qlge_main.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int seconds = 3;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. ssleep(1);
  123. } while (--seconds);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  224. if (status)
  225. return status;
  226. switch (type) {
  227. case MAC_ADDR_TYPE_MULTI_MAC:
  228. case MAC_ADDR_TYPE_CAM_MAC:
  229. {
  230. status =
  231. ql_wait_reg_rdy(qdev,
  232. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  233. if (status)
  234. goto exit;
  235. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  236. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  237. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  238. status =
  239. ql_wait_reg_rdy(qdev,
  240. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  241. if (status)
  242. goto exit;
  243. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  247. if (status)
  248. goto exit;
  249. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  250. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  251. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  252. status =
  253. ql_wait_reg_rdy(qdev,
  254. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  255. if (status)
  256. goto exit;
  257. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  258. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  259. status =
  260. ql_wait_reg_rdy(qdev,
  261. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  262. if (status)
  263. goto exit;
  264. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  265. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  266. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  267. status =
  268. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  269. MAC_ADDR_MR, MAC_ADDR_E);
  270. if (status)
  271. goto exit;
  272. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  273. }
  274. break;
  275. }
  276. case MAC_ADDR_TYPE_VLAN:
  277. case MAC_ADDR_TYPE_MULTI_FLTR:
  278. default:
  279. QPRINTK(qdev, IFUP, CRIT,
  280. "Address type %d not yet supported.\n", type);
  281. status = -EPERM;
  282. }
  283. exit:
  284. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  285. return status;
  286. }
  287. /* Set up a MAC, multicast or VLAN address for the
  288. * inbound frame matching.
  289. */
  290. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  291. u16 index)
  292. {
  293. u32 offset = 0;
  294. int status = 0;
  295. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  296. if (status)
  297. return status;
  298. switch (type) {
  299. case MAC_ADDR_TYPE_MULTI_MAC:
  300. case MAC_ADDR_TYPE_CAM_MAC:
  301. {
  302. u32 cam_output;
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower =
  305. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  306. (addr[5]);
  307. QPRINTK(qdev, IFUP, INFO,
  308. "Adding %s address %pM"
  309. " at index %d in the CAM.\n",
  310. ((type ==
  311. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  312. "UNICAST"), addr, index);
  313. status =
  314. ql_wait_reg_rdy(qdev,
  315. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  316. if (status)
  317. goto exit;
  318. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  319. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  320. type); /* type */
  321. ql_write32(qdev, MAC_ADDR_DATA, lower);
  322. status =
  323. ql_wait_reg_rdy(qdev,
  324. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  325. if (status)
  326. goto exit;
  327. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  328. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  329. type); /* type */
  330. ql_write32(qdev, MAC_ADDR_DATA, upper);
  331. status =
  332. ql_wait_reg_rdy(qdev,
  333. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  334. if (status)
  335. goto exit;
  336. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  337. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  338. type); /* type */
  339. /* This field should also include the queue id
  340. and possibly the function id. Right now we hardcode
  341. the route field to NIC core.
  342. */
  343. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  344. cam_output = (CAM_OUT_ROUTE_NIC |
  345. (qdev->
  346. func << CAM_OUT_FUNC_SHIFT) |
  347. (qdev->
  348. rss_ring_first_cq_id <<
  349. CAM_OUT_CQ_ID_SHIFT));
  350. if (qdev->vlgrp)
  351. cam_output |= CAM_OUT_RV;
  352. /* route to NIC core */
  353. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  354. }
  355. break;
  356. }
  357. case MAC_ADDR_TYPE_VLAN:
  358. {
  359. u32 enable_bit = *((u32 *) &addr[0]);
  360. /* For VLAN, the addr actually holds a bit that
  361. * either enables or disables the vlan id we are
  362. * addressing. It's either MAC_ADDR_E on or off.
  363. * That's bit-27 we're talking about.
  364. */
  365. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  366. (enable_bit ? "Adding" : "Removing"),
  367. index, (enable_bit ? "to" : "from"));
  368. status =
  369. ql_wait_reg_rdy(qdev,
  370. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  371. if (status)
  372. goto exit;
  373. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  374. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  375. type | /* type */
  376. enable_bit); /* enable/disable */
  377. break;
  378. }
  379. case MAC_ADDR_TYPE_MULTI_FLTR:
  380. default:
  381. QPRINTK(qdev, IFUP, CRIT,
  382. "Address type %d not yet supported.\n", type);
  383. status = -EPERM;
  384. }
  385. exit:
  386. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  387. return status;
  388. }
  389. /* Get a specific frame routing value from the CAM.
  390. * Used for debug and reg dump.
  391. */
  392. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  393. {
  394. int status = 0;
  395. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  396. if (status)
  397. goto exit;
  398. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
  399. if (status)
  400. goto exit;
  401. ql_write32(qdev, RT_IDX,
  402. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  403. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
  404. if (status)
  405. goto exit;
  406. *value = ql_read32(qdev, RT_DATA);
  407. exit:
  408. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  409. return status;
  410. }
  411. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  412. * to route different frame types to various inbound queues. We send broadcast/
  413. * multicast/error frames to the default queue for slow handling,
  414. * and CAM hit/RSS frames to the fast handling queues.
  415. */
  416. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  417. int enable)
  418. {
  419. int status;
  420. u32 value = 0;
  421. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  422. if (status)
  423. return status;
  424. QPRINTK(qdev, IFUP, DEBUG,
  425. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  426. (enable ? "Adding" : "Removing"),
  427. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  428. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  429. ((index ==
  430. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  431. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  432. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  434. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  435. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  436. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  437. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  438. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  439. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  440. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  441. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  442. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  443. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  444. (enable ? "to" : "from"));
  445. switch (mask) {
  446. case RT_IDX_CAM_HIT:
  447. {
  448. value = RT_IDX_DST_CAM_Q | /* dest */
  449. RT_IDX_TYPE_NICQ | /* type */
  450. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  451. break;
  452. }
  453. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  454. {
  455. value = RT_IDX_DST_DFLT_Q | /* dest */
  456. RT_IDX_TYPE_NICQ | /* type */
  457. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  458. break;
  459. }
  460. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  461. {
  462. value = RT_IDX_DST_DFLT_Q | /* dest */
  463. RT_IDX_TYPE_NICQ | /* type */
  464. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  465. break;
  466. }
  467. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  468. {
  469. value = RT_IDX_DST_DFLT_Q | /* dest */
  470. RT_IDX_TYPE_NICQ | /* type */
  471. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  472. break;
  473. }
  474. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  475. {
  476. value = RT_IDX_DST_CAM_Q | /* dest */
  477. RT_IDX_TYPE_NICQ | /* type */
  478. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  479. break;
  480. }
  481. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  489. {
  490. value = RT_IDX_DST_RSS | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case 0: /* Clear the E-bit on an entry. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (index << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. default:
  503. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  504. mask);
  505. status = -EPERM;
  506. goto exit;
  507. }
  508. if (value) {
  509. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  510. if (status)
  511. goto exit;
  512. value |= (enable ? RT_IDX_E : 0);
  513. ql_write32(qdev, RT_IDX, value);
  514. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  515. }
  516. exit:
  517. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  518. return status;
  519. }
  520. static void ql_enable_interrupts(struct ql_adapter *qdev)
  521. {
  522. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  523. }
  524. static void ql_disable_interrupts(struct ql_adapter *qdev)
  525. {
  526. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  527. }
  528. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  529. * Otherwise, we may have multiple outstanding workers and don't want to
  530. * enable until the last one finishes. In this case, the irq_cnt gets
  531. * incremented everytime we queue a worker and decremented everytime
  532. * a worker finishes. Once it hits zero we enable the interrupt.
  533. */
  534. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  535. {
  536. u32 var = 0;
  537. unsigned long hw_flags = 0;
  538. struct intr_context *ctx = qdev->intr_context + intr;
  539. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  540. /* Always enable if we're MSIX multi interrupts and
  541. * it's not the default (zeroeth) interrupt.
  542. */
  543. ql_write32(qdev, INTR_EN,
  544. ctx->intr_en_mask);
  545. var = ql_read32(qdev, STS);
  546. return var;
  547. }
  548. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  549. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  550. ql_write32(qdev, INTR_EN,
  551. ctx->intr_en_mask);
  552. var = ql_read32(qdev, STS);
  553. }
  554. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  555. return var;
  556. }
  557. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  558. {
  559. u32 var = 0;
  560. unsigned long hw_flags;
  561. struct intr_context *ctx;
  562. /* HW disables for us if we're MSIX multi interrupts and
  563. * it's not the default (zeroeth) interrupt.
  564. */
  565. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  566. return 0;
  567. ctx = qdev->intr_context + intr;
  568. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  569. if (!atomic_read(&ctx->irq_cnt)) {
  570. ql_write32(qdev, INTR_EN,
  571. ctx->intr_dis_mask);
  572. var = ql_read32(qdev, STS);
  573. }
  574. atomic_inc(&ctx->irq_cnt);
  575. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  576. return var;
  577. }
  578. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  579. {
  580. int i;
  581. for (i = 0; i < qdev->intr_count; i++) {
  582. /* The enable call does a atomic_dec_and_test
  583. * and enables only if the result is zero.
  584. * So we precharge it here.
  585. */
  586. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  587. i == 0))
  588. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  589. ql_enable_completion_interrupt(qdev, i);
  590. }
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* get the data */
  608. *data = ql_read32(qdev, FLASH_DATA);
  609. exit:
  610. return status;
  611. }
  612. static int ql_get_flash_params(struct ql_adapter *qdev)
  613. {
  614. int i;
  615. int status;
  616. u32 *p = (u32 *)&qdev->flash;
  617. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  618. return -ETIMEDOUT;
  619. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  620. status = ql_read_flash_word(qdev, i, p);
  621. if (status) {
  622. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  623. goto exit;
  624. }
  625. }
  626. exit:
  627. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  628. return status;
  629. }
  630. /* xgmac register are located behind the xgmac_addr and xgmac_data
  631. * register pair. Each read/write requires us to wait for the ready
  632. * bit before reading/writing the data.
  633. */
  634. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  635. {
  636. int status;
  637. /* wait for reg to come ready */
  638. status = ql_wait_reg_rdy(qdev,
  639. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  640. if (status)
  641. return status;
  642. /* write the data to the data reg */
  643. ql_write32(qdev, XGMAC_DATA, data);
  644. /* trigger the write */
  645. ql_write32(qdev, XGMAC_ADDR, reg);
  646. return status;
  647. }
  648. /* xgmac register are located behind the xgmac_addr and xgmac_data
  649. * register pair. Each read/write requires us to wait for the ready
  650. * bit before reading/writing the data.
  651. */
  652. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  653. {
  654. int status = 0;
  655. /* wait for reg to come ready */
  656. status = ql_wait_reg_rdy(qdev,
  657. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  658. if (status)
  659. goto exit;
  660. /* set up for reg read */
  661. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  665. if (status)
  666. goto exit;
  667. /* get the data */
  668. *data = ql_read32(qdev, XGMAC_DATA);
  669. exit:
  670. return status;
  671. }
  672. /* This is used for reading the 64-bit statistics regs. */
  673. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  674. {
  675. int status = 0;
  676. u32 hi = 0;
  677. u32 lo = 0;
  678. status = ql_read_xgmac_reg(qdev, reg, &lo);
  679. if (status)
  680. goto exit;
  681. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  682. if (status)
  683. goto exit;
  684. *data = (u64) lo | ((u64) hi << 32);
  685. exit:
  686. return status;
  687. }
  688. /* Take the MAC Core out of reset.
  689. * Enable statistics counting.
  690. * Take the transmitter/receiver out of reset.
  691. * This functionality may be done in the MPI firmware at a
  692. * later date.
  693. */
  694. static int ql_port_initialize(struct ql_adapter *qdev)
  695. {
  696. int status = 0;
  697. u32 data;
  698. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  699. /* Another function has the semaphore, so
  700. * wait for the port init bit to come ready.
