1);
  264. }
  265. return item;
  266. }
  267. /*
  268. * __btrfs_lookup_delayed_item - look up the delayed item by key
  269. * @delayed_node: pointer to the delayed node
  270. * @key: the key to look up
  271. * @prev: used to store the prev item if the right item isn't found
  272. * @next: used to store the next item if the right item isn't found
  273. *
  274. * Note: if we don't find the right item, we will return the prev item and
  275. * the next item.
  276. */
  277. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  278. struct rb_root *root,
  279. struct btrfs_key *key,
  280. struct btrfs_delayed_item **prev,
  281. struct btrfs_delayed_item **next)
  282. {
  283. struct rb_node *node, *prev_node = NULL;
  284. struct btrfs_delayed_item *delayed_item = NULL;
  285. int ret = 0;
  286. node = root->rb_node;
  287. while (node) {
  288. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  289. rb_node);
  290. prev_node = node;
  291. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  292. if (ret < 0)
  293. node = node->rb_right;
  294. else if (ret > 0)
  295. node = node->rb_left;
  296. else
  297. return delayed_item;
  298. }
  299. if (prev) {
  300. if (!prev_node)
  301. *prev = NULL;
  302. else if (ret < 0)
  303. *prev = delayed_item;
  304. else if ((node = rb_prev(prev_node)) != NULL) {
  305. *prev = rb_entry(node, struct btrfs_delayed_item,
  306. rb_node);
  307. } else
  308. *prev = NULL;
  309. }
  310. if (next) {
  311. if (!prev_node)
  312. *next = NULL;
  313. else if (ret > 0)
  314. *next = delayed_item;
  315. else if ((node = rb_next(prev_node)) != NULL) {
  316. *next = rb_entry(node, struct btrfs_delayed_item,
  317. rb_node);
  318. } else
  319. *next = NULL;
  320. }
  321. return NULL;
  322. }
  323. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  324. struct btrfs_delayed_node *delayed_node,
  325. struct btrfs_key *key)
  326. {
  327. struct btrfs_delayed_item *item;
  328. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  329. NULL, NULL);
  330. return item;
  331. }
  332. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  333. struct btrfs_delayed_node *delayed_node,
  334. struct btrfs_key *key)
  335. {
  336. struct btrfs_delayed_item *item;
  337. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  338. NULL, NULL);
  339. return item;
  340. }
  341. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  342. struct btrfs_delayed_node *delayed_node,
  343. struct btrfs_key *key)
  344. {
  345. struct btrfs_delayed_item *item, *next;
  346. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  347. NULL, &next);
  348. if (!item)
  349. item = next;
  350. return item;
  351. }
  352. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  353. struct btrfs_delayed_node *delayed_node,
  354. struct btrfs_key *key)
  355. {
  356. struct btrfs_delayed_item *item, *next;
  357. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  358. NULL, &next);
  359. if (!item)
  360. item = next;
  361. return item;
  362. }
  363. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  364. struct btrfs_delayed_item *ins,
  365. int action)
  366. {
  367. struct rb_node **p, *node;
  368. struct rb_node *parent_node = NULL;
  369. struct rb_root *root;
  370. struct btrfs_delayed_item *item;
  371. int cmp;
  372. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  373. root = &delayed_node->ins_root;
  374. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  375. root = &delayed_node->del_root;
  376. else
  377. BUG();
  378. p = &root->rb_node;
  379. node = &ins->rb_node;
  380. while (*p) {
  381. parent_node = *p;
  382. item = rb_entry(parent_node, struct btrfs_delayed_item,
  383. rb_node);
  384. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  385. if (cmp < 0)
  386. p = &(*p)->rb_right;
  387. else if (cmp > 0)
  388. p = &(*p)->rb_left;
  389. else
  390. return -EEXIST;
  391. }
  392. rb_link_node(node, parent_node, p);
  393. rb_insert_color(node, root);
  394. ins->delayed_node = delayed_node;
  395. ins->ins_or_del = action;
  396. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  397. action == BTRFS_DELAYED_INSERTION_ITEM &&
  398. ins->key.offset >= delayed_node->index_cnt)
  399. delayed_node->index_cnt = ins->key.offset + 1;
  400. delayed_node->count++;
  401. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  402. return 0;
  403. }
  404. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  405. struct btrfs_delayed_item *item)
  406. {
  407. return __btrfs_add_delayed_item(node, item,
  408. BTRFS_DELAYED_INSERTION_ITEM);
  409. }
  410. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  411. struct btrfs_delayed_item *item)
  412. {
  413. return __btrfs_add_delayed_item(node, item,
  414. BTRFS_DELAYED_DELETION_ITEM);
