raid10.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727
  1. /*
  2. * raid10.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 2000-2004 Neil Brown
  5. *
  6. * RAID-10 support for md.
  7. *
  8. * Base on code in raid1.c. See raid1.c for further copyright information.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/module.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/ratelimit.h>
  26. #include <linux/kthread.h>
  27. #include "md.h"
  28. #include "raid10.h"
  29. #include "raid0.h"
  30. #include "bitmap.h"
  31. /*
  32. * RAID10 provides a combination of RAID0 and RAID1 functionality.
  33. * The layout of data is defined by
  34. * chunk_size
  35. * raid_disks
  36. * near_copies (stored in low byte of layout)
  37. * far_copies (stored in second byte of layout)
  38. * far_offset (stored in bit 16 of layout )
  39. * use_far_sets (stored in bit 17 of layout )
  40. *
  41. * The data to be stored is divided into chunks using chunksize. Each device
  42. * is divided into far_copies sections. In each section, chunks are laid out
  43. * in a style similar to raid0, but near_copies copies of each chunk is stored
  44. * (each on a different drive). The starting device for each section is offset
  45. * near_copies from the starting device of the previous section. Thus there
  46. * are (near_copies * far_copies) of each chunk, and each is on a different
  47. * drive. near_copies and far_copies must be at least one, and their product
  48. * is at most raid_disks.
  49. *
  50. * If far_offset is true, then the far_copies are handled a bit differently.
  51. * The copies are still in different stripes, but instead of being very far
  52. * apart on disk, there are adjacent stripes.
  53. *
  54. * The far and offset algorithms are handled slightly differently if
  55. * 'use_far_sets' is true. In this case, the array's devices are grouped into
  56. * sets that are (near_copies * far_copies) in size. The far copied stripes
  57. * are still shifted by 'near_copies' devices, but this shifting stays confined
  58. * to the set rather than the entire array. This is done to improve the number
  59. * of device combinations that can fail without causing the array to fail.
  60. * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  61. * on a device):
  62. * A B C D A B C D E
  63. * ... ...
  64. * D A B C E A B C D
  65. * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  66. * [A B] [C D] [A B] [C D E]
  67. * |...| |...| |...| | ... |
  68. * [B A] [D C] [B A] [E C D]
  69. */
  70. /*
  71. * Number of guaranteed r10bios in case of extreme VM load:
  72. */
  73. #define NR_RAID10_BIOS 256
  74. /* when we get a read error on a read-only array, we redirect to another
  75. * device without failing the first device, or trying to over-write to
  76. * correct the read error. To keep track of bad blocks on a per-bio
  77. * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  78. */
  79. #define IO_BLOCKED ((struct bio *)1)
  80. /* When we successfully write to a known bad-block, we need to remove the
  81. * bad-block marking which must be done from process context. So we record
  82. * the success by setting devs[n].bio to IO_MADE_GOOD
  83. */
  84. #define IO_MADE_GOOD ((struct bio *)2)
  85. #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  86. /* When there are this many requests queued to be written by
  87. * the raid10 thread, we become 'congested' to provide back-pressure
  88. * for writeback.
  89. */
  90. static int max_queued_requests = 1024;
  91. static void allow_barrier(struct r10conf *conf);
  92. static void lower_barrier(struct r10conf *conf);
  93. static int enough(struct r10conf *conf, int ignore);
  94. static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  95. int *skipped);
  96. static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  97. static void end_reshape_write(struct bio *bio, int error);
  98. static void end_reshape(struct r10conf *conf);
  99. static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  100. {
  101. struct r10conf *conf = data;
  102. int size = offsetof(struct r10bio, devs[conf->copies]);
  103. /* allocate a r10bio with room for raid_disks entries in the
  104. * bios array */
  105. return kzalloc(size, gfp_flags);
  106. }
  107. static void r10bio_pool_free(void *r10_bio, void *data)
  108. {
  109. kfree(r10_bio);
  110. }
  111. /* Maximum size of each resync request */
  112. #define RESYNC_BLOCK_SIZE (64*1024)
  113. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  114. /* amount of memory to reserve for resync requests */
  115. #define RESYNC_WINDOW (1024*1024)
  116. /* maximum number of concurrent requests, memory permitting */
  117. #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  118. /*
  119. * When performing a resync, we need to read and compare, so
  120. * we need as many pages are there are copies.
  121. * When performing a recovery, we need 2 bios, one for read,
  122. * one for write (we recover only one drive per r10buf)
  123. *
  124. */
  125. static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  126. {
  127. struct r10conf *conf = data;
  128. struct page *page;
  129. struct r10bio *r10_bio;
  130. struct bio *bio;
  131. int i, j;
  132. int nalloc;
  133. r10_bio = r10bio_pool_alloc(gfp_flags, conf);
  134. if (!r10_bio)
  135. return NULL;
  136. if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
  137. test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
  138. nalloc = conf->copies; /* resync */
  139. else
  140. nalloc = 2; /* recovery */
  141. /*
  142. * Allocate bios.
  143. */
  144. for (j = nalloc ; j-- ; ) {
  145. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  146. if (!bio)
  147. goto out_free_bio;
  148. r10_bio->devs[j].bio = bio;
  149. if (!conf->have_replacement)
  150. continue;
  151. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  152. if (!bio)
  153. goto out_free_bio;
  154. r10_bio->devs[j].repl_bio = bio;
  155. }
  156. /*
  157. * Allocate RESYNC_PAGES data pages and attach them
  158. * where needed.
  159. */
  160. for (j = 0 ; j < nalloc; j++) {
  161. struct bio *rbio = r10_bio->devs[j].repl_bio;
  162. bio = r10_bio->devs[j].bio;
  163. for (i = 0; i < RESYNC_PAGES; i++) {
  164. if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
  165. &conf->mddev->recovery)) {
  166. /* we can share bv_page's during recovery
  167. * and reshape */
  168. struct bio *rbio = r10_bio->devs[0].bio;
  169. page = rbio->bi_io_vec[i].bv_page;
  170. get_page(page);
  171. } else
  172. page = alloc_page(gfp_flags);
  173. if (unlikely(!page))
  174. goto out_free_pages;
  175. bio->bi_io_vec[i].bv_page = page;
  176. if (rbio)
  177. rbio->bi_io_vec[i].bv_page = page;
  178. }
  179. }
  180. return r10_bio;
  181. out_free_pages:
  182. for ( ; i > 0 ; i--)
  183. safe_put_page(bio->bi_io_vec[i-1].bv_page);
  184. while (j--)
  185. for (i = 0; i < RESYNC_PAGES ; i++)
  186. safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
  187. j = 0;
  188. out_free_bio:
  189. for ( ; j < nalloc; j++) {
  190. if (r10_bio->devs[j].bio)
  191. bio_put(r10_bio->devs[j].bio);
  192. if (r10_bio->devs[j].repl_bio)
  193. bio_put(r10_bio->devs[j].repl_bio);
  194. }
  195. r10bio_pool_free(r10_bio, conf);
  196. return NULL;
  197. }
  198. static void r10buf_pool_free(void *__r10_bio, void *data)
  199. {
  200. int i;
  201. struct r10conf *conf = data;
  202. struct r10bio *r10bio = __r10_bio;
  203. int j;
  204. for (j=0; j < conf->copies; j++) {
  205. struct bio *bio = r10bio->devs[j].bio;
  206. if (bio) {
  207. for (i = 0; i < RESYNC_PAGES; i++) {
  208. safe_put_page(bio->bi_io_vec[i].bv_page);
  209. bio->bi_io_vec[i].bv_page = NULL;
  210. }
  211. bio_put(bio);
  212. }
  213. bio = r10bio->devs[j].repl_bio;
  214. if (bio)
  215. bio_put(bio);
  216. }
  217. r10bio_pool_free(r10bio, conf);
  218. }
  219. static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
  220. {
  221. int i;
  222. for (i = 0; i < conf->copies; i++) {
  223. struct bio **bio = & r10_bio->devs[i].bio;
  224. if (!BIO_SPECIAL(*bio))
  225. bio_put(*bio);
  226. *bio = NULL;
  227. bio = &r10_bio->devs[i].repl_bio;
  228. if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
  229. bio_put(*bio);
  230. *bio = NULL;
  231. }
  232. }
  233. static void free_r10bio(struct r10bio *r10_bio)
  234. {
  235. struct r10conf *conf = r10_bio->mddev->private;
  236. put_all_bios(conf, r10_bio);
  237. mempool_free(r10_bio, conf->r10bio_pool);
  238. }
  239. static void put_buf(struct r10bio *r10_bio)
  240. {
  241. struct r10conf *conf = r10_bio->mddev->private;
  242. mempool_free(r10_bio, conf->r10buf_pool);
  243. lower_barrier(conf);
  244. }
  245. static void reschedule_retry(struct r10bio *r10_bio)
  246. {
  247. unsigned long flags;
  248. struct mddev *mddev = r10_bio->mddev;
  249. struct r10conf *conf = mddev->private;
  250. spin_lock_irqsave(&conf->device_lock, flags);
  251. list_add(&r10_bio->retry_list, &conf->retry_list);
  252. conf->nr_queued ++;
  253. spin_unlock_irqrestore(&conf->device_lock, flags);
  254. /* wake up frozen array... */
  255. wake_up(&conf->wait_barrier);
  256. md_wakeup_thread(mddev->thread);
  257. }
  258. /*
  259. * raid_end_bio_io() is called when we have finished servicing a mirrored
  260. * operation and are ready to return a success/failure code to the buffer
  261. * cache layer.
  262. */
  263. static void raid_end_bio_io(struct r10bio *r10_bio)
  264. {
  265. struct bio *bio = r10_bio->master_bio;
  266. int done;
  267. struct r10conf *conf = r10_bio->mddev->private;
  268. if (bio->bi_phys_segments) {
  269. unsigned long flags;
  270. spin_lock_irqsave(&conf->device_lock, flags);
  271. bio->bi_phys_segments--;
  272. done = (bio->bi_phys_segments == 0);
  273. spin_unlock_irqrestore(&conf->device_lock, flags);
  274. } else
  275. done = 1;
  276. if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
  277. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  278. if (done) {
  279. bio_endio(bio, 0);
  280. /*
  281. * Wake up any possible resync thread that waits for the device
  282. * to go idle.
  283. */
  284. allow_barrier(conf);
  285. }
  286. free_r10bio(r10_bio);
  287. }
  288. /*
  289. * Update disk head position estimator based on IRQ completion info.
  290. */
  291. static inline void update_head_pos(int slot, struct r10bio *r10_bio)
  292. {
  293. struct r10conf *conf = r10_bio->mddev->private;
  294. conf->mirrors[r10_bio->devs[slot].devnum].head_position =
  295. r10_bio->devs[slot].addr + (r10_bio->sectors);
  296. }
  297. /*
  298. * Find the disk number which triggered given bio
  299. */
  300. static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
  301. struct bio *bio, int *slotp, int *replp)
  302. {
  303. int slot;
  304. int repl = 0;
  305. for (slot = 0; slot < conf->copies; slot++) {
  306. if (r10_bio->devs[slot].bio == bio)
  307. break;
  308. if (r10_bio->devs[slot].repl_bio == bio) {
  309. repl = 1;
  310. break;
  311. }
  312. }
  313. BUG_ON(slot == conf->copies);
  314. update_head_pos(slot, r10_bio);
  315. if (slotp)
  316. *slotp = slot;
  317. if (replp)
  318. *replp = repl;
  319. return r10_bio->devs[slot].devnum;
  320. }
  321. static void raid10_end_read_request(struct bio *bio, int error)
  322. {
  323. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  324. struct r10bio *r10_bio = bio->bi_private;
  325. int slot, dev;
  326. struct md_rdev *rdev;
  327. struct r10conf *conf = r10_bio->mddev->private;
  328. slot = r10_bio->read_slot;
  329. dev = r10_bio->devs[slot].devnum;
  330. rdev = r10_bio->devs[slot].rdev;
  331. /*
  332. * this branch is our 'one mirror IO has finished' event handler:
  333. */
  334. update_head_pos(slot, r10_bio);
  335. if (uptodate) {
  336. /*
  337. * Set R10BIO_Uptodate in our master bio, so that
  338. * we will return a good error code to the higher
  339. * levels even if IO on some other mirrored buffer fails.
  340. *
  341. * The 'master' represents the composite IO operation to
  342. * user-side. So if something waits for IO, then it will
  343. * wait for the 'master' bio.
  344. */
  345. set_bit(R10BIO_Uptodate, &r10_bio->state);
  346. } else {
  347. /* If all other devices that store this block have
  348. * failed, we want to return the error upwards rather
  349. * than fail the last device. Here we redefine
  350. * "uptodate" to mean "Don't want to retry"
  351. */
  352. unsigned long flags;
  353. spin_lock_irqsave(&conf->device_lock, flags);
  354. if (!enough(conf, rdev->raid_disk))
  355. uptodate = 1;
  356. spin_unlock_irqrestore(&conf->device_lock, flags);
  357. }
  358. if (uptodate) {
  359. raid_end_bio_io(r10_bio);
  360. rdev_dec_pending(rdev, conf->mddev);
  361. } else {
  362. /*
  363. * oops, read error - keep the refcount on the rdev
  364. */
  365. char b[BDEVNAME_SIZE];
  366. printk_ratelimited(KERN_ERR
  367. "md/raid10:%s: %s: rescheduling sector %llu\n",
  368. mdname(conf->mddev),
  369. bdevname(rdev->bdev, b),
  370. (unsigned long long)r10_bio->sector);
  371. set_bit(R10BIO_ReadError, &r10_bio->state);
  372. reschedule_retry(r10_bio);
  373. }
  374. }
  375. static void close_write(struct r10bio *r10_bio)
  376. {
  377. /* clear the bitmap if all writes complete successfully */
  378. bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
  379. r10_bio->sectors,
  380. !test_bit(R10BIO_Degraded, &r10_bio->state),
  381. 0);
  382. md_write_end(r10_bio->mddev);
  383. }
  384. static void one_write_done(struct r10bio *r10_bio)
  385. {
  386. if (atomic_dec_and_test(&r10_bio->remaining)) {
  387. if (test_bit(R10BIO_WriteError, &r10_bio->state))
  388. reschedule_retry(r10_bio);
  389. else {
  390. close_write(r10_bio);
  391. if (test_bit(R10BIO_MadeGood, &r10_bio->state))
  392. reschedule_retry(r10_bio);
  393. else
  394. raid_end_bio_io(r10_bio);
  395. }
  396. }
  397. }
  398. static void raid10_end_write_request(struct bio *bio, int error)
  399. {
  400. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  401. struct r10bio *r10_bio = bio->bi_private;
  402. int dev;
  403. int dec_rdev = 1;
  404. struct r10conf *conf = r10_bio->mddev->private;
  405. int slot, repl;
  406. struct md_rdev *rdev = NULL;
  407. dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  408. if (repl)
  409. rdev = conf->mirrors[dev].replacement;
  410. if (!rdev) {
  411. smp_rmb();
  412. repl = 0;
  413. rdev = conf->mirrors[dev].rdev;
  414. }
  415. /*
  416. * this branch is our 'one mirror IO has finished' event handler:
  417. */
  418. if (!uptodate) {
  419. if (repl)
  420. /* Never record new bad blocks to replacement,
  421. * just fail it.
  422. */
  423. md_error(rdev->mddev, rdev);
  424. else {
  425. set_bit(WriteErrorSeen, &rdev->flags);
  426. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  427. set_bit(MD_RECOVERY_NEEDED,
  428. &rdev->mddev->recovery);
  429. set_bit(R10BIO_WriteError, &r10_bio->state);
  430. dec_rdev = 0;
  431. }
  432. } else {
  433. /*
  434. * Set R10BIO_Uptodate in our master bio, so that
  435. * we will return a good error code for to the higher
  436. * levels even if IO on some other mirrored buffer fails.
  437. *
  438. * The 'master' represents the composite IO operation to
  439. * user-side. So if something waits for IO, then it will
  440. * wait for the 'master' bio.
  441. */
  442. sector_t first_bad;
  443. int bad_sectors;
  444. /*
  445. * Do not set R10BIO_Uptodate if the current device is
  446. * rebuilding or Faulty. This is because we cannot use
  447. * such device for properly reading the data back (we could
  448. * potentially use it, if the current write would have felt
  449. * before rdev->recovery_offset, but for simplicity we don't
  450. * check this here.
  451. */
  452. if (test_bit(In_sync, &rdev->flags) &&
  453. !test_bit(Faulty, &rdev->flags))
  454. set_bit(R10BIO_Uptodate, &r10_bio->state);
  455. /* Maybe we can clear some bad blocks. */
  456. if (is_badblock(rdev,
  457. r10_bio->devs[slot].addr,
  458. r10_bio->sectors,
  459. &first_bad, &bad_sectors)) {
  460. bio_put(bio);
  461. if (repl)
  462. r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
  463. else
  464. r10_bio->devs[slot].bio = IO_MADE_GOOD;
  465. dec_rdev = 0;
  466. set_bit(R10BIO_MadeGood, &r10_bio->state);
  467. }
  468. }
  469. /*
  470. *
  471. * Let's see if all mirrored write operations have finished
  472. * already.
  473. */
  474. one_write_done(r10_bio);
  475. if (dec_rdev)
  476. rdev_dec_pending(rdev, conf->mddev);
  477. }
  478. /*
  479. * RAID10 layout manager
  480. * As well as the chunksize and raid_disks count, there are two
  481. * parameters: near_copies and far_copies.
  482. * near_copies * far_copies must be <= raid_disks.
  483. * Normally one of these will be 1.
  484. * If both are 1, we get raid0.
  485. * If near_copies == raid_disks, we get raid1.
  486. *
  487. * Chunks are laid out in raid0 style with near_copies copies of the
  488. * first chunk, followed by near_copies copies of the next chunk and
  489. * so on.
  490. * If far_copies > 1, then after 1/far_copies of the array has been assigned
  491. * as described above, we start again with a device offset of near_copies.
  492. * So we effectively have another copy of the whole array further down all
  493. * the drives, but with blocks on different drives.
  494. * With this layout, and block is never stored twice on the one device.
  495. *
  496. * raid10_find_phys finds the sector offset of a given virtual sector
  497. * on each device that it is on.
  498. *
  499. * raid10_find_virt does the reverse mapping, from a device and a
  500. * sector offset to a virtual address
  501. */
  502. static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
  503. {
  504. int n,f;
  505. sector_t sector;
  506. sector_t chunk;
  507. sector_t stripe;
  508. int dev;
  509. int slot = 0;
  510. int last_far_set_start, last_far_set_size;
  511. last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
  512. last_far_set_start *= geo->far_set_size;
  513. last_far_set_size = geo->far_set_size;
  514. last_far_set_size += (geo->raid_disks % geo->far_set_size);
  515. /* now calculate first sector/dev */
  516. chunk = r10bio->sector >> geo->chunk_shift;
  517. sector = r10bio->sector & geo->chunk_mask;
  518. chunk *= geo->near_copies;
  519. stripe = chunk;
  520. dev = sector_div(stripe, geo->raid_disks);
  521. if (geo->far_offset)
  522. stripe *= geo->far_copies;
  523. sector += stripe << geo->chunk_shift;
  524. /* and calculate all the others */
  525. for (n = 0; n < geo->near_copies; n++) {
  526. int d = dev;
  527. int set;
  528. sector_t s = sector;
  529. r10bio->devs[slot].devnum = d;
  530. r10bio->devs[slot].addr = s;
  531. slot++;
  532. for (f = 1; f < geo->far_copies; f++) {
  533. set = d / geo->far_set_size;
  534. d += geo->near_copies;
  535. if ((geo->raid_disks % geo->far_set_size) &&
  536. (d > last_far_set_start)) {
  537. d -= last_far_set_start;
  538. d %= last_far_set_size;
  539. d += last_far_set_start;
  540. } else {
  541. d %= geo->far_set_size;
  542. d += geo->far_set_size * set;
  543. }
  544. s += geo->stride;
  545. r10bio->devs[slot].devnum = d;
  546. r10bio->devs[slot].addr = s;
  547. slot++;
  548. }
  549. dev++;
  550. if (dev >= geo->raid_disks) {
  551. dev = 0;
  552. sector += (geo->chunk_mask + 1);
  553. }
  554. }
  555. }
  556. static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
  557. {
  558. struct geom *geo = &conf->geo;
  559. if (conf->reshape_progress != MaxSector &&
  560. ((r10bio->sector >= conf->reshape_progress) !=
  561. conf->mddev->reshape_backwards)) {
  562. set_bit(R10BIO_Previous, &r10bio->state);
  563. geo = &conf->prev;
  564. } else
  565. clear_bit(R10BIO_Previous, &r10bio->state);
  566. __raid10_find_phys(geo, r10bio);
  567. }
  568. static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
  569. {
  570. sector_t offset, chunk, vchunk;
  571. /* Never use conf->prev as this is only called during resync
  572. * or recovery, so reshape isn't happening
  573. */
  574. struct geom *geo = &conf->geo;
  575. int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
  576. int far_set_size = geo->far_set_size;
  577. int last_far_set_start;
  578. if (geo->raid_disks % geo->far_set_size) {
  579. last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
  580. last_far_set_start *= geo->far_set_size;
  581. if (dev >= last_far_set_start) {
  582. far_set_size = geo->far_set_size;
  583. far_set_size += (geo->raid_disks % geo->far_set_size);
  584. far_set_start = last_far_set_start;
  585. }
  586. }
  587. offset = sector & geo->chunk_mask;
  588. if (geo->far_offset) {
  589. int fc;
  590. chunk = sector >> geo->chunk_shift;
  591. fc = sector_div(chunk, geo->far_copies);
  592. dev -= fc * geo->near_copies;
  593. if (dev < far_set_start)
  594. dev += far_set_size;
  595. } else {
  596. while (sector >= geo->stride) {
  597. sector -= geo->stride;
  598. if (dev < (geo->near_copies + far_set_start))
  599. dev += far_set_size - geo->near_copies;
  600. else
  601. dev -= geo->near_copies;
  602. }
  603. chunk = sector >> geo->chunk_shift;
  604. }
  605. vchunk = chunk * geo->raid_disks + dev;
  606. sector_div(vchunk, geo->near_copies);
  607. return (vchunk << geo->chunk_shift) + offset;
  608. }
  609. /**
  610. * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
  611. * @q: request queue
  612. * @bvm: properties of new bio
  613. * @biovec: the request that could be merged to it.