  701. */
  702. QPRINTK(qdev, LINK, INFO,
  703. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  704. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  705. if (status) {
  706. QPRINTK(qdev, LINK, CRIT,
  707. "Port initialize timed out.\n");
  708. }
  709. return status;
  710. }
  711. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  712. /* Set the core reset. */
  713. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  714. if (status)
  715. goto end;
  716. data |= GLOBAL_CFG_RESET;
  717. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  718. if (status)
  719. goto end;
  720. /* Clear the core reset and turn on jumbo for receiver. */
  721. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  722. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  723. data |= GLOBAL_CFG_TX_STAT_EN;
  724. data |= GLOBAL_CFG_RX_STAT_EN;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Enable transmitter, and clear it's reset. */
  729. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  730. if (status)
  731. goto end;
  732. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  733. data |= TX_CFG_EN; /* Enable the transmitter. */
  734. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  735. if (status)
  736. goto end;
  737. /* Enable receiver and clear it's reset. */
  738. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  739. if (status)
  740. goto end;
  741. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  742. data |= RX_CFG_EN; /* Enable the receiver. */
  743. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  744. if (status)
  745. goto end;
  746. /* Turn on jumbo. */
  747. status =
  748. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  749. if (status)
  750. goto end;
  751. status =
  752. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  753. if (status)
  754. goto end;
  755. /* Signal to the world that the port is enabled. */
  756. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  757. end:
  758. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  759. return status;
  760. }
  761. /* Get the next large buffer. */
  762. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  763. {
  764. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  765. rx_ring->lbq_curr_idx++;
  766. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  767. rx_ring->lbq_curr_idx = 0;
  768. rx_ring->lbq_free_cnt++;
  769. return lbq_desc;
  770. }
  771. /* Get the next small buffer. */
  772. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  773. {
  774. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  775. rx_ring->sbq_curr_idx++;
  776. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  777. rx_ring->sbq_curr_idx = 0;
  778. rx_ring->sbq_free_cnt++;
  779. return sbq_desc;
  780. }
  781. /* Update an rx ring index. */
  782. static void ql_update_cq(struct rx_ring *rx_ring)
  783. {
  784. rx_ring->cnsmr_idx++;
  785. rx_ring->curr_entry++;
  786. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  787. rx_ring->cnsmr_idx = 0;
  788. rx_ring->curr_entry = rx_ring->cq_base;
  789. }
  790. }
  791. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  792. {
  793. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  794. }
  795. /* Process (refill) a large buffer queue. */
  796. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  797. {
  798. int clean_idx = rx_ring->lbq_clean_idx;
  799. struct bq_desc *lbq_desc;
  800. struct bq_element *bq;
  801. u64 map;
  802. int i;
  803. while (rx_ring->lbq_free_cnt > 16) {
  804. for (i = 0; i < 16; i++) {
  805. QPRINTK(qdev, RX_STATUS, DEBUG,
  806. "lbq: try cleaning clean_idx = %d.\n",
  807. clean_idx);
  808. lbq_desc = &rx_ring->lbq[clean_idx];
  809. bq = lbq_desc->bq;
  810. if (lbq_desc->p.lbq_page == NULL) {
  811. QPRINTK(qdev, RX_STATUS, DEBUG,
  812. "lbq: getting new page for index %d.\n",
  813. lbq_desc->index);
  814. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  815. if (lbq_desc->p.lbq_page == NULL) {
  816. QPRINTK(qdev, RX_STATUS, ERR,
  817. "Couldn't get a page.\n");
  818. return;
  819. }
  820. map = pci_map_page(qdev->pdev,
  821. lbq_desc->p.lbq_page,
  822. 0, PAGE_SIZE,
  823. PCI_DMA_FROMDEVICE);
  824. if (pci_dma_mapping_error(qdev->pdev, map)) {
  825. QPRINTK(qdev, RX_STATUS, ERR,
  826. "PCI mapping failed.\n");
  827. return;
  828. }
  829. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  830. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  831. bq->addr_lo = /*lbq_desc->addr_lo = */
  832. cpu_to_le32(map);
  833. bq->addr_hi = /*lbq_desc->addr_hi = */
  834. cpu_to_le32(map >> 32);
  835. }
  836. clean_idx++;
  837. if (clean_idx == rx_ring->lbq_len)
  838. clean_idx = 0;
  839. }
  840. rx_ring->lbq_clean_idx = clean_idx;
  841. rx_ring->lbq_prod_idx += 16;
  842. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  843. rx_ring->lbq_prod_idx = 0;
  844. QPRINTK(qdev, RX_STATUS, DEBUG,
  845. "lbq: updating prod idx = %d.\n",
  846. rx_ring->lbq_prod_idx);
  847. ql_write_db_reg(rx_ring->lbq_prod_idx,
  848. rx_ring->lbq_prod_idx_db_reg);
  849. rx_ring->lbq_free_cnt -= 16;
  850. }
  851. }
  852. /* Process (refill) a small buffer queue. */
  853. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  854. {
  855. int clean_idx = rx_ring->sbq_clean_idx;
  856. struct bq_desc *sbq_desc;
  857. struct bq_element *bq;
  858. u64 map;
  859. int i;
  860. while (rx_ring->sbq_free_cnt > 16) {
  861. for (i = 0; i < 16; i++) {
  862. sbq_desc = &rx_ring->sbq[clean_idx];
  863. QPRINTK(qdev, RX_STATUS, DEBUG,
  864. "sbq: try cleaning clean_idx = %d.\n",
  865. clean_idx);
  866. bq = sbq_desc->bq;
  867. if (sbq_desc->p.skb == NULL) {
  868. QPRINTK(qdev, RX_STATUS, DEBUG,
  869. "sbq: getting new skb for index %d.\n",
  870. sbq_desc->index);
  871. sbq_desc->p.skb =
  872. netdev_alloc_skb(qdev->ndev,
  873. rx_ring->sbq_buf_size);
  874. if (sbq_desc->p.skb == NULL) {
  875. QPRINTK(qdev, PROBE, ERR,
  876. "Couldn't get an skb.\n");
  877. rx_ring->sbq_clean_idx = clean_idx;
  878. return;
  879. }
  880. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  881. map = pci_map_single(qdev->pdev,
  882. sbq_desc->p.skb->data,
  883. rx_ring->sbq_buf_size /
  884. 2, PCI_DMA_FROMDEVICE);
  885. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  886. pci_unmap_len_set(sbq_desc, maplen,
  887. rx_ring->sbq_buf_size / 2);
  888. bq->addr_lo = cpu_to_le32(map);
  889. bq->addr_hi = cpu_to_le32(map >> 32);
  890. }
  891. clean_idx++;
  892. if (clean_idx == rx_ring->sbq_len)
  893. clean_idx = 0;
  894. }
  895. rx_ring->sbq_clean_idx = clean_idx;
  896. rx_ring->sbq_prod_idx += 16;
  897. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  898. rx_ring->sbq_prod_idx = 0;
  899. QPRINTK(qdev, RX_STATUS, DEBUG,
  900. "sbq: updating prod idx = %d.\n",
  901. rx_ring->sbq_prod_idx);
  902. ql_write_db_reg(rx_ring->sbq_prod_idx,
  903. rx_ring->sbq_prod_idx_db_reg);
  904. rx_ring->sbq_free_cnt -= 16;
  905. }
  906. }
  907. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  908. struct rx_ring *rx_ring)
  909. {
  910. ql_update_sbq(qdev, rx_ring);
  911. ql_update_lbq(qdev, rx_ring);
  912. }
  913. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  914. * fails at some stage, or from the interrupt when a tx completes.
  915. */
  916. static void ql_unmap_send(struct ql_adapter *qdev,
  917. struct tx_ring_desc *tx_ring_desc, int mapped)
  918. {
  919. int i;
  920. for (i = 0; i < mapped; i++) {
  921. if (i == 0 || (i == 7 && mapped > 7)) {
  922. /*
  923. * Unmap the skb->data area, or the
  924. * external sglist (AKA the Outbound
  925. * Address List (OAL)).
  926. * If its the zeroeth element, then it's
  927. * the skb->data area. If it's the 7th
  928. * element and there is more than 6 frags,
  929. * then its an OAL.
  930. */
  931. if (i == 7) {
  932. QPRINTK(qdev, TX_DONE, DEBUG,
  933. "unmapping OAL area.\n");
  934. }
  935. pci_unmap_single(qdev->pdev,
  936. pci_unmap_addr(&tx_ring_desc->map[i],
  937. mapaddr),
  938. pci_unmap_len(&tx_ring_desc->map[i],
  939. maplen),
  940. PCI_DMA_TODEVICE);
  941. } else {
  942. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  943. i);
  944. pci_unmap_page(qdev->pdev,
  945. pci_unmap_addr(&tx_ring_desc->map[i],
  946. mapaddr),
  947. pci_unmap_len(&tx_ring_desc->map[i],
  948. maplen), PCI_DMA_TODEVICE);
  949. }
  950. }
  951. }
  952. /* Map the buffers for this transmit. This will return
  953. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  954. */
  955. static int ql_map_send(struct ql_adapter *qdev,
  956. struct ob_mac_iocb_req *mac_iocb_ptr,
  957. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  958. {
  959. int len = skb_headlen(skb);
  960. dma_addr_t map;
  961. int frag_idx, err, map_idx = 0;
  962. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  963. int frag_cnt = skb_shinfo(skb)->nr_frags;
  964. if (frag_cnt) {
  965. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  966. }
  967. /*
  968. * Map the skb buffer first.
  969. */
  970. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  971. err = pci_dma_mapping_error(qdev->pdev, map);
  972. if (err) {
  973. QPRINTK(qdev, TX_QUEUED, ERR,
  974. "PCI mapping failed with error: %d\n", err);
  975. return NETDEV_TX_BUSY;
  976. }
  977. tbd->len = cpu_to_le32(len);
  978. tbd->addr = cpu_to_le64(map);
  979. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  980. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  981. map_idx++;
  982. /*
  983. * This loop fills the remainder of the 8 address descriptors
  984. * in the IOCB. If there are more than 7 fragments, then the
  985. * eighth address desc will point to an external list (OAL).
  986. * When this happens, the remainder of the frags will be stored
  987. * in this list.
  988. */
  989. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  990. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  991. tbd++;
  992. if (frag_idx == 6 && frag_cnt > 7) {
  993. /* Let's tack on an sglist.
  994. * Our control block will now
  995. * look like this:
  996. * iocb->seg[0] = skb->data
  997. * iocb->seg[1] = frag[0]
  998. * iocb->seg[2] = frag[1]
  999. * iocb->seg[3] = frag[2]
  1000. * iocb->seg[4] = frag[3]
  1001. * iocb->seg[5] = frag[4]
  1002. * iocb->seg[6] = frag[5]
  1003. * iocb->seg[7] = ptr to OAL (external sglist)
  1004. * oal->seg[0] = frag[6]
  1005. * oal->seg[1] = frag[7]
  1006. * oal->seg[2] = frag[8]
  1007. * oal->seg[3] = frag[9]
  1008. * oal->seg[4] = frag[10]
  1009. * etc...
  1010. */
  1011. /* Tack on the OAL in the eighth segment of IOCB. */
  1012. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1013. sizeof(struct oal),
  1014. PCI_DMA_TODEVICE);
  1015. err = pci_dma_mapping_error(qdev->pdev, map);
  1016. if (err) {
  1017. QPRINTK(qdev, TX_QUEUED, ERR,
  1018. "PCI mapping outbound address list with error: %d\n",
  1019. err);
  1020. goto map_error;
  1021. }
  1022. tbd->addr = cpu_to_le64(map);
  1023. /*
  1024. * The length is the number of fragments
  1025. * that remain to be mapped times the length
  1026. * of our sglist (OAL).
  1027. */
  1028. tbd->len =
  1029. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1030. (frag_cnt - frag_idx)) | TX_DESC_C);
  1031. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1032. map);
  1033. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1034. sizeof(struct oal));
  1035. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1036. map_idx++;
  1037. }
  1038. map =
  1039. pci_map_page(qdev->pdev, frag->page,
  1040. frag->page_offset, frag->size,
  1041. PCI_DMA_TODEVICE);
  1042. err = pci_dma_mapping_error(qdev->pdev, map);
  1043. if (err) {
  1044. QPRINTK(qdev, TX_QUEUED, ERR,
  1045. "PCI mapping frags failed with error: %d.\n",
  1046. err);
  1047. goto map_error;
  1048. }
  1049. tbd->addr = cpu_to_le64(map);
  1050. tbd->len = cpu_to_le32(frag->size);
  1051. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1052. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1053. frag->size);
  1054. }
  1055. /* Save the number of segments we've mapped. */
  1056. tx_ring_desc->map_cnt = map_idx;
  1057. /* Terminate the last segment. */
  1058. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1059. return NETDEV_TX_OK;
  1060. map_error:
  1061. /*
  1062. * If the first frag mapping failed, then i will be zero.
  1063. * This causes the unmap of the skb->data area. Otherwise
  1064. * we pass in the number of frags that mapped successfully
  1065. * so they can be umapped.
  1066. */
  1067. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1068. return NETDEV_TX_BUSY;
  1069. }
  1070. static void ql_realign_skb(struct sk_buff *skb, int len)
  1071. {
  1072. void *temp_addr = skb->data;
  1073. /* Undo the skb_reserve(skb,32) we did before
  1074. * giving to hardware, and realign data on
  1075. * a 2-byte boundary.
  1076. */
  1077. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1078. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1079. skb_copy_to_linear_data(skb, temp_addr,
  1080. (unsigned int)len);
  1081. }
  1082. /*
  1083. * This function builds an skb for the given inbound
  1084. * completion. It will be rewritten for readability in the near
  1085. * future, but for not it works well.
  1086. */
  1087. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1088. struct rx_ring *rx_ring,
  1089. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1090. {
  1091. struct bq_desc *lbq_desc;
  1092. struct bq_desc *sbq_desc;
  1093. struct sk_buff *skb = NULL;
  1094. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1095. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1096. /*
  1097. * Handle the header buffer if present.
  1098. */
  1099. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1100. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1101. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1102. /*
  1103. * Headers fit nicely into a small buffer.
  1104. */
  1105. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1106. pci_unmap_single(qdev->pdev,
  1107. pci_unmap_addr(sbq_desc, mapaddr),
  1108. pci_unmap_len(sbq_desc, maplen),
  1109. PCI_DMA_FROMDEVICE);
  1110. skb = sbq_desc->p.skb;
  1111. ql_realign_skb(skb, hdr_len);
  1112. skb_put(skb, hdr_len);
  1113. sbq_desc->p.skb = NULL;
  1114. }
  1115. /*
  1116. * Handle the data buffer(s).
  1117. */
  1118. if (unlikely(!length)) { /* Is there data too? */
  1119. QPRINTK(qdev, RX_STATUS, DEBUG,
  1120. "No Data buffer in this packet.\n");
  1121. return skb;
  1122. }
  1123. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1124. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1125. QPRINTK(qdev, RX_STATUS, DEBUG,
  1126. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1127. /*
  1128. * Data is less than small buffer size so it's
  1129. * stuffed in a small buffer.
  1130. * For this case we append the data
  1131. * from the "data" small buffer to the "header" small
  1132. * buffer.