  415. }
  416. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  417. {
  418. struct rb_root *root;
  419. struct btrfs_delayed_root *delayed_root;
  420. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  421. BUG_ON(!delayed_root);
  422. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  423. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  424. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  425. root = &delayed_item->delayed_node->ins_root;
  426. else
  427. root = &delayed_item->delayed_node->del_root;
  428. rb_erase(&delayed_item->rb_node, root);
  429. delayed_item->delayed_node->count--;
  430. atomic_dec(&delayed_root->items);
  431. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  432. waitqueue_active(&delayed_root->wait))
  433. wake_up(&delayed_root->wait);
  434. }
  435. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  436. {
  437. if (item) {
  438. __btrfs_remove_delayed_item(item);
  439. if (atomic_dec_and_test(&item->refs))
  440. kfree(item);
  441. }
  442. }
  443. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  444. struct btrfs_delayed_node *delayed_node)
  445. {
  446. struct rb_node *p;
  447. struct btrfs_delayed_item *item = NULL;
  448. p = rb_first(&delayed_node->ins_root);
  449. if (p)
  450. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  451. return item;
  452. }
  453. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  454. struct btrfs_delayed_node *delayed_node)
  455. {
  456. struct rb_node *p;
  457. struct btrfs_delayed_item *item = NULL;
  458. p = rb_first(&delayed_node->del_root);
  459. if (p)
  460. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  461. return item;
  462. }
  463. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  464. struct btrfs_delayed_item *item)
  465. {
  466. struct rb_node *p;
  467. struct btrfs_delayed_item *next = NULL;
  468. p = rb_next(&item->rb_node);
  469. if (p)
  470. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  471. return next;
  472. }
  473. static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
  474. struct inode *inode)
  475. {
  476. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  477. struct btrfs_delayed_node *delayed_node;
  478. delayed_node = btrfs_inode->delayed_node;
  479. if (delayed_node)
  480. atomic_inc(&delayed_node->refs);
  481. return delayed_node;
  482. }
  483. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  484. u64 root_id)
  485. {
  486. struct btrfs_key root_key;
  487. if (root->objectid == root_id)
  488. return root;
  489. root_key.objectid = root_id;
  490. root_key.type = BTRFS_ROOT_ITEM_KEY;
  491. root_key.offset = (u64)-1;
  492. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  493. }
  494. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  495. struct btrfs_root *root,
  496. struct btrfs_delayed_item *item)
  497. {
  498. struct btrfs_block_rsv *src_rsv;
  499. struct btrfs_block_rsv *dst_rsv;
  500. u64 num_bytes;
  501. int ret;
  502. if (!trans->bytes_reserved)
  503. return 0;
  504. src_rsv = trans->block_rsv;
  505. dst_rsv = &root->fs_info->global_block_rsv;
  506. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  507. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  508. if (!ret)
  509. item->bytes_reserved = num_bytes;
  510. return ret;
  511. }
  512. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  513. struct btrfs_delayed_item *item)
  514. {
  515. struct btrfs_block_rsv *rsv;
  516. if (!item->bytes_reserved)
  517. return;
  518. rsv = &root->fs_info->global_block_rsv;
  519. btrfs_block_rsv_release(root, rsv,
  520. item->bytes_reserved);
  521. }
  522. static int btrfs_delayed_inode_reserve_metadata(
  523. struct btrfs_trans_handle *trans,
  524. struct btrfs_root *root,
  525. struct btrfs_delayed_node *node)
  526. {
  527. struct btrfs_block_rsv *src_rsv;
  528. struct btrfs_block_rsv *dst_rsv;
  529. u64 num_bytes;
  530. int ret;
  531. if (!trans->bytes_reserved)
  532. return 0;
  533. src_rsv = trans->block_rsv;
  534. dst_rsv = &root->fs_info->global_block_rsv;
  535. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  536. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  537. if (!ret)
  538. node->bytes_reserved = num_bytes;
  539. return ret;
  540. }
  541. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  542. struct btrfs_delayed_node *node)
  543. {
  544. struct btrfs_block_rsv *rsv;
  545. if (!node->bytes_reserved)
  546. return;
  547. rsv = &root->fs_info->global_block_rsv;
  548. btrfs_block_rsv_release(root, rsv,
  549. node->bytes_reserved);
  550. node->bytes_reserved = 0;
  551. }
  552. /*
  553. * This helper will insert some continuous items into the same leaf according
  554. * to the free space of the leaf.