  614. *
  615. * Return amount of bytes we can accept at this offset
  616. * This requires checking for end-of-chunk if near_copies != raid_disks,
  617. * and for subordinate merge_bvec_fns if merge_check_needed.
  618. */
  619. static int raid10_mergeable_bvec(struct request_queue *q,
  620. struct bvec_merge_data *bvm,
  621. struct bio_vec *biovec)
  622. {
  623. struct mddev *mddev = q->queuedata;
  624. struct r10conf *conf = mddev->private;
  625. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  626. int max;
  627. unsigned int chunk_sectors;
  628. unsigned int bio_sectors = bvm->bi_size >> 9;
  629. struct geom *geo = &conf->geo;
  630. chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
  631. if (conf->reshape_progress != MaxSector &&
  632. ((sector >= conf->reshape_progress) !=
  633. conf->mddev->reshape_backwards))
  634. geo = &conf->prev;
  635. if (geo->near_copies < geo->raid_disks) {
  636. max = (chunk_sectors - ((sector & (chunk_sectors - 1))
  637. + bio_sectors)) << 9;
  638. if (max < 0)
  639. /* bio_add cannot handle a negative return */
  640. max = 0;
  641. if (max <= biovec->bv_len && bio_sectors == 0)
  642. return biovec->bv_len;
  643. } else
  644. max = biovec->bv_len;
  645. if (mddev->merge_check_needed) {
  646. struct {
  647. struct r10bio r10_bio;
  648. struct r10dev devs[conf->copies];
  649. } on_stack;
  650. struct r10bio *r10_bio = &on_stack.r10_bio;
  651. int s;
  652. if (conf->reshape_progress != MaxSector) {
  653. /* Cannot give any guidance during reshape */
  654. if (max <= biovec->bv_len && bio_sectors == 0)
  655. return biovec->bv_len;
  656. return 0;
  657. }
  658. r10_bio->sector = sector;
  659. raid10_find_phys(conf, r10_bio);
  660. rcu_read_lock();
  661. for (s = 0; s < conf->copies; s++) {
  662. int disk = r10_bio->devs[s].devnum;
  663. struct md_rdev *rdev = rcu_dereference(
  664. conf->mirrors[disk].rdev);
  665. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  666. struct request_queue *q =
  667. bdev_get_queue(rdev->bdev);
  668. if (q->merge_bvec_fn) {
  669. bvm->bi_sector = r10_bio->devs[s].addr
  670. + rdev->data_offset;
  671. bvm->bi_bdev = rdev->bdev;
  672. max = min(max, q->merge_bvec_fn(
  673. q, bvm, biovec));
  674. }
  675. }
  676. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  677. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  678. struct request_queue *q =
  679. bdev_get_queue(rdev->bdev);
  680. if (q->merge_bvec_fn) {
  681. bvm->bi_sector = r10_bio->devs[s].addr
  682. + rdev->data_offset;
  683. bvm->bi_bdev = rdev->bdev;
  684. max = min(max, q->merge_bvec_fn(
  685. q, bvm, biovec));
  686. }
  687. }
  688. }
  689. rcu_read_unlock();
  690. }
  691. return max;
  692. }
  693. /*
  694. * This routine returns the disk from which the requested read should
  695. * be done. There is a per-array 'next expected sequential IO' sector
  696. * number - if this matches on the next IO then we use the last disk.
  697. * There is also a per-disk 'last know head position' sector that is
  698. * maintained from IRQ contexts, both the normal and the resync IO
  699. * completion handlers update this position correctly. If there is no
  700. * perfect sequential match then we pick the disk whose head is closest.
  701. *
  702. * If there are 2 mirrors in the same 2 devices, performance degrades
  703. * because position is mirror, not device based.
  704. *
  705. * The rdev for the device selected will have nr_pending incremented.
  706. */
  707. /*
  708. * FIXME: possibly should rethink readbalancing and do it differently
  709. * depending on near_copies / far_copies geometry.
  710. */
  711. static struct md_rdev *read_balance(struct r10conf *conf,
  712. struct r10bio *r10_bio,
  713. int *max_sectors)
  714. {
  715. const sector_t this_sector = r10_bio->sector;
  716. int disk, slot;
  717. int sectors = r10_bio->sectors;
  718. int best_good_sectors;
  719. sector_t new_distance, best_dist;
  720. struct md_rdev *best_rdev, *rdev = NULL;
  721. int do_balance;
  722. int best_slot;
  723. struct geom *geo = &conf->geo;
  724. raid10_find_phys(conf, r10_bio);
  725. rcu_read_lock();
  726. retry:
  727. sectors = r10_bio->sectors;
  728. best_slot = -1;
  729. best_rdev = NULL;
  730. best_dist = MaxSector;
  731. best_good_sectors = 0;
  732. do_balance = 1;
  733. /*
  734. * Check if we can balance. We can balance on the whole
  735. * device if no resync is going on (recovery is ok), or below
  736. * the resync window. We take the first readable disk when
  737. * above the resync window.
  738. */
  739. if (conf->mddev->recovery_cp < MaxSector
  740. && (this_sector + sectors >= conf->next_resync))
  741. do_balance = 0;
  742. for (slot = 0; slot < conf->copies ; slot++) {
  743. sector_t first_bad;
  744. int bad_sectors;
  745. sector_t dev_sector;
  746. if (r10_bio->devs[slot].bio == IO_BLOCKED)
  747. continue;
  748. disk = r10_bio->devs[slot].devnum;
  749. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  750. if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
  751. test_bit(Unmerged, &rdev->flags) ||
  752. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  753. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  754. if (rdev == NULL ||
  755. test_bit(Faulty, &rdev->flags) ||
  756. test_bit(Unmerged, &rdev->flags))
  757. continue;
  758. if (!test_bit(In_sync, &rdev->flags) &&
  759. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  760. continue;
  761. dev_sector = r10_bio->devs[slot].addr;
  762. if (is_badblock(rdev, dev_sector, sectors,
  763. &first_bad, &bad_sectors)) {
  764. if (best_dist < MaxSector)
  765. /* Already have a better slot */
  766. continue;
  767. if (first_bad <= dev_sector) {
  768. /* Cannot read here. If this is the
  769. * 'primary' device, then we must not read
  770. * beyond 'bad_sectors' from another device.
  771. */
  772. bad_sectors -= (dev_sector - first_bad);
  773. if (!do_balance && sectors > bad_sectors)
  774. sectors = bad_sectors;
  775. if (best_good_sectors > sectors)
  776. best_good_sectors = sectors;
  777. } else {
  778. sector_t good_sectors =
  779. first_bad - dev_sector;
  780. if (good_sectors > best_good_sectors) {
  781. best_good_sectors = good_sectors;
  782. best_slot = slot;
  783. best_rdev = rdev;
  784. }
  785. if (!do_balance)
  786. /* Must read from here */
  787. break;
  788. }
  789. continue;
  790. } else
  791. best_good_sectors = sectors;
  792. if (!do_balance)
  793. break;
  794. /* This optimisation is debatable, and completely destroys
  795. * sequential read speed for 'far copies' arrays. So only
  796. * keep it for 'near' arrays, and review those later.
  797. */
  798. if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
  799. break;
  800. /* for far > 1 always use the lowest address */
  801. if (geo->far_copies > 1)
  802. new_distance = r10_bio->devs[slot].addr;
  803. else
  804. new_distance = abs(r10_bio->devs[slot].addr -
  805. conf->mirrors[disk].head_position);
  806. if (new_distance < best_dist) {
  807. best_dist = new_distance;
  808. best_slot = slot;
  809. best_rdev = rdev;
  810. }
  811. }
  812. if (slot >= conf->copies) {
  813. slot = best_slot;
  814. rdev = best_rdev;
  815. }
  816. if (slot >= 0) {
  817. atomic_inc(&rdev->nr_pending);
  818. if (test_bit(Faulty, &rdev->flags)) {
  819. /* Cannot risk returning a device that failed
  820. * before we inc'ed nr_pending
  821. */
  822. rdev_dec_pending(rdev, conf->mddev);
  823. goto retry;
  824. }
  825. r10_bio->read_slot = slot;
  826. } else
  827. rdev = NULL;
  828. rcu_read_unlock();
  829. *max_sectors = best_good_sectors;
  830. return rdev;
  831. }
  832. int md_raid10_congested(struct mddev *mddev, int bits)
  833. {
  834. struct r10conf *conf = mddev->private;
  835. int i, ret = 0;
  836. if ((bits & (1 << BDI_async_congested)) &&
  837. conf->pending_count >= max_queued_requests)
  838. return 1;
  839. rcu_read_lock();
  840. for (i = 0;
  841. (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
  842. && ret == 0;
  843. i++) {
  844. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  845. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  846. struct request_queue *q = bdev_get_queue(rdev->bdev);
  847. ret |= bdi_congested(&q->backing_dev_info, bits);
  848. }
  849. }
  850. rcu_read_unlock();
  851. return ret;
  852. }
  853. EXPORT_SYMBOL_GPL(md_raid10_congested);
  854. static int raid10_congested(void *data, int bits)
  855. {
  856. struct mddev *mddev = data;
  857. return mddev_congested(mddev, bits) ||
  858. md_raid10_congested(mddev, bits);
  859. }
  860. static void flush_pending_writes(struct r10conf *conf)
  861. {
  862. /* Any writes that have been queued but are awaiting
  863. * bitmap updates get flushed here.
  864. */
  865. spin_lock_irq(&conf->device_lock);
  866. if (conf->pending_bio_list.head) {
  867. struct bio *bio;
  868. bio = bio_list_get(&conf->pending_bio_list);
  869. conf->pending_count = 0;
  870. spin_unlock_irq(&conf->device_lock);
  871. /* flush any pending bitmap writes to disk
  872. * before proceeding w/ I/O */
  873. bitmap_unplug(conf->mddev->bitmap);
  874. wake_up(&conf->wait_barrier);
  875. while (bio) { /* submit pending writes */
  876. struct bio *next = bio->bi_next;
  877. bio->bi_next = NULL;
  878. if (unlikely((bio->bi_rw & REQ_DISCARD) &&
  879. !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
  880. /* Just ignore it */
  881. bio_endio(bio, 0);
  882. else
  883. generic_make_request(bio);
  884. bio = next;
  885. }
  886. } else
  887. spin_unlock_irq(&conf->device_lock);
  888. }
  889. /* Barriers....
  890. * Sometimes we need to suspend IO while we do something else,
  891. * either some resync/recovery, or reconfigure the array.
  892. * To do this we raise a 'barrier'.
  893. * The 'barrier' is a counter that can be raised multiple times
  894. * to count how many activities are happening which preclude
  895. * normal IO.
  896. * We can only raise the barrier if there is no pending IO.
  897. * i.e. if nr_pending == 0.
  898. * We choose only to raise the barrier if no-one is waiting for the
  899. * barrier to go down. This means that as soon as an IO request
  900. * is ready, no other operations which require a barrier will start
  901. * until the IO request has had a chance.
  902. *
  903. * So: regular IO calls 'wait_barrier'. When that returns there
  904. * is no backgroup IO happening, It must arrange to call
  905. * allow_barrier when it has finished its IO.
  906. * backgroup IO calls must call raise_barrier. Once that returns
  907. * there is no normal IO happeing. It must arrange to call
  908. * lower_barrier when the particular background IO completes.
  909. */
  910. static void raise_barrier(struct r10conf *conf, int force)
  911. {
  912. BUG_ON(force && !conf->barrier);
  913. spin_lock_irq(&conf->resync_lock);
  914. /* Wait until no block IO is waiting (unless 'force') */
  915. wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
  916. conf->resync_lock);
  917. /* block any new IO from starting */
  918. conf->barrier++;
  919. /* Now wait for all pending IO to complete */
  920. wait_event_lock_irq(conf->wait_barrier,
  921. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  922. conf->resync_lock);
  923. spin_unlock_irq(&conf->resync_lock);
  924. }
  925. static void lower_barrier(struct r10conf *conf)
  926. {
  927. unsigned long flags;
  928. spin_lock_irqsave(&conf->resync_lock, flags);
  929. conf->barrier--;
  930. spin_unlock_irqrestore(&conf->resync_lock, flags);
  931. wake_up(&conf->wait_barrier);
  932. }
  933. static void wait_barrier(struct r10conf *conf)
  934. {
  935. spin_lock_irq(&conf->resync_lock);
  936. if (conf->barrier) {
  937. conf->nr_waiting++;
  938. /* Wait for the barrier to drop.
  939. * However if there are already pending
  940. * requests (preventing the barrier from
  941. * rising completely), and the
  942. * pre-process bio queue isn't empty,
  943. * then don't wait, as we need to empty
  944. * that queue to get the nr_pending
  945. * count down.
  946. */
  947. wait_event_lock_irq(conf->wait_barrier,
  948. !conf->barrier ||
  949. (conf->nr_pending &&
  950. current->bio_list &&
  951. !bio_list_empty(current->bio_list)),
  952. conf->resync_lock);
  953. conf->nr_waiting--;
  954. }
  955. conf->nr_pending++;
  956. spin_unlock_irq(&conf->resync_lock);
  957. }
  958. static void allow_barrier(struct r10conf *conf)
  959. {
  960. unsigned long flags;
  961. spin_lock_irqsave(&conf->resync_lock, flags);
  962. conf->nr_pending--;
  963. spin_unlock_irqrestore(&conf->resync_lock, flags);
  964. wake_up(&conf->wait_barrier);
  965. }
  966. static void freeze_array(struct r10conf *conf, int extra)
  967. {
  968. /* stop syncio and normal IO and wait for everything to
  969. * go quiet.
  970. * We increment barrier and nr_waiting, and then
  971. * wait until nr_pending match nr_queued+extra
  972. * This is called in the context of one normal IO request
  973. * that has failed. Thus any sync request that might be pending
  974. * will be blocked by nr_pending, and we need to wait for
  975. * pending IO requests to complete or be queued for re-try.
  976. * Thus the number queued (nr_queued) plus this request (extra)
  977. * must match the number of pending IOs (nr_pending) before
  978. * we continue.
  979. */
  980. spin_lock_irq(&conf->resync_lock);
  981. conf->barrier++;
  982. conf->nr_waiting++;
  983. wait_event_lock_irq_cmd(conf->wait_barrier,
  984. conf->nr_pending == conf->nr_queued+extra,
  985. conf->resync_lock,
  986. flush_pending_writes(conf));
  987. spin_unlock_irq(&conf->resync_lock);
  988. }
  989. static void unfreeze_array(struct r10conf *conf)
  990. {
  991. /* reverse the effect of the freeze */
  992. spin_lock_irq(&conf->resync_lock);
  993. conf->barrier--;
  994. conf->nr_waiting--;
  995. wake_up(&conf->wait_barrier);
  996. spin_unlock_irq(&conf->resync_lock);
  997. }
  998. static sector_t choose_data_offset(struct r10bio *r10_bio,
  999. struct md_rdev *rdev)
  1000. {
  1001. if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
  1002. test_bit(R10BIO_Previous, &r10_bio->state))
  1003. return rdev->data_offset;
  1004. else
  1005. return rdev->new_data_offset;
  1006. }
  1007. struct raid10_plug_cb {
  1008. struct blk_plug_cb cb;
  1009. struct bio_list pending;
  1010. int pending_cnt;
  1011. };
  1012. static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
  1013. {
  1014. struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
  1015. cb);
  1016. struct mddev *mddev = plug->cb.data;
  1017. struct r10conf *conf = mddev->private;
  1018. struct bio *bio;
  1019. if (from_schedule || current->bio_list) {
  1020. spin_lock_irq(&conf->device_lock);
  1021. bio_list_merge(&conf->pending_bio_list, &plug->pending);
  1022. conf->pending_count += plug->pending_cnt;
  1023. spin_unlock_irq(&conf->device_lock);
  1024. wake_up(&conf->wait_barrier);
  1025. md_wakeup_thread(mddev->thread);
  1026. kfree(plug);
  1027. return;
  1028. }
  1029. /* we aren't scheduling, so we can do the write-out directly. */
  1030. bio = bio_list_get(&plug->pending);
  1031. bitmap_unplug(mddev->bitmap);
  1032. wake_up(&conf->wait_barrier);
  1033. while (bio) { /* submit pending writes */
  1034. struct bio *next = bio->bi_next;
  1035. bio->bi_next = NULL;
  1036. if (unlikely((bio->bi_rw & REQ_DISCARD) &&
  1037. !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
  1038. /* Just ignore it */
  1039. bio_endio(bio, 0);
  1040. else
  1041. generic_make_request(bio);
  1042. bio = next;
  1043. }
  1044. kfree(plug);
  1045. }
  1046. static void make_request(struct mddev *mddev, struct bio * bio)
  1047. {
  1048. struct r10conf *conf = mddev->private;
  1049. struct r10bio *r10_bio;
  1050. struct bio *read_bio;
  1051. int i;
  1052. sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
  1053. int chunk_sects = chunk_mask + 1;
  1054. const int rw = bio_data_dir(bio);
  1055. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  1056. const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
  1057. const unsigned long do_discard = (bio->bi_rw
  1058. & (REQ_DISCARD | REQ_SECURE));
  1059. const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
  1060. unsigned long flags;
  1061. struct md_rdev *blocked_rdev;
  1062. struct blk_plug_cb *cb;
  1063. struct raid10_plug_cb *plug = NULL;
  1064. int sectors_handled;
  1065. int max_sectors;
  1066. int sectors;
  1067. if (unlikely(bio->bi_rw & REQ_FLUSH)) {
  1068. md_flush_request(mddev, bio);
  1069. return;
  1070. }
  1071. /* If this request crosses a chunk boundary, we need to
  1072. * split it. This will only happen for 1 PAGE (or less) requests.
  1073. */
  1074. if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
  1075. > chunk_sects
  1076. && (conf->geo.near_copies < conf->geo.raid_disks
  1077. || conf->prev.near_copies < conf->prev.raid_disks))) {
  1078. struct bio_pair *bp;
  1079. /* Sanity check -- queue functions should prevent this happening */
  1080. if (bio_segments(bio) > 1)
  1081. goto bad_map;
  1082. /* This is a one page bio that upper layers
  1083. * refuse to split for us, so we need to split it.
  1084. */
  1085. bp = bio_split(bio,
  1086. chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  1087. /* Each of these 'make_request' calls will call 'wait_barrier'.
  1088. * If the first succeeds but the second blocks due to the resync
  1089. * thread raising the barrier, we will deadlock because the
  1090. * IO to the underlying device will be queued in generic_make_request
  1091. * and will never complete, so will never reduce nr_pending.
  1092. * So increment nr_waiting here so no new raise_barriers will
  1093. * succeed, and so the second wait_barrier cannot block.
  1094. */
  1095. spin_lock_irq(&conf->resync_lock);
  1096. conf->nr_waiting++;
  1097. spin_unlock_irq(&conf->resync_lock);
  1098. make_request(mddev, &bp->bio1);
  1099. make_request(mddev, &bp->bio2);
  1100. spin_lock_irq(&conf->resync_lock);
  1101. conf->nr_waiting--;
  1102. wake_up(&conf->wait_barrier);
  1103. spin_unlock_irq(&conf->resync_lock);
  1104. bio_pair_release(bp);
  1105. return;
  1106. bad_map:
  1107. printk("md/raid10:%s: make_request bug: can't convert block across chunks"
  1108. " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
  1109. (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
  1110. bio_io_error(bio);
  1111. return;
  1112. }
  1113. md_write_start(mddev, bio);
  1114. /*
  1115. * Register the new request and wait if the reconstruction
  1116. * thread has put up a bar for new requests.