  1133. */
  1134. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1135. pci_dma_sync_single_for_cpu(qdev->pdev,
  1136. pci_unmap_addr
  1137. (sbq_desc, mapaddr),
  1138. pci_unmap_len
  1139. (sbq_desc, maplen),
  1140. PCI_DMA_FROMDEVICE);
  1141. memcpy(skb_put(skb, length),
  1142. sbq_desc->p.skb->data, length);
  1143. pci_dma_sync_single_for_device(qdev->pdev,
  1144. pci_unmap_addr
  1145. (sbq_desc,
  1146. mapaddr),
  1147. pci_unmap_len
  1148. (sbq_desc,
  1149. maplen),
  1150. PCI_DMA_FROMDEVICE);
  1151. } else {
  1152. QPRINTK(qdev, RX_STATUS, DEBUG,
  1153. "%d bytes in a single small buffer.\n", length);
  1154. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1155. skb = sbq_desc->p.skb;
  1156. ql_realign_skb(skb, length);
  1157. skb_put(skb, length);
  1158. pci_unmap_single(qdev->pdev,
  1159. pci_unmap_addr(sbq_desc,
  1160. mapaddr),
  1161. pci_unmap_len(sbq_desc,
  1162. maplen),
  1163. PCI_DMA_FROMDEVICE);
  1164. sbq_desc->p.skb = NULL;
  1165. }
  1166. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1167. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1168. QPRINTK(qdev, RX_STATUS, DEBUG,
  1169. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1170. /*
  1171. * The data is in a single large buffer. We
  1172. * chain it to the header buffer's skb and let
  1173. * it rip.
  1174. */
  1175. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1176. pci_unmap_page(qdev->pdev,
  1177. pci_unmap_addr(lbq_desc,
  1178. mapaddr),
  1179. pci_unmap_len(lbq_desc, maplen),
  1180. PCI_DMA_FROMDEVICE);
  1181. QPRINTK(qdev, RX_STATUS, DEBUG,
  1182. "Chaining page to skb.\n");
  1183. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1184. 0, length);
  1185. skb->len += length;
  1186. skb->data_len += length;
  1187. skb->truesize += length;
  1188. lbq_desc->p.lbq_page = NULL;
  1189. } else {
  1190. /*
  1191. * The headers and data are in a single large buffer. We
  1192. * copy it to a new skb and let it go. This can happen with
  1193. * jumbo mtu on a non-TCP/UDP frame.
  1194. */
  1195. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1196. skb = netdev_alloc_skb(qdev->ndev, length);
  1197. if (skb == NULL) {
  1198. QPRINTK(qdev, PROBE, DEBUG,
  1199. "No skb available, drop the packet.\n");
  1200. return NULL;
  1201. }
  1202. skb_reserve(skb, NET_IP_ALIGN);
  1203. QPRINTK(qdev, RX_STATUS, DEBUG,
  1204. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1205. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1206. 0, length);
  1207. skb->len += length;
  1208. skb->data_len += length;
  1209. skb->truesize += length;
  1210. length -= length;
  1211. lbq_desc->p.lbq_page = NULL;
  1212. __pskb_pull_tail(skb,
  1213. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1214. VLAN_ETH_HLEN : ETH_HLEN);
  1215. }
  1216. } else {
  1217. /*
  1218. * The data is in a chain of large buffers
  1219. * pointed to by a small buffer. We loop
  1220. * thru and chain them to the our small header
  1221. * buffer's skb.
  1222. * frags: There are 18 max frags and our small
  1223. * buffer will hold 32 of them. The thing is,
  1224. * we'll use 3 max for our 9000 byte jumbo
  1225. * frames. If the MTU goes up we could
  1226. * eventually be in trouble.
  1227. */
  1228. int size, offset, i = 0;
  1229. struct bq_element *bq, bq_array[8];
  1230. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1231. pci_unmap_single(qdev->pdev,
  1232. pci_unmap_addr(sbq_desc, mapaddr),
  1233. pci_unmap_len(sbq_desc, maplen),
  1234. PCI_DMA_FROMDEVICE);
  1235. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1236. /*
  1237. * This is an non TCP/UDP IP frame, so
  1238. * the headers aren't split into a small
  1239. * buffer. We have to use the small buffer
  1240. * that contains our sg list as our skb to
  1241. * send upstairs. Copy the sg list here to
  1242. * a local buffer and use it to find the
  1243. * pages to chain.
  1244. */
  1245. QPRINTK(qdev, RX_STATUS, DEBUG,
  1246. "%d bytes of headers & data in chain of large.\n", length);
  1247. skb = sbq_desc->p.skb;
  1248. bq = &bq_array[0];
  1249. memcpy(bq, skb->data, sizeof(bq_array));
  1250. sbq_desc->p.skb = NULL;
  1251. skb_reserve(skb, NET_IP_ALIGN);
  1252. } else {
  1253. QPRINTK(qdev, RX_STATUS, DEBUG,
  1254. "Headers in small, %d bytes of data in chain of large.\n", length);
  1255. bq = (struct bq_element *)sbq_desc->p.skb->data;
  1256. }
  1257. while (length > 0) {
  1258. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1259. if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
  1260. QPRINTK(qdev, RX_STATUS, ERR,
  1261. "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
  1262. lbq_desc->bq->addr_lo, bq->addr_lo);
  1263. return NULL;
  1264. }
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc,
  1269. maplen),
  1270. PCI_DMA_FROMDEVICE);
  1271. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1272. offset = 0;
  1273. QPRINTK(qdev, RX_STATUS, DEBUG,
  1274. "Adding page %d to skb for %d bytes.\n",
  1275. i, size);
  1276. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1277. offset, size);
  1278. skb->len += size;
  1279. skb->data_len += size;
  1280. skb->truesize += size;
  1281. length -= size;
  1282. lbq_desc->p.lbq_page = NULL;
  1283. bq++;
  1284. i++;
  1285. }
  1286. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1287. VLAN_ETH_HLEN : ETH_HLEN);
  1288. }
  1289. return skb;
  1290. }
  1291. /* Process an inbound completion from an rx ring. */
  1292. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1293. struct rx_ring *rx_ring,
  1294. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1295. {
  1296. struct net_device *ndev = qdev->ndev;
  1297. struct sk_buff *skb = NULL;
  1298. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1299. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1300. if (unlikely(!skb)) {
  1301. QPRINTK(qdev, RX_STATUS, DEBUG,
  1302. "No skb available, drop packet.\n");
  1303. return;
  1304. }
  1305. prefetch(skb->data);
  1306. skb->dev = ndev;
  1307. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1308. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1309. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1310. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1311. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1312. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1313. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1314. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1315. }
  1316. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1317. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1318. }
  1319. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1320. QPRINTK(qdev, RX_STATUS, ERR,
  1321. "Bad checksum for this %s packet.\n",
  1322. ((ib_mac_rsp->
  1323. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1324. skb->ip_summed = CHECKSUM_NONE;
  1325. } else if (qdev->rx_csum &&
  1326. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1327. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1328. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1329. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1330. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1331. }
  1332. qdev->stats.rx_packets++;
  1333. qdev->stats.rx_bytes += skb->len;
  1334. skb->protocol = eth_type_trans(skb, ndev);
  1335. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1336. QPRINTK(qdev, RX_STATUS, DEBUG,
  1337. "Passing a VLAN packet upstream.\n");
  1338. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1339. le16_to_cpu(ib_mac_rsp->vlan_id));
  1340. } else {
  1341. QPRINTK(qdev, RX_STATUS, DEBUG,
  1342. "Passing a normal packet upstream.\n");
  1343. netif_rx(skb);
  1344. }
  1345. }
  1346. /* Process an outbound completion from an rx ring. */
  1347. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1348. struct ob_mac_iocb_rsp *mac_rsp)
  1349. {
  1350. struct tx_ring *tx_ring;
  1351. struct tx_ring_desc *tx_ring_desc;
  1352. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1353. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1354. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1355. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1356. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1357. qdev->stats.tx_packets++;
  1358. dev_kfree_skb(tx_ring_desc->skb);
  1359. tx_ring_desc->skb = NULL;
  1360. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1361. OB_MAC_IOCB_RSP_S |
  1362. OB_MAC_IOCB_RSP_L |
  1363. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1364. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1365. QPRINTK(qdev, TX_DONE, WARNING,
  1366. "Total descriptor length did not match transfer length.\n");
  1367. }
  1368. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1369. QPRINTK(qdev, TX_DONE, WARNING,
  1370. "Frame too short to be legal, not sent.\n");
  1371. }
  1372. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1373. QPRINTK(qdev, TX_DONE, WARNING,
  1374. "Frame too long, but sent anyway.\n");
  1375. }
  1376. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1377. QPRINTK(qdev, TX_DONE, WARNING,
  1378. "PCI backplane error. Frame not sent.\n");
  1379. }
  1380. }
  1381. atomic_inc(&tx_ring->tx_count);
  1382. }
  1383. /* Fire up a handler to reset the MPI processor. */
  1384. void ql_queue_fw_error(struct ql_adapter *qdev)
  1385. {
  1386. netif_stop_queue(qdev->ndev);
  1387. netif_carrier_off(qdev->ndev);
  1388. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1389. }
  1390. void ql_queue_asic_error(struct ql_adapter *qdev)
  1391. {
  1392. netif_stop_queue(qdev->ndev);
  1393. netif_carrier_off(qdev->ndev);
  1394. ql_disable_interrupts(qdev);
  1395. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1396. }
  1397. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1398. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1399. {
  1400. switch (ib_ae_rsp->event) {
  1401. case MGMT_ERR_EVENT:
  1402. QPRINTK(qdev, RX_ERR, ERR,
  1403. "Management Processor Fatal Error.\n");
  1404. ql_queue_fw_error(qdev);
  1405. return;
  1406. case CAM_LOOKUP_ERR_EVENT:
  1407. QPRINTK(qdev, LINK, ERR,
  1408. "Multiple CAM hits lookup occurred.\n");
  1409. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1410. ql_queue_asic_error(qdev);
  1411. return;
  1412. case SOFT_ECC_ERROR_EVENT:
  1413. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1414. ql_queue_asic_error(qdev);
  1415. break;
  1416. case PCI_ERR_ANON_BUF_RD:
  1417. QPRINTK(qdev, RX_ERR, ERR,
  1418. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1419. ib_ae_rsp->q_id);
  1420. ql_queue_asic_error(qdev);
  1421. break;
  1422. default:
  1423. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1424. ib_ae_rsp->event);
  1425. ql_queue_asic_error(qdev);
  1426. break;
  1427. }
  1428. }
  1429. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1430. {
  1431. struct ql_adapter *qdev = rx_ring->qdev;
  1432. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1433. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1434. int count = 0;
  1435. /* While there are entries in the completion queue. */
  1436. while (prod != rx_ring->cnsmr_idx) {
  1437. QPRINTK(qdev, RX_STATUS, DEBUG,
  1438. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1439. prod, rx_ring->cnsmr_idx);
  1440. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1441. rmb();
  1442. switch (net_rsp->opcode) {
  1443. case OPCODE_OB_MAC_TSO_IOCB:
  1444. case OPCODE_OB_MAC_IOCB:
  1445. ql_process_mac_tx_intr(qdev, net_rsp);
  1446. break;
  1447. default:
  1448. QPRINTK(qdev, RX_STATUS, DEBUG,
  1449. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1450. net_rsp->opcode);
  1451. }
  1452. count++;
  1453. ql_update_cq(rx_ring);
  1454. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1455. }
  1456. ql_write_cq_idx(rx_ring);
  1457. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1458. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1459. if (atomic_read(&tx_ring->queue_stopped) &&
  1460. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1461. /*
  1462. * The queue got stopped because the tx_ring was full.
  1463. * Wake it up, because it's now at least 25% empty.
  1464. */
  1465. netif_wake_queue(qdev->ndev);
  1466. }
  1467. return count;
  1468. }
  1469. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1470. {
  1471. struct ql_adapter *qdev = rx_ring->qdev;
  1472. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1473. struct ql_net_rsp_iocb *net_rsp;
  1474. int count = 0;
  1475. /* While there are entries in the completion queue. */
  1476. while (prod != rx_ring->cnsmr_idx) {
  1477. QPRINTK(qdev, RX_STATUS, DEBUG,
  1478. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1479. prod, rx_ring->cnsmr_idx);
  1480. net_rsp = rx_ring->curr_entry;
  1481. rmb();
  1482. switch (net_rsp->opcode) {
  1483. case OPCODE_IB_MAC_IOCB:
  1484. ql_process_mac_rx_intr(qdev, rx_ring,
  1485. (struct ib_mac_iocb_rsp *)
  1486. net_rsp);
  1487. break;
  1488. case OPCODE_IB_AE_IOCB:
  1489. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1490. net_rsp);
  1491. break;
  1492. default:
  1493. {
  1494. QPRINTK(qdev, RX_STATUS, DEBUG,
  1495. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1496. net_rsp->opcode);
  1497. }
  1498. }
  1499. count++;
  1500. ql_update_cq(rx_ring);
  1501. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1502. if (count == budget)
  1503. break;
  1504. }
  1505. ql_update_buffer_queues(qdev, rx_ring);
  1506. ql_write_cq_idx(rx_ring);
  1507. return count;
  1508. }
  1509. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1510. {
  1511. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1512. struct ql_adapter *qdev = rx_ring->qdev;
  1513. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1514. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1515. rx_ring->cq_id);
  1516. if (work_done < budget) {
  1517. __netif_rx_complete(napi);
  1518. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1519. }
  1520. return work_done;
  1521. }
  1522. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1523. {
  1524. struct ql_adapter *qdev = netdev_priv(ndev);
  1525. qdev->vlgrp = grp;
  1526. if (grp) {
  1527. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1528. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1529. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1530. } else {
  1531. QPRINTK(qdev, IFUP, DEBUG,
  1532. "Turning off VLAN in NIC_RCV_CFG.\n");
  1533. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1534. }
  1535. }
  1536. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1537. {
  1538. struct ql_adapter *qdev = netdev_priv(ndev);
  1539. u32 enable_bit = MAC_ADDR_E;
  1540. spin_lock(&qdev->hw_lock);
  1541. if (ql_set_mac_addr_reg
  1542. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1543. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1544. }
  1545. spin_unlock(&qdev->hw_lock);
  1546. }
  1547. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1548. {
  1549. struct ql_adapter *qdev = netdev_priv(ndev);
  1550. u32 enable_bit = 0;
  1551. spin_lock(&qdev->hw_lock);
  1552. if (ql_set_mac_addr_reg
  1553. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1554. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1555. }
  1556. spin_unlock(&qdev->hw_lock);
  1557. }
  1558. /* Worker thread to process a given rx_ring that is dedicated
  1559. * to outbound completions.