  555. */
  556. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  557. struct btrfs_root *root,
  558. struct btrfs_path *path,
  559. struct btrfs_delayed_item *item)
  560. {
  561. struct btrfs_delayed_item *curr, *next;
  562. int free_space;
  563. int total_data_size = 0, total_size = 0;
  564. struct extent_buffer *leaf;
  565. char *data_ptr;
  566. struct btrfs_key *keys;
  567. u32 *data_size;
  568. struct list_head head;
  569. int slot;
  570. int nitems;
  571. int i;
  572. int ret = 0;
  573. BUG_ON(!path->nodes[0]);
  574. leaf = path->nodes[0];
  575. free_space = btrfs_leaf_free_space(root, leaf);
  576. INIT_LIST_HEAD(&head);
  577. next = item;
  578. nitems = 0;
  579. /*
  580. * count the number of the continuous items that we can insert in batch
  581. */
  582. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  583. free_space) {
  584. total_data_size += next->data_len;
  585. total_size += next->data_len + sizeof(struct btrfs_item);
  586. list_add_tail(&next->tree_list, &head);
  587. nitems++;
  588. curr = next;
  589. next = __btrfs_next_delayed_item(curr);
  590. if (!next)
  591. break;
  592. if (!btrfs_is_continuous_delayed_item(curr, next))
  593. break;
  594. }
  595. if (!nitems) {
  596. ret = 0;
  597. goto out;
  598. }
  599. /*
  600. * we need allocate some memory space, but it might cause the task
  601. * to sleep, so we set all locked nodes in the path to blocking locks
  602. * first.
  603. */
  604. btrfs_set_path_blocking(path);
  605. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  606. if (!keys) {
  607. ret = -ENOMEM;
  608. goto out;
  609. }
  610. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  611. if (!data_size) {
  612. ret = -ENOMEM;
  613. goto error;
  614. }
  615. /* get keys of all the delayed items */
  616. i = 0;
  617. list_for_each_entry(next, &head, tree_list) {
  618. keys[i] = next->key;
  619. data_size[i] = next->data_len;
  620. i++;
  621. }
  622. /* reset all the locked nodes in the patch to spinning locks. */
  623. btrfs_clear_path_blocking(path, NULL);
  624. /* insert the keys of the items */
  625. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  626. total_data_size, total_size, nitems);
  627. if (ret)
  628. goto error;
  629. /* insert the dir index items */
  630. slot = path->slots[0];
  631. list_for_each_entry_safe(curr, next, &head, tree_list) {
  632. data_ptr = btrfs_item_ptr(leaf, slot, char);
  633. write_extent_buffer(leaf, &curr->data,
  634. (unsigned long)data_ptr,
  635. curr->data_len);
  636. slot++;
  637. btrfs_delayed_item_release_metadata(root, curr);
  638. list_del(&curr->tree_list);
  639. btrfs_release_delayed_item(curr);
  640. }
  641. error:
  642. kfree(data_size);
  643. kfree(keys);
  644. out:
  645. return ret;
  646. }
  647. /*
  648. * This helper can just do simple insertion that needn't extend item for new
  649. * data, such as directory name index insertion, inode insertion.
  650. */
  651. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  652. struct btrfs_root *root,
  653. struct btrfs_path *path,
  654. struct btrfs_delayed_item *delayed_item)
  655. {
  656. struct extent_buffer *leaf;
  657. struct btrfs_item *item;
  658. char *ptr;
  659. int ret;
  660. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  661. delayed_item->data_len);
  662. if (ret < 0 && ret != -EEXIST)
  663. return ret;
  664. leaf = path->nodes[0];
  665. item = btrfs_item_nr(leaf, path->slots[0]);
  666. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  667. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  668. delayed_item->data_len);
  669. btrfs_mark_buffer_dirty(leaf);
  670. btrfs_delayed_item_release_metadata(root, delayed_item);
  671. return 0;
  672. }
  673. /*
  674. * we insert an item first, then if there are some continuous items, we try
  675. * to insert those items into the same leaf.
  676. */
  677. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  678. struct btrfs_path *path,
  679. struct btrfs_root *root,
  680. struct btrfs_delayed_node *node)
  681. {
  682. struct btrfs_delayed_item *curr, *prev;
  683. int ret = 0;
  684. do_again:
  685. mutex_lock(&node->mutex);
  686. curr = __btrfs_first_delayed_insertion_item(node);
  687. if (!curr)
  688. goto insert_end;
  689. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  690. if (ret < 0) {
  691. btrfs_release_path(path);
  692. goto insert_end;
  693. }
  694. prev = curr;
  695. curr = __btrfs_next_delayed_item(prev);
  696. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  697. /* insert the continuous items into the same leaf */
  698. path->slots[0]++;
  699. btrfs_batch_insert_items(trans, root, path, curr);
  700. }
  701. btrfs_release_delayed_item(prev);
  702. btrfs_mark_buffer_dirty(path->nodes[0]);
  703. btrfs_release_path(path);