  1117. * Continue immediately if no resync is active currently.
  1118. */
  1119. wait_barrier(conf);
  1120. sectors = bio_sectors(bio);
  1121. while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  1122. bio->bi_sector < conf->reshape_progress &&
  1123. bio->bi_sector + sectors > conf->reshape_progress) {
  1124. /* IO spans the reshape position. Need to wait for
  1125. * reshape to pass
  1126. */
  1127. allow_barrier(conf);
  1128. wait_event(conf->wait_barrier,
  1129. conf->reshape_progress <= bio->bi_sector ||
  1130. conf->reshape_progress >= bio->bi_sector + sectors);
  1131. wait_barrier(conf);
  1132. }
  1133. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  1134. bio_data_dir(bio) == WRITE &&
  1135. (mddev->reshape_backwards
  1136. ? (bio->bi_sector < conf->reshape_safe &&
  1137. bio->bi_sector + sectors > conf->reshape_progress)
  1138. : (bio->bi_sector + sectors > conf->reshape_safe &&
  1139. bio->bi_sector < conf->reshape_progress))) {
  1140. /* Need to update reshape_position in metadata */
  1141. mddev->reshape_position = conf->reshape_progress;
  1142. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1143. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1144. md_wakeup_thread(mddev->thread);
  1145. wait_event(mddev->sb_wait,
  1146. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  1147. conf->reshape_safe = mddev->reshape_position;
  1148. }
  1149. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1150. r10_bio->master_bio = bio;
  1151. r10_bio->sectors = sectors;
  1152. r10_bio->mddev = mddev;
  1153. r10_bio->sector = bio->bi_sector;
  1154. r10_bio->state = 0;
  1155. /* We might need to issue multiple reads to different
  1156. * devices if there are bad blocks around, so we keep
  1157. * track of the number of reads in bio->bi_phys_segments.
  1158. * If this is 0, there is only one r10_bio and no locking
  1159. * will be needed when the request completes. If it is
  1160. * non-zero, then it is the number of not-completed requests.
  1161. */
  1162. bio->bi_phys_segments = 0;
  1163. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  1164. if (rw == READ) {
  1165. /*
  1166. * read balancing logic:
  1167. */
  1168. struct md_rdev *rdev;
  1169. int slot;
  1170. read_again:
  1171. rdev = read_balance(conf, r10_bio, &max_sectors);
  1172. if (!rdev) {
  1173. raid_end_bio_io(r10_bio);
  1174. return;
  1175. }
  1176. slot = r10_bio->read_slot;
  1177. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1178. md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
  1179. max_sectors);
  1180. r10_bio->devs[slot].bio = read_bio;
  1181. r10_bio->devs[slot].rdev = rdev;
  1182. read_bio->bi_sector = r10_bio->devs[slot].addr +
  1183. choose_data_offset(r10_bio, rdev);
  1184. read_bio->bi_bdev = rdev->bdev;
  1185. read_bio->bi_end_io = raid10_end_read_request;
  1186. read_bio->bi_rw = READ | do_sync;
  1187. read_bio->bi_private = r10_bio;
  1188. if (max_sectors < r10_bio->sectors) {
  1189. /* Could not read all from this device, so we will
  1190. * need another r10_bio.
  1191. */
  1192. sectors_handled = (r10_bio->sectors + max_sectors
  1193. - bio->bi_sector);
  1194. r10_bio->sectors = max_sectors;
  1195. spin_lock_irq(&conf->device_lock);
  1196. if (bio->bi_phys_segments == 0)
  1197. bio->bi_phys_segments = 2;
  1198. else
  1199. bio->bi_phys_segments++;
  1200. spin_unlock(&conf->device_lock);
  1201. /* Cannot call generic_make_request directly
  1202. * as that will be queued in __generic_make_request
  1203. * and subsequent mempool_alloc might block
  1204. * waiting for it. so hand bio over to raid10d.
  1205. */
  1206. reschedule_retry(r10_bio);
  1207. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1208. r10_bio->master_bio = bio;
  1209. r10_bio->sectors = bio_sectors(bio) - sectors_handled;
  1210. r10_bio->state = 0;
  1211. r10_bio->mddev = mddev;
  1212. r10_bio->sector = bio->bi_sector + sectors_handled;
  1213. goto read_again;
  1214. } else
  1215. generic_make_request(read_bio);
  1216. return;
  1217. }
  1218. /*
  1219. * WRITE:
  1220. */
  1221. if (conf->pending_count >= max_queued_requests) {
  1222. md_wakeup_thread(mddev->thread);
  1223. wait_event(conf->wait_barrier,
  1224. conf->pending_count < max_queued_requests);
  1225. }
  1226. /* first select target devices under rcu_lock and
  1227. * inc refcount on their rdev. Record them by setting
  1228. * bios[x] to bio
  1229. * If there are known/acknowledged bad blocks on any device
  1230. * on which we have seen a write error, we want to avoid
  1231. * writing to those blocks. This potentially requires several
  1232. * writes to write around the bad blocks. Each set of writes
  1233. * gets its own r10_bio with a set of bios attached. The number
  1234. * of r10_bios is recored in bio->bi_phys_segments just as with
  1235. * the read case.
  1236. */
  1237. r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
  1238. raid10_find_phys(conf, r10_bio);
  1239. retry_write:
  1240. blocked_rdev = NULL;
  1241. rcu_read_lock();
  1242. max_sectors = r10_bio->sectors;
  1243. for (i = 0; i < conf->copies; i++) {
  1244. int d = r10_bio->devs[i].devnum;
  1245. struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
  1246. struct md_rdev *rrdev = rcu_dereference(
  1247. conf->mirrors[d].replacement);
  1248. if (rdev == rrdev)
  1249. rrdev = NULL;
  1250. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  1251. atomic_inc(&rdev->nr_pending);
  1252. blocked_rdev = rdev;
  1253. break;
  1254. }
  1255. if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
  1256. atomic_inc(&rrdev->nr_pending);
  1257. blocked_rdev = rrdev;
  1258. break;
  1259. }
  1260. if (rdev && (test_bit(Faulty, &rdev->flags)
  1261. || test_bit(Unmerged, &rdev->flags)))
  1262. rdev = NULL;
  1263. if (rrdev && (test_bit(Faulty, &rrdev->flags)
  1264. || test_bit(Unmerged, &rrdev->flags)))
  1265. rrdev = NULL;
  1266. r10_bio->devs[i].bio = NULL;
  1267. r10_bio->devs[i].repl_bio = NULL;
  1268. if (!rdev && !rrdev) {
  1269. set_bit(R10BIO_Degraded, &r10_bio->state);
  1270. continue;
  1271. }
  1272. if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
  1273. sector_t first_bad;
  1274. sector_t dev_sector = r10_bio->devs[i].addr;
  1275. int bad_sectors;
  1276. int is_bad;
  1277. is_bad = is_badblock(rdev, dev_sector,
  1278. max_sectors,
  1279. &first_bad, &bad_sectors);
  1280. if (is_bad < 0) {
  1281. /* Mustn't write here until the bad block
  1282. * is acknowledged
  1283. */
  1284. atomic_inc(&rdev->nr_pending);
  1285. set_bit(BlockedBadBlocks, &rdev->flags);
  1286. blocked_rdev = rdev;
  1287. break;
  1288. }
  1289. if (is_bad && first_bad <= dev_sector) {
  1290. /* Cannot write here at all */
  1291. bad_sectors -= (dev_sector - first_bad);
  1292. if (bad_sectors < max_sectors)
  1293. /* Mustn't write more than bad_sectors
  1294. * to other devices yet
  1295. */
  1296. max_sectors = bad_sectors;
  1297. /* We don't set R10BIO_Degraded as that
  1298. * only applies if the disk is missing,
  1299. * so it might be re-added, and we want to
  1300. * know to recover this chunk.
  1301. * In this case the device is here, and the
  1302. * fact that this chunk is not in-sync is
  1303. * recorded in the bad block log.
  1304. */
  1305. continue;
  1306. }
  1307. if (is_bad) {
  1308. int good_sectors = first_bad - dev_sector;
  1309. if (good_sectors < max_sectors)
  1310. max_sectors = good_sectors;
  1311. }
  1312. }
  1313. if (rdev) {
  1314. r10_bio->devs[i].bio = bio;
  1315. atomic_inc(&rdev->nr_pending);
  1316. }
  1317. if (rrdev) {
  1318. r10_bio->devs[i].repl_bio = bio;
  1319. atomic_inc(&rrdev->nr_pending);
  1320. }
  1321. }
  1322. rcu_read_unlock();
  1323. if (unlikely(blocked_rdev)) {
  1324. /* Have to wait for this device to get unblocked, then retry */
  1325. int j;
  1326. int d;
  1327. for (j = 0; j < i; j++) {
  1328. if (r10_bio->devs[j].bio) {
  1329. d = r10_bio->devs[j].devnum;
  1330. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1331. }
  1332. if (r10_bio->devs[j].repl_bio) {
  1333. struct md_rdev *rdev;
  1334. d = r10_bio->devs[j].devnum;
  1335. rdev = conf->mirrors[d].replacement;
  1336. if (!rdev) {
  1337. /* Race with remove_disk */
  1338. smp_mb();
  1339. rdev = conf->mirrors[d].rdev;
  1340. }
  1341. rdev_dec_pending(rdev, mddev);
  1342. }
  1343. }
  1344. allow_barrier(conf);
  1345. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  1346. wait_barrier(conf);
  1347. goto retry_write;
  1348. }
  1349. if (max_sectors < r10_bio->sectors) {
  1350. /* We are splitting this into multiple parts, so
  1351. * we need to prepare for allocating another r10_bio.
  1352. */
  1353. r10_bio->sectors = max_sectors;
  1354. spin_lock_irq(&conf->device_lock);
  1355. if (bio->bi_phys_segments == 0)
  1356. bio->bi_phys_segments = 2;
  1357. else
  1358. bio->bi_phys_segments++;
  1359. spin_unlock_irq(&conf->device_lock);
  1360. }
  1361. sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
  1362. atomic_set(&r10_bio->remaining, 1);
  1363. bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
  1364. for (i = 0; i < conf->copies; i++) {
  1365. struct bio *mbio;
  1366. int d = r10_bio->devs[i].devnum;
  1367. if (r10_bio->devs[i].bio) {
  1368. struct md_rdev *rdev = conf->mirrors[d].rdev;
  1369. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1370. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1371. max_sectors);
  1372. r10_bio->devs[i].bio = mbio;
  1373. mbio->bi_sector = (r10_bio->devs[i].addr+
  1374. choose_data_offset(r10_bio,
  1375. rdev));
  1376. mbio->bi_bdev = rdev->bdev;
  1377. mbio->bi_end_io = raid10_end_write_request;
  1378. mbio->bi_rw =
  1379. WRITE | do_sync | do_fua | do_discard | do_same;
  1380. mbio->bi_private = r10_bio;
  1381. atomic_inc(&r10_bio->remaining);
  1382. cb = blk_check_plugged(raid10_unplug, mddev,
  1383. sizeof(*plug));
  1384. if (cb)
  1385. plug = container_of(cb, struct raid10_plug_cb,
  1386. cb);
  1387. else
  1388. plug = NULL;
  1389. spin_lock_irqsave(&conf->device_lock, flags);
  1390. if (plug) {
  1391. bio_list_add(&plug->pending, mbio);
  1392. plug->pending_cnt++;
  1393. } else {
  1394. bio_list_add(&conf->pending_bio_list, mbio);
  1395. conf->pending_count++;
  1396. }
  1397. spin_unlock_irqrestore(&conf->device_lock, flags);
  1398. if (!plug)
  1399. md_wakeup_thread(mddev->thread);
  1400. }
  1401. if (r10_bio->devs[i].repl_bio) {
  1402. struct md_rdev *rdev = conf->mirrors[d].replacement;
  1403. if (rdev == NULL) {
  1404. /* Replacement just got moved to main 'rdev' */
  1405. smp_mb();
  1406. rdev = conf->mirrors[d].rdev;
  1407. }
  1408. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1409. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1410. max_sectors);
  1411. r10_bio->devs[i].repl_bio = mbio;
  1412. mbio->bi_sector = (r10_bio->devs[i].addr +
  1413. choose_data_offset(
  1414. r10_bio, rdev));
  1415. mbio->bi_bdev = rdev->bdev;
  1416. mbio->bi_end_io = raid10_end_write_request;
  1417. mbio->bi_rw =
  1418. WRITE | do_sync | do_fua | do_discard | do_same;
  1419. mbio->bi_private = r10_bio;
  1420. atomic_inc(&r10_bio->remaining);
  1421. spin_lock_irqsave(&conf->device_lock, flags);
  1422. bio_list_add(&conf->pending_bio_list, mbio);
  1423. conf->pending_count++;
  1424. spin_unlock_irqrestore(&conf->device_lock, flags);
  1425. if (!mddev_check_plugged(mddev))
  1426. md_wakeup_thread(mddev->thread);
  1427. }
  1428. }
  1429. /* Don't remove the bias on 'remaining' (one_write_done) until
  1430. * after checking if we need to go around again.
  1431. */
  1432. if (sectors_handled < bio_sectors(bio)) {
  1433. one_write_done(r10_bio);
  1434. /* We need another r10_bio. It has already been counted
  1435. * in bio->bi_phys_segments.
  1436. */
  1437. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1438. r10_bio->master_bio = bio;
  1439. r10_bio->sectors = bio_sectors(bio) - sectors_handled;
  1440. r10_bio->mddev = mddev;
  1441. r10_bio->sector = bio->bi_sector + sectors_handled;
  1442. r10_bio->state = 0;
  1443. goto retry_write;
  1444. }
  1445. one_write_done(r10_bio);
  1446. /* In case raid10d snuck in to freeze_array */
  1447. wake_up(&conf->wait_barrier);
  1448. }
  1449. static void status(struct seq_file *seq, struct mddev *mddev)
  1450. {
  1451. struct r10conf *conf = mddev->private;
  1452. int i;
  1453. if (conf->geo.near_copies < conf->geo.raid_disks)
  1454. seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
  1455. if (conf->geo.near_copies > 1)
  1456. seq_printf(seq, " %d near-copies", conf->geo.near_copies);
  1457. if (conf->geo.far_copies > 1) {
  1458. if (conf->geo.far_offset)
  1459. seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
  1460. else
  1461. seq_printf(seq, " %d far-copies", conf->geo.far_copies);
  1462. }
  1463. seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
  1464. conf->geo.raid_disks - mddev->degraded);
  1465. for (i = 0; i < conf->geo.raid_disks; i++)
  1466. seq_printf(seq, "%s",
  1467. conf->mirrors[i].rdev &&
  1468. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  1469. seq_printf(seq, "]");
  1470. }
  1471. /* check if there are enough drives for
  1472. * every block to appear on atleast one.
  1473. * Don't consider the device numbered 'ignore'
  1474. * as we might be about to remove it.
  1475. */
  1476. static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
  1477. {
  1478. int first = 0;
  1479. do {
  1480. int n = conf->copies;
  1481. int cnt = 0;
  1482. int this = first;
  1483. while (n--) {
  1484. if (conf->mirrors[this].rdev &&
  1485. this != ignore)
  1486. cnt++;
  1487. this = (this+1) % geo->raid_disks;
  1488. }
  1489. if (cnt == 0)
  1490. return 0;
  1491. first = (first + geo->near_copies) % geo->raid_disks;
  1492. } while (first != 0);
  1493. return 1;
  1494. }
  1495. static int enough(struct r10conf *conf, int ignore)
  1496. {
  1497. return _enough(conf, &conf->geo, ignore) &&
  1498. _enough(conf, &conf->prev, ignore);
  1499. }
  1500. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1501. {
  1502. char b[BDEVNAME_SIZE];
  1503. struct r10conf *conf = mddev->private;
  1504. /*
  1505. * If it is not operational, then we have already marked it as dead
  1506. * else if it is the last working disks, ignore the error, let the
  1507. * next level up know.
  1508. * else mark the drive as failed
  1509. */
  1510. if (test_bit(In_sync, &rdev->flags)
  1511. && !enough(conf, rdev->raid_disk))
  1512. /*
  1513. * Don't fail the drive, just return an IO error.
  1514. */
  1515. return;
  1516. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1517. unsigned long flags;
  1518. spin_lock_irqsave(&conf->device_lock, flags);
  1519. mddev->degraded++;
  1520. spin_unlock_irqrestore(&conf->device_lock, flags);
  1521. /*
  1522. * if recovery is running, make sure it aborts.
  1523. */
  1524. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1525. }
  1526. set_bit(Blocked, &rdev->flags);
  1527. set_bit(Faulty, &rdev->flags);
  1528. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1529. printk(KERN_ALERT
  1530. "md/raid10:%s: Disk failure on %s, disabling device.\n"
  1531. "md/raid10:%s: Operation continuing on %d devices.\n",
  1532. mdname(mddev), bdevname(rdev->bdev, b),
  1533. mdname(mddev), conf->geo.raid_disks - mddev->degraded);
  1534. }
  1535. static void print_conf(struct r10conf *conf)
  1536. {
  1537. int i;
  1538. struct raid10_info *tmp;
  1539. printk(KERN_DEBUG "RAID10 conf printout:\n");
  1540. if (!conf) {
  1541. printk(KERN_DEBUG "(!conf)\n");
  1542. return;
  1543. }
  1544. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
  1545. conf->geo.raid_disks);
  1546. for (i = 0; i < conf->geo.raid_disks; i++) {
  1547. char b[BDEVNAME_SIZE];
  1548. tmp = conf->mirrors + i;
  1549. if (tmp->rdev)
  1550. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1551. i, !test_bit(In_sync, &tmp->rdev->flags),
  1552. !test_bit(Faulty, &tmp->rdev->flags),
  1553. bdevname(tmp->rdev->bdev,b));
  1554. }
  1555. }
  1556. static void close_sync(struct r10conf *conf)
  1557. {
  1558. wait_barrier(conf);
  1559. allow_barrier(conf);
  1560. mempool_destroy(conf->r10buf_pool);
  1561. conf->r10buf_pool = NULL;
  1562. }
  1563. static int raid10_spare_active(struct mddev *mddev)
  1564. {
  1565. int i;
  1566. struct r10conf *conf = mddev->private;
  1567. struct raid10_info *tmp;
  1568. int count = 0;
  1569. unsigned long flags;
  1570. /*
  1571. * Find all non-in_sync disks within the RAID10 configuration
  1572. * and mark them in_sync
  1573. */
  1574. for (i = 0; i < conf->geo.raid_disks; i++) {
  1575. tmp = conf->mirrors + i;
  1576. if (tmp->replacement
  1577. && tmp->replacement->recovery_offset == MaxSector
  1578. && !test_bit(Faulty, &tmp->replacement->flags)
  1579. && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
  1580. /* Replacement has just become active */
  1581. if (!tmp->rdev
  1582. || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
  1583. count++;
  1584. if (tmp->rdev) {
  1585. /* Replaced device not technically faulty,
  1586. * but we need to be sure it gets removed
  1587. * and never re-added.