  1560. */
  1561. static void ql_tx_clean(struct work_struct *work)
  1562. {
  1563. struct rx_ring *rx_ring =
  1564. container_of(work, struct rx_ring, rx_work.work);
  1565. ql_clean_outbound_rx_ring(rx_ring);
  1566. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1567. }
  1568. /* Worker thread to process a given rx_ring that is dedicated
  1569. * to inbound completions.
  1570. */
  1571. static void ql_rx_clean(struct work_struct *work)
  1572. {
  1573. struct rx_ring *rx_ring =
  1574. container_of(work, struct rx_ring, rx_work.work);
  1575. ql_clean_inbound_rx_ring(rx_ring, 64);
  1576. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1577. }
  1578. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1579. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1580. {
  1581. struct rx_ring *rx_ring = dev_id;
  1582. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1583. &rx_ring->rx_work, 0);
  1584. return IRQ_HANDLED;
  1585. }
  1586. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1587. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1588. {
  1589. struct rx_ring *rx_ring = dev_id;
  1590. struct ql_adapter *qdev = rx_ring->qdev;
  1591. netif_rx_schedule(&rx_ring->napi);
  1592. return IRQ_HANDLED;
  1593. }
  1594. /* This handles a fatal error, MPI activity, and the default
  1595. * rx_ring in an MSI-X multiple vector environment.
  1596. * In MSI/Legacy environment it also process the rest of
  1597. * the rx_rings.
  1598. */
  1599. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1600. {
  1601. struct rx_ring *rx_ring = dev_id;
  1602. struct ql_adapter *qdev = rx_ring->qdev;
  1603. struct intr_context *intr_context = &qdev->intr_context[0];
  1604. u32 var;
  1605. int i;
  1606. int work_done = 0;
  1607. spin_lock(&qdev->hw_lock);
  1608. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1609. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1610. spin_unlock(&qdev->hw_lock);
  1611. return IRQ_NONE;
  1612. }
  1613. spin_unlock(&qdev->hw_lock);
  1614. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1615. /*
  1616. * Check for fatal error.
  1617. */
  1618. if (var & STS_FE) {
  1619. ql_queue_asic_error(qdev);
  1620. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1621. var = ql_read32(qdev, ERR_STS);
  1622. QPRINTK(qdev, INTR, ERR,
  1623. "Resetting chip. Error Status Register = 0x%x\n", var);
  1624. return IRQ_HANDLED;
  1625. }
  1626. /*
  1627. * Check MPI processor activity.
  1628. */
  1629. if (var & STS_PI) {
  1630. /*
  1631. * We've got an async event or mailbox completion.
  1632. * Handle it and clear the source of the interrupt.
  1633. */
  1634. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1635. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1636. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1637. &qdev->mpi_work, 0);
  1638. work_done++;
  1639. }
  1640. /*
  1641. * Check the default queue and wake handler if active.
  1642. */
  1643. rx_ring = &qdev->rx_ring[0];
  1644. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1645. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1646. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1647. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1648. &rx_ring->rx_work, 0);
  1649. work_done++;
  1650. }
  1651. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1652. /*
  1653. * Start the DPC for each active queue.
  1654. */
  1655. for (i = 1; i < qdev->rx_ring_count; i++) {
  1656. rx_ring = &qdev->rx_ring[i];
  1657. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1658. rx_ring->cnsmr_idx) {
  1659. QPRINTK(qdev, INTR, INFO,
  1660. "Waking handler for rx_ring[%d].\n", i);
  1661. ql_disable_completion_interrupt(qdev,
  1662. intr_context->
  1663. intr);
  1664. if (i < qdev->rss_ring_first_cq_id)
  1665. queue_delayed_work_on(rx_ring->cpu,
  1666. qdev->q_workqueue,
  1667. &rx_ring->rx_work,
  1668. 0);
  1669. else
  1670. netif_rx_schedule(&rx_ring->napi);
  1671. work_done++;
  1672. }
  1673. }
  1674. }
  1675. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1676. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1677. }
  1678. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1679. {
  1680. if (skb_is_gso(skb)) {
  1681. int err;
  1682. if (skb_header_cloned(skb)) {
  1683. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1684. if (err)
  1685. return err;
  1686. }
  1687. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1688. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1689. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1690. mac_iocb_ptr->total_hdrs_len =
  1691. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1692. mac_iocb_ptr->net_trans_offset =
  1693. cpu_to_le16(skb_network_offset(skb) |
  1694. skb_transport_offset(skb)
  1695. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1696. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1697. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1698. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1699. struct iphdr *iph = ip_hdr(skb);
  1700. iph->check = 0;
  1701. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1702. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1703. iph->daddr, 0,
  1704. IPPROTO_TCP,
  1705. 0);
  1706. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1707. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1708. tcp_hdr(skb)->check =
  1709. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1710. &ipv6_hdr(skb)->daddr,
  1711. 0, IPPROTO_TCP, 0);
  1712. }
  1713. return 1;
  1714. }
  1715. return 0;
  1716. }
  1717. static void ql_hw_csum_setup(struct sk_buff *skb,
  1718. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1719. {
  1720. int len;
  1721. struct iphdr *iph = ip_hdr(skb);
  1722. u16 *check;
  1723. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1724. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1725. mac_iocb_ptr->net_trans_offset =
  1726. cpu_to_le16(skb_network_offset(skb) |
  1727. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1728. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1729. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1730. if (likely(iph->protocol == IPPROTO_TCP)) {
  1731. check = &(tcp_hdr(skb)->check);
  1732. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1733. mac_iocb_ptr->total_hdrs_len =
  1734. cpu_to_le16(skb_transport_offset(skb) +
  1735. (tcp_hdr(skb)->doff << 2));
  1736. } else {
  1737. check = &(udp_hdr(skb)->check);
  1738. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1739. mac_iocb_ptr->total_hdrs_len =
  1740. cpu_to_le16(skb_transport_offset(skb) +
  1741. sizeof(struct udphdr));
  1742. }
  1743. *check = ~csum_tcpudp_magic(iph->saddr,
  1744. iph->daddr, len, iph->protocol, 0);
  1745. }
  1746. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1747. {
  1748. struct tx_ring_desc *tx_ring_desc;
  1749. struct ob_mac_iocb_req *mac_iocb_ptr;
  1750. struct ql_adapter *qdev = netdev_priv(ndev);
  1751. int tso;
  1752. struct tx_ring *tx_ring;
  1753. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1754. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1755. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1756. QPRINTK(qdev, TX_QUEUED, INFO,
  1757. "%s: shutting down tx queue %d du to lack of resources.\n",
  1758. __func__, tx_ring_idx);
  1759. netif_stop_queue(ndev);
  1760. atomic_inc(&tx_ring->queue_stopped);
  1761. return NETDEV_TX_BUSY;
  1762. }
  1763. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1764. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1765. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1766. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1767. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1768. return NETDEV_TX_BUSY;
  1769. }
  1770. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1771. mac_iocb_ptr->tid = tx_ring_desc->index;
  1772. /* We use the upper 32-bits to store the tx queue for this IO.
  1773. * When we get the completion we can use it to establish the context.
  1774. */
  1775. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1776. tx_ring_desc->skb = skb;
  1777. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1778. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1779. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1780. vlan_tx_tag_get(skb));
  1781. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1782. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1783. }
  1784. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1785. if (tso < 0) {
  1786. dev_kfree_skb_any(skb);
  1787. return NETDEV_TX_OK;
  1788. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1789. ql_hw_csum_setup(skb,
  1790. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1791. }
  1792. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1793. tx_ring->prod_idx++;
  1794. if (tx_ring->prod_idx == tx_ring->wq_len)
  1795. tx_ring->prod_idx = 0;
  1796. wmb();
  1797. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1798. ndev->trans_start = jiffies;
  1799. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1800. tx_ring->prod_idx, skb->len);
  1801. atomic_dec(&tx_ring->tx_count);
  1802. return NETDEV_TX_OK;
  1803. }
  1804. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1805. {
  1806. if (qdev->rx_ring_shadow_reg_area) {
  1807. pci_free_consistent(qdev->pdev,
  1808. PAGE_SIZE,
  1809. qdev->rx_ring_shadow_reg_area,
  1810. qdev->rx_ring_shadow_reg_dma);
  1811. qdev->rx_ring_shadow_reg_area = NULL;
  1812. }
  1813. if (qdev->tx_ring_shadow_reg_area) {
  1814. pci_free_consistent(qdev->pdev,
  1815. PAGE_SIZE,
  1816. qdev->tx_ring_shadow_reg_area,
  1817. qdev->tx_ring_shadow_reg_dma);
  1818. qdev->tx_ring_shadow_reg_area = NULL;
  1819. }
  1820. }
  1821. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1822. {
  1823. qdev->rx_ring_shadow_reg_area =
  1824. pci_alloc_consistent(qdev->pdev,
  1825. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1826. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1827. QPRINTK(qdev, IFUP, ERR,
  1828. "Allocation of RX shadow space failed.\n");
  1829. return -ENOMEM;
  1830. }
  1831. qdev->tx_ring_shadow_reg_area =
  1832. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1833. &qdev->tx_ring_shadow_reg_dma);
  1834. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1835. QPRINTK(qdev, IFUP, ERR,
  1836. "Allocation of TX shadow space failed.\n");
  1837. goto err_wqp_sh_area;
  1838. }
  1839. return 0;
  1840. err_wqp_sh_area:
  1841. pci_free_consistent(qdev->pdev,
  1842. PAGE_SIZE,
  1843. qdev->rx_ring_shadow_reg_area,
  1844. qdev->rx_ring_shadow_reg_dma);
  1845. return -ENOMEM;
  1846. }
  1847. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1848. {
  1849. struct tx_ring_desc *tx_ring_desc;
  1850. int i;
  1851. struct ob_mac_iocb_req *mac_iocb_ptr;
  1852. mac_iocb_ptr = tx_ring->wq_base;
  1853. tx_ring_desc = tx_ring->q;
  1854. for (i = 0; i < tx_ring->wq_len; i++) {
  1855. tx_ring_desc->index = i;
  1856. tx_ring_desc->skb = NULL;
  1857. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1858. mac_iocb_ptr++;
  1859. tx_ring_desc++;
  1860. }
  1861. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1862. atomic_set(&tx_ring->queue_stopped, 0);
  1863. }
  1864. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1865. struct tx_ring *tx_ring)
  1866. {
  1867. if (tx_ring->wq_base) {
  1868. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1869. tx_ring->wq_base, tx_ring->wq_base_dma);
  1870. tx_ring->wq_base = NULL;
  1871. }
  1872. kfree(tx_ring->q);
  1873. tx_ring->q = NULL;
  1874. }
  1875. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1876. struct tx_ring *tx_ring)
  1877. {
  1878. tx_ring->wq_base =
  1879. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1880. &tx_ring->wq_base_dma);
  1881. if ((tx_ring->wq_base == NULL)
  1882. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1883. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1884. return -ENOMEM;
  1885. }
  1886. tx_ring->q =
  1887. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1888. if (tx_ring->q == NULL)
  1889. goto err;
  1890. return 0;
  1891. err:
  1892. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1893. tx_ring->wq_base, tx_ring->wq_base_dma);
  1894. return -ENOMEM;
  1895. }
  1896. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1897. {
  1898. int i;
  1899. struct bq_desc *lbq_desc;
  1900. for (i = 0; i < rx_ring->lbq_len; i++) {
  1901. lbq_desc = &rx_ring->lbq[i];
  1902. if (lbq_desc->p.lbq_page) {
  1903. pci_unmap_page(qdev->pdev,
  1904. pci_unmap_addr(lbq_desc, mapaddr),
  1905. pci_unmap_len(lbq_desc, maplen),
  1906. PCI_DMA_FROMDEVICE);
  1907. put_page(lbq_desc->p.lbq_page);
  1908. lbq_desc->p.lbq_page = NULL;
  1909. }
  1910. lbq_desc->bq->addr_lo = 0;
  1911. lbq_desc->bq->addr_hi = 0;
  1912. }
  1913. }
  1914. /*
  1915. * Allocate and map a page for each element of the lbq.