  704. mutex_unlock(&node->mutex);
  705. goto do_again;
  706. insert_end:
  707. mutex_unlock(&node->mutex);
  708. return ret;
  709. }
  710. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  711. struct btrfs_root *root,
  712. struct btrfs_path *path,
  713. struct btrfs_delayed_item *item)
  714. {
  715. struct btrfs_delayed_item *curr, *next;
  716. struct extent_buffer *leaf;
  717. struct btrfs_key key;
  718. struct list_head head;
  719. int nitems, i, last_item;
  720. int ret = 0;
  721. BUG_ON(!path->nodes[0]);
  722. leaf = path->nodes[0];
  723. i = path->slots[0];
  724. last_item = btrfs_header_nritems(leaf) - 1;
  725. if (i > last_item)
  726. return -ENOENT; /* FIXME: Is errno suitable? */
  727. next = item;
  728. INIT_LIST_HEAD(&head);
  729. btrfs_item_key_to_cpu(leaf, &key, i);
  730. nitems = 0;
  731. /*
  732. * count the number of the dir index items that we can delete in batch
  733. */
  734. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  735. list_add_tail(&next->tree_list, &head);
  736. nitems++;
  737. curr = next;
  738. next = __btrfs_next_delayed_item(curr);
  739. if (!next)
  740. break;
  741. if (!btrfs_is_continuous_delayed_item(curr, next))
  742. break;
  743. i++;
  744. if (i > last_item)
  745. break;
  746. btrfs_item_key_to_cpu(leaf, &key, i);
  747. }
  748. if (!nitems)
  749. return 0;
  750. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  751. if (ret)
  752. goto out;
  753. list_for_each_entry_safe(curr, next, &head, tree_list) {
  754. btrfs_delayed_item_release_metadata(root, curr);
  755. list_del(&curr->tree_list);
  756. btrfs_release_delayed_item(curr);
  757. }
  758. out:
  759. return ret;
  760. }
  761. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  762. struct btrfs_path *path,
  763. struct btrfs_root *root,
  764. struct btrfs_delayed_node *node)
  765. {
  766. struct btrfs_delayed_item *curr, *prev;
  767. int ret = 0;
  768. do_again:
  769. mutex_lock(&node->mutex);
  770. curr = __btrfs_first_delayed_deletion_item(node);
  771. if (!curr)
  772. goto delete_fail;
  773. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  774. if (ret < 0)
  775. goto delete_fail;
  776. else if (ret > 0) {
  777. /*
  778. * can't find the item which the node points to, so this node
  779. * is invalid, just drop it.
  780. */
  781. prev = curr;
  782. curr = __btrfs_next_delayed_item(prev);
  783. btrfs_release_delayed_item(prev);
  784. ret = 0;
  785. btrfs_release_path(path);
  786. if (curr)
  787. goto do_again;
  788. else
  789. goto delete_fail;
  790. }
  791. btrfs_batch_delete_items(trans, root, path, curr);
  792. btrfs_release_path(path);
  793. mutex_unlock(&node->mutex);
  794. goto do_again;
  795. delete_fail:
  796. btrfs_release_path(path);
  797. mutex_unlock(&node->mutex);
  798. return ret;
  799. }
  800. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  801. {
  802. struct btrfs_delayed_root *delayed_root;
  803. if (delayed_node && delayed_node->inode_dirty) {
  804. BUG_ON(!delayed_node->root);
  805. delayed_node->inode_dirty = 0;
  806. delayed_node->count--;
  807. delayed_root = delayed_node->root->fs_info->delayed_root;
  808. atomic_dec(&delayed_root->items);
  809. if (atomic_read(&delayed_root->items) <
  810. BTRFS_DELAYED_BACKGROUND &&
  811. waitqueue_active(&delayed_root->wait))
  812. wake_up(&delayed_root->wait);
  813. }
  814. }
  815. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  816. struct btrfs_root *root,
  817. struct btrfs_path *path,
  818. struct btrfs_delayed_node *node)
  819. {
  820. struct btrfs_key key;
  821. struct btrfs_inode_item *inode_item;
  822. struct extent_buffer *leaf;
  823. int ret;
  824. mutex_lock(&node->mutex);
  825. if (!node->inode_dirty) {
  826. mutex_unlock(&node->mutex);
  827. return 0;
  828. }
  829. key.objectid = node->inode_id;
  830. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  831. key.offset = 0;
  832. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  833. if (ret > 0) {
  834. btrfs_release_path(path);
  835. mutex_unlock(&node->mutex);
  836. return -ENOENT;
  837. } else if (ret < 0) {
  838. mutex_unlock(&node->mutex);
  839. return ret;
  840. }
  841. btrfs_unlock_up_safe(path, 1);
  842. leaf = path->nodes[0];
  843. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  844. struct btrfs_inode_item);
  845. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  846. sizeof(struct btrfs_inode_item));
  847. btrfs_mark_buffer_dirty(leaf);
  848. btrfs_release_path(path);
  849. btrfs_delayed_inode_release_metadata(root, node);
  850. btrfs_release_delayed_inode(node);
  851. mutex_unlock(&node->mutex);
  852. return 0;
  853. }
  854. /* Called when committing the transaction. */
  855. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  856. struct btrfs_root *root)