  1588. */
  1589. set_bit(Faulty, &tmp->rdev->flags);
  1590. sysfs_notify_dirent_safe(
  1591. tmp->rdev->sysfs_state);
  1592. }
  1593. sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
  1594. } else if (tmp->rdev
  1595. && !test_bit(Faulty, &tmp->rdev->flags)
  1596. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  1597. count++;
  1598. sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
  1599. }
  1600. }
  1601. spin_lock_irqsave(&conf->device_lock, flags);
  1602. mddev->degraded -= count;
  1603. spin_unlock_irqrestore(&conf->device_lock, flags);
  1604. print_conf(conf);
  1605. return count;
  1606. }
  1607. static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1608. {
  1609. struct r10conf *conf = mddev->private;
  1610. int err = -EEXIST;
  1611. int mirror;
  1612. int first = 0;
  1613. int last = conf->geo.raid_disks - 1;
  1614. struct request_queue *q = bdev_get_queue(rdev->bdev);
  1615. if (mddev->recovery_cp < MaxSector)
  1616. /* only hot-add to in-sync arrays, as recovery is
  1617. * very different from resync
  1618. */
  1619. return -EBUSY;
  1620. if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
  1621. return -EINVAL;
  1622. if (rdev->raid_disk >= 0)
  1623. first = last = rdev->raid_disk;
  1624. if (q->merge_bvec_fn) {
  1625. set_bit(Unmerged, &rdev->flags);
  1626. mddev->merge_check_needed = 1;
  1627. }
  1628. if (rdev->saved_raid_disk >= first &&
  1629. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  1630. mirror = rdev->saved_raid_disk;
  1631. else
  1632. mirror = first;
  1633. for ( ; mirror <= last ; mirror++) {
  1634. struct raid10_info *p = &conf->mirrors[mirror];
  1635. if (p->recovery_disabled == mddev->recovery_disabled)
  1636. continue;
  1637. if (p->rdev) {
  1638. if (!test_bit(WantReplacement, &p->rdev->flags) ||
  1639. p->replacement != NULL)
  1640. continue;
  1641. clear_bit(In_sync, &rdev->flags);
  1642. set_bit(Replacement, &rdev->flags);
  1643. rdev->raid_disk = mirror;
  1644. err = 0;
  1645. if (mddev->gendisk)
  1646. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1647. rdev->data_offset << 9);
  1648. conf->fullsync = 1;
  1649. rcu_assign_pointer(p->replacement, rdev);
  1650. break;
  1651. }
  1652. if (mddev->gendisk)
  1653. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1654. rdev->data_offset << 9);
  1655. p->head_position = 0;
  1656. p->recovery_disabled = mddev->recovery_disabled - 1;
  1657. rdev->raid_disk = mirror;
  1658. err = 0;
  1659. if (rdev->saved_raid_disk != mirror)
  1660. conf->fullsync = 1;
  1661. rcu_assign_pointer(p->rdev, rdev);
  1662. break;
  1663. }
  1664. if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
  1665. /* Some requests might not have seen this new
  1666. * merge_bvec_fn. We must wait for them to complete
  1667. * before merging the device fully.
  1668. * First we make sure any code which has tested
  1669. * our function has submitted the request, then
  1670. * we wait for all outstanding requests to complete.
  1671. */
  1672. synchronize_sched();
  1673. freeze_array(conf, 0);
  1674. unfreeze_array(conf);
  1675. clear_bit(Unmerged, &rdev->flags);
  1676. }
  1677. md_integrity_add_rdev(rdev, mddev);
  1678. if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
  1679. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
  1680. print_conf(conf);
  1681. return err;
  1682. }
  1683. static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1684. {
  1685. struct r10conf *conf = mddev->private;
  1686. int err = 0;
  1687. int number = rdev->raid_disk;
  1688. struct md_rdev **rdevp;
  1689. struct raid10_info *p = conf->mirrors + number;
  1690. print_conf(conf);
  1691. if (rdev == p->rdev)
  1692. rdevp = &p->rdev;
  1693. else if (rdev == p->replacement)
  1694. rdevp = &p->replacement;
  1695. else
  1696. return 0;
  1697. if (test_bit(In_sync, &rdev->flags) ||
  1698. atomic_read(&rdev->nr_pending)) {
  1699. err = -EBUSY;
  1700. goto abort;
  1701. }
  1702. /* Only remove faulty devices if recovery
  1703. * is not possible.
  1704. */
  1705. if (!test_bit(Faulty, &rdev->flags) &&
  1706. mddev->recovery_disabled != p->recovery_disabled &&
  1707. (!p->replacement || p->replacement == rdev) &&
  1708. number < conf->geo.raid_disks &&
  1709. enough(conf, -1)) {
  1710. err = -EBUSY;
  1711. goto abort;
  1712. }
  1713. *rdevp = NULL;
  1714. synchronize_rcu();
  1715. if (atomic_read(&rdev->nr_pending)) {
  1716. /* lost the race, try later */
  1717. err = -EBUSY;
  1718. *rdevp = rdev;
  1719. goto abort;
  1720. } else if (p->replacement) {
  1721. /* We must have just cleared 'rdev' */
  1722. p->rdev = p->replacement;
  1723. clear_bit(Replacement, &p->replacement->flags);
  1724. smp_mb(); /* Make sure other CPUs may see both as identical
  1725. * but will never see neither -- if they are careful.
  1726. */
  1727. p->replacement = NULL;
  1728. clear_bit(WantReplacement, &rdev->flags);
  1729. } else
  1730. /* We might have just remove the Replacement as faulty
  1731. * Clear the flag just in case
  1732. */
  1733. clear_bit(WantReplacement, &rdev->flags);
  1734. err = md_integrity_register(mddev);
  1735. abort:
  1736. print_conf(conf);
  1737. return err;
  1738. }
  1739. static void end_sync_read(struct bio *bio, int error)
  1740. {
  1741. struct r10bio *r10_bio = bio->bi_private;
  1742. struct r10conf *conf = r10_bio->mddev->private;
  1743. int d;
  1744. if (bio == r10_bio->master_bio) {
  1745. /* this is a reshape read */
  1746. d = r10_bio->read_slot; /* really the read dev */
  1747. } else
  1748. d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
  1749. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1750. set_bit(R10BIO_Uptodate, &r10_bio->state);
  1751. else
  1752. /* The write handler will notice the lack of
  1753. * R10BIO_Uptodate and record any errors etc
  1754. */
  1755. atomic_add(r10_bio->sectors,
  1756. &conf->mirrors[d].rdev->corrected_errors);
  1757. /* for reconstruct, we always reschedule after a read.
  1758. * for resync, only after all reads
  1759. */
  1760. rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
  1761. if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
  1762. atomic_dec_and_test(&r10_bio->remaining)) {
  1763. /* we have read all the blocks,
  1764. * do the comparison in process context in raid10d
  1765. */
  1766. reschedule_retry(r10_bio);
  1767. }
  1768. }
  1769. static void end_sync_request(struct r10bio *r10_bio)
  1770. {
  1771. struct mddev *mddev = r10_bio->mddev;
  1772. while (atomic_dec_and_test(&r10_bio->remaining)) {
  1773. if (r10_bio->master_bio == NULL) {
  1774. /* the primary of several recovery bios */
  1775. sector_t s = r10_bio->sectors;
  1776. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1777. test_bit(R10BIO_WriteError, &r10_bio->state))
  1778. reschedule_retry(r10_bio);
  1779. else
  1780. put_buf(r10_bio);
  1781. md_done_sync(mddev, s, 1);
  1782. break;
  1783. } else {
  1784. struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
  1785. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1786. test_bit(R10BIO_WriteError, &r10_bio->state))
  1787. reschedule_retry(r10_bio);
  1788. else
  1789. put_buf(r10_bio);
  1790. r10_bio = r10_bio2;
  1791. }
  1792. }
  1793. }
  1794. static void end_sync_write(struct bio *bio, int error)
  1795. {
  1796. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1797. struct r10bio *r10_bio = bio->bi_private;
  1798. struct mddev *mddev = r10_bio->mddev;
  1799. struct r10conf *conf = mddev->private;
  1800. int d;
  1801. sector_t first_bad;
  1802. int bad_sectors;
  1803. int slot;
  1804. int repl;
  1805. struct md_rdev *rdev = NULL;
  1806. d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  1807. if (repl)
  1808. rdev = conf->mirrors[d].replacement;
  1809. else
  1810. rdev = conf->mirrors[d].rdev;
  1811. if (!uptodate) {
  1812. if (repl)
  1813. md_error(mddev, rdev);
  1814. else {
  1815. set_bit(WriteErrorSeen, &rdev->flags);
  1816. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  1817. set_bit(MD_RECOVERY_NEEDED,
  1818. &rdev->mddev->recovery);
  1819. set_bit(R10BIO_WriteError, &r10_bio->state);
  1820. }
  1821. } else if (is_badblock(rdev,
  1822. r10_bio->devs[slot].addr,
  1823. r10_bio->sectors,
  1824. &first_bad, &bad_sectors))
  1825. set_bit(R10BIO_MadeGood, &r10_bio->state);
  1826. rdev_dec_pending(rdev, mddev);
  1827. end_sync_request(r10_bio);
  1828. }
  1829. /*
  1830. * Note: sync and recover and handled very differently for raid10
  1831. * This code is for resync.
  1832. * For resync, we read through virtual addresses and read all blocks.
  1833. * If there is any error, we schedule a write. The lowest numbered
  1834. * drive is authoritative.
  1835. * However requests come for physical address, so we need to map.
  1836. * For every physical address there are raid_disks/copies virtual addresses,
  1837. * which is always are least one, but is not necessarly an integer.
  1838. * This means that a physical address can span multiple chunks, so we may
  1839. * have to submit multiple io requests for a single sync request.
  1840. */
  1841. /*
  1842. * We check if all blocks are in-sync and only write to blocks that
  1843. * aren't in sync
  1844. */
  1845. static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  1846. {
  1847. struct r10conf *conf = mddev->private;
  1848. int i, first;
  1849. struct bio *tbio, *fbio;
  1850. int vcnt;
  1851. atomic_set(&r10_bio->remaining, 1);
  1852. /* find the first device with a block */
  1853. for (i=0; i<conf->copies; i++)
  1854. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
  1855. break;
  1856. if (i == conf->copies)
  1857. goto done;
  1858. first = i;
  1859. fbio = r10_bio->devs[i].bio;
  1860. vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
  1861. /* now find blocks with errors */
  1862. for (i=0 ; i < conf->copies ; i++) {
  1863. int j, d;
  1864. tbio = r10_bio->devs[i].bio;
  1865. if (tbio->bi_end_io != end_sync_read)
  1866. continue;
  1867. if (i == first)
  1868. continue;
  1869. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
  1870. /* We know that the bi_io_vec layout is the same for
  1871. * both 'first' and 'i', so we just compare them.
  1872. * All vec entries are PAGE_SIZE;
  1873. */
  1874. for (j = 0; j < vcnt; j++)
  1875. if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
  1876. page_address(tbio->bi_io_vec[j].bv_page),
  1877. fbio->bi_io_vec[j].bv_len))
  1878. break;
  1879. if (j == vcnt)
  1880. continue;
  1881. atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
  1882. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1883. /* Don't fix anything. */
  1884. continue;
  1885. }
  1886. /* Ok, we need to write this bio, either to correct an
  1887. * inconsistency or to correct an unreadable block.
  1888. * First we need to fixup bv_offset, bv_len and
  1889. * bi_vecs, as the read request might have corrupted these
  1890. */
  1891. bio_reset(tbio);
  1892. tbio->bi_vcnt = vcnt;
  1893. tbio->bi_size = r10_bio->sectors << 9;
  1894. tbio->bi_rw = WRITE;
  1895. tbio->bi_private = r10_bio;
  1896. tbio->bi_sector = r10_bio->devs[i].addr;
  1897. for (j=0; j < vcnt ; j++) {
  1898. tbio->bi_io_vec[j].bv_offset = 0;
  1899. tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
  1900. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1901. page_address(fbio->bi_io_vec[j].bv_page),
  1902. PAGE_SIZE);
  1903. }
  1904. tbio->bi_end_io = end_sync_write;
  1905. d = r10_bio->devs[i].devnum;
  1906. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1907. atomic_inc(&r10_bio->remaining);
  1908. md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
  1909. tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
  1910. tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1911. generic_make_request(tbio);
  1912. }
  1913. /* Now write out to any replacement devices
  1914. * that are active
  1915. */
  1916. for (i = 0; i < conf->copies; i++) {
  1917. int j, d;
  1918. tbio = r10_bio->devs[i].repl_bio;
  1919. if (!tbio || !tbio->bi_end_io)
  1920. continue;
  1921. if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
  1922. && r10_bio->devs[i].bio != fbio)
  1923. for (j = 0; j < vcnt; j++)
  1924. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1925. page_address(fbio->bi_io_vec[j].bv_page),
  1926. PAGE_SIZE);
  1927. d = r10_bio->devs[i].devnum;
  1928. atomic_inc(&r10_bio->remaining);
  1929. md_sync_acct(conf->mirrors[d].replacement->bdev,
  1930. bio_sectors(tbio));
  1931. generic_make_request(tbio);
  1932. }
  1933. done:
  1934. if (atomic_dec_and_test(&r10_bio->remaining)) {
  1935. md_done_sync(mddev, r10_bio->sectors, 1);
  1936. put_buf(r10_bio);
  1937. }
  1938. }
  1939. /*
  1940. * Now for the recovery code.
  1941. * Recovery happens across physical sectors.
  1942. * We recover all non-is_sync drives by finding the virtual address of
  1943. * each, and then choose a working drive that also has that virt address.
  1944. * There is a separate r10_bio for each non-in_sync drive.
  1945. * Only the first two slots are in use. The first for reading,
  1946. * The second for writing.
  1947. *
  1948. */
  1949. static void fix_recovery_read_error(struct r10bio *r10_bio)
  1950. {
  1951. /* We got a read error during recovery.
  1952. * We repeat the read in smaller page-sized sections.
  1953. * If a read succeeds, write it to the new device or record
  1954. * a bad block if we cannot.
  1955. * If a read fails, record a bad block on both old and
  1956. * new devices.
  1957. */
  1958. struct mddev *mddev = r10_bio->mddev;
  1959. struct r10conf *conf = mddev->private;
  1960. struct bio *bio = r10_bio->devs[0].bio;
  1961. sector_t sect = 0;
  1962. int sectors = r10_bio->sectors;
  1963. int idx = 0;
  1964. int dr = r10_bio->devs[0].devnum;
  1965. int dw = r10_bio->devs[1].devnum;
  1966. while (sectors) {
  1967. int s = sectors;
  1968. struct md_rdev *rdev;
  1969. sector_t addr;
  1970. int ok;
  1971. if (s > (PAGE_SIZE>>9))
  1972. s = PAGE_SIZE >> 9;
  1973. rdev = conf->mirrors[dr].rdev;
  1974. addr = r10_bio->devs[0].addr + sect,
  1975. ok = sync_page_io(rdev,
  1976. addr,
  1977. s << 9,
  1978. bio->bi_io_vec[idx].bv_page,
  1979. READ, false);
  1980. if (ok) {
  1981. rdev = conf->mirrors[dw].rdev;
  1982. addr = r10_bio->devs[1].addr + sect;
  1983. ok = sync_page_io(rdev,
  1984. addr,
  1985. s << 9,
  1986. bio->bi_io_vec[idx].bv_page,
  1987. WRITE, false);
  1988. if (!ok) {
  1989. set_bit(WriteErrorSeen, &rdev->flags);
  1990. if (!test_and_set_bit(WantReplacement,
  1991. &rdev->flags))
  1992. set_bit(MD_RECOVERY_NEEDED,
  1993. &rdev->mddev->recovery);
  1994. }
  1995. }
  1996. if (!ok) {
  1997. /* We don't worry if we cannot set a bad block -
  1998. * it really is bad so there is no loss in not
  1999. * recording it yet
  2000. */
  2001. rdev_set_badblocks(rdev, addr, s, 0);
  2002. if (rdev != conf->mirrors[dw].rdev) {
  2003. /* need bad block on destination too */
  2004. struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
  2005. addr = r10_bio->devs[1].addr + sect;
  2006. ok = rdev_set_badblocks(rdev2, addr, s, 0);
  2007. if (!ok) {
  2008. /* just abort the recovery */
  2009. printk(KERN_NOTICE
  2010. "md/raid10:%s: recovery aborted"
  2011. " due to read error\n",
  2012. mdname(mddev));
  2013. conf->mirrors[dw].recovery_disabled
  2014. = mddev->recovery_disabled;
  2015. set_bit(MD_RECOVERY_INTR,
  2016. &mddev->recovery);
  2017. break;
  2018. }
  2019. }
  2020. }
  2021. sectors -= s;
  2022. sect += s;
  2023. idx++;
  2024. }
  2025. }
  2026. static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  2027. {
  2028. struct r10conf *conf = mddev->private;
  2029. int d;
  2030. struct bio *wbio, *wbio2;
  2031. if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
  2032. fix_recovery_read_error(r10_bio);
  2033. end_sync_request(r10_bio);
  2034. return;
  2035. }
  2036. /*
  2037. * share the pages with the first bio
  2038. * and submit the write request
  2039. */
  2040. d = r10_bio->devs[1].devnum;
  2041. wbio = r10_bio->devs[1].bio;
  2042. wbio2 = r10_bio->devs[1].repl_bio;
  2043. if (wbio->bi_end_io) {
  2044. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2045. md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
  2046. generic_make_request(wbio);
  2047. }
  2048. if (wbio2 && wbio2->bi_end_io) {
  2049. atomic_inc(&conf->mirrors[d].replacement->nr_pending);
  2050. md_sync_acct(conf->mirrors[d].replacement->bdev,
  2051. bio_sectors(wbio2));
  2052. generic_make_request(wbio2);
  2053. }
  2054. }
  2055. /*
  2056. * Used by fix_read_error() to decay the per rdev read_errors.
  2057. * We halve the read error count for every hour that has elapsed
  2058. * since the last recorded read error.
  2059. *
  2060. */
  2061. static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
  2062. {
  2063. struct timespec cur_time_mon;
  2064. unsigned long hours_since_last;
  2065. unsigned int read_errors = atomic_read(&rdev->read_errors);
  2066. ktime_get_ts(&cur_time_mon);
  2067. if (rdev->last_read_error.tv_sec == 0 &&
  2068. rdev->last_read_error.tv_nsec == 0) {
  2069. /* first time we've seen a read error */
  2070. rdev->last_read_error = cur_time_mon;
  2071. return;
  2072. }
  2073. hours_since_last = (cur_time_mon.tv_sec -
  2074. rdev->last_read_error.tv_sec) / 3600;
  2075. rdev->last_read_error = cur_time_mon;
  2076. /*
  2077. * if hours_since_last is > the number of bits in read_errors
  2078. * just set read errors to 0. We do this to avoid
  2079. * overflowing the shift of read_errors by hours_since_last.
  2080. */
  2081. if (hours_since_last >= 8 * sizeof(read_errors))
  2082. atomic_set(&rdev->read_errors, 0);
  2083. else
  2084. atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
  2085. }
  2086. static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
  2087. int sectors, struct page *page, int rw)
  2088. {
  2089. sector_t first_bad;
  2090. int bad_sectors;
  2091. if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
  2092. && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
  2093. return -1;
  2094. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  2095. /* success */
  2096. return 1;
  2097. if (rw == WRITE) {
  2098. set_bit(WriteErrorSeen, &rdev->flags);
  2099. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  2100. set_bit(MD_RECOVERY_NEEDED,
  2101. &rdev->mddev->recovery);
  2102. }
  2103. /* need to record an error - either for the block or the device */
  2104. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  2105. md_error(rdev->mddev, rdev);
  2106. return 0;
  2107. }
  2108. /*
  2109. * This is a kernel thread which:
  2110. *
  2111. * 1. Retries failed read operations on working mirrors.
  2112. * 2. Updates the raid superblock when problems encounter.
  2113. * 3. Performs writes following reads for array synchronising.
  2114. */
  2115. static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
  2116. {
  2117. int sect = 0; /* Offset from r10_bio->sector */
  2118. int sectors = r10_bio->sectors;
  2119. struct md_rdev*rdev;
  2120. int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
  2121. int d = r10_bio->devs[r10_bio->read_slot].devnum;
  2122. /* still own a reference to this rdev, so it cannot
  2123. * have been cleared recently.
  2124. */
  2125. rdev = conf->mirrors[d].rdev;
  2126. if (test_bit(Faulty, &rdev->flags))
  2127. /* drive has already been failed, just ignore any
  2128. more fix_read_error() attempts */
  2129. return;
  2130. check_decay_read_errors(mddev, rdev);
  2131. atomic_inc(&rdev->read_errors);
  2132. if (atomic_read(&rdev->read_errors) > max_read_errors) {
  2133. char b[BDEVNAME_SIZE];
  2134. bdevname(rdev->bdev, b);
  2135. printk(KERN_NOTICE
  2136. "md/raid10:%s: %s: Raid device exceeded "
  2137. "read_error threshold [cur %d:max %d]\n",
  2138. mdname(mddev), b,
  2139. atomic_read(&rdev->read_errors), max_read_errors);
  2140. printk(KERN_NOTICE
  2141. "md/raid10:%s: %s: Failing raid device\n",
  2142. mdname(mddev), b);
  2143. md_error(mddev, conf->mirrors[d].rdev);
  2144. r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
  2145. return;
  2146. }
  2147. while(sectors) {
  2148. int s = sectors;
  2149. int sl = r10_bio->read_slot;
  2150. int success = 0;
  2151. int start;
  2152. if (s > (PAGE_SIZE>>9))
  2153. s = PAGE_SIZE >> 9;
  2154. rcu_read_lock();
  2155. do {
  2156. sector_t first_bad;
  2157. int bad_sectors;
  2158. d = r10_bio->devs[sl].devnum;
  2159. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2160. if (rdev &&
  2161. !test_bit(Unmerged, &rdev->flags) &&
  2162. test_bit(In_sync, &rdev->flags) &&
  2163. is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
  2164. &first_bad, &bad_sectors) == 0) {
  2165. atomic_inc(&rdev->nr_pending);
  2166. rcu_read_unlock();
  2167. success = sync_page_io(rdev,
  2168. r10_bio->devs[sl].addr +
  2169. sect,
  2170. s<<9,
  2171. conf->tmppage, READ, false);
  2172. rdev_dec_pending(rdev, mddev);
  2173. rcu_read_lock();
  2174. if (success)
  2175. break;
  2176. }
  2177. sl++;
  2178. if (sl == conf->copies)
  2179. sl = 0;
  2180. } while (!success && sl != r10_bio->read_slot);
  2181. rcu_read_unlock();
  2182. if (!success) {
  2183. /* Cannot read from anywhere, just mark the block
  2184. * as bad on the first device to discourage future
  2185. * reads.