  1916. */
  1917. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1918. struct rx_ring *rx_ring)
  1919. {
  1920. int i;
  1921. struct bq_desc *lbq_desc;
  1922. u64 map;
  1923. struct bq_element *bq = rx_ring->lbq_base;
  1924. for (i = 0; i < rx_ring->lbq_len; i++) {
  1925. lbq_desc = &rx_ring->lbq[i];
  1926. memset(lbq_desc, 0, sizeof(lbq_desc));
  1927. lbq_desc->bq = bq;
  1928. lbq_desc->index = i;
  1929. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1930. if (unlikely(!lbq_desc->p.lbq_page)) {
  1931. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1932. goto mem_error;
  1933. } else {
  1934. map = pci_map_page(qdev->pdev,
  1935. lbq_desc->p.lbq_page,
  1936. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1937. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1938. QPRINTK(qdev, IFUP, ERR,
  1939. "PCI mapping failed.\n");
  1940. goto mem_error;
  1941. }
  1942. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1943. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1944. bq->addr_lo = cpu_to_le32(map);
  1945. bq->addr_hi = cpu_to_le32(map >> 32);
  1946. }
  1947. bq++;
  1948. }
  1949. return 0;
  1950. mem_error:
  1951. ql_free_lbq_buffers(qdev, rx_ring);
  1952. return -ENOMEM;
  1953. }
  1954. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1955. {
  1956. int i;
  1957. struct bq_desc *sbq_desc;
  1958. for (i = 0; i < rx_ring->sbq_len; i++) {
  1959. sbq_desc = &rx_ring->sbq[i];
  1960. if (sbq_desc == NULL) {
  1961. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1962. return;
  1963. }
  1964. if (sbq_desc->p.skb) {
  1965. pci_unmap_single(qdev->pdev,
  1966. pci_unmap_addr(sbq_desc, mapaddr),
  1967. pci_unmap_len(sbq_desc, maplen),
  1968. PCI_DMA_FROMDEVICE);
  1969. dev_kfree_skb(sbq_desc->p.skb);
  1970. sbq_desc->p.skb = NULL;
  1971. }
  1972. if (sbq_desc->bq == NULL) {
  1973. QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
  1974. i);
  1975. return;
  1976. }
  1977. sbq_desc->bq->addr_lo = 0;
  1978. sbq_desc->bq->addr_hi = 0;
  1979. }
  1980. }
  1981. /* Allocate and map an skb for each element of the sbq. */
  1982. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1983. struct rx_ring *rx_ring)
  1984. {
  1985. int i;
  1986. struct bq_desc *sbq_desc;
  1987. struct sk_buff *skb;
  1988. u64 map;
  1989. struct bq_element *bq = rx_ring->sbq_base;
  1990. for (i = 0; i < rx_ring->sbq_len; i++) {
  1991. sbq_desc = &rx_ring->sbq[i];
  1992. memset(sbq_desc, 0, sizeof(sbq_desc));
  1993. sbq_desc->index = i;
  1994. sbq_desc->bq = bq;
  1995. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  1996. if (unlikely(!skb)) {
  1997. /* Better luck next round */
  1998. QPRINTK(qdev, IFUP, ERR,
  1999. "small buff alloc failed for %d bytes at index %d.\n",
  2000. rx_ring->sbq_buf_size, i);
  2001. goto mem_err;
  2002. }
  2003. skb_reserve(skb, QLGE_SB_PAD);
  2004. sbq_desc->p.skb = skb;
  2005. /*
  2006. * Map only half the buffer. Because the
  2007. * other half may get some data copied to it
  2008. * when the completion arrives.
  2009. */
  2010. map = pci_map_single(qdev->pdev,
  2011. skb->data,
  2012. rx_ring->sbq_buf_size / 2,
  2013. PCI_DMA_FROMDEVICE);
  2014. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2015. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2016. goto mem_err;
  2017. }
  2018. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2019. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2020. bq->addr_lo = /*sbq_desc->addr_lo = */
  2021. cpu_to_le32(map);
  2022. bq->addr_hi = /*sbq_desc->addr_hi = */
  2023. cpu_to_le32(map >> 32);
  2024. bq++;
  2025. }
  2026. return 0;
  2027. mem_err:
  2028. ql_free_sbq_buffers(qdev, rx_ring);
  2029. return -ENOMEM;
  2030. }
  2031. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2032. struct rx_ring *rx_ring)
  2033. {
  2034. if (rx_ring->sbq_len)
  2035. ql_free_sbq_buffers(qdev, rx_ring);
  2036. if (rx_ring->lbq_len)
  2037. ql_free_lbq_buffers(qdev, rx_ring);
  2038. /* Free the small buffer queue. */
  2039. if (rx_ring->sbq_base) {
  2040. pci_free_consistent(qdev->pdev,
  2041. rx_ring->sbq_size,
  2042. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2043. rx_ring->sbq_base = NULL;
  2044. }
  2045. /* Free the small buffer queue control blocks. */
  2046. kfree(rx_ring->sbq);
  2047. rx_ring->sbq = NULL;
  2048. /* Free the large buffer queue. */
  2049. if (rx_ring->lbq_base) {
  2050. pci_free_consistent(qdev->pdev,
  2051. rx_ring->lbq_size,
  2052. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2053. rx_ring->lbq_base = NULL;
  2054. }
  2055. /* Free the large buffer queue control blocks. */
  2056. kfree(rx_ring->lbq);
  2057. rx_ring->lbq = NULL;
  2058. /* Free the rx queue. */
  2059. if (rx_ring->cq_base) {
  2060. pci_free_consistent(qdev->pdev,
  2061. rx_ring->cq_size,
  2062. rx_ring->cq_base, rx_ring->cq_base_dma);
  2063. rx_ring->cq_base = NULL;
  2064. }
  2065. }
  2066. /* Allocate queues and buffers for this completions queue based
  2067. * on the values in the parameter structure. */
  2068. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2069. struct rx_ring *rx_ring)
  2070. {
  2071. /*
  2072. * Allocate the completion queue for this rx_ring.
  2073. */
  2074. rx_ring->cq_base =
  2075. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2076. &rx_ring->cq_base_dma);
  2077. if (rx_ring->cq_base == NULL) {
  2078. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2079. return -ENOMEM;
  2080. }
  2081. if (rx_ring->sbq_len) {
  2082. /*
  2083. * Allocate small buffer queue.
  2084. */
  2085. rx_ring->sbq_base =
  2086. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2087. &rx_ring->sbq_base_dma);
  2088. if (rx_ring->sbq_base == NULL) {
  2089. QPRINTK(qdev, IFUP, ERR,
  2090. "Small buffer queue allocation failed.\n");
  2091. goto err_mem;
  2092. }
  2093. /*
  2094. * Allocate small buffer queue control blocks.
  2095. */
  2096. rx_ring->sbq =
  2097. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2098. GFP_KERNEL);
  2099. if (rx_ring->sbq == NULL) {
  2100. QPRINTK(qdev, IFUP, ERR,
  2101. "Small buffer queue control block allocation failed.\n");
  2102. goto err_mem;
  2103. }
  2104. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2105. QPRINTK(qdev, IFUP, ERR,
  2106. "Small buffer allocation failed.\n");
  2107. goto err_mem;
  2108. }
  2109. }
  2110. if (rx_ring->lbq_len) {
  2111. /*
  2112. * Allocate large buffer queue.
  2113. */
  2114. rx_ring->lbq_base =
  2115. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2116. &rx_ring->lbq_base_dma);
  2117. if (rx_ring->lbq_base == NULL) {
  2118. QPRINTK(qdev, IFUP, ERR,
  2119. "Large buffer queue allocation failed.\n");
  2120. goto err_mem;
  2121. }
  2122. /*
  2123. * Allocate large buffer queue control blocks.
  2124. */
  2125. rx_ring->lbq =
  2126. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2127. GFP_KERNEL);
  2128. if (rx_ring->lbq == NULL) {
  2129. QPRINTK(qdev, IFUP, ERR,
  2130. "Large buffer queue control block allocation failed.\n");
  2131. goto err_mem;
  2132. }
  2133. /*
  2134. * Allocate the buffers.
  2135. */
  2136. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2137. QPRINTK(qdev, IFUP, ERR,
  2138. "Large buffer allocation failed.\n");
  2139. goto err_mem;
  2140. }
  2141. }
  2142. return 0;
  2143. err_mem:
  2144. ql_free_rx_resources(qdev, rx_ring);
  2145. return -ENOMEM;
  2146. }
  2147. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2148. {
  2149. struct tx_ring *tx_ring;
  2150. struct tx_ring_desc *tx_ring_desc;
  2151. int i, j;
  2152. /*
  2153. * Loop through all queues and free
  2154. * any resources.
  2155. */
  2156. for (j = 0; j < qdev->tx_ring_count; j++) {
  2157. tx_ring = &qdev->tx_ring[j];
  2158. for (i = 0; i < tx_ring->wq_len; i++) {
  2159. tx_ring_desc = &tx_ring->q[i];
  2160. if (tx_ring_desc && tx_ring_desc->skb) {
  2161. QPRINTK(qdev, IFDOWN, ERR,
  2162. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2163. tx_ring_desc->skb, j,
  2164. tx_ring_desc->index);
  2165. ql_unmap_send(qdev, tx_ring_desc,
  2166. tx_ring_desc->map_cnt);
  2167. dev_kfree_skb(tx_ring_desc->skb);
  2168. tx_ring_desc->skb = NULL;
  2169. }
  2170. }
  2171. }
  2172. }
  2173. static void ql_free_ring_cb(struct ql_adapter *qdev)
  2174. {
  2175. kfree(qdev->ring_mem);
  2176. }
  2177. static int ql_alloc_ring_cb(struct ql_adapter *qdev)
  2178. {
  2179. /* Allocate space for tx/rx ring control blocks. */
  2180. qdev->ring_mem_size =
  2181. (qdev->tx_ring_count * sizeof(struct tx_ring)) +
  2182. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2183. qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
  2184. if (qdev->ring_mem == NULL) {
  2185. return -ENOMEM;
  2186. } else {
  2187. qdev->rx_ring = qdev->ring_mem;
  2188. qdev->tx_ring = qdev->ring_mem +
  2189. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2190. }
  2191. return 0;
  2192. }
  2193. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2194. {
  2195. int i;
  2196. for (i = 0; i < qdev->tx_ring_count; i++)
  2197. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2198. for (i = 0; i < qdev->rx_ring_count; i++)
  2199. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2200. ql_free_shadow_space(qdev);
  2201. }
  2202. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2203. {
  2204. int i;
  2205. /* Allocate space for our shadow registers and such. */
  2206. if (ql_alloc_shadow_space(qdev))
  2207. return -ENOMEM;
  2208. for (i = 0; i < qdev->rx_ring_count; i++) {
  2209. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2210. QPRINTK(qdev, IFUP, ERR,
  2211. "RX resource allocation failed.\n");
  2212. goto err_mem;
  2213. }
  2214. }
  2215. /* Allocate tx queue resources */
  2216. for (i = 0; i < qdev->tx_ring_count; i++) {
  2217. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2218. QPRINTK(qdev, IFUP, ERR,
  2219. "TX resource allocation failed.\n");
  2220. goto err_mem;
  2221. }
  2222. }
  2223. return 0;
  2224. err_mem:
  2225. ql_free_mem_resources(qdev);
  2226. return -ENOMEM;
  2227. }
  2228. /* Set up the rx ring control block and pass it to the chip.
  2229. * The control block is defined as
  2230. * "Completion Queue Initialization Control Block", or cqicb.
  2231. */
  2232. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2233. {
  2234. struct cqicb *cqicb = &rx_ring->cqicb;
  2235. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2236. (rx_ring->cq_id * sizeof(u64) * 4);
  2237. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2238. (rx_ring->cq_id * sizeof(u64) * 4);
  2239. void __iomem *doorbell_area =
  2240. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2241. int err = 0;
  2242. u16 bq_len;
  2243. /* Set up the shadow registers for this ring. */
  2244. rx_ring->prod_idx_sh_reg = shadow_reg;
  2245. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2246. shadow_reg += sizeof(u64);
  2247. shadow_reg_dma += sizeof(u64);
  2248. rx_ring->lbq_base_indirect = shadow_reg;
  2249. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2250. shadow_reg += sizeof(u64);
  2251. shadow_reg_dma += sizeof(u64);
  2252. rx_ring->sbq_base_indirect = shadow_reg;
  2253. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2254. /* PCI doorbell mem area + 0x00 for consumer index register */
  2255. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2256. rx_ring->cnsmr_idx = 0;
  2257. rx_ring->curr_entry = rx_ring->cq_base;
  2258. /* PCI doorbell mem area + 0x04 for valid register */
  2259. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2260. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2261. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2262. /* PCI doorbell mem area + 0x1c */
  2263. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2264. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2265. cqicb->msix_vect = rx_ring->irq;
  2266. cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
  2267. cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
  2268. cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
  2269. cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
  2270. cqicb->prod_idx_addr_hi =
  2271. cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
  2272. /*
  2273. * Set up the control block load flags.
  2274. */
  2275. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2276. FLAGS_LV | /* Load MSI-X vector */
  2277. FLAGS_LI; /* Load irq delay values */
  2278. if (rx_ring->lbq_len) {
  2279. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2280. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2281. cqicb->lbq_addr_lo =
  2282. cpu_to_le32(rx_ring->lbq_base_indirect_dma);
  2283. cqicb->lbq_addr_hi =
  2284. cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
  2285. cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
  2286. bq_len = (u16) rx_ring->lbq_len;
  2287. cqicb->lbq_len = cpu_to_le16(bq_len);
  2288. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2289. rx_ring->lbq_curr_idx = 0;
  2290. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2291. rx_ring->lbq_free_cnt = 16;
  2292. }
  2293. if (rx_ring->sbq_len) {
  2294. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2295. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2296. cqicb->sbq_addr_lo =
  2297. cpu_to_le32(rx_ring->sbq_base_indirect_dma);
  2298. cqicb->sbq_addr_hi =
  2299. cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
  2300. cqicb->sbq_buf_size =
  2301. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2302. bq_len = (u16) rx_ring->sbq_len;
  2303. cqicb->sbq_len = cpu_to_le16(bq_len);
  2304. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2305. rx_ring->sbq_curr_idx = 0;
  2306. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2307. rx_ring->sbq_free_cnt = 16;
  2308. }
  2309. switch (rx_ring->type) {
  2310. case TX_Q:
  2311. /* If there's only one interrupt, then we use
  2312. * worker threads to process the outbound
  2313. * completion handling rx_rings. We do this so
  2314. * they can be run on multiple CPUs. There is
  2315. * room to play with this more where we would only
  2316. * run in a worker if there are more than x number
  2317. * of outbound completions on the queue and more
  2318. * than one queue active. Some threshold that
  2319. * would indicate a benefit in spite of the cost
  2320. * of a context switch.
  2321. * If there's more than one interrupt, then the
  2322. * outbound completions are processed in the ISR.
  2323. */
  2324. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2325. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2326. else {
  2327. /* With all debug warnings on we see a WARN_ON message
  2328. * when we free the skb in the interrupt context.
  2329. */
  2330. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2331. }
  2332. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2333. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2334. break;
  2335. case DEFAULT_Q:
  2336. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2337. cqicb->irq_delay = 0;
  2338. cqicb->pkt_delay = 0;
  2339. break;
  2340. case RX_Q:
  2341. /* Inbound completion handling rx_rings run in
  2342. * separate NAPI contexts.