  857. {
  858. struct btrfs_delayed_root *delayed_root;
  859. struct btrfs_delayed_node *curr_node, *prev_node;
  860. struct btrfs_path *path;
  861. struct btrfs_block_rsv *block_rsv;
  862. int ret = 0;
  863. path = btrfs_alloc_path();
  864. if (!path)
  865. return -ENOMEM;
  866. path->leave_spinning = 1;
  867. block_rsv = trans->block_rsv;
  868. trans->block_rsv = &root->fs_info->global_block_rsv;
  869. delayed_root = btrfs_get_delayed_root(root);
  870. curr_node = btrfs_first_delayed_node(delayed_root);
  871. while (curr_node) {
  872. root = curr_node->root;
  873. ret = btrfs_insert_delayed_items(trans, path, root,
  874. curr_node);
  875. if (!ret)
  876. ret = btrfs_delete_delayed_items(trans, path, root,
  877. curr_node);
  878. if (!ret)
  879. ret = btrfs_update_delayed_inode(trans, root, path,
  880. curr_node);
  881. if (ret) {
  882. btrfs_release_delayed_node(curr_node);
  883. break;
  884. }
  885. prev_node = curr_node;
  886. curr_node = btrfs_next_delayed_node(curr_node);
  887. btrfs_release_delayed_node(prev_node);
  888. }
  889. btrfs_free_path(path);
  890. trans->block_rsv = block_rsv;
  891. return ret;
  892. }
  893. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  894. struct btrfs_delayed_node *node)
  895. {
  896. struct btrfs_path *path;
  897. struct btrfs_block_rsv *block_rsv;
  898. int ret;
  899. path = btrfs_alloc_path();
  900. if (!path)
  901. return -ENOMEM;
  902. path->leave_spinning = 1;
  903. block_rsv = trans->block_rsv;
  904. trans->block_rsv = &node->root->fs_info->global_block_rsv;
  905. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  906. if (!ret)
  907. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  908. if (!ret)
  909. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  910. btrfs_free_path(path);
  911. trans->block_rsv = block_rsv;
  912. return ret;
  913. }
  914. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  915. struct inode *inode)
  916. {
  917. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  918. int ret;
  919. if (!delayed_node)
  920. return 0;
  921. mutex_lock(&delayed_node->mutex);
  922. if (!delayed_node->count) {
  923. mutex_unlock(&delayed_node->mutex);
  924. btrfs_release_delayed_node(delayed_node);
  925. return 0;
  926. }
  927. mutex_unlock(&delayed_node->mutex);
  928. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  929. btrfs_release_delayed_node(delayed_node);
  930. return ret;
  931. }
  932. void btrfs_remove_delayed_node(struct inode *inode)
  933. {
  934. struct btrfs_delayed_node *delayed_node;
  935. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  936. if (!delayed_node)
  937. return;
  938. BTRFS_I(inode)->delayed_node = NULL;
  939. btrfs_release_delayed_node(delayed_node);
  940. }
  941. struct btrfs_async_delayed_node {
  942. struct btrfs_root *root;
  943. struct btrfs_delayed_node *delayed_node;
  944. struct btrfs_work work;
  945. };
  946. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  947. {
  948. struct btrfs_async_delayed_node *async_node;
  949. struct btrfs_trans_handle *trans;
  950. struct btrfs_path *path;
  951. struct btrfs_delayed_node *delayed_node = NULL;
  952. struct btrfs_root *root;
  953. struct btrfs_block_rsv *block_rsv;
  954. unsigned long nr = 0;
  955. int need_requeue = 0;
  956. int ret;
  957. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  958. path = btrfs_alloc_path();
  959. if (!path)
  960. goto out;
  961. path->leave_spinning = 1;
  962. delayed_node = async_node->delayed_node;
  963. root = delayed_node->root;
  964. trans = btrfs_join_transaction(root);
  965. if (IS_ERR(trans))
  966. goto free_path;
  967. block_rsv = trans->block_rsv;
  968. trans->block_rsv = &root->fs_info->global_block_rsv;
  969. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  970. if (!ret)
  971. ret = btrfs_delete_delayed_items(trans, path, root,
  972. delayed_node);
  973. if (!ret)
  974. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  975. /*
  976. * Maybe new delayed items have been inserted, so we need requeue
  977. * the work. Besides that, we must dequeue the empty delayed nodes
  978. * to avoid the race between delayed items balance and the worker.
  979. * The race like this:
  980. * Task1 Worker thread
  981. * count == 0, needn't requeue
  982. * also needn't insert the
  983. * delayed node into prepare
  984. * list again.
  985. * add lots of delayed items
  986. * queue the delayed node
  987. * already in the list,
  988. * and not in the prepare
  989. * list, it means the delayed
  990. * node is being dealt with
  991. * by the worker.
  992. * do delayed items balance
  993. * the delayed node is being
  994. * dealt with by the worker
  995. * now, just wait.
  996. * the worker goto idle.
  997. * Task1 will sleep until the transaction is commited.