  2186. */
  2187. int dn = r10_bio->devs[r10_bio->read_slot].devnum;
  2188. rdev = conf->mirrors[dn].rdev;
  2189. if (!rdev_set_badblocks(
  2190. rdev,
  2191. r10_bio->devs[r10_bio->read_slot].addr
  2192. + sect,
  2193. s, 0)) {
  2194. md_error(mddev, rdev);
  2195. r10_bio->devs[r10_bio->read_slot].bio
  2196. = IO_BLOCKED;
  2197. }
  2198. break;
  2199. }
  2200. start = sl;
  2201. /* write it back and re-read */
  2202. rcu_read_lock();
  2203. while (sl != r10_bio->read_slot) {
  2204. char b[BDEVNAME_SIZE];
  2205. if (sl==0)
  2206. sl = conf->copies;
  2207. sl--;
  2208. d = r10_bio->devs[sl].devnum;
  2209. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2210. if (!rdev ||
  2211. test_bit(Unmerged, &rdev->flags) ||
  2212. !test_bit(In_sync, &rdev->flags))
  2213. continue;
  2214. atomic_inc(&rdev->nr_pending);
  2215. rcu_read_unlock();
  2216. if (r10_sync_page_io(rdev,
  2217. r10_bio->devs[sl].addr +
  2218. sect,
  2219. s, conf->tmppage, WRITE)
  2220. == 0) {
  2221. /* Well, this device is dead */
  2222. printk(KERN_NOTICE
  2223. "md/raid10:%s: read correction "
  2224. "write failed"
  2225. " (%d sectors at %llu on %s)\n",
  2226. mdname(mddev), s,
  2227. (unsigned long long)(
  2228. sect +
  2229. choose_data_offset(r10_bio,
  2230. rdev)),
  2231. bdevname(rdev->bdev, b));
  2232. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  2233. "drive\n",
  2234. mdname(mddev),
  2235. bdevname(rdev->bdev, b));
  2236. }
  2237. rdev_dec_pending(rdev, mddev);
  2238. rcu_read_lock();
  2239. }
  2240. sl = start;
  2241. while (sl != r10_bio->read_slot) {
  2242. char b[BDEVNAME_SIZE];
  2243. if (sl==0)
  2244. sl = conf->copies;
  2245. sl--;
  2246. d = r10_bio->devs[sl].devnum;
  2247. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2248. if (!rdev ||
  2249. !test_bit(In_sync, &rdev->flags))
  2250. continue;
  2251. atomic_inc(&rdev->nr_pending);
  2252. rcu_read_unlock();
  2253. switch (r10_sync_page_io(rdev,
  2254. r10_bio->devs[sl].addr +
  2255. sect,
  2256. s, conf->tmppage,
  2257. READ)) {
  2258. case 0:
  2259. /* Well, this device is dead */
  2260. printk(KERN_NOTICE
  2261. "md/raid10:%s: unable to read back "
  2262. "corrected sectors"
  2263. " (%d sectors at %llu on %s)\n",
  2264. mdname(mddev), s,
  2265. (unsigned long long)(
  2266. sect +
  2267. choose_data_offset(r10_bio, rdev)),
  2268. bdevname(rdev->bdev, b));
  2269. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  2270. "drive\n",
  2271. mdname(mddev),
  2272. bdevname(rdev->bdev, b));
  2273. break;
  2274. case 1:
  2275. printk(KERN_INFO
  2276. "md/raid10:%s: read error corrected"
  2277. " (%d sectors at %llu on %s)\n",
  2278. mdname(mddev), s,
  2279. (unsigned long long)(
  2280. sect +
  2281. choose_data_offset(r10_bio, rdev)),
  2282. bdevname(rdev->bdev, b));
  2283. atomic_add(s, &rdev->corrected_errors);
  2284. }
  2285. rdev_dec_pending(rdev, mddev);
  2286. rcu_read_lock();
  2287. }
  2288. rcu_read_unlock();
  2289. sectors -= s;
  2290. sect += s;
  2291. }
  2292. }
  2293. static int narrow_write_error(struct r10bio *r10_bio, int i)
  2294. {
  2295. struct bio *bio = r10_bio->master_bio;
  2296. struct mddev *mddev = r10_bio->mddev;
  2297. struct r10conf *conf = mddev->private;
  2298. struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
  2299. /* bio has the data to be written to slot 'i' where
  2300. * we just recently had a write error.
  2301. * We repeatedly clone the bio and trim down to one block,
  2302. * then try the write. Where the write fails we record
  2303. * a bad block.
  2304. * It is conceivable that the bio doesn't exactly align with
  2305. * blocks. We must handle this.
  2306. *
  2307. * We currently own a reference to the rdev.
  2308. */
  2309. int block_sectors;
  2310. sector_t sector;
  2311. int sectors;
  2312. int sect_to_write = r10_bio->sectors;
  2313. int ok = 1;
  2314. if (rdev->badblocks.shift < 0)
  2315. return 0;
  2316. block_sectors = 1 << rdev->badblocks.shift;
  2317. sector = r10_bio->sector;
  2318. sectors = ((r10_bio->sector + block_sectors)
  2319. & ~(sector_t)(block_sectors - 1))
  2320. - sector;
  2321. while (sect_to_write) {
  2322. struct bio *wbio;
  2323. if (sectors > sect_to_write)
  2324. sectors = sect_to_write;
  2325. /* Write at 'sector' for 'sectors' */
  2326. wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  2327. md_trim_bio(wbio, sector - bio->bi_sector, sectors);
  2328. wbio->bi_sector = (r10_bio->devs[i].addr+
  2329. choose_data_offset(r10_bio, rdev) +
  2330. (sector - r10_bio->sector));
  2331. wbio->bi_bdev = rdev->bdev;
  2332. if (submit_bio_wait(WRITE, wbio) == 0)
  2333. /* Failure! */
  2334. ok = rdev_set_badblocks(rdev, sector,
  2335. sectors, 0)
  2336. && ok;
  2337. bio_put(wbio);
  2338. sect_to_write -= sectors;
  2339. sector += sectors;
  2340. sectors = block_sectors;
  2341. }
  2342. return ok;
  2343. }
  2344. static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
  2345. {
  2346. int slot = r10_bio->read_slot;
  2347. struct bio *bio;
  2348. struct r10conf *conf = mddev->private;
  2349. struct md_rdev *rdev = r10_bio->devs[slot].rdev;
  2350. char b[BDEVNAME_SIZE];
  2351. unsigned long do_sync;
  2352. int max_sectors;
  2353. /* we got a read error. Maybe the drive is bad. Maybe just
  2354. * the block and we can fix it.
  2355. * We freeze all other IO, and try reading the block from
  2356. * other devices. When we find one, we re-write
  2357. * and check it that fixes the read error.
  2358. * This is all done synchronously while the array is
  2359. * frozen.
  2360. */
  2361. bio = r10_bio->devs[slot].bio;
  2362. bdevname(bio->bi_bdev, b);
  2363. bio_put(bio);
  2364. r10_bio->devs[slot].bio = NULL;
  2365. if (mddev->ro == 0) {
  2366. freeze_array(conf, 1);
  2367. fix_read_error(conf, mddev, r10_bio);
  2368. unfreeze_array(conf);
  2369. } else
  2370. r10_bio->devs[slot].bio = IO_BLOCKED;
  2371. rdev_dec_pending(rdev, mddev);
  2372. read_more:
  2373. rdev = read_balance(conf, r10_bio, &max_sectors);
  2374. if (rdev == NULL) {
  2375. printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
  2376. " read error for block %llu\n",
  2377. mdname(mddev), b,
  2378. (unsigned long long)r10_bio->sector);
  2379. raid_end_bio_io(r10_bio);
  2380. return;
  2381. }
  2382. do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
  2383. slot = r10_bio->read_slot;
  2384. printk_ratelimited(
  2385. KERN_ERR
  2386. "md/raid10:%s: %s: redirecting "
  2387. "sector %llu to another mirror\n",
  2388. mdname(mddev),
  2389. bdevname(rdev->bdev, b),
  2390. (unsigned long long)r10_bio->sector);
  2391. bio = bio_clone_mddev(r10_bio->master_bio,
  2392. GFP_NOIO, mddev);
  2393. md_trim_bio(bio,
  2394. r10_bio->sector - bio->bi_sector,
  2395. max_sectors);
  2396. r10_bio->devs[slot].bio = bio;
  2397. r10_bio->devs[slot].rdev = rdev;
  2398. bio->bi_sector = r10_bio->devs[slot].addr
  2399. + choose_data_offset(r10_bio, rdev);
  2400. bio->bi_bdev = rdev->bdev;
  2401. bio->bi_rw = READ | do_sync;
  2402. bio->bi_private = r10_bio;
  2403. bio->bi_end_io = raid10_end_read_request;
  2404. if (max_sectors < r10_bio->sectors) {
  2405. /* Drat - have to split this up more */
  2406. struct bio *mbio = r10_bio->master_bio;
  2407. int sectors_handled =
  2408. r10_bio->sector + max_sectors
  2409. - mbio->bi_sector;
  2410. r10_bio->sectors = max_sectors;
  2411. spin_lock_irq(&conf->device_lock);
  2412. if (mbio->bi_phys_segments == 0)
  2413. mbio->bi_phys_segments = 2;
  2414. else
  2415. mbio->bi_phys_segments++;
  2416. spin_unlock_irq(&conf->device_lock);
  2417. generic_make_request(bio);
  2418. r10_bio = mempool_alloc(conf->r10bio_pool,
  2419. GFP_NOIO);
  2420. r10_bio->master_bio = mbio;
  2421. r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
  2422. r10_bio->state = 0;
  2423. set_bit(R10BIO_ReadError,
  2424. &r10_bio->state);
  2425. r10_bio->mddev = mddev;
  2426. r10_bio->sector = mbio->bi_sector
  2427. + sectors_handled;
  2428. goto read_more;
  2429. } else
  2430. generic_make_request(bio);
  2431. }
  2432. static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
  2433. {
  2434. /* Some sort of write request has finished and it
  2435. * succeeded in writing where we thought there was a
  2436. * bad block. So forget the bad block.
  2437. * Or possibly if failed and we need to record
  2438. * a bad block.
  2439. */
  2440. int m;
  2441. struct md_rdev *rdev;
  2442. if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
  2443. test_bit(R10BIO_IsRecover, &r10_bio->state)) {
  2444. for (m = 0; m < conf->copies; m++) {
  2445. int dev = r10_bio->devs[m].devnum;
  2446. rdev = conf->mirrors[dev].rdev;
  2447. if (r10_bio->devs[m].bio == NULL)
  2448. continue;
  2449. if (test_bit(BIO_UPTODATE,
  2450. &r10_bio->devs[m].bio->bi_flags)) {
  2451. rdev_clear_badblocks(
  2452. rdev,
  2453. r10_bio->devs[m].addr,
  2454. r10_bio->sectors, 0);
  2455. } else {
  2456. if (!rdev_set_badblocks(
  2457. rdev,
  2458. r10_bio->devs[m].addr,
  2459. r10_bio->sectors, 0))
  2460. md_error(conf->mddev, rdev);
  2461. }
  2462. rdev = conf->mirrors[dev].replacement;
  2463. if (r10_bio->devs[m].repl_bio == NULL)
  2464. continue;
  2465. if (test_bit(BIO_UPTODATE,
  2466. &r10_bio->devs[m].repl_bio->bi_flags)) {
  2467. rdev_clear_badblocks(
  2468. rdev,
  2469. r10_bio->devs[m].addr,
  2470. r10_bio->sectors, 0);
  2471. } else {
  2472. if (!rdev_set_badblocks(
  2473. rdev,
  2474. r10_bio->devs[m].addr,
  2475. r10_bio->sectors, 0))
  2476. md_error(conf->mddev, rdev);
  2477. }
  2478. }
  2479. put_buf(r10_bio);
  2480. } else {
  2481. for (m = 0; m < conf->copies; m++) {
  2482. int dev = r10_bio->devs[m].devnum;
  2483. struct bio *bio = r10_bio->devs[m].bio;
  2484. rdev = conf->mirrors[dev].rdev;
  2485. if (bio == IO_MADE_GOOD) {
  2486. rdev_clear_badblocks(
  2487. rdev,
  2488. r10_bio->devs[m].addr,
  2489. r10_bio->sectors, 0);
  2490. rdev_dec_pending(rdev, conf->mddev);
  2491. } else if (bio != NULL &&
  2492. !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  2493. if (!narrow_write_error(r10_bio, m)) {
  2494. md_error(conf->mddev, rdev);
  2495. set_bit(R10BIO_Degraded,
  2496. &r10_bio->state);
  2497. }
  2498. rdev_dec_pending(rdev, conf->mddev);
  2499. }
  2500. bio = r10_bio->devs[m].repl_bio;
  2501. rdev = conf->mirrors[dev].replacement;
  2502. if (rdev && bio == IO_MADE_GOOD) {
  2503. rdev_clear_badblocks(
  2504. rdev,
  2505. r10_bio->devs[m].addr,
  2506. r10_bio->sectors, 0);
  2507. rdev_dec_pending(rdev, conf->mddev);
  2508. }
  2509. }
  2510. if (test_bit(R10BIO_WriteError,
  2511. &r10_bio->state))
  2512. close_write(r10_bio);
  2513. raid_end_bio_io(r10_bio);
  2514. }
  2515. }
  2516. static void raid10d(struct md_thread *thread)
  2517. {
  2518. struct mddev *mddev = thread->mddev;
  2519. struct r10bio *r10_bio;
  2520. unsigned long flags;
  2521. struct r10conf *conf = mddev->private;
  2522. struct list_head *head = &conf->retry_list;
  2523. struct blk_plug plug;
  2524. md_check_recovery(mddev);
  2525. blk_start_plug(&plug);
  2526. for (;;) {
  2527. flush_pending_writes(conf);
  2528. spin_lock_irqsave(&conf->device_lock, flags);
  2529. if (list_empty(head)) {
  2530. spin_unlock_irqrestore(&conf->device_lock, flags);
  2531. break;
  2532. }
  2533. r10_bio = list_entry(head->prev, struct r10bio, retry_list);
  2534. list_del(head->prev);
  2535. conf->nr_queued--;
  2536. spin_unlock_irqrestore(&conf->device_lock, flags);
  2537. mddev = r10_bio->mddev;
  2538. conf = mddev->private;
  2539. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  2540. test_bit(R10BIO_WriteError, &r10_bio->state))
  2541. handle_write_completed(conf, r10_bio);
  2542. else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
  2543. reshape_request_write(mddev, r10_bio);
  2544. else if (test_bit(R10BIO_IsSync, &r10_bio->state))
  2545. sync_request_write(mddev, r10_bio);
  2546. else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
  2547. recovery_request_write(mddev, r10_bio);
  2548. else if (test_bit(R10BIO_ReadError, &r10_bio->state))
  2549. handle_read_error(mddev, r10_bio);
  2550. else {
  2551. /* just a partial read to be scheduled from a
  2552. * separate context
  2553. */
  2554. int slot = r10_bio->read_slot;
  2555. generic_make_request(r10_bio->devs[slot].bio);
  2556. }
  2557. cond_resched();
  2558. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  2559. md_check_recovery(mddev);
  2560. }
  2561. blk_finish_plug(&plug);
  2562. }
  2563. static int init_resync(struct r10conf *conf)
  2564. {
  2565. int buffs;
  2566. int i;
  2567. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  2568. BUG_ON(conf->r10buf_pool);
  2569. conf->have_replacement = 0;
  2570. for (i = 0; i < conf->geo.raid_disks; i++)
  2571. if (conf->mirrors[i].replacement)
  2572. conf->have_replacement = 1;
  2573. conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
  2574. if (!conf->r10buf_pool)
  2575. return -ENOMEM;
  2576. conf->next_resync = 0;
  2577. return 0;
  2578. }
  2579. /*
  2580. * perform a "sync" on one "block"
  2581. *
  2582. * We need to make sure that no normal I/O request - particularly write
  2583. * requests - conflict with active sync requests.
  2584. *
  2585. * This is achieved by tracking pending requests and a 'barrier' concept
  2586. * that can be installed to exclude normal IO requests.
  2587. *
  2588. * Resync and recovery are handled very differently.
  2589. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
  2590. *
  2591. * For resync, we iterate over virtual addresses, read all copies,
  2592. * and update if there are differences. If only one copy is live,
  2593. * skip it.
  2594. * For recovery, we iterate over physical addresses, read a good
  2595. * value for each non-in_sync drive, and over-write.
  2596. *
  2597. * So, for recovery we may have several outstanding complex requests for a
  2598. * given address, one for each out-of-sync device. We model this by allocating
  2599. * a number of r10_bio structures, one for each out-of-sync device.
  2600. * As we setup these structures, we collect all bio's together into a list
  2601. * which we then process collectively to add pages, and then process again
  2602. * to pass to generic_make_request.
  2603. *
  2604. * The r10_bio structures are linked using a borrowed master_bio pointer.
  2605. * This link is counted in ->remaining. When the r10_bio that points to NULL
  2606. * has its remaining count decremented to 0, the whole complex operation
  2607. * is complete.
  2608. *
  2609. */
  2610. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
  2611. int *skipped, int go_faster)
  2612. {
  2613. struct r10conf *conf = mddev->private;
  2614. struct r10bio *r10_bio;
  2615. struct bio *biolist = NULL, *bio;
  2616. sector_t max_sector, nr_sectors;
  2617. int i;
  2618. int max_sync;
  2619. sector_t sync_blocks;
  2620. sector_t sectors_skipped = 0;
  2621. int chunks_skipped = 0;
  2622. sector_t chunk_mask = conf->geo.chunk_mask;
  2623. if (!conf->r10buf_pool)
  2624. if (init_resync(conf))
  2625. return 0;
  2626. /*
  2627. * Allow skipping a full rebuild for incremental assembly
  2628. * of a clean array, like RAID1 does.
  2629. */
  2630. if (mddev->bitmap == NULL &&
  2631. mddev->recovery_cp == MaxSector &&
  2632. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  2633. conf->fullsync == 0) {
  2634. *skipped = 1;
  2635. max_sector = mddev->dev_sectors;
  2636. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  2637. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2638. max_sector = mddev->resync_max_sectors;
  2639. return max_sector - sector_nr;
  2640. }
  2641. skipped:
  2642. max_sector = mddev->dev_sectors;
  2643. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  2644. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2645. max_sector = mddev->resync_max_sectors;
  2646. if (sector_nr >= max_sector) {
  2647. /* If we aborted, we need to abort the
  2648. * sync on the 'current' bitmap chucks (there can
  2649. * be several when recovering multiple devices).
  2650. * as we may have started syncing it but not finished.
  2651. * We can find the current address in
  2652. * mddev->curr_resync, but for recovery,
  2653. * we need to convert that to several
  2654. * virtual addresses.
  2655. */
  2656. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
  2657. end_reshape(conf);
  2658. return 0;
  2659. }
  2660. if (mddev->curr_resync < max_sector) { /* aborted */
  2661. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2662. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  2663. &sync_blocks, 1);
  2664. else for (i = 0; i < conf->geo.raid_disks; i++) {
  2665. sector_t sect =
  2666. raid10_find_virt(conf, mddev->curr_resync, i);
  2667. bitmap_end_sync(mddev->bitmap, sect,
  2668. &sync_blocks, 1);
  2669. }
  2670. } else {
  2671. /* completed sync */
  2672. if ((!mddev->bitmap || conf->fullsync)
  2673. && conf->have_replacement
  2674. && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2675. /* Completed a full sync so the replacements
  2676. * are now fully recovered.
  2677. */
  2678. for (i = 0; i < conf->geo.raid_disks; i++)
  2679. if (conf->mirrors[i].replacement)
  2680. conf->mirrors[i].replacement
  2681. ->recovery_offset
  2682. = MaxSector;
  2683. }
  2684. conf->fullsync = 0;
  2685. }
  2686. bitmap_close_sync(mddev->bitmap);
  2687. close_sync(conf);
  2688. *skipped = 1;
  2689. return sectors_skipped;
  2690. }
  2691. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2692. return reshape_request(mddev, sector_nr, skipped);
  2693. if (chunks_skipped >= conf->geo.raid_disks) {
  2694. /* if there has been nothing to do on any drive,
  2695. * then there is nothing to do at all..