  2343. */
  2344. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2345. 64);
  2346. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2347. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2348. break;
  2349. default:
  2350. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2351. rx_ring->type);
  2352. }
  2353. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2354. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2355. CFG_LCQ, rx_ring->cq_id);
  2356. if (err) {
  2357. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2358. return err;
  2359. }
  2360. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2361. /*
  2362. * Advance the producer index for the buffer queues.
  2363. */
  2364. wmb();
  2365. if (rx_ring->lbq_len)
  2366. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2367. rx_ring->lbq_prod_idx_db_reg);
  2368. if (rx_ring->sbq_len)
  2369. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2370. rx_ring->sbq_prod_idx_db_reg);
  2371. return err;
  2372. }
  2373. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2374. {
  2375. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2376. void __iomem *doorbell_area =
  2377. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2378. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2379. (tx_ring->wq_id * sizeof(u64));
  2380. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2381. (tx_ring->wq_id * sizeof(u64));
  2382. int err = 0;
  2383. /*
  2384. * Assign doorbell registers for this tx_ring.
  2385. */
  2386. /* TX PCI doorbell mem area for tx producer index */
  2387. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2388. tx_ring->prod_idx = 0;
  2389. /* TX PCI doorbell mem area + 0x04 */
  2390. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2391. /*
  2392. * Assign shadow registers for this tx_ring.
  2393. */
  2394. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2395. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2396. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2397. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2398. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2399. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2400. wqicb->rid = 0;
  2401. wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
  2402. wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
  2403. wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
  2404. wqicb->cnsmr_idx_addr_hi =
  2405. cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
  2406. ql_init_tx_ring(qdev, tx_ring);
  2407. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2408. (u16) tx_ring->wq_id);
  2409. if (err) {
  2410. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2411. return err;
  2412. }
  2413. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2414. return err;
  2415. }
  2416. static void ql_disable_msix(struct ql_adapter *qdev)
  2417. {
  2418. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2419. pci_disable_msix(qdev->pdev);
  2420. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2421. kfree(qdev->msi_x_entry);
  2422. qdev->msi_x_entry = NULL;
  2423. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2424. pci_disable_msi(qdev->pdev);
  2425. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2426. }
  2427. }
  2428. static void ql_enable_msix(struct ql_adapter *qdev)
  2429. {
  2430. int i;
  2431. qdev->intr_count = 1;
  2432. /* Get the MSIX vectors. */
  2433. if (irq_type == MSIX_IRQ) {
  2434. /* Try to alloc space for the msix struct,
  2435. * if it fails then go to MSI/legacy.
  2436. */
  2437. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2438. sizeof(struct msix_entry),
  2439. GFP_KERNEL);
  2440. if (!qdev->msi_x_entry) {
  2441. irq_type = MSI_IRQ;
  2442. goto msi;
  2443. }
  2444. for (i = 0; i < qdev->rx_ring_count; i++)
  2445. qdev->msi_x_entry[i].entry = i;
  2446. if (!pci_enable_msix
  2447. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2448. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2449. qdev->intr_count = qdev->rx_ring_count;
  2450. QPRINTK(qdev, IFUP, INFO,
  2451. "MSI-X Enabled, got %d vectors.\n",
  2452. qdev->intr_count);
  2453. return;
  2454. } else {
  2455. kfree(qdev->msi_x_entry);
  2456. qdev->msi_x_entry = NULL;
  2457. QPRINTK(qdev, IFUP, WARNING,
  2458. "MSI-X Enable failed, trying MSI.\n");
  2459. irq_type = MSI_IRQ;
  2460. }
  2461. }
  2462. msi:
  2463. if (irq_type == MSI_IRQ) {
  2464. if (!pci_enable_msi(qdev->pdev)) {
  2465. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2466. QPRINTK(qdev, IFUP, INFO,
  2467. "Running with MSI interrupts.\n");
  2468. return;
  2469. }
  2470. }
  2471. irq_type = LEG_IRQ;
  2472. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2473. }
  2474. /*
  2475. * Here we build the intr_context structures based on
  2476. * our rx_ring count and intr vector count.
  2477. * The intr_context structure is used to hook each vector
  2478. * to possibly different handlers.
  2479. */
  2480. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2481. {
  2482. int i = 0;
  2483. struct intr_context *intr_context = &qdev->intr_context[0];
  2484. ql_enable_msix(qdev);
  2485. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2486. /* Each rx_ring has it's
  2487. * own intr_context since we have separate
  2488. * vectors for each queue.
  2489. * This only true when MSI-X is enabled.
  2490. */
  2491. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2492. qdev->rx_ring[i].irq = i;
  2493. intr_context->intr = i;
  2494. intr_context->qdev = qdev;
  2495. /*
  2496. * We set up each vectors enable/disable/read bits so
  2497. * there's no bit/mask calculations in the critical path.
  2498. */
  2499. intr_context->intr_en_mask =
  2500. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2501. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2502. | i;
  2503. intr_context->intr_dis_mask =
  2504. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2505. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2506. INTR_EN_IHD | i;
  2507. intr_context->intr_read_mask =
  2508. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2509. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2510. i;
  2511. if (i == 0) {
  2512. /*
  2513. * Default queue handles bcast/mcast plus
  2514. * async events. Needs buffers.
  2515. */
  2516. intr_context->handler = qlge_isr;
  2517. sprintf(intr_context->name, "%s-default-queue",
  2518. qdev->ndev->name);
  2519. } else if (i < qdev->rss_ring_first_cq_id) {
  2520. /*
  2521. * Outbound queue is for outbound completions only.
  2522. */
  2523. intr_context->handler = qlge_msix_tx_isr;
  2524. sprintf(intr_context->name, "%s-txq-%d",
  2525. qdev->ndev->name, i);
  2526. } else {
  2527. /*
  2528. * Inbound queues handle unicast frames only.
  2529. */
  2530. intr_context->handler = qlge_msix_rx_isr;
  2531. sprintf(intr_context->name, "%s-rxq-%d",
  2532. qdev->ndev->name, i);
  2533. }
  2534. }
  2535. } else {
  2536. /*
  2537. * All rx_rings use the same intr_context since
  2538. * there is only one vector.
  2539. */
  2540. intr_context->intr = 0;
  2541. intr_context->qdev = qdev;
  2542. /*
  2543. * We set up each vectors enable/disable/read bits so
  2544. * there's no bit/mask calculations in the critical path.
  2545. */
  2546. intr_context->intr_en_mask =
  2547. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2548. intr_context->intr_dis_mask =
  2549. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2550. INTR_EN_TYPE_DISABLE;
  2551. intr_context->intr_read_mask =
  2552. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2553. /*
  2554. * Single interrupt means one handler for all rings.
  2555. */
  2556. intr_context->handler = qlge_isr;
  2557. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2558. for (i = 0; i < qdev->rx_ring_count; i++)
  2559. qdev->rx_ring[i].irq = 0;
  2560. }
  2561. }
  2562. static void ql_free_irq(struct ql_adapter *qdev)
  2563. {
  2564. int i;
  2565. struct intr_context *intr_context = &qdev->intr_context[0];
  2566. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2567. if (intr_context->hooked) {
  2568. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2569. free_irq(qdev->msi_x_entry[i].vector,
  2570. &qdev->rx_ring[i]);
  2571. QPRINTK(qdev, IFDOWN, ERR,
  2572. "freeing msix interrupt %d.\n", i);
  2573. } else {
  2574. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2575. QPRINTK(qdev, IFDOWN, ERR,
  2576. "freeing msi interrupt %d.\n", i);
  2577. }
  2578. }
  2579. }
  2580. ql_disable_msix(qdev);
  2581. }
  2582. static int ql_request_irq(struct ql_adapter *qdev)
  2583. {
  2584. int i;
  2585. int status = 0;
  2586. struct pci_dev *pdev = qdev->pdev;
  2587. struct intr_context *intr_context = &qdev->intr_context[0];
  2588. ql_resolve_queues_to_irqs(qdev);
  2589. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2590. atomic_set(&intr_context->irq_cnt, 0);
  2591. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2592. status = request_irq(qdev->msi_x_entry[i].vector,
  2593. intr_context->handler,
  2594. 0,
  2595. intr_context->name,
  2596. &qdev->rx_ring[i]);
  2597. if (status) {
  2598. QPRINTK(qdev, IFUP, ERR,
  2599. "Failed request for MSIX interrupt %d.\n",
  2600. i);
  2601. goto err_irq;
  2602. } else {
  2603. QPRINTK(qdev, IFUP, INFO,
  2604. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2605. i,
  2606. qdev->rx_ring[i].type ==
  2607. DEFAULT_Q ? "DEFAULT_Q" : "",
  2608. qdev->rx_ring[i].type ==
  2609. TX_Q ? "TX_Q" : "",
  2610. qdev->rx_ring[i].type ==
  2611. RX_Q ? "RX_Q" : "", intr_context->name);
  2612. }
  2613. } else {
  2614. QPRINTK(qdev, IFUP, DEBUG,
  2615. "trying msi or legacy interrupts.\n");
  2616. QPRINTK(qdev, IFUP, DEBUG,
  2617. "%s: irq = %d.\n", __func__, pdev->irq);
  2618. QPRINTK(qdev, IFUP, DEBUG,
  2619. "%s: context->name = %s.\n", __func__,
  2620. intr_context->name);
  2621. QPRINTK(qdev, IFUP, DEBUG,
  2622. "%s: dev_id = 0x%p.\n", __func__,
  2623. &qdev->rx_ring[0]);
  2624. status =
  2625. request_irq(pdev->irq, qlge_isr,
  2626. test_bit(QL_MSI_ENABLED,
  2627. &qdev->
  2628. flags) ? 0 : IRQF_SHARED,
  2629. intr_context->name, &qdev->rx_ring[0]);
  2630. if (status)
  2631. goto err_irq;
  2632. QPRINTK(qdev, IFUP, ERR,
  2633. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2634. i,
  2635. qdev->rx_ring[0].type ==
  2636. DEFAULT_Q ? "DEFAULT_Q" : "",
  2637. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2638. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2639. intr_context->name);
  2640. }
  2641. intr_context->hooked = 1;
  2642. }
  2643. return status;
  2644. err_irq:
  2645. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2646. ql_free_irq(qdev);
  2647. return status;
  2648. }
  2649. static int ql_start_rss(struct ql_adapter *qdev)
  2650. {
  2651. struct ricb *ricb = &qdev->ricb;
  2652. int status = 0;
  2653. int i;
  2654. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2655. memset((void *)ricb, 0, sizeof(ricb));
  2656. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2657. ricb->flags =
  2658. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2659. RSS_RT6);
  2660. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2661. /*
  2662. * Fill out the Indirection Table.
  2663. */
  2664. for (i = 0; i < 32; i++)
  2665. hash_id[i] = i & 1;
  2666. /*
  2667. * Random values for the IPv6 and IPv4 Hash Keys.
  2668. */
  2669. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2670. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2671. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2672. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2673. if (status) {
  2674. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2675. return status;
  2676. }
  2677. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2678. return status;
  2679. }
  2680. /* Initialize the frame-to-queue routing. */
  2681. static int ql_route_initialize(struct ql_adapter *qdev)
  2682. {
  2683. int status = 0;
  2684. int i;
  2685. /* Clear all the entries in the routing table. */
  2686. for (i = 0; i < 16; i++) {
  2687. status = ql_set_routing_reg(qdev, i, 0, 0);
  2688. if (status) {
  2689. QPRINTK(qdev, IFUP, ERR,
  2690. "Failed to init routing register for CAM packets.\n");
  2691. return status;
  2692. }
  2693. }
  2694. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2695. if (status) {
  2696. QPRINTK(qdev, IFUP, ERR,
  2697. "Failed to init routing register for error packets.\n");
  2698. return status;
  2699. }
  2700. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2701. if (status) {
  2702. QPRINTK(qdev, IFUP, ERR,
  2703. "Failed to init routing register for broadcast packets.\n");
  2704. return status;
  2705. }
  2706. /* If we have more than one inbound queue, then turn on RSS in the
  2707. * routing block.
  2708. */
  2709. if (qdev->rss_ring_count > 1) {
  2710. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2711. RT_IDX_RSS_MATCH, 1);
  2712. if (status) {
  2713. QPRINTK(qdev, IFUP, ERR,
  2714. "Failed to init routing register for MATCH RSS packets.\n");
  2715. return status;
  2716. }
  2717. }
  2718. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2719. RT_IDX_CAM_HIT, 1);
  2720. if (status) {
  2721. QPRINTK(qdev, IFUP, ERR,
  2722. "Failed to init routing register for CAM packets.\n");
  2723. return status;
  2724. }
  2725. return status;
  2726. }
  2727. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2728. {
  2729. u32 value, mask;
  2730. int i;
  2731. int status = 0;
  2732. /*
  2733. * Set up the System register to halt on errors.
  2734. */
  2735. value = SYS_EFE | SYS_FAE;
  2736. mask = value << 16;
  2737. ql_write32(qdev, SYS, mask | value);
  2738. /* Set the default queue. */
  2739. value = NIC_RCV_CFG_DFQ;
  2740. mask = NIC_RCV_CFG_DFQ_MASK;
  2741. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2742. /* Set the MPI interrupt to enabled. */
  2743. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2744. /* Enable the function, set pagesize, enable error checking. */
  2745. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2746. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2747. /* Set/clear header splitting. */
  2748. mask = FSC_VM_PAGESIZE_MASK |
  2749. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2750. ql_write32(qdev, FSC, mask | value);
  2751. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2752. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2753. /* Start up the rx queues. */
  2754. for (i = 0; i < qdev->rx_ring_count; i++) {
  2755. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2756. if (status) {
  2757. QPRINTK(qdev, IFUP, ERR,
  2758. "Failed to start rx ring[%d].\n", i);
  2759. return status;
  2760. }
  2761. }
  2762. /* If there is more than one inbound completion queue
  2763. * then download a RICB to configure RSS.