  998. */
  999. mutex_lock(&delayed_node->mutex);
  1000. if (delayed_node->count)
  1001. need_requeue = 1;
  1002. else
  1003. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1004. delayed_node);
  1005. mutex_unlock(&delayed_node->mutex);
  1006. nr = trans->blocks_used;
  1007. trans->block_rsv = block_rsv;
  1008. btrfs_end_transaction_dmeta(trans, root);
  1009. __btrfs_btree_balance_dirty(root, nr);
  1010. free_path:
  1011. btrfs_free_path(path);
  1012. out:
  1013. if (need_requeue)
  1014. btrfs_requeue_work(&async_node->work);
  1015. else {
  1016. btrfs_release_prepared_delayed_node(delayed_node);
  1017. kfree(async_node);
  1018. }
  1019. }
  1020. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1021. struct btrfs_root *root, int all)
  1022. {
  1023. struct btrfs_async_delayed_node *async_node;
  1024. struct btrfs_delayed_node *curr;
  1025. int count = 0;
  1026. again:
  1027. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1028. if (!curr)
  1029. return 0;
  1030. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1031. if (!async_node) {
  1032. btrfs_release_prepared_delayed_node(curr);
  1033. return -ENOMEM;
  1034. }
  1035. async_node->root = root;
  1036. async_node->delayed_node = curr;
  1037. async_node->work.func = btrfs_async_run_delayed_node_done;
  1038. async_node->work.flags = 0;
  1039. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1040. count++;
  1041. if (all || count < 4)
  1042. goto again;
  1043. return 0;
  1044. }
  1045. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1046. {
  1047. struct btrfs_delayed_root *delayed_root;
  1048. delayed_root = btrfs_get_delayed_root(root);
  1049. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1050. }
  1051. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1052. {
  1053. struct btrfs_delayed_root *delayed_root;
  1054. delayed_root = btrfs_get_delayed_root(root);
  1055. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1056. return;
  1057. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1058. int ret;
  1059. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1060. if (ret)
  1061. return;
  1062. wait_event_interruptible_timeout(
  1063. delayed_root->wait,
  1064. (atomic_read(&delayed_root->items) <
  1065. BTRFS_DELAYED_BACKGROUND),
  1066. HZ);
  1067. return;
  1068. }
  1069. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1070. }
  1071. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1072. struct btrfs_root *root, const char *name,
  1073. int name_len, struct inode *dir,
  1074. struct btrfs_disk_key *disk_key, u8 type,
  1075. u64 index)
  1076. {
  1077. struct btrfs_delayed_node *delayed_node;
  1078. struct btrfs_delayed_item *delayed_item;
  1079. struct btrfs_dir_item *dir_item;
  1080. int ret;
  1081. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1082. if (IS_ERR(delayed_node))
  1083. return PTR_ERR(delayed_node);
  1084. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1085. if (!delayed_item) {
  1086. ret = -ENOMEM;
  1087. goto release_node;
  1088. }
  1089. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1090. /*
  1091. * we have reserved enough space when we start a new transaction,
  1092. * so reserving metadata failure is impossible
  1093. */
  1094. BUG_ON(ret);
  1095. delayed_item->key.objectid = btrfs_ino(dir);
  1096. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1097. delayed_item->key.offset = index;
  1098. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1099. dir_item->location = *disk_key;
  1100. dir_item->transid = cpu_to_le64(trans->transid);
  1101. dir_item->data_len = 0;
  1102. dir_item->name_len = cpu_to_le16(name_len);
  1103. dir_item->type = type;
  1104. memcpy((char *)(dir_item + 1), name, name_len);
  1105. mutex_lock(&delayed_node->mutex);
  1106. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1107. if (unlikely(ret)) {
  1108. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1109. "the insertion tree of the delayed node"
  1110. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1111. name,
  1112. (unsigned long long)delayed_node->root->objectid,
  1113. (unsigned long long)delayed_node->inode_id,
  1114. ret);
  1115. BUG();
  1116. }
  1117. mutex_unlock(&delayed_node->mutex);
  1118. release_node:
  1119. btrfs_release_delayed_node(delayed_node);
  1120. return ret;
  1121. }
  1122. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1123. struct btrfs_delayed_node *node,
  1124. struct btrfs_key *key)
  1125. {
  1126. struct btrfs_delayed_item *item;
  1127. mutex_lock(&node->mutex);
  1128. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1129. if (!item) {
  1130. mutex_unlock(&node->mutex);
  1131. return 1;
  1132. }
  1133. btrfs_delayed_item_release_metadata(root, item);
  1134. btrfs_release_delayed_item(item);
  1135. mutex_unlock(&node->mutex);
  1136. return 0;
  1137. }
  1138. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1139. struct btrfs_root *root, struct inode *dir,
  1140. u64 index)
  1141. {
  1142. struct btrfs_delayed_node *node;
  1143. struct btrfs_delayed_item *item;
  1144. struct btrfs_key item_key;
  1145. int ret;
  1146. node = btrfs_get_or_create_delayed_node(dir);
  1147. if (IS_ERR(node))
  1148. return PTR_ERR(node);
  1149. item_key.objectid = btrfs_ino(dir);
  1150. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1151. item_key.offset = index;
  1152. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1153. if (!ret)
  1154. goto end;
  1155. item = btrfs_alloc_delayed_item(0);
  1156. if (!item) {
  1157. ret = -ENOMEM;
  1158. goto end;
  1159. }
  1160. item->key = item_key;
  1161. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1162. /*
  1163. * we have reserved enough space when we start a new transaction,
  1164. * so reserving metadata failure is impossible.