  2696. */
  2697. *skipped = 1;
  2698. return (max_sector - sector_nr) + sectors_skipped;
  2699. }
  2700. if (max_sector > mddev->resync_max)
  2701. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2702. /* make sure whole request will fit in a chunk - if chunks
  2703. * are meaningful
  2704. */
  2705. if (conf->geo.near_copies < conf->geo.raid_disks &&
  2706. max_sector > (sector_nr | chunk_mask))
  2707. max_sector = (sector_nr | chunk_mask) + 1;
  2708. /*
  2709. * If there is non-resync activity waiting for us then
  2710. * put in a delay to throttle resync.
  2711. */
  2712. if (!go_faster && conf->nr_waiting)
  2713. msleep_interruptible(1000);
  2714. /* Again, very different code for resync and recovery.
  2715. * Both must result in an r10bio with a list of bios that
  2716. * have bi_end_io, bi_sector, bi_bdev set,
  2717. * and bi_private set to the r10bio.
  2718. * For recovery, we may actually create several r10bios
  2719. * with 2 bios in each, that correspond to the bios in the main one.
  2720. * In this case, the subordinate r10bios link back through a
  2721. * borrowed master_bio pointer, and the counter in the master
  2722. * includes a ref from each subordinate.
  2723. */
  2724. /* First, we decide what to do and set ->bi_end_io
  2725. * To end_sync_read if we want to read, and
  2726. * end_sync_write if we will want to write.
  2727. */
  2728. max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
  2729. if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2730. /* recovery... the complicated one */
  2731. int j;
  2732. r10_bio = NULL;
  2733. for (i = 0 ; i < conf->geo.raid_disks; i++) {
  2734. int still_degraded;
  2735. struct r10bio *rb2;
  2736. sector_t sect;
  2737. int must_sync;
  2738. int any_working;
  2739. struct raid10_info *mirror = &conf->mirrors[i];
  2740. if ((mirror->rdev == NULL ||
  2741. test_bit(In_sync, &mirror->rdev->flags))
  2742. &&
  2743. (mirror->replacement == NULL ||
  2744. test_bit(Faulty,
  2745. &mirror->replacement->flags)))
  2746. continue;
  2747. still_degraded = 0;
  2748. /* want to reconstruct this device */
  2749. rb2 = r10_bio;
  2750. sect = raid10_find_virt(conf, sector_nr, i);
  2751. if (sect >= mddev->resync_max_sectors) {
  2752. /* last stripe is not complete - don't
  2753. * try to recover this sector.
  2754. */
  2755. continue;
  2756. }
  2757. /* Unless we are doing a full sync, or a replacement
  2758. * we only need to recover the block if it is set in
  2759. * the bitmap
  2760. */
  2761. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2762. &sync_blocks, 1);
  2763. if (sync_blocks < max_sync)
  2764. max_sync = sync_blocks;
  2765. if (!must_sync &&
  2766. mirror->replacement == NULL &&
  2767. !conf->fullsync) {
  2768. /* yep, skip the sync_blocks here, but don't assume
  2769. * that there will never be anything to do here
  2770. */
  2771. chunks_skipped = -1;
  2772. continue;
  2773. }
  2774. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2775. raise_barrier(conf, rb2 != NULL);
  2776. atomic_set(&r10_bio->remaining, 0);
  2777. r10_bio->master_bio = (struct bio*)rb2;
  2778. if (rb2)
  2779. atomic_inc(&rb2->remaining);
  2780. r10_bio->mddev = mddev;
  2781. set_bit(R10BIO_IsRecover, &r10_bio->state);
  2782. r10_bio->sector = sect;
  2783. raid10_find_phys(conf, r10_bio);
  2784. /* Need to check if the array will still be
  2785. * degraded
  2786. */
  2787. for (j = 0; j < conf->geo.raid_disks; j++)
  2788. if (conf->mirrors[j].rdev == NULL ||
  2789. test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
  2790. still_degraded = 1;
  2791. break;
  2792. }
  2793. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2794. &sync_blocks, still_degraded);
  2795. any_working = 0;
  2796. for (j=0; j<conf->copies;j++) {
  2797. int k;
  2798. int d = r10_bio->devs[j].devnum;
  2799. sector_t from_addr, to_addr;
  2800. struct md_rdev *rdev;
  2801. sector_t sector, first_bad;
  2802. int bad_sectors;
  2803. if (!conf->mirrors[d].rdev ||
  2804. !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
  2805. continue;
  2806. /* This is where we read from */
  2807. any_working = 1;
  2808. rdev = conf->mirrors[d].rdev;
  2809. sector = r10_bio->devs[j].addr;
  2810. if (is_badblock(rdev, sector, max_sync,
  2811. &first_bad, &bad_sectors)) {
  2812. if (first_bad > sector)
  2813. max_sync = first_bad - sector;
  2814. else {
  2815. bad_sectors -= (sector
  2816. - first_bad);
  2817. if (max_sync > bad_sectors)
  2818. max_sync = bad_sectors;
  2819. continue;
  2820. }
  2821. }
  2822. bio = r10_bio->devs[0].bio;
  2823. bio_reset(bio);
  2824. bio->bi_next = biolist;
  2825. biolist = bio;
  2826. bio->bi_private = r10_bio;
  2827. bio->bi_end_io = end_sync_read;
  2828. bio->bi_rw = READ;
  2829. from_addr = r10_bio->devs[j].addr;
  2830. bio->bi_sector = from_addr + rdev->data_offset;
  2831. bio->bi_bdev = rdev->bdev;
  2832. atomic_inc(&rdev->nr_pending);
  2833. /* and we write to 'i' (if not in_sync) */
  2834. for (k=0; k<conf->copies; k++)
  2835. if (r10_bio->devs[k].devnum == i)
  2836. break;
  2837. BUG_ON(k == conf->copies);
  2838. to_addr = r10_bio->devs[k].addr;
  2839. r10_bio->devs[0].devnum = d;
  2840. r10_bio->devs[0].addr = from_addr;
  2841. r10_bio->devs[1].devnum = i;
  2842. r10_bio->devs[1].addr = to_addr;
  2843. rdev = mirror->rdev;
  2844. if (!test_bit(In_sync, &rdev->flags)) {
  2845. bio = r10_bio->devs[1].bio;
  2846. bio_reset(bio);
  2847. bio->bi_next = biolist;
  2848. biolist = bio;
  2849. bio->bi_private = r10_bio;
  2850. bio->bi_end_io = end_sync_write;
  2851. bio->bi_rw = WRITE;
  2852. bio->bi_sector = to_addr
  2853. + rdev->data_offset;
  2854. bio->bi_bdev = rdev->bdev;
  2855. atomic_inc(&r10_bio->remaining);
  2856. } else
  2857. r10_bio->devs[1].bio->bi_end_io = NULL;
  2858. /* and maybe write to replacement */
  2859. bio = r10_bio->devs[1].repl_bio;
  2860. if (bio)
  2861. bio->bi_end_io = NULL;
  2862. rdev = mirror->replacement;
  2863. /* Note: if rdev != NULL, then bio
  2864. * cannot be NULL as r10buf_pool_alloc will
  2865. * have allocated it.
  2866. * So the second test here is pointless.
  2867. * But it keeps semantic-checkers happy, and
  2868. * this comment keeps human reviewers
  2869. * happy.
  2870. */
  2871. if (rdev == NULL || bio == NULL ||
  2872. test_bit(Faulty, &rdev->flags))
  2873. break;
  2874. bio_reset(bio);
  2875. bio->bi_next = biolist;
  2876. biolist = bio;
  2877. bio->bi_private = r10_bio;
  2878. bio->bi_end_io = end_sync_write;
  2879. bio->bi_rw = WRITE;
  2880. bio->bi_sector = to_addr + rdev->data_offset;
  2881. bio->bi_bdev = rdev->bdev;
  2882. atomic_inc(&r10_bio->remaining);
  2883. break;
  2884. }
  2885. if (j == conf->copies) {
  2886. /* Cannot recover, so abort the recovery or
  2887. * record a bad block */
  2888. put_buf(r10_bio);
  2889. if (rb2)
  2890. atomic_dec(&rb2->remaining);
  2891. r10_bio = rb2;
  2892. if (any_working) {
  2893. /* problem is that there are bad blocks
  2894. * on other device(s)
  2895. */
  2896. int k;
  2897. for (k = 0; k < conf->copies; k++)
  2898. if (r10_bio->devs[k].devnum == i)
  2899. break;
  2900. if (!test_bit(In_sync,
  2901. &mirror->rdev->flags)
  2902. && !rdev_set_badblocks(
  2903. mirror->rdev,
  2904. r10_bio->devs[k].addr,
  2905. max_sync, 0))
  2906. any_working = 0;
  2907. if (mirror->replacement &&
  2908. !rdev_set_badblocks(
  2909. mirror->replacement,
  2910. r10_bio->devs[k].addr,
  2911. max_sync, 0))
  2912. any_working = 0;
  2913. }
  2914. if (!any_working) {
  2915. if (!test_and_set_bit(MD_RECOVERY_INTR,
  2916. &mddev->recovery))
  2917. printk(KERN_INFO "md/raid10:%s: insufficient "
  2918. "working devices for recovery.\n",
  2919. mdname(mddev));
  2920. mirror->recovery_disabled
  2921. = mddev->recovery_disabled;
  2922. }
  2923. break;
  2924. }
  2925. }
  2926. if (biolist == NULL) {
  2927. while (r10_bio) {
  2928. struct r10bio *rb2 = r10_bio;
  2929. r10_bio = (struct r10bio*) rb2->master_bio;
  2930. rb2->master_bio = NULL;
  2931. put_buf(rb2);
  2932. }
  2933. goto giveup;
  2934. }
  2935. } else {
  2936. /* resync. Schedule a read for every block at this virt offset */
  2937. int count = 0;
  2938. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  2939. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2940. &sync_blocks, mddev->degraded) &&
  2941. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
  2942. &mddev->recovery)) {
  2943. /* We can skip this block */
  2944. *skipped = 1;
  2945. return sync_blocks + sectors_skipped;
  2946. }
  2947. if (sync_blocks < max_sync)
  2948. max_sync = sync_blocks;
  2949. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2950. r10_bio->mddev = mddev;
  2951. atomic_set(&r10_bio->remaining, 0);
  2952. raise_barrier(conf, 0);
  2953. conf->next_resync = sector_nr;
  2954. r10_bio->master_bio = NULL;
  2955. r10_bio->sector = sector_nr;
  2956. set_bit(R10BIO_IsSync, &r10_bio->state);
  2957. raid10_find_phys(conf, r10_bio);
  2958. r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
  2959. for (i = 0; i < conf->copies; i++) {
  2960. int d = r10_bio->devs[i].devnum;
  2961. sector_t first_bad, sector;
  2962. int bad_sectors;
  2963. if (r10_bio->devs[i].repl_bio)
  2964. r10_bio->devs[i].repl_bio->bi_end_io = NULL;
  2965. bio = r10_bio->devs[i].bio;
  2966. bio_reset(bio);
  2967. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2968. if (conf->mirrors[d].rdev == NULL ||
  2969. test_bit(Faulty, &conf->mirrors[d].rdev->flags))
  2970. continue;
  2971. sector = r10_bio->devs[i].addr;
  2972. if (is_badblock(conf->mirrors[d].rdev,
  2973. sector, max_sync,
  2974. &first_bad, &bad_sectors)) {
  2975. if (first_bad > sector)
  2976. max_sync = first_bad - sector;
  2977. else {
  2978. bad_sectors -= (sector - first_bad);
  2979. if (max_sync > bad_sectors)
  2980. max_sync = bad_sectors;
  2981. continue;
  2982. }
  2983. }
  2984. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2985. atomic_inc(&r10_bio->remaining);
  2986. bio->bi_next = biolist;
  2987. biolist = bio;
  2988. bio->bi_private = r10_bio;
  2989. bio->bi_end_io = end_sync_read;
  2990. bio->bi_rw = READ;
  2991. bio->bi_sector = sector +
  2992. conf->mirrors[d].rdev->data_offset;
  2993. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  2994. count++;
  2995. if (conf->mirrors[d].replacement == NULL ||
  2996. test_bit(Faulty,
  2997. &conf->mirrors[d].replacement->flags))
  2998. continue;
  2999. /* Need to set up for writing to the replacement */
  3000. bio = r10_bio->devs[i].repl_bio;
  3001. bio_reset(bio);
  3002. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  3003. sector = r10_bio->devs[i].addr;
  3004. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  3005. bio->bi_next = biolist;
  3006. biolist = bio;
  3007. bio->bi_private = r10_bio;
  3008. bio->bi_end_io = end_sync_write;
  3009. bio->bi_rw = WRITE;
  3010. bio->bi_sector = sector +
  3011. conf->mirrors[d].replacement->data_offset;
  3012. bio->bi_bdev = conf->mirrors[d].replacement->bdev;
  3013. count++;
  3014. }
  3015. if (count < 2) {
  3016. for (i=0; i<conf->copies; i++) {
  3017. int d = r10_bio->devs[i].devnum;
  3018. if (r10_bio->devs[i].bio->bi_end_io)
  3019. rdev_dec_pending(conf->mirrors[d].rdev,
  3020. mddev);
  3021. if (r10_bio->devs[i].repl_bio &&
  3022. r10_bio->devs[i].repl_bio->bi_end_io)
  3023. rdev_dec_pending(
  3024. conf->mirrors[d].replacement,
  3025. mddev);
  3026. }
  3027. put_buf(r10_bio);
  3028. biolist = NULL;
  3029. goto giveup;
  3030. }
  3031. }
  3032. nr_sectors = 0;
  3033. if (sector_nr + max_sync < max_sector)
  3034. max_sector = sector_nr + max_sync;
  3035. do {
  3036. struct page *page;
  3037. int len = PAGE_SIZE;
  3038. if (sector_nr + (len>>9) > max_sector)
  3039. len = (max_sector - sector_nr) << 9;
  3040. if (len == 0)
  3041. break;
  3042. for (bio= biolist ; bio ; bio=bio->bi_next) {
  3043. struct bio *bio2;
  3044. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  3045. if (bio_add_page(bio, page, len, 0))
  3046. continue;
  3047. /* stop here */
  3048. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  3049. for (bio2 = biolist;
  3050. bio2 && bio2 != bio;
  3051. bio2 = bio2->bi_next) {
  3052. /* remove last page from this bio */
  3053. bio2->bi_vcnt--;
  3054. bio2->bi_size -= len;
  3055. bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
  3056. }
  3057. goto bio_full;
  3058. }
  3059. nr_sectors += len>>9;
  3060. sector_nr += len>>9;
  3061. } while (biolist->bi_vcnt < RESYNC_PAGES);
  3062. bio_full:
  3063. r10_bio->sectors = nr_sectors;
  3064. while (biolist) {
  3065. bio = biolist;
  3066. biolist = biolist->bi_next;
  3067. bio->bi_next = NULL;
  3068. r10_bio = bio->bi_private;
  3069. r10_bio->sectors = nr_sectors;
  3070. if (bio->bi_end_io == end_sync_read) {
  3071. md_sync_acct(bio->bi_bdev, nr_sectors);
  3072. generic_make_request(bio);
  3073. }
  3074. }
  3075. if (sectors_skipped)
  3076. /* pretend they weren't skipped, it makes
  3077. * no important difference in this case
  3078. */
  3079. md_done_sync(mddev, sectors_skipped, 1);
  3080. return sectors_skipped + nr_sectors;
  3081. giveup:
  3082. /* There is nowhere to write, so all non-sync
  3083. * drives must be failed or in resync, all drives
  3084. * have a bad block, so try the next chunk...
  3085. */
  3086. if (sector_nr + max_sync < max_sector)
  3087. max_sector = sector_nr + max_sync;
  3088. sectors_skipped += (max_sector - sector_nr);
  3089. chunks_skipped ++;
  3090. sector_nr = max_sector;
  3091. goto skipped;
  3092. }
  3093. static sector_t
  3094. raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  3095. {
  3096. sector_t size;
  3097. struct r10conf *conf = mddev->private;
  3098. if (!raid_disks)
  3099. raid_disks = min(conf->geo.raid_disks,
  3100. conf->prev.raid_disks);
  3101. if (!sectors)
  3102. sectors = conf->dev_sectors;
  3103. size = sectors >> conf->geo.chunk_shift;
  3104. sector_div(size, conf->geo.far_copies);
  3105. size = size * raid_disks;
  3106. sector_div(size, conf->geo.near_copies);
  3107. return size << conf->geo.chunk_shift;
  3108. }
  3109. static void calc_sectors(struct r10conf *conf, sector_t size)
  3110. {
  3111. /* Calculate the number of sectors-per-device that will
  3112. * actually be used, and set conf->dev_sectors and
  3113. * conf->stride
  3114. */
  3115. size = size >> conf->geo.chunk_shift;
  3116. sector_div(size, conf->geo.far_copies);
  3117. size = size * conf->geo.raid_disks;
  3118. sector_div(size, conf->geo.near_copies);
  3119. /* 'size' is now the number of chunks in the array */
  3120. /* calculate "used chunks per device" */
  3121. size = size * conf->copies;
  3122. /* We need to round up when dividing by raid_disks to
  3123. * get the stride size.