  2764. */
  2765. if (qdev->rss_ring_count > 1) {
  2766. status = ql_start_rss(qdev);
  2767. if (status) {
  2768. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2769. return status;
  2770. }
  2771. }
  2772. /* Start up the tx queues. */
  2773. for (i = 0; i < qdev->tx_ring_count; i++) {
  2774. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2775. if (status) {
  2776. QPRINTK(qdev, IFUP, ERR,
  2777. "Failed to start tx ring[%d].\n", i);
  2778. return status;
  2779. }
  2780. }
  2781. status = ql_port_initialize(qdev);
  2782. if (status) {
  2783. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2784. return status;
  2785. }
  2786. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2787. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2788. if (status) {
  2789. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2790. return status;
  2791. }
  2792. status = ql_route_initialize(qdev);
  2793. if (status) {
  2794. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2795. return status;
  2796. }
  2797. /* Start NAPI for the RSS queues. */
  2798. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2799. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2800. i);
  2801. napi_enable(&qdev->rx_ring[i].napi);
  2802. }
  2803. return status;
  2804. }
  2805. /* Issue soft reset to chip. */
  2806. static int ql_adapter_reset(struct ql_adapter *qdev)
  2807. {
  2808. u32 value;
  2809. int max_wait_time;
  2810. int status = 0;
  2811. int resetCnt = 0;
  2812. #define MAX_RESET_CNT 1
  2813. issueReset:
  2814. resetCnt++;
  2815. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2816. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2817. /* Wait for reset to complete. */
  2818. max_wait_time = 3;
  2819. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2820. max_wait_time);
  2821. do {
  2822. value = ql_read32(qdev, RST_FO);
  2823. if ((value & RST_FO_FR) == 0)
  2824. break;
  2825. ssleep(1);
  2826. } while ((--max_wait_time));
  2827. if (value & RST_FO_FR) {
  2828. QPRINTK(qdev, IFDOWN, ERR,
  2829. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2830. if (resetCnt < MAX_RESET_CNT)
  2831. goto issueReset;
  2832. }
  2833. if (max_wait_time == 0) {
  2834. status = -ETIMEDOUT;
  2835. QPRINTK(qdev, IFDOWN, ERR,
  2836. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2837. }
  2838. return status;
  2839. }
  2840. static void ql_display_dev_info(struct net_device *ndev)
  2841. {
  2842. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2843. QPRINTK(qdev, PROBE, INFO,
  2844. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2845. "XG Roll = %d, XG Rev = %d.\n",
  2846. qdev->func,
  2847. qdev->chip_rev_id & 0x0000000f,
  2848. qdev->chip_rev_id >> 4 & 0x0000000f,
  2849. qdev->chip_rev_id >> 8 & 0x0000000f,
  2850. qdev->chip_rev_id >> 12 & 0x0000000f);
  2851. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2852. }
  2853. static int ql_adapter_down(struct ql_adapter *qdev)
  2854. {
  2855. struct net_device *ndev = qdev->ndev;
  2856. int i, status = 0;
  2857. struct rx_ring *rx_ring;
  2858. netif_stop_queue(ndev);
  2859. netif_carrier_off(ndev);
  2860. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2861. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2862. cancel_delayed_work_sync(&qdev->mpi_work);
  2863. /* The default queue at index 0 is always processed in
  2864. * a workqueue.
  2865. */
  2866. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2867. /* The rest of the rx_rings are processed in
  2868. * a workqueue only if it's a single interrupt
  2869. * environment (MSI/Legacy).
  2870. */
  2871. for (i = 1; i > qdev->rx_ring_count; i++) {
  2872. rx_ring = &qdev->rx_ring[i];
  2873. /* Only the RSS rings use NAPI on multi irq
  2874. * environment. Outbound completion processing
  2875. * is done in interrupt context.
  2876. */
  2877. if (i >= qdev->rss_ring_first_cq_id) {
  2878. napi_disable(&rx_ring->napi);
  2879. } else {
  2880. cancel_delayed_work_sync(&rx_ring->rx_work);
  2881. }
  2882. }
  2883. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2884. ql_disable_interrupts(qdev);
  2885. ql_tx_ring_clean(qdev);
  2886. spin_lock(&qdev->hw_lock);
  2887. status = ql_adapter_reset(qdev);
  2888. if (status)
  2889. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2890. qdev->func);
  2891. spin_unlock(&qdev->hw_lock);
  2892. return status;
  2893. }
  2894. static int ql_adapter_up(struct ql_adapter *qdev)
  2895. {
  2896. int err = 0;
  2897. spin_lock(&qdev->hw_lock);
  2898. err = ql_adapter_initialize(qdev);
  2899. if (err) {
  2900. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2901. spin_unlock(&qdev->hw_lock);
  2902. goto err_init;
  2903. }
  2904. spin_unlock(&qdev->hw_lock);
  2905. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2906. ql_enable_interrupts(qdev);
  2907. ql_enable_all_completion_interrupts(qdev);
  2908. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2909. netif_carrier_on(qdev->ndev);
  2910. netif_start_queue(qdev->ndev);
  2911. }
  2912. return 0;
  2913. err_init:
  2914. ql_adapter_reset(qdev);
  2915. return err;
  2916. }
  2917. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2918. {
  2919. int status;
  2920. status = ql_adapter_down(qdev);
  2921. if (status)
  2922. goto error;
  2923. status = ql_adapter_up(qdev);
  2924. if (status)
  2925. goto error;
  2926. return status;
  2927. error:
  2928. QPRINTK(qdev, IFUP, ALERT,
  2929. "Driver up/down cycle failed, closing device\n");
  2930. rtnl_lock();
  2931. dev_close(qdev->ndev);
  2932. rtnl_unlock();
  2933. return status;
  2934. }
  2935. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2936. {
  2937. ql_free_mem_resources(qdev);
  2938. ql_free_irq(qdev);
  2939. }
  2940. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2941. {
  2942. int status = 0;
  2943. if (ql_alloc_mem_resources(qdev)) {
  2944. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2945. return -ENOMEM;
  2946. }
  2947. status = ql_request_irq(qdev);
  2948. if (status)
  2949. goto err_irq;
  2950. return status;
  2951. err_irq:
  2952. ql_free_mem_resources(qdev);
  2953. return status;
  2954. }
  2955. static int qlge_close(struct net_device *ndev)
  2956. {
  2957. struct ql_adapter *qdev = netdev_priv(ndev);
  2958. /*
  2959. * Wait for device to recover from a reset.
  2960. * (Rarely happens, but possible.)
  2961. */
  2962. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2963. msleep(1);
  2964. ql_adapter_down(qdev);
  2965. ql_release_adapter_resources(qdev);
  2966. ql_free_ring_cb(qdev);
  2967. return 0;
  2968. }
  2969. static int ql_configure_rings(struct ql_adapter *qdev)
  2970. {
  2971. int i;
  2972. struct rx_ring *rx_ring;
  2973. struct tx_ring *tx_ring;
  2974. int cpu_cnt = num_online_cpus();
  2975. /*
  2976. * For each processor present we allocate one
  2977. * rx_ring for outbound completions, and one
  2978. * rx_ring for inbound completions. Plus there is
  2979. * always the one default queue. For the CPU
  2980. * counts we end up with the following rx_rings:
  2981. * rx_ring count =
  2982. * one default queue +
  2983. * (CPU count * outbound completion rx_ring) +
  2984. * (CPU count * inbound (RSS) completion rx_ring)
  2985. * To keep it simple we limit the total number of
  2986. * queues to < 32, so we truncate CPU to 8.
  2987. * This limitation can be removed when requested.
  2988. */
  2989. if (cpu_cnt > 8)
  2990. cpu_cnt = 8;
  2991. /*
  2992. * rx_ring[0] is always the default queue.
  2993. */
  2994. /* Allocate outbound completion ring for each CPU. */
  2995. qdev->tx_ring_count = cpu_cnt;
  2996. /* Allocate inbound completion (RSS) ring for each CPU. */
  2997. qdev->rss_ring_count = cpu_cnt;
  2998. /* cq_id for the first inbound ring handler. */
  2999. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3000. /*
  3001. * qdev->rx_ring_count:
  3002. * Total number of rx_rings. This includes the one
  3003. * default queue, a number of outbound completion
  3004. * handler rx_rings, and the number of inbound
  3005. * completion handler rx_rings.
  3006. */
  3007. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3008. if (ql_alloc_ring_cb(qdev))
  3009. return -ENOMEM;
  3010. for (i = 0; i < qdev->tx_ring_count; i++) {
  3011. tx_ring = &qdev->tx_ring[i];
  3012. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3013. tx_ring->qdev = qdev;
  3014. tx_ring->wq_id = i;
  3015. tx_ring->wq_len = qdev->tx_ring_size;
  3016. tx_ring->wq_size =
  3017. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3018. /*
  3019. * The completion queue ID for the tx rings start
  3020. * immediately after the default Q ID, which is zero.
  3021. */
  3022. tx_ring->cq_id = i + 1;
  3023. }
  3024. for (i = 0; i < qdev->rx_ring_count; i++) {
  3025. rx_ring = &qdev->rx_ring[i];
  3026. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3027. rx_ring->qdev = qdev;
  3028. rx_ring->cq_id = i;
  3029. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3030. if (i == 0) { /* Default queue at index 0. */
  3031. /*
  3032. * Default queue handles bcast/mcast plus
  3033. * async events. Needs buffers.
  3034. */
  3035. rx_ring->cq_len = qdev->rx_ring_size;
  3036. rx_ring->cq_size =
  3037. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3038. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3039. rx_ring->lbq_size =
  3040. rx_ring->lbq_len * sizeof(struct bq_element);
  3041. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3042. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3043. rx_ring->sbq_size =
  3044. rx_ring->sbq_len * sizeof(struct bq_element);
  3045. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3046. rx_ring->type = DEFAULT_Q;
  3047. } else if (i < qdev->rss_ring_first_cq_id) {
  3048. /*
  3049. * Outbound queue handles outbound completions only.
  3050. */
  3051. /* outbound cq is same size as tx_ring it services. */
  3052. rx_ring->cq_len = qdev->tx_ring_size;
  3053. rx_ring->cq_size =
  3054. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3055. rx_ring->lbq_len = 0;
  3056. rx_ring->lbq_size = 0;
  3057. rx_ring->lbq_buf_size = 0;
  3058. rx_ring->sbq_len = 0;
  3059. rx_ring->sbq_size = 0;
  3060. rx_ring->sbq_buf_size = 0;
  3061. rx_ring->type = TX_Q;
  3062. } else { /* Inbound completions (RSS) queues */
  3063. /*
  3064. * Inbound queues handle unicast frames only.
  3065. */
  3066. rx_ring->cq_len = qdev->rx_ring_size;
  3067. rx_ring->cq_size =
  3068. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3069. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3070. rx_ring->lbq_size =
  3071. rx_ring->lbq_len * sizeof(struct bq_element);
  3072. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3073. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3074. rx_ring->sbq_size =
  3075. rx_ring->sbq_len * sizeof(struct bq_element);
  3076. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3077. rx_ring->type = RX_Q;
  3078. }
  3079. }
  3080. return 0;
  3081. }
  3082. static int qlge_open(struct net_device *ndev)
  3083. {
  3084. int err = 0;
  3085. struct ql_adapter *qdev = netdev_priv(ndev);
  3086. err = ql_configure_rings(qdev);
  3087. if (err)
  3088. return err;
  3089. err = ql_get_adapter_resources(qdev);
  3090. if (err)
  3091. goto error_up;
  3092. err = ql_adapter_up(qdev);
  3093. if (err)
  3094. goto error_up;
  3095. return err;
  3096. error_up:
  3097. ql_release_adapter_resources(qdev);
  3098. ql_free_ring_cb(qdev);
  3099. return err;
  3100. }
  3101. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3102. {
  3103. struct ql_adapter *qdev = netdev_priv(ndev);
  3104. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3105. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3106. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3107. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3108. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3109. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3110. return 0;
  3111. } else
  3112. return -EINVAL;
  3113. ndev->mtu = new_mtu;
  3114. return 0;
  3115. }
  3116. static struct net_device_stats *qlge_get_stats(struct net_device
  3117. *ndev)
  3118. {
  3119. struct ql_adapter *qdev = netdev_priv(ndev);
  3120. return &qdev->stats;
  3121. }
  3122. static void qlge_set_multicast_list(struct net_device *ndev)
  3123. {
  3124. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3125. struct dev_mc_list *mc_ptr;
  3126. int i;
  3127. spin_lock(&qdev->hw_lock);
  3128. /*
  3129. * Set or clear promiscuous mode if a
  3130. * transition is taking place.
  3131. */
  3132. if (ndev->flags & IFF_PROMISC) {
  3133. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3134. if (ql_set_routing_reg
  3135. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3136. QPRINTK(qdev, HW, ERR,
  3137. "Failed to set promiscous mode.\n");
  3138. } else {
  3139. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3140. }
  3141. }
  3142. } else {
  3143. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3144. if (ql_set_routing_reg
  3145. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3146. QPRINTK(qdev, HW, ERR,
  3147. "Failed to clear promiscous mode.\n");
  3148. } else {
  3149. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3150. }
  3151. }
  3152. }
  3153. /*
  3154. * Set or clear all multicast mode if a
  3155. * transition is taking place.