  1165. */
  1166. BUG_ON(ret);
  1167. mutex_lock(&node->mutex);
  1168. ret = __btrfs_add_delayed_deletion_item(node, item);
  1169. if (unlikely(ret)) {
  1170. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1171. "into the deletion tree of the delayed node"
  1172. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1173. (unsigned long long)index,
  1174. (unsigned long long)node->root->objectid,
  1175. (unsigned long long)node->inode_id,
  1176. ret);
  1177. BUG();
  1178. }
  1179. mutex_unlock(&node->mutex);
  1180. end:
  1181. btrfs_release_delayed_node(node);
  1182. return ret;
  1183. }
  1184. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1185. {
  1186. struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
  1187. int ret = 0;
  1188. if (!delayed_node)
  1189. return -ENOENT;
  1190. /*
  1191. * Since we have held i_mutex of this directory, it is impossible that
  1192. * a new directory index is added into the delayed node and index_cnt
  1193. * is updated now. So we needn't lock the delayed node.
  1194. */
  1195. if (!delayed_node->index_cnt)
  1196. return -EINVAL;
  1197. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1198. return ret;
  1199. }
  1200. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1201. struct list_head *del_list)
  1202. {
  1203. struct btrfs_delayed_node *delayed_node;
  1204. struct btrfs_delayed_item *item;
  1205. delayed_node = btrfs_get_delayed_node(inode);
  1206. if (!delayed_node)
  1207. return;
  1208. mutex_lock(&delayed_node->mutex);
  1209. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1210. while (item) {
  1211. atomic_inc(&item->refs);
  1212. list_add_tail(&item->readdir_list, ins_list);
  1213. item = __btrfs_next_delayed_item(item);
  1214. }
  1215. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1216. while (item) {
  1217. atomic_inc(&item->refs);
  1218. list_add_tail(&item->readdir_list, del_list);
  1219. item = __btrfs_next_delayed_item(item);
  1220. }
  1221. mutex_unlock(&delayed_node->mutex);
  1222. /*
  1223. * This delayed node is still cached in the btrfs inode, so refs
  1224. * must be > 1 now, and we needn't check it is going to be freed
  1225. * or not.
  1226. *
  1227. * Besides that, this function is used to read dir, we do not
  1228. * insert/delete delayed items in this period. So we also needn't
  1229. * requeue or dequeue this delayed node.
  1230. */
  1231. atomic_dec(&delayed_node->refs);
  1232. }
  1233. void btrfs_put_delayed_items(struct list_head *ins_list,
  1234. struct list_head *del_list)
  1235. {
  1236. struct btrfs_delayed_item *curr, *next;
  1237. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1238. list_del(&curr->readdir_list);
  1239. if (atomic_dec_and_test(&curr->refs))
  1240. kfree(curr);
  1241. }
  1242. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1243. list_del(&curr->readdir_list);
  1244. if (atomic_dec_and_test(&curr->refs))
  1245. kfree(curr);
  1246. }
  1247. }
  1248. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1249. u64 index)
  1250. {
  1251. struct btrfs_delayed_item *curr, *next;
  1252. int ret;
  1253. if (list_empty(del_list))
  1254. return 0;
  1255. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1256. if (curr->key.offset > index)
  1257. break;
  1258. list_del(&curr->readdir_list);
  1259. ret = (curr->key.offset == index);
  1260. if (atomic_dec_and_test(&curr->refs))
  1261. kfree(curr);
  1262. if (ret)
  1263. return 1;
  1264. else
  1265. continue;
  1266. }
  1267. return 0;
  1268. }
  1269. /*
  1270. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1271. *
  1272. */
  1273. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1274. filldir_t filldir,
  1275. struct list_head *ins_list)
  1276. {
  1277. struct btrfs_dir_item *di;
  1278. struct btrfs_delayed_item *curr, *next;
  1279. struct btrfs_key location;
  1280. char *name;
  1281. int name_len;
  1282. int over = 0;
  1283. unsigned char d_type;
  1284. if (list_empty(ins_list))
  1285. return 0;
  1286. /*
  1287. * Changing the data of the delayed item is impossible. So
  1288. * we needn't lock them. And we have held i_mutex of the
  1289. * directory, nobody can delete any directory indexes now.