  3124. */
  3125. size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
  3126. conf->dev_sectors = size << conf->geo.chunk_shift;
  3127. if (conf->geo.far_offset)
  3128. conf->geo.stride = 1 << conf->geo.chunk_shift;
  3129. else {
  3130. sector_div(size, conf->geo.far_copies);
  3131. conf->geo.stride = size << conf->geo.chunk_shift;
  3132. }
  3133. }
  3134. enum geo_type {geo_new, geo_old, geo_start};
  3135. static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
  3136. {
  3137. int nc, fc, fo;
  3138. int layout, chunk, disks;
  3139. switch (new) {
  3140. case geo_old:
  3141. layout = mddev->layout;
  3142. chunk = mddev->chunk_sectors;
  3143. disks = mddev->raid_disks - mddev->delta_disks;
  3144. break;
  3145. case geo_new:
  3146. layout = mddev->new_layout;
  3147. chunk = mddev->new_chunk_sectors;
  3148. disks = mddev->raid_disks;
  3149. break;
  3150. default: /* avoid 'may be unused' warnings */
  3151. case geo_start: /* new when starting reshape - raid_disks not
  3152. * updated yet. */
  3153. layout = mddev->new_layout;
  3154. chunk = mddev->new_chunk_sectors;
  3155. disks = mddev->raid_disks + mddev->delta_disks;
  3156. break;
  3157. }
  3158. if (layout >> 18)
  3159. return -1;
  3160. if (chunk < (PAGE_SIZE >> 9) ||
  3161. !is_power_of_2(chunk))
  3162. return -2;
  3163. nc = layout & 255;
  3164. fc = (layout >> 8) & 255;
  3165. fo = layout & (1<<16);
  3166. geo->raid_disks = disks;
  3167. geo->near_copies = nc;
  3168. geo->far_copies = fc;
  3169. geo->far_offset = fo;
  3170. geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
  3171. geo->chunk_mask = chunk - 1;
  3172. geo->chunk_shift = ffz(~chunk);
  3173. return nc*fc;
  3174. }
  3175. static struct r10conf *setup_conf(struct mddev *mddev)
  3176. {
  3177. struct r10conf *conf = NULL;
  3178. int err = -EINVAL;
  3179. struct geom geo;
  3180. int copies;
  3181. copies = setup_geo(&geo, mddev, geo_new);
  3182. if (copies == -2) {
  3183. printk(KERN_ERR "md/raid10:%s: chunk size must be "
  3184. "at least PAGE_SIZE(%ld) and be a power of 2.\n",
  3185. mdname(mddev), PAGE_SIZE);
  3186. goto out;
  3187. }
  3188. if (copies < 2 || copies > mddev->raid_disks) {
  3189. printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
  3190. mdname(mddev), mddev->new_layout);
  3191. goto out;
  3192. }
  3193. err = -ENOMEM;
  3194. conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
  3195. if (!conf)
  3196. goto out;
  3197. /* FIXME calc properly */
  3198. conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
  3199. max(0,mddev->delta_disks)),
  3200. GFP_KERNEL);
  3201. if (!conf->mirrors)
  3202. goto out;
  3203. conf->tmppage = alloc_page(GFP_KERNEL);
  3204. if (!conf->tmppage)
  3205. goto out;
  3206. conf->geo = geo;
  3207. conf->copies = copies;
  3208. conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
  3209. r10bio_pool_free, conf);
  3210. if (!conf->r10bio_pool)
  3211. goto out;
  3212. calc_sectors(conf, mddev->dev_sectors);
  3213. if (mddev->reshape_position == MaxSector) {
  3214. conf->prev = conf->geo;
  3215. conf->reshape_progress = MaxSector;
  3216. } else {
  3217. if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
  3218. err = -EINVAL;
  3219. goto out;
  3220. }
  3221. conf->reshape_progress = mddev->reshape_position;
  3222. if (conf->prev.far_offset)
  3223. conf->prev.stride = 1 << conf->prev.chunk_shift;
  3224. else
  3225. /* far_copies must be 1 */
  3226. conf->prev.stride = conf->dev_sectors;
  3227. }
  3228. spin_lock_init(&conf->device_lock);
  3229. INIT_LIST_HEAD(&conf->retry_list);
  3230. spin_lock_init(&conf->resync_lock);
  3231. init_waitqueue_head(&conf->wait_barrier);
  3232. conf->thread = md_register_thread(raid10d, mddev, "raid10");
  3233. if (!conf->thread)
  3234. goto out;
  3235. conf->mddev = mddev;
  3236. return conf;
  3237. out:
  3238. if (err == -ENOMEM)
  3239. printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
  3240. mdname(mddev));
  3241. if (conf) {
  3242. if (conf->r10bio_pool)
  3243. mempool_destroy(conf->r10bio_pool);
  3244. kfree(conf->mirrors);
  3245. safe_put_page(conf->tmppage);
  3246. kfree(conf);
  3247. }
  3248. return ERR_PTR(err);
  3249. }
  3250. static int run(struct mddev *mddev)
  3251. {
  3252. struct r10conf *conf;
  3253. int i, disk_idx, chunk_size;
  3254. struct raid10_info *disk;
  3255. struct md_rdev *rdev;
  3256. sector_t size;
  3257. sector_t min_offset_diff = 0;
  3258. int first = 1;
  3259. bool discard_supported = false;
  3260. if (mddev->private == NULL) {
  3261. conf = setup_conf(mddev);
  3262. if (IS_ERR(conf))
  3263. return PTR_ERR(conf);
  3264. mddev->private = conf;
  3265. }
  3266. conf = mddev->private;
  3267. if (!conf)
  3268. goto out;
  3269. mddev->thread = conf->thread;
  3270. conf->thread = NULL;
  3271. chunk_size = mddev->chunk_sectors << 9;
  3272. if (mddev->queue) {
  3273. blk_queue_max_discard_sectors(mddev->queue,
  3274. mddev->chunk_sectors);
  3275. blk_queue_max_write_same_sectors(mddev->queue, 0);
  3276. blk_queue_io_min(mddev->queue, chunk_size);
  3277. if (conf->geo.raid_disks % conf->geo.near_copies)
  3278. blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
  3279. else
  3280. blk_queue_io_opt(mddev->queue, chunk_size *
  3281. (conf->geo.raid_disks / conf->geo.near_copies));
  3282. }
  3283. rdev_for_each(rdev, mddev) {
  3284. long long diff;
  3285. struct request_queue *q;
  3286. disk_idx = rdev->raid_disk;
  3287. if (disk_idx < 0)
  3288. continue;
  3289. if (disk_idx >= conf->geo.raid_disks &&
  3290. disk_idx >= conf->prev.raid_disks)
  3291. continue;
  3292. disk = conf->mirrors + disk_idx;
  3293. if (test_bit(Replacement, &rdev->flags)) {
  3294. if (disk->replacement)
  3295. goto out_free_conf;
  3296. disk->replacement = rdev;
  3297. } else {
  3298. if (disk->rdev)
  3299. goto out_free_conf;
  3300. disk->rdev = rdev;
  3301. }
  3302. q = bdev_get_queue(rdev->bdev);
  3303. if (q->merge_bvec_fn)
  3304. mddev->merge_check_needed = 1;
  3305. diff = (rdev->new_data_offset - rdev->data_offset);
  3306. if (!mddev->reshape_backwards)
  3307. diff = -diff;
  3308. if (diff < 0)
  3309. diff = 0;
  3310. if (first || diff < min_offset_diff)
  3311. min_offset_diff = diff;
  3312. if (mddev->gendisk)
  3313. disk_stack_limits(mddev->gendisk, rdev->bdev,
  3314. rdev->data_offset << 9);
  3315. disk->head_position = 0;
  3316. if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
  3317. discard_supported = true;
  3318. }
  3319. if (mddev->queue) {
  3320. if (discard_supported)
  3321. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
  3322. mddev->queue);
  3323. else
  3324. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
  3325. mddev->queue);
  3326. }
  3327. /* need to check that every block has at least one working mirror */
  3328. if (!enough(conf, -1)) {
  3329. printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
  3330. mdname(mddev));
  3331. goto out_free_conf;
  3332. }
  3333. if (conf->reshape_progress != MaxSector) {
  3334. /* must ensure that shape change is supported */
  3335. if (conf->geo.far_copies != 1 &&
  3336. conf->geo.far_offset == 0)
  3337. goto out_free_conf;
  3338. if (conf->prev.far_copies != 1 &&
  3339. conf->geo.far_offset == 0)
  3340. goto out_free_conf;
  3341. }
  3342. mddev->degraded = 0;
  3343. for (i = 0;
  3344. i < conf->geo.raid_disks
  3345. || i < conf->prev.raid_disks;
  3346. i++) {
  3347. disk = conf->mirrors + i;
  3348. if (!disk->rdev && disk->replacement) {
  3349. /* The replacement is all we have - use it */
  3350. disk->rdev = disk->replacement;
  3351. disk->replacement = NULL;
  3352. clear_bit(Replacement, &disk->rdev->flags);
  3353. }
  3354. if (!disk->rdev ||
  3355. !test_bit(In_sync, &disk->rdev->flags)) {
  3356. disk->head_position = 0;
  3357. mddev->degraded++;
  3358. if (disk->rdev)
  3359. conf->fullsync = 1;
  3360. }
  3361. disk->recovery_disabled = mddev->recovery_disabled - 1;
  3362. }
  3363. if (mddev->recovery_cp != MaxSector)
  3364. printk(KERN_NOTICE "md/raid10:%s: not clean"
  3365. " -- starting background reconstruction\n",
  3366. mdname(mddev));
  3367. printk(KERN_INFO
  3368. "md/raid10:%s: active with %d out of %d devices\n",
  3369. mdname(mddev), conf->geo.raid_disks - mddev->degraded,
  3370. conf->geo.raid_disks);
  3371. /*
  3372. * Ok, everything is just fine now
  3373. */
  3374. mddev->dev_sectors = conf->dev_sectors;
  3375. size = raid10_size(mddev, 0, 0);
  3376. md_set_array_sectors(mddev, size);
  3377. mddev->resync_max_sectors = size;
  3378. if (mddev->queue) {
  3379. int stripe = conf->geo.raid_disks *
  3380. ((mddev->chunk_sectors << 9) / PAGE_SIZE);
  3381. mddev->queue->backing_dev_info.congested_fn = raid10_congested;
  3382. mddev->queue->backing_dev_info.congested_data = mddev;
  3383. /* Calculate max read-ahead size.
  3384. * We need to readahead at least twice a whole stripe....
  3385. * maybe...
  3386. */
  3387. stripe /= conf->geo.near_copies;
  3388. if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  3389. mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  3390. blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
  3391. }
  3392. if (md_integrity_register(mddev))
  3393. goto out_free_conf;
  3394. if (conf->reshape_progress != MaxSector) {
  3395. unsigned long before_length, after_length;
  3396. before_length = ((1 << conf->prev.chunk_shift) *
  3397. conf->prev.far_copies);
  3398. after_length = ((1 << conf->geo.chunk_shift) *
  3399. conf->geo.far_copies);
  3400. if (max(before_length, after_length) > min_offset_diff) {
  3401. /* This cannot work */
  3402. printk("md/raid10: offset difference not enough to continue reshape\n");
  3403. goto out_free_conf;
  3404. }
  3405. conf->offset_diff = min_offset_diff;
  3406. conf->reshape_safe = conf->reshape_progress;
  3407. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3408. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3409. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3410. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3411. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3412. "reshape");
  3413. }
  3414. return 0;
  3415. out_free_conf:
  3416. md_unregister_thread(&mddev->thread);
  3417. if (conf->r10bio_pool)
  3418. mempool_destroy(conf->r10bio_pool);
  3419. safe_put_page(conf->tmppage);
  3420. kfree(conf->mirrors);
  3421. kfree(conf);
  3422. mddev->private = NULL;
  3423. out:
  3424. return -EIO;
  3425. }
  3426. static int stop(struct mddev *mddev)
  3427. {
  3428. struct r10conf *conf = mddev->private;
  3429. raise_barrier(conf, 0);
  3430. lower_barrier(conf);
  3431. md_unregister_thread(&mddev->thread);
  3432. if (mddev->queue)
  3433. /* the unplug fn references 'conf'*/
  3434. blk_sync_queue(mddev->queue);
  3435. if (conf->r10bio_pool)
  3436. mempool_destroy(conf->r10bio_pool);
  3437. safe_put_page(conf->tmppage);
  3438. kfree(conf->mirrors);
  3439. kfree(conf);
  3440. mddev->private = NULL;
  3441. return 0;
  3442. }
  3443. static void raid10_quiesce(struct mddev *mddev, int state)
  3444. {
  3445. struct r10conf *conf = mddev->private;
  3446. switch(state) {
  3447. case 1:
  3448. raise_barrier(conf, 0);
  3449. break;
  3450. case 0:
  3451. lower_barrier(conf);
  3452. break;
  3453. }
  3454. }
  3455. static int raid10_resize(struct mddev *mddev, sector_t sectors)
  3456. {
  3457. /* Resize of 'far' arrays is not supported.
  3458. * For 'near' and 'offset' arrays we can set the
  3459. * number of sectors used to be an appropriate multiple
  3460. * of the chunk size.
  3461. * For 'offset', this is far_copies*chunksize.
  3462. * For 'near' the multiplier is the LCM of
  3463. * near_copies and raid_disks.
  3464. * So if far_copies > 1 && !far_offset, fail.
  3465. * Else find LCM(raid_disks, near_copy)*far_copies and
  3466. * multiply by chunk_size. Then round to this number.
  3467. * This is mostly done by raid10_size()
  3468. */
  3469. struct r10conf *conf = mddev->private;
  3470. sector_t oldsize, size;
  3471. if (mddev->reshape_position != MaxSector)
  3472. return -EBUSY;
  3473. if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
  3474. return -EINVAL;
  3475. oldsize = raid10_size(mddev, 0, 0);
  3476. size = raid10_size(mddev, sectors, 0);
  3477. if (mddev->external_size &&
  3478. mddev->array_sectors > size)
  3479. return -EINVAL;
  3480. if (mddev->bitmap) {
  3481. int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
  3482. if (ret)
  3483. return ret;
  3484. }
  3485. md_set_array_sectors(mddev, size);
  3486. set_capacity(mddev->gendisk, mddev->array_sectors);
  3487. revalidate_disk(mddev->gendisk);
  3488. if (sectors > mddev->dev_sectors &&
  3489. mddev->recovery_cp > oldsize) {
  3490. mddev->recovery_cp = oldsize;
  3491. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3492. }
  3493. calc_sectors(conf, sectors);
  3494. mddev->dev_sectors = conf->dev_sectors;
  3495. mddev->resync_max_sectors = size;
  3496. return 0;
  3497. }
  3498. static void *raid10_takeover_raid0(struct mddev *mddev)
  3499. {
  3500. struct md_rdev *rdev;
  3501. struct r10conf *conf;
  3502. if (mddev->degraded > 0) {
  3503. printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
  3504. mdname(mddev));
  3505. return ERR_PTR(-EINVAL);
  3506. }
  3507. /* Set new parameters */
  3508. mddev->new_level = 10;
  3509. /* new layout: far_copies = 1, near_copies = 2 */
  3510. mddev->new_layout = (1<<8) + 2;
  3511. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3512. mddev->delta_disks = mddev->raid_disks;
  3513. mddev->raid_disks *= 2;
  3514. /* make sure it will be not marked as dirty */
  3515. mddev->recovery_cp = MaxSector;
  3516. conf = setup_conf(mddev);
  3517. if (!IS_ERR(conf)) {
  3518. rdev_for_each(rdev, mddev)
  3519. if (rdev->raid_disk >= 0)
  3520. rdev->new_raid_disk = rdev->raid_disk * 2;
  3521. conf->barrier = 1;
  3522. }
  3523. return conf;
  3524. }
  3525. static void *raid10_takeover(struct mddev *mddev)
  3526. {
  3527. struct r0conf *raid0_conf;
  3528. /* raid10 can take over:
  3529. * raid0 - providing it has only two drives
  3530. */
  3531. if (mddev->level == 0) {
  3532. /* for raid0 takeover only one zone is supported */
  3533. raid0_conf = mddev->private;
  3534. if (raid0_conf->nr_strip_zones > 1) {
  3535. printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
  3536. " with more than one zone.\n",
  3537. mdname(mddev));
  3538. return ERR_PTR(-EINVAL);
  3539. }
  3540. return raid10_takeover_raid0(mddev);
  3541. }
  3542. return ERR_PTR(-EINVAL);
  3543. }
  3544. static int raid10_check_reshape(struct mddev *mddev)
  3545. {
  3546. /* Called when there is a request to change
  3547. * - layout (to ->new_layout)
  3548. * - chunk size (to ->new_chunk_sectors)
  3549. * - raid_disks (by delta_disks)
  3550. * or when trying to restart a reshape that was ongoing.
  3551. *
  3552. * We need to validate the request and possibly allocate
  3553. * space if that might be an issue later.
  3554. *
  3555. * Currently we reject any reshape of a 'far' mode array,
  3556. * allow chunk size to change if new is generally acceptable,
  3557. * allow raid_disks to increase, and allow
  3558. * a switch between 'near' mode and 'offset' mode.
  3559. */
  3560. struct r10conf *conf = mddev->private;
  3561. struct geom geo;
  3562. if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
  3563. return -EINVAL;
  3564. if (setup_geo(&geo, mddev, geo_start) != conf->copies)
  3565. /* mustn't change number of copies */
  3566. return -EINVAL;
  3567. if (geo.far_copies > 1 && !geo.far_offset)
  3568. /* Cannot switch to 'far' mode */
  3569. return -EINVAL;
  3570. if (mddev->array_sectors & geo.chunk_mask)
  3571. /* not factor of array size */
  3572. return -EINVAL;
  3573. if (!enough(conf, -1))
  3574. return -EINVAL;
  3575. kfree(conf->mirrors_new);
  3576. conf->mirrors_new = NULL;
  3577. if (mddev->delta_disks > 0) {
  3578. /* allocate new 'mirrors' list */
  3579. conf->mirrors_new = kzalloc(
  3580. sizeof(struct raid10_info)
  3581. *(mddev->raid_disks +
  3582. mddev->delta_disks),
  3583. GFP_KERNEL);
  3584. if (!conf->mirrors_new)
  3585. return -ENOMEM;
  3586. }
  3587. return 0;
  3588. }
  3589. /*
  3590. * Need to check if array has failed when deciding whether to:
  3591. * - start an array
  3592. * - remove non-faulty devices
  3593. * - add a spare
  3594. * - allow a reshape
  3595. * This determination is simple when no reshape is happening.
  3596. * However if there is a reshape, we need to carefully check
  3597. * both the before and after sections.
  3598. * This is because some failed devices may only affect one
  3599. * of the two sections, and some non-in_sync devices may
  3600. * be insync in the section most affected by failed devices.
  3601. */
  3602. static int calc_degraded(struct r10conf *conf)
  3603. {
  3604. int degraded, degraded2;
  3605. int i;
  3606. rcu_read_lock();
  3607. degraded = 0;
  3608. /* 'prev' section first */
  3609. for (i = 0; i < conf->prev.raid_disks; i++) {
  3610. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  3611. if (!rdev || test_bit(Faulty, &rdev->flags))
  3612. degraded++;
  3613. else if (!test_bit(In_sync, &rdev->flags))
  3614. /* When we can reduce the number of devices in
  3615. * an array, this might not contribute to
  3616. * 'degraded'. It does now.
  3617. */
  3618. degraded++;
  3619. }
  3620. rcu_read_unlock();
  3621. if (conf->geo.raid_disks == conf->prev.raid_disks)
  3622. return degraded;
  3623. rcu_read_lock();
  3624. degraded2 = 0;
  3625. for (i = 0; i < conf->geo.raid_disks; i++) {
  3626. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  3627. if (!rdev || test_bit(Faulty, &rdev->flags))
  3628. degraded2++;
  3629. else if (!test_bit(In_sync, &rdev->flags)) {
  3630. /* If reshape is increasing the number of devices,
  3631. * this section has already been recovered, so
  3632. * it doesn't contribute to degraded.
  3633. * else it does.
  3634. */
  3635. if (conf->geo.raid_disks <= conf->prev.raid_disks)
  3636. degraded2++;
  3637. }
  3638. }
  3639. rcu_read_unlock();
  3640. if (degraded2 > degraded)
  3641. return degraded2;
  3642. return degraded;
  3643. }
  3644. static int raid10_start_reshape(struct mddev *mddev)
  3645. {
  3646. /* A 'reshape' has been requested. This commits
  3647. * the various 'new' fields and sets MD_RECOVER_RESHAPE
  3648. * This also checks if there are enough spares and adds them
  3649. * to the array.
  3650. * We currently require enough spares to make the final
  3651. * array non-degraded. We also require that the difference
  3652. * between old and new data_offset - on each device - is
  3653. * enough that we never risk over-writing.
  3654. */
  3655. unsigned long before_length, after_length;
  3656. sector_t min_offset_diff = 0;
  3657. int first = 1;
  3658. struct geom new;
  3659. struct r10conf *conf = mddev->private;
  3660. struct md_rdev *rdev;
  3661. int spares = 0;
  3662. int ret;
  3663. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3664. return -EBUSY;
  3665. if (setup_geo(&new, mddev, geo_start) != conf->copies)
  3666. return -EINVAL;
  3667. before_length = ((1 << conf->prev.chunk_shift) *
  3668. conf->prev.far_copies);
  3669. after_length = ((1 << conf->geo.chunk_shift) *
  3670. conf->geo.far_copies);
  3671. rdev_for_each(rdev, mddev) {
  3672. if (!test_bit(In_sync, &rdev->flags)
  3673. && !test_bit(Faulty, &rdev->flags))
  3674. spares++;
  3675. if (rdev->raid_disk >= 0) {
  3676. long long diff = (rdev->new_data_offset
  3677. - rdev->data_offset);
  3678. if (!mddev->reshape_backwards)
  3679. diff = -diff;
  3680. if (diff < 0)
  3681. diff = 0;
  3682. if (first || diff < min_offset_diff)
  3683. min_offset_diff = diff;
  3684. }
  3685. }
  3686. if (max(before_length, after_length) > min_offset_diff)
  3687. return -EINVAL;
  3688. if (spares < mddev->delta_disks)
  3689. return -EINVAL;
  3690. conf->offset_diff = min_offset_diff;
  3691. spin_lock_irq(&conf->device_lock);
  3692. if (conf->mirrors_new) {
  3693. memcpy(conf->mirrors_new, conf->mirrors,
  3694. sizeof(struct raid10_info)*conf->prev.raid_disks);
  3695. smp_mb();
  3696. kfree(conf->mirrors_old); /* FIXME and elsewhere */
  3697. conf->mirrors_old = conf->mirrors;
  3698. conf->mirrors = conf->mirrors_new;
  3699. conf->mirrors_new = NULL;
  3700. }
  3701. setup_geo(&conf->geo, mddev, geo_start);
  3702. smp_mb();
  3703. if (mddev->reshape_backwards) {
  3704. sector_t size = raid10_size(mddev, 0, 0);
  3705. if (size < mddev->array_sectors) {
  3706. spin_unlock_irq(&conf->device_lock);
  3707. printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
  3708. mdname(mddev));
  3709. return -EINVAL;
  3710. }
  3711. mddev->resync_max_sectors = size;
  3712. conf->reshape_progress = size;
  3713. } else
  3714. conf->reshape_progress = 0;
  3715. spin_unlock_irq(&conf->device_lock);
  3716. if (mddev->delta_disks && mddev->bitmap) {
  3717. ret = bitmap_resize(mddev->bitmap,
  3718. raid10_size(mddev, 0,
  3719. conf->geo.raid_disks),
  3720. 0, 0);
  3721. if (ret)
  3722. goto abort;
  3723. }
  3724. if (mddev->delta_disks > 0) {
  3725. rdev_for_each(rdev, mddev)
  3726. if (rdev->raid_disk < 0 &&
  3727. !test_bit(Faulty, &rdev->flags)) {
  3728. if (raid10_add_disk(mddev, rdev) == 0) {
  3729. if (rdev->raid_disk >=
  3730. conf->prev.raid_disks)
  3731. set_bit(In_sync, &rdev->flags);
  3732. else
  3733. rdev->recovery_offset = 0;
  3734. if (sysfs_link_rdev(mddev, rdev))
  3735. /* Failure here is OK */;
  3736. }
  3737. } else if (rdev->raid_disk >= conf->prev.raid_disks
  3738. && !test_bit(Faulty, &rdev->flags)) {
  3739. /* This is a spare that was manually added */
  3740. set_bit(In_sync, &rdev->flags);
  3741. }
  3742. }
  3743. /* When a reshape changes the number of devices,
  3744. * ->degraded is measured against the larger of the
  3745. * pre and post numbers.