  3156. */
  3157. if ((ndev->flags & IFF_ALLMULTI) ||
  3158. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3159. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3160. if (ql_set_routing_reg
  3161. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3162. QPRINTK(qdev, HW, ERR,
  3163. "Failed to set all-multi mode.\n");
  3164. } else {
  3165. set_bit(QL_ALLMULTI, &qdev->flags);
  3166. }
  3167. }
  3168. } else {
  3169. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3170. if (ql_set_routing_reg
  3171. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3172. QPRINTK(qdev, HW, ERR,
  3173. "Failed to clear all-multi mode.\n");
  3174. } else {
  3175. clear_bit(QL_ALLMULTI, &qdev->flags);
  3176. }
  3177. }
  3178. }
  3179. if (ndev->mc_count) {
  3180. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3181. i++, mc_ptr = mc_ptr->next)
  3182. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3183. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3184. QPRINTK(qdev, HW, ERR,
  3185. "Failed to loadmulticast address.\n");
  3186. goto exit;
  3187. }
  3188. if (ql_set_routing_reg
  3189. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3190. QPRINTK(qdev, HW, ERR,
  3191. "Failed to set multicast match mode.\n");
  3192. } else {
  3193. set_bit(QL_ALLMULTI, &qdev->flags);
  3194. }
  3195. }
  3196. exit:
  3197. spin_unlock(&qdev->hw_lock);
  3198. }
  3199. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3200. {
  3201. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3202. struct sockaddr *addr = p;
  3203. int ret = 0;
  3204. if (netif_running(ndev))
  3205. return -EBUSY;
  3206. if (!is_valid_ether_addr(addr->sa_data))
  3207. return -EADDRNOTAVAIL;
  3208. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3209. spin_lock(&qdev->hw_lock);
  3210. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3211. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3212. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3213. ret = -1;
  3214. }
  3215. spin_unlock(&qdev->hw_lock);
  3216. return ret;
  3217. }
  3218. static void qlge_tx_timeout(struct net_device *ndev)
  3219. {
  3220. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3221. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3222. }
  3223. static void ql_asic_reset_work(struct work_struct *work)
  3224. {
  3225. struct ql_adapter *qdev =
  3226. container_of(work, struct ql_adapter, asic_reset_work.work);
  3227. ql_cycle_adapter(qdev);
  3228. }
  3229. static void ql_get_board_info(struct ql_adapter *qdev)
  3230. {
  3231. qdev->func =
  3232. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3233. if (qdev->func) {
  3234. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3235. qdev->port_link_up = STS_PL1;
  3236. qdev->port_init = STS_PI1;
  3237. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3238. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3239. } else {
  3240. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3241. qdev->port_link_up = STS_PL0;
  3242. qdev->port_init = STS_PI0;
  3243. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3244. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3245. }
  3246. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3247. }
  3248. static void ql_release_all(struct pci_dev *pdev)
  3249. {
  3250. struct net_device *ndev = pci_get_drvdata(pdev);
  3251. struct ql_adapter *qdev = netdev_priv(ndev);
  3252. if (qdev->workqueue) {
  3253. destroy_workqueue(qdev->workqueue);
  3254. qdev->workqueue = NULL;
  3255. }
  3256. if (qdev->q_workqueue) {
  3257. destroy_workqueue(qdev->q_workqueue);
  3258. qdev->q_workqueue = NULL;
  3259. }
  3260. if (qdev->reg_base)
  3261. iounmap(qdev->reg_base);
  3262. if (qdev->doorbell_area)
  3263. iounmap(qdev->doorbell_area);
  3264. pci_release_regions(pdev);
  3265. pci_set_drvdata(pdev, NULL);
  3266. }
  3267. static int __devinit ql_init_device(struct pci_dev *pdev,
  3268. struct net_device *ndev, int cards_found)
  3269. {
  3270. struct ql_adapter *qdev = netdev_priv(ndev);
  3271. int pos, err = 0;
  3272. u16 val16;
  3273. memset((void *)qdev, 0, sizeof(qdev));
  3274. err = pci_enable_device(pdev);
  3275. if (err) {
  3276. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3277. return err;
  3278. }
  3279. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3280. if (pos <= 0) {
  3281. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3282. "aborting.\n");
  3283. goto err_out;
  3284. } else {
  3285. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3286. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3287. val16 |= (PCI_EXP_DEVCTL_CERE |
  3288. PCI_EXP_DEVCTL_NFERE |
  3289. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3290. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3291. }
  3292. err = pci_request_regions(pdev, DRV_NAME);
  3293. if (err) {
  3294. dev_err(&pdev->dev, "PCI region request failed.\n");
  3295. goto err_out;
  3296. }
  3297. pci_set_master(pdev);
  3298. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3299. set_bit(QL_DMA64, &qdev->flags);
  3300. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3301. } else {
  3302. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3303. if (!err)
  3304. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3305. }
  3306. if (err) {
  3307. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3308. goto err_out;
  3309. }
  3310. pci_set_drvdata(pdev, ndev);
  3311. qdev->reg_base =
  3312. ioremap_nocache(pci_resource_start(pdev, 1),
  3313. pci_resource_len(pdev, 1));
  3314. if (!qdev->reg_base) {
  3315. dev_err(&pdev->dev, "Register mapping failed.\n");
  3316. err = -ENOMEM;
  3317. goto err_out;
  3318. }
  3319. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3320. qdev->doorbell_area =
  3321. ioremap_nocache(pci_resource_start(pdev, 3),
  3322. pci_resource_len(pdev, 3));
  3323. if (!qdev->doorbell_area) {
  3324. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3325. err = -ENOMEM;
  3326. goto err_out;
  3327. }
  3328. ql_get_board_info(qdev);
  3329. qdev->ndev = ndev;
  3330. qdev->pdev = pdev;
  3331. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3332. spin_lock_init(&qdev->hw_lock);
  3333. spin_lock_init(&qdev->stats_lock);
  3334. /* make sure the EEPROM is good */
  3335. err = ql_get_flash_params(qdev);
  3336. if (err) {
  3337. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3338. goto err_out;
  3339. }
  3340. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3341. goto err_out;
  3342. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3343. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3344. /* Set up the default ring sizes. */
  3345. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3346. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3347. /* Set up the coalescing parameters. */
  3348. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3349. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3350. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3351. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3352. /*
  3353. * Set up the operating parameters.
  3354. */
  3355. qdev->rx_csum = 1;
  3356. qdev->q_workqueue = create_workqueue(ndev->name);
  3357. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3358. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3359. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3360. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3361. if (!cards_found) {
  3362. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3363. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3364. DRV_NAME, DRV_VERSION);
  3365. }
  3366. return 0;
  3367. err_out:
  3368. ql_release_all(pdev);
  3369. pci_disable_device(pdev);
  3370. return err;
  3371. }
  3372. static const struct net_device_ops qlge_netdev_ops = {
  3373. .ndo_open = qlge_open,
  3374. .ndo_stop = qlge_close,
  3375. .ndo_start_xmit = qlge_send,
  3376. .ndo_change_mtu = qlge_change_mtu,
  3377. .ndo_get_stats = qlge_get_stats,
  3378. .ndo_set_multicast_list = qlge_set_multicast_list,
  3379. .ndo_set_mac_address = qlge_set_mac_address,
  3380. .ndo_validate_addr = eth_validate_addr,
  3381. .ndo_tx_timeout = qlge_tx_timeout,
  3382. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3383. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3384. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3385. };
  3386. static int __devinit qlge_probe(struct pci_dev *pdev,
  3387. const struct pci_device_id *pci_entry)
  3388. {
  3389. struct net_device *ndev = NULL;
  3390. struct ql_adapter *qdev = NULL;
  3391. static int cards_found = 0;
  3392. int err = 0;
  3393. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3394. if (!ndev)
  3395. return -ENOMEM;
  3396. err = ql_init_device(pdev, ndev, cards_found);
  3397. if (err < 0) {
  3398. free_netdev(ndev);
  3399. return err;
  3400. }
  3401. qdev = netdev_priv(ndev);
  3402. SET_NETDEV_DEV(ndev, &pdev->dev);
  3403. ndev->features = (0
  3404. | NETIF_F_IP_CSUM
  3405. | NETIF_F_SG
  3406. | NETIF_F_TSO
  3407. | NETIF_F_TSO6
  3408. | NETIF_F_TSO_ECN
  3409. | NETIF_F_HW_VLAN_TX
  3410. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3411. if (test_bit(QL_DMA64, &qdev->flags))
  3412. ndev->features |= NETIF_F_HIGHDMA;
  3413. /*
  3414. * Set up net_device structure.
  3415. */
  3416. ndev->tx_queue_len = qdev->tx_ring_size;
  3417. ndev->irq = pdev->irq;
  3418. ndev->netdev_ops = &qlge_netdev_ops;
  3419. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3420. ndev->watchdog_timeo = 10 * HZ;
  3421. err = register_netdev(ndev);
  3422. if (err) {
  3423. dev_err(&pdev->dev, "net device registration failed.\n");
  3424. ql_release_all(pdev);
  3425. pci_disable_device(pdev);
  3426. return err;
  3427. }
  3428. netif_carrier_off(ndev);
  3429. netif_stop_queue(ndev);
  3430. ql_display_dev_info(ndev);
  3431. cards_found++;
  3432. return 0;
  3433. }
  3434. static void __devexit qlge_remove(struct pci_dev *pdev)
  3435. {
  3436. struct net_device *ndev = pci_get_drvdata(pdev);
  3437. unregister_netdev(ndev);
  3438. ql_release_all(pdev);
  3439. pci_disable_device(pdev);
  3440. free_netdev(ndev);
  3441. }
  3442. /*
  3443. * This callback is called by the PCI subsystem whenever
  3444. * a PCI bus error is detected.
  3445. */
  3446. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3447. enum pci_channel_state state)
  3448. {
  3449. struct net_device *ndev = pci_get_drvdata(pdev);
  3450. struct ql_adapter *qdev = netdev_priv(ndev);
  3451. if (netif_running(ndev))
  3452. ql_adapter_down(qdev);
  3453. pci_disable_device(pdev);
  3454. /* Request a slot reset. */
  3455. return PCI_ERS_RESULT_NEED_RESET;
  3456. }
  3457. /*
  3458. * This callback is called after the PCI buss has been reset.
  3459. * Basically, this tries to restart the card from scratch.
  3460. * This is a shortened version of the device probe/discovery code,
  3461. * it resembles the first-half of the () routine.
  3462. */
  3463. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3464. {
  3465. struct net_device *ndev = pci_get_drvdata(pdev);
  3466. struct ql_adapter *qdev = netdev_priv(ndev);
  3467. if (pci_enable_device(pdev)) {
  3468. QPRINTK(qdev, IFUP, ERR,
  3469. "Cannot re-enable PCI device after reset.\n");
  3470. return PCI_ERS_RESULT_DISCONNECT;
  3471. }
  3472. pci_set_master(pdev);
  3473. netif_carrier_off(ndev);
  3474. netif_stop_queue(ndev);
  3475. ql_adapter_reset(qdev);
  3476. /* Make sure the EEPROM is good */
  3477. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3478. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3479. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3480. return PCI_ERS_RESULT_DISCONNECT;
  3481. }
  3482. return PCI_ERS_RESULT_RECOVERED;
  3483. }
  3484. static void qlge_io_resume(struct pci_dev *pdev)
  3485. {
  3486. struct net_device *ndev = pci_get_drvdata(pdev);
  3487. struct ql_adapter *qdev = netdev_priv(ndev);
  3488. pci_set_master(pdev);
  3489. if (netif_running(ndev)) {
  3490. if (ql_adapter_up(qdev)) {
  3491. QPRINTK(qdev, IFUP, ERR,
  3492. "Device initialization failed after reset.\n");
  3493. return;
  3494. }
  3495. }
  3496. netif_device_attach(ndev);
  3497. }
  3498. static struct pci_error_handlers qlge_err_handler = {
  3499. .error_detected = qlge_io_error_detected,
  3500. .slot_reset = qlge_io_slot_reset,
  3501. .resume = qlge_io_resume,
  3502. };
  3503. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3504. {
  3505. struct net_device *ndev = pci_get_drvdata(pdev);
  3506. struct ql_adapter *qdev = netdev_priv(ndev);
  3507. int err;
  3508. netif_device_detach(ndev);
  3509. if (netif_running(ndev)) {
  3510. err = ql_adapter_down(qdev);
  3511. if (!err)
  3512. return err;
  3513. }
  3514. err = pci_save_state(pdev);
  3515. if (err)
  3516. return err;
  3517. pci_disable_device(pdev);
  3518. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3519. return 0;
  3520. }
  3521. #ifdef CONFIG_PM
  3522. static int qlge_resume(struct pci_dev *pdev)
  3523. {
  3524. struct net_device *ndev = pci_get_drvdata(pdev);
  3525. struct ql_adapter *qdev = netdev_priv(ndev);
  3526. int err;
  3527. pci_set_power_state(pdev, PCI_D0);
  3528. pci_restore_state(pdev);
  3529. err = pci_enable_device(pdev);
  3530. if (err) {
  3531. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3532. return err;
  3533. }
  3534. pci_set_master(pdev);
  3535. pci_enable_wake(pdev, PCI_D3hot, 0);
  3536. pci_enable_wake(pdev, PCI_D3cold, 0);
  3537. if (netif_running(ndev)) {
  3538. err = ql_adapter_up(qdev);
  3539. if (err)
  3540. return err;
  3541. }
  3542. netif_device_attach(ndev);
  3543. return 0;
  3544. }
  3545. #endif /* CONFIG_PM */
  3546. static void qlge_shutdown(struct pci_dev *pdev)
  3547. {
  3548. qlge_suspend(pdev, PMSG_SUSPEND);
  3549. }
  3550. static struct pci_driver qlge_driver = {
  3551. .name = DRV_NAME,
  3552. .id_table = qlge_pci_tbl,
  3553. .probe = qlge_probe,
  3554. .remove = __devexit_p(qlge_remove),
  3555. #ifdef CONFIG_PM
  3556. .suspend = qlge_suspend,
  3557. .resume = qlge_resume,
  3558. #endif
  3559. .shutdown = qlge_shutdown,
  3560. .err_handler = &qlge_err_handler
  3561. };
  3562. static int __init qlge_init_module(void)
  3563. {
  3564. return pci_register_driver(&qlge_driver);
  3565. }
  3566. static void __exit qlge_exit(void)
  3567. {
  3568. pci_unregister_driver(&qlge_driver);
  3569. }
  3570. module_init(qlge_init_module);
  3571. module_exit(qlge_exit);