  1290. */
  1291. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1292. list_del(&curr->readdir_list);
  1293. if (curr->key.offset < filp->f_pos) {
  1294. if (atomic_dec_and_test(&curr->refs))
  1295. kfree(curr);
  1296. continue;
  1297. }
  1298. filp->f_pos = curr->key.offset;
  1299. di = (struct btrfs_dir_item *)curr->data;
  1300. name = (char *)(di + 1);
  1301. name_len = le16_to_cpu(di->name_len);
  1302. d_type = btrfs_filetype_table[di->type];
  1303. btrfs_disk_key_to_cpu(&location, &di->location);
  1304. over = filldir(dirent, name, name_len, curr->key.offset,
  1305. location.objectid, d_type);
  1306. if (atomic_dec_and_test(&curr->refs))
  1307. kfree(curr);
  1308. if (over)
  1309. return 1;
  1310. }
  1311. return 0;
  1312. }
  1313. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1314. generation, 64);
  1315. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1316. sequence, 64);
  1317. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1318. transid, 64);
  1319. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1320. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1321. nbytes, 64);
  1322. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1323. block_group, 64);
  1324. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1325. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1326. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1327. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1328. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1329. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1330. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1331. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1332. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1333. struct btrfs_inode_item *inode_item,
  1334. struct inode *inode)
  1335. {
  1336. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1337. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1338. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1339. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1340. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1341. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1342. btrfs_set_stack_inode_generation(inode_item,
  1343. BTRFS_I(inode)->generation);
  1344. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1345. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1346. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1347. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1348. btrfs_set_stack_inode_block_group(inode_item, 0);
  1349. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1350. inode->i_atime.tv_sec);
  1351. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1352. inode->i_atime.tv_nsec);
  1353. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1354. inode->i_mtime.tv_sec);
  1355. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1356. inode->i_mtime.tv_nsec);
  1357. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1358. inode->i_ctime.tv_sec);
  1359. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1360. inode->i_ctime.tv_nsec);
  1361. }
  1362. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1363. struct btrfs_root *root, struct inode *inode)
  1364. {
  1365. struct btrfs_delayed_node *delayed_node;
  1366. int ret = 0;
  1367. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1368. if (IS_ERR(delayed_node))
  1369. return PTR_ERR(delayed_node);
  1370. mutex_lock(&delayed_node->mutex);
  1371. if (delayed_node->inode_dirty) {
  1372. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1373. goto release_node;
  1374. }
  1375. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1376. /*
  1377. * we must reserve enough space when we start a new transaction,
  1378. * so reserving metadata failure is impossible
  1379. */
  1380. BUG_ON(ret);
  1381. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1382. delayed_node->inode_dirty = 1;
  1383. delayed_node->count++;
  1384. atomic_inc(&root->fs_info->delayed_root->items);
  1385. release_node:
  1386. mutex_unlock(&delayed_node->mutex);
  1387. btrfs_release_delayed_node(delayed_node);
  1388. return ret;
  1389. }
  1390. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1391. {
  1392. struct btrfs_root *root = delayed_node->root;
  1393. struct btrfs_delayed_item *curr_item, *prev_item;
  1394. mutex_lock(&delayed_node->mutex);
  1395. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1396. while (curr_item) {
  1397. btrfs_delayed_item_release_metadata(root, curr_item);
  1398. prev_item = curr_item;
  1399. curr_item = __btrfs_next_delayed_item(prev_item);
  1400. btrfs_release_delayed_item(prev_item);
  1401. }
  1402. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1403. while (curr_item) {
  1404. btrfs_delayed_item_release_metadata(root, curr_item);
  1405. prev_item = curr_item;
  1406. curr_item = __btrfs_next_delayed_item(prev_item);
  1407. btrfs_release_delayed_item(prev_item);
  1408. }
  1409. if (delayed_node->inode_dirty) {
  1410. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1411. btrfs_release_delayed_inode(delayed_node);
  1412. }
  1413. mutex_unlock(&delayed_node->mutex);
  1414. }
  1415. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1416. {
  1417. struct btrfs_delayed_node *delayed_node;
  1418. delayed_node = btrfs_get_delayed_node(inode);
  1419. if (!delayed_node)
  1420. return;
  1421. __btrfs_kill_delayed_node(delayed_node);
  1422. btrfs_release_delayed_node(delayed_node);
  1423. }
  1424. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1425. {
  1426. u64 inode_id = 0;
  1427. struct btrfs_delayed_node *delayed_nodes[8];
  1428. int i, n;
  1429. while (1) {
  1430. spin_lock(&root->inode_lock);
  1431. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1432. (void **)delayed_nodes, inode_id,
  1433. ARRAY_SIZE(delayed_nodes));
  1434. if (!n) {
  1435. spin_unlock(&root->inode_lock);
  1436. break;
  1437. }
  1438. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1439. for (i = 0; i < n; i++)
  1440. atomic_inc(&delayed_nodes[i]->refs);
  1441. spin_unlock(&root->inode_lock);
  1442. for (i = 0; i < n; i++) {
  1443. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1444. btrfs_release_delayed_node(delayed_nodes[i]);
  1445. }
  1446. }
  1447. }