  3746. */
  3747. spin_lock_irq(&conf->device_lock);
  3748. mddev->degraded = calc_degraded(conf);
  3749. spin_unlock_irq(&conf->device_lock);
  3750. mddev->raid_disks = conf->geo.raid_disks;
  3751. mddev->reshape_position = conf->reshape_progress;
  3752. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3753. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3754. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3755. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  3756. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3757. mddev->sync_thread = md_register_thread(md_do_sync, mddev,
  3758. "reshape");
  3759. if (!mddev->sync_thread) {
  3760. ret = -EAGAIN;
  3761. goto abort;
  3762. }
  3763. conf->reshape_checkpoint = jiffies;
  3764. md_wakeup_thread(mddev->sync_thread);
  3765. md_new_event(mddev);
  3766. return 0;
  3767. abort:
  3768. mddev->recovery = 0;
  3769. spin_lock_irq(&conf->device_lock);
  3770. conf->geo = conf->prev;
  3771. mddev->raid_disks = conf->geo.raid_disks;
  3772. rdev_for_each(rdev, mddev)
  3773. rdev->new_data_offset = rdev->data_offset;
  3774. smp_wmb();
  3775. conf->reshape_progress = MaxSector;
  3776. mddev->reshape_position = MaxSector;
  3777. spin_unlock_irq(&conf->device_lock);
  3778. return ret;
  3779. }
  3780. /* Calculate the last device-address that could contain
  3781. * any block from the chunk that includes the array-address 's'
  3782. * and report the next address.
  3783. * i.e. the address returned will be chunk-aligned and after
  3784. * any data that is in the chunk containing 's'.
  3785. */
  3786. static sector_t last_dev_address(sector_t s, struct geom *geo)
  3787. {
  3788. s = (s | geo->chunk_mask) + 1;
  3789. s >>= geo->chunk_shift;
  3790. s *= geo->near_copies;
  3791. s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
  3792. s *= geo->far_copies;
  3793. s <<= geo->chunk_shift;
  3794. return s;
  3795. }
  3796. /* Calculate the first device-address that could contain
  3797. * any block from the chunk that includes the array-address 's'.
  3798. * This too will be the start of a chunk
  3799. */
  3800. static sector_t first_dev_address(sector_t s, struct geom *geo)
  3801. {
  3802. s >>= geo->chunk_shift;
  3803. s *= geo->near_copies;
  3804. sector_div(s, geo->raid_disks);
  3805. s *= geo->far_copies;
  3806. s <<= geo->chunk_shift;
  3807. return s;
  3808. }
  3809. static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  3810. int *skipped)
  3811. {
  3812. /* We simply copy at most one chunk (smallest of old and new)
  3813. * at a time, possibly less if that exceeds RESYNC_PAGES,
  3814. * or we hit a bad block or something.
  3815. * This might mean we pause for normal IO in the middle of
  3816. * a chunk, but that is not a problem was mddev->reshape_position
  3817. * can record any location.
  3818. *
  3819. * If we will want to write to a location that isn't
  3820. * yet recorded as 'safe' (i.e. in metadata on disk) then
  3821. * we need to flush all reshape requests and update the metadata.
  3822. *
  3823. * When reshaping forwards (e.g. to more devices), we interpret
  3824. * 'safe' as the earliest block which might not have been copied
  3825. * down yet. We divide this by previous stripe size and multiply
  3826. * by previous stripe length to get lowest device offset that we
  3827. * cannot write to yet.
  3828. * We interpret 'sector_nr' as an address that we want to write to.
  3829. * From this we use last_device_address() to find where we might
  3830. * write to, and first_device_address on the 'safe' position.
  3831. * If this 'next' write position is after the 'safe' position,
  3832. * we must update the metadata to increase the 'safe' position.
  3833. *
  3834. * When reshaping backwards, we round in the opposite direction
  3835. * and perform the reverse test: next write position must not be
  3836. * less than current safe position.
  3837. *
  3838. * In all this the minimum difference in data offsets
  3839. * (conf->offset_diff - always positive) allows a bit of slack,
  3840. * so next can be after 'safe', but not by more than offset_disk
  3841. *
  3842. * We need to prepare all the bios here before we start any IO
  3843. * to ensure the size we choose is acceptable to all devices.
  3844. * The means one for each copy for write-out and an extra one for
  3845. * read-in.
  3846. * We store the read-in bio in ->master_bio and the others in
  3847. * ->devs[x].bio and ->devs[x].repl_bio.
  3848. */
  3849. struct r10conf *conf = mddev->private;
  3850. struct r10bio *r10_bio;
  3851. sector_t next, safe, last;
  3852. int max_sectors;
  3853. int nr_sectors;
  3854. int s;
  3855. struct md_rdev *rdev;
  3856. int need_flush = 0;
  3857. struct bio *blist;
  3858. struct bio *bio, *read_bio;
  3859. int sectors_done = 0;
  3860. if (sector_nr == 0) {
  3861. /* If restarting in the middle, skip the initial sectors */
  3862. if (mddev->reshape_backwards &&
  3863. conf->reshape_progress < raid10_size(mddev, 0, 0)) {
  3864. sector_nr = (raid10_size(mddev, 0, 0)
  3865. - conf->reshape_progress);
  3866. } else if (!mddev->reshape_backwards &&
  3867. conf->reshape_progress > 0)
  3868. sector_nr = conf->reshape_progress;
  3869. if (sector_nr) {
  3870. mddev->curr_resync_completed = sector_nr;
  3871. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  3872. *skipped = 1;
  3873. return sector_nr;
  3874. }
  3875. }
  3876. /* We don't use sector_nr to track where we are up to
  3877. * as that doesn't work well for ->reshape_backwards.
  3878. * So just use ->reshape_progress.
  3879. */
  3880. if (mddev->reshape_backwards) {
  3881. /* 'next' is the earliest device address that we might
  3882. * write to for this chunk in the new layout
  3883. */
  3884. next = first_dev_address(conf->reshape_progress - 1,
  3885. &conf->geo);
  3886. /* 'safe' is the last device address that we might read from
  3887. * in the old layout after a restart
  3888. */
  3889. safe = last_dev_address(conf->reshape_safe - 1,
  3890. &conf->prev);
  3891. if (next + conf->offset_diff < safe)
  3892. need_flush = 1;
  3893. last = conf->reshape_progress - 1;
  3894. sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
  3895. & conf->prev.chunk_mask);
  3896. if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
  3897. sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
  3898. } else {
  3899. /* 'next' is after the last device address that we
  3900. * might write to for this chunk in the new layout
  3901. */
  3902. next = last_dev_address(conf->reshape_progress, &conf->geo);
  3903. /* 'safe' is the earliest device address that we might
  3904. * read from in the old layout after a restart
  3905. */
  3906. safe = first_dev_address(conf->reshape_safe, &conf->prev);
  3907. /* Need to update metadata if 'next' might be beyond 'safe'
  3908. * as that would possibly corrupt data
  3909. */
  3910. if (next > safe + conf->offset_diff)
  3911. need_flush = 1;
  3912. sector_nr = conf->reshape_progress;
  3913. last = sector_nr | (conf->geo.chunk_mask
  3914. & conf->prev.chunk_mask);
  3915. if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
  3916. last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
  3917. }
  3918. if (need_flush ||
  3919. time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
  3920. /* Need to update reshape_position in metadata */
  3921. wait_barrier(conf);
  3922. mddev->reshape_position = conf->reshape_progress;
  3923. if (mddev->reshape_backwards)
  3924. mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
  3925. - conf->reshape_progress;
  3926. else
  3927. mddev->curr_resync_completed = conf->reshape_progress;
  3928. conf->reshape_checkpoint = jiffies;
  3929. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3930. md_wakeup_thread(mddev->thread);
  3931. wait_event(mddev->sb_wait, mddev->flags == 0 ||
  3932. kthread_should_stop());
  3933. conf->reshape_safe = mddev->reshape_position;
  3934. allow_barrier(conf);
  3935. }
  3936. read_more:
  3937. /* Now schedule reads for blocks from sector_nr to last */
  3938. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  3939. raise_barrier(conf, sectors_done != 0);
  3940. atomic_set(&r10_bio->remaining, 0);
  3941. r10_bio->mddev = mddev;
  3942. r10_bio->sector = sector_nr;
  3943. set_bit(R10BIO_IsReshape, &r10_bio->state);
  3944. r10_bio->sectors = last - sector_nr + 1;
  3945. rdev = read_balance(conf, r10_bio, &max_sectors);
  3946. BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
  3947. if (!rdev) {
  3948. /* Cannot read from here, so need to record bad blocks
  3949. * on all the target devices.
  3950. */
  3951. // FIXME
  3952. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3953. return sectors_done;
  3954. }
  3955. read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
  3956. read_bio->bi_bdev = rdev->bdev;
  3957. read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
  3958. + rdev->data_offset);
  3959. read_bio->bi_private = r10_bio;
  3960. read_bio->bi_end_io = end_sync_read;
  3961. read_bio->bi_rw = READ;
  3962. read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  3963. read_bio->bi_flags |= 1 << BIO_UPTODATE;
  3964. read_bio->bi_vcnt = 0;
  3965. read_bio->bi_size = 0;
  3966. r10_bio->master_bio = read_bio;
  3967. r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
  3968. /* Now find the locations in the new layout */
  3969. __raid10_find_phys(&conf->geo, r10_bio);
  3970. blist = read_bio;
  3971. read_bio->bi_next = NULL;
  3972. for (s = 0; s < conf->copies*2; s++) {
  3973. struct bio *b;
  3974. int d = r10_bio->devs[s/2].devnum;
  3975. struct md_rdev *rdev2;
  3976. if (s&1) {
  3977. rdev2 = conf->mirrors[d].replacement;
  3978. b = r10_bio->devs[s/2].repl_bio;
  3979. } else {
  3980. rdev2 = conf->mirrors[d].rdev;
  3981. b = r10_bio->devs[s/2].bio;
  3982. }
  3983. if (!rdev2 || test_bit(Faulty, &rdev2->flags))
  3984. continue;
  3985. bio_reset(b);
  3986. b->bi_bdev = rdev2->bdev;
  3987. b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
  3988. b->bi_private = r10_bio;
  3989. b->bi_end_io = end_reshape_write;
  3990. b->bi_rw = WRITE;
  3991. b->bi_next = blist;
  3992. blist = b;
  3993. }
  3994. /* Now add as many pages as possible to all of these bios. */
  3995. nr_sectors = 0;
  3996. for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
  3997. struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
  3998. int len = (max_sectors - s) << 9;
  3999. if (len > PAGE_SIZE)
  4000. len = PAGE_SIZE;
  4001. for (bio = blist; bio ; bio = bio->bi_next) {
  4002. struct bio *bio2;
  4003. if (bio_add_page(bio, page, len, 0))
  4004. continue;
  4005. /* Didn't fit, must stop */
  4006. for (bio2 = blist;
  4007. bio2 && bio2 != bio;
  4008. bio2 = bio2->bi_next) {
  4009. /* Remove last page from this bio */
  4010. bio2->bi_vcnt--;
  4011. bio2->bi_size -= len;
  4012. bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
  4013. }
  4014. goto bio_full;
  4015. }
  4016. sector_nr += len >> 9;
  4017. nr_sectors += len >> 9;
  4018. }
  4019. bio_full:
  4020. r10_bio->sectors = nr_sectors;
  4021. /* Now submit the read */
  4022. md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
  4023. atomic_inc(&r10_bio->remaining);
  4024. read_bio->bi_next = NULL;
  4025. generic_make_request(read_bio);
  4026. sector_nr += nr_sectors;
  4027. sectors_done += nr_sectors;
  4028. if (sector_nr <= last)
  4029. goto read_more;
  4030. /* Now that we have done the whole section we can
  4031. * update reshape_progress
  4032. */
  4033. if (mddev->reshape_backwards)
  4034. conf->reshape_progress -= sectors_done;
  4035. else
  4036. conf->reshape_progress += sectors_done;
  4037. return sectors_done;
  4038. }
  4039. static void end_reshape_request(struct r10bio *r10_bio);
  4040. static int handle_reshape_read_error(struct mddev *mddev,
  4041. struct r10bio *r10_bio);
  4042. static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  4043. {
  4044. /* Reshape read completed. Hopefully we have a block
  4045. * to write out.
  4046. * If we got a read error then we do sync 1-page reads from
  4047. * elsewhere until we find the data - or give up.
  4048. */
  4049. struct r10conf *conf = mddev->private;
  4050. int s;
  4051. if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
  4052. if (handle_reshape_read_error(mddev, r10_bio) < 0) {
  4053. /* Reshape has been aborted */
  4054. md_done_sync(mddev, r10_bio->sectors, 0);
  4055. return;
  4056. }
  4057. /* We definitely have the data in the pages, schedule the
  4058. * writes.
  4059. */
  4060. atomic_set(&r10_bio->remaining, 1);
  4061. for (s = 0; s < conf->copies*2; s++) {
  4062. struct bio *b;
  4063. int d = r10_bio->devs[s/2].devnum;
  4064. struct md_rdev *rdev;
  4065. if (s&1) {
  4066. rdev = conf->mirrors[d].replacement;
  4067. b = r10_bio->devs[s/2].repl_bio;
  4068. } else {
  4069. rdev = conf->mirrors[d].rdev;
  4070. b = r10_bio->devs[s/2].bio;
  4071. }
  4072. if (!rdev || test_bit(Faulty, &rdev->flags))
  4073. continue;
  4074. atomic_inc(&rdev->nr_pending);
  4075. md_sync_acct(b->bi_bdev, r10_bio->sectors);
  4076. atomic_inc(&r10_bio->remaining);
  4077. b->bi_next = NULL;
  4078. generic_make_request(b);
  4079. }
  4080. end_reshape_request(r10_bio);
  4081. }
  4082. static void end_reshape(struct r10conf *conf)
  4083. {
  4084. if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
  4085. return;
  4086. spin_lock_irq(&conf->device_lock);
  4087. conf->prev = conf->geo;
  4088. md_finish_reshape(conf->mddev);
  4089. smp_wmb();
  4090. conf->reshape_progress = MaxSector;
  4091. spin_unlock_irq(&conf->device_lock);
  4092. /* read-ahead size must cover two whole stripes, which is
  4093. * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
  4094. */
  4095. if (conf->mddev->queue) {
  4096. int stripe = conf->geo.raid_disks *
  4097. ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
  4098. stripe /= conf->geo.near_copies;
  4099. if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
  4100. conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
  4101. }
  4102. conf->fullsync = 0;
  4103. }
  4104. static int handle_reshape_read_error(struct mddev *mddev,
  4105. struct r10bio *r10_bio)
  4106. {
  4107. /* Use sync reads to get the blocks from somewhere else */
  4108. int sectors = r10_bio->sectors;
  4109. struct r10conf *conf = mddev->private;
  4110. struct {
  4111. struct r10bio r10_bio;
  4112. struct r10dev devs[conf->copies];
  4113. } on_stack;
  4114. struct r10bio *r10b = &on_stack.r10_bio;
  4115. int slot = 0;
  4116. int idx = 0;
  4117. struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
  4118. r10b->sector = r10_bio->sector;
  4119. __raid10_find_phys(&conf->prev, r10b);
  4120. while (sectors) {
  4121. int s = sectors;
  4122. int success = 0;
  4123. int first_slot = slot;
  4124. if (s > (PAGE_SIZE >> 9))
  4125. s = PAGE_SIZE >> 9;
  4126. while (!success) {
  4127. int d = r10b->devs[slot].devnum;
  4128. struct md_rdev *rdev = conf->mirrors[d].rdev;
  4129. sector_t addr;
  4130. if (rdev == NULL ||
  4131. test_bit(Faulty, &rdev->flags) ||
  4132. !test_bit(In_sync, &rdev->flags))
  4133. goto failed;
  4134. addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
  4135. success = sync_page_io(rdev,
  4136. addr,
  4137. s << 9,
  4138. bvec[idx].bv_page,
  4139. READ, false);
  4140. if (success)
  4141. break;
  4142. failed:
  4143. slot++;
  4144. if (slot >= conf->copies)
  4145. slot = 0;
  4146. if (slot == first_slot)
  4147. break;
  4148. }
  4149. if (!success) {
  4150. /* couldn't read this block, must give up */
  4151. set_bit(MD_RECOVERY_INTR,
  4152. &mddev->recovery);
  4153. return -EIO;
  4154. }
  4155. sectors -= s;
  4156. idx++;
  4157. }
  4158. return 0;
  4159. }
  4160. static void end_reshape_write(struct bio *bio, int error)
  4161. {
  4162. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  4163. struct r10bio *r10_bio = bio->bi_private;
  4164. struct mddev *mddev = r10_bio->mddev;
  4165. struct r10conf *conf = mddev->private;
  4166. int d;
  4167. int slot;
  4168. int repl;
  4169. struct md_rdev *rdev = NULL;
  4170. d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  4171. if (repl)
  4172. rdev = conf->mirrors[d].replacement;
  4173. if (!rdev) {
  4174. smp_mb();
  4175. rdev = conf->mirrors[d].rdev;
  4176. }
  4177. if (!uptodate) {
  4178. /* FIXME should record badblock */
  4179. md_error(mddev, rdev);
  4180. }
  4181. rdev_dec_pending(rdev, mddev);
  4182. end_reshape_request(r10_bio);
  4183. }
  4184. static void end_reshape_request(struct r10bio *r10_bio)
  4185. {
  4186. if (!atomic_dec_and_test(&r10_bio->remaining))
  4187. return;
  4188. md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
  4189. bio_put(r10_bio->master_bio);
  4190. put_buf(r10_bio);
  4191. }
  4192. static void raid10_finish_reshape(struct mddev *mddev)
  4193. {
  4194. struct r10conf *conf = mddev->private;
  4195. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4196. return;
  4197. if (mddev->delta_disks > 0) {
  4198. sector_t size = raid10_size(mddev, 0, 0);
  4199. md_set_array_sectors(mddev, size);
  4200. if (mddev->recovery_cp > mddev->resync_max_sectors) {
  4201. mddev->recovery_cp = mddev->resync_max_sectors;
  4202. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4203. }
  4204. mddev->resync_max_sectors = size;
  4205. set_capacity(mddev->gendisk, mddev->array_sectors);
  4206. revalidate_disk(mddev->gendisk);
  4207. } else {
  4208. int d;
  4209. for (d = conf->geo.raid_disks ;
  4210. d < conf->geo.raid_disks - mddev->delta_disks;
  4211. d++) {
  4212. struct md_rdev *rdev = conf->mirrors[d].rdev;
  4213. if (rdev)
  4214. clear_bit(In_sync, &rdev->flags);
  4215. rdev = conf->mirrors[d].replacement;
  4216. if (rdev)
  4217. clear_bit(In_sync, &rdev->flags);
  4218. }
  4219. }
  4220. mddev->layout = mddev->new_layout;
  4221. mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
  4222. mddev->reshape_position = MaxSector;
  4223. mddev->delta_disks = 0;
  4224. mddev->reshape_backwards = 0;
  4225. }
  4226. static struct md_personality raid10_personality =
  4227. {
  4228. .name = "raid10",
  4229. .level = 10,
  4230. .owner = THIS_MODULE,
  4231. .make_request = make_request,
  4232. .run = run,
  4233. .stop = stop,
  4234. .status = status,
  4235. .error_handler = error,
  4236. .hot_add_disk = raid10_add_disk,
  4237. .hot_remove_disk= raid10_remove_disk,
  4238. .spare_active = raid10_spare_active,
  4239. .sync_request = sync_request,
  4240. .quiesce = raid10_quiesce,
  4241. .size = raid10_size,
  4242. .resize = raid10_resize,
  4243. .takeover = raid10_takeover,
  4244. .check_reshape = raid10_check_reshape,
  4245. .start_reshape = raid10_start_reshape,
  4246. .finish_reshape = raid10_finish_reshape,
  4247. };
  4248. static int __init raid_init(void)
  4249. {
  4250. return register_md_personality(&raid10_personality);
  4251. }
  4252. static void raid_exit(void)
  4253. {
  4254. unregister_md_personality(&raid10_personality);
  4255. }
  4256. module_init(raid_init);
  4257. module_exit(raid_exit);
  4258. MODULE_LICENSE("GPL");
  4259. MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
  4260. MODULE_ALIAS("md-personality-9"); /* RAID10 */
  4261. MODULE_ALIAS("md-raid10");
  4262. MODULE_ALIAS("md-level-10");
  4263. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);