nic.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pci.h>
  14. #include <linux/module.h>
  15. #include <linux/seq_file.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "workarounds.h"
  23. /**************************************************************************
  24. *
  25. * Configurable values
  26. *
  27. **************************************************************************
  28. */
  29. /* This is set to 16 for a good reason. In summary, if larger than
  30. * 16, the descriptor cache holds more than a default socket
  31. * buffer's worth of packets (for UDP we can only have at most one
  32. * socket buffer's worth outstanding). This combined with the fact
  33. * that we only get 1 TX event per descriptor cache means the NIC
  34. * goes idle.
  35. */
  36. #define TX_DC_ENTRIES 16
  37. #define TX_DC_ENTRIES_ORDER 1
  38. #define RX_DC_ENTRIES 64
  39. #define RX_DC_ENTRIES_ORDER 3
  40. /* If EFX_MAX_INT_ERRORS internal errors occur within
  41. * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  42. * disable it.
  43. */
  44. #define EFX_INT_ERROR_EXPIRE 3600
  45. #define EFX_MAX_INT_ERRORS 5
  46. /* Depth of RX flush request fifo */
  47. #define EFX_RX_FLUSH_COUNT 4
  48. /* Driver generated events */
  49. #define _EFX_CHANNEL_MAGIC_TEST 0x000101
  50. #define _EFX_CHANNEL_MAGIC_FILL 0x000102
  51. #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
  52. #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
  53. #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
  54. #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
  55. #define EFX_CHANNEL_MAGIC_TEST(_channel) \
  56. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  57. #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
  58. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
  59. efx_rx_queue_index(_rx_queue))
  60. #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
  61. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
  62. efx_rx_queue_index(_rx_queue))
  63. #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
  64. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
  65. (_tx_queue)->queue)
  66. /**************************************************************************
  67. *
  68. * Solarstorm hardware access
  69. *
  70. **************************************************************************/
  71. static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  72. unsigned int index)
  73. {
  74. efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  75. value, index);
  76. }
  77. /* Read the current event from the event queue */
  78. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  79. unsigned int index)
  80. {
  81. return ((efx_qword_t *) (channel->eventq.addr)) +
  82. (index & channel->eventq_mask);
  83. }
  84. /* See if an event is present
  85. *
  86. * We check both the high and low dword of the event for all ones. We
  87. * wrote all ones when we cleared the event, and no valid event can
  88. * have all ones in either its high or low dwords. This approach is
  89. * robust against reordering.
  90. *
  91. * Note that using a single 64-bit comparison is incorrect; even
  92. * though the CPU read will be atomic, the DMA write may not be.
  93. */
  94. static inline int efx_event_present(efx_qword_t *event)
  95. {
  96. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  97. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  98. }
  99. static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  100. const efx_oword_t *mask)
  101. {
  102. return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  103. ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  104. }
  105. int efx_nic_test_registers(struct efx_nic *efx,
  106. const struct efx_nic_register_test *regs,
  107. size_t n_regs)
  108. {
  109. unsigned address = 0, i, j;
  110. efx_oword_t mask, imask, original, reg, buf;
  111. /* Falcon should be in loopback to isolate the XMAC from the PHY */
  112. WARN_ON(!LOOPBACK_INTERNAL(efx));
  113. for (i = 0; i < n_regs; ++i) {
  114. address = regs[i].address;
  115. mask = imask = regs[i].mask;
  116. EFX_INVERT_OWORD(imask);
  117. efx_reado(efx, &original, address);
  118. /* bit sweep on and off */
  119. for (j = 0; j < 128; j++) {
  120. if (!EFX_EXTRACT_OWORD32(mask, j, j))
  121. continue;
  122. /* Test this testable bit can be set in isolation */
  123. EFX_AND_OWORD(reg, original, mask);
  124. EFX_SET_OWORD32(reg, j, j, 1);
  125. efx_writeo(efx, &reg, address);
  126. efx_reado(efx, &buf, address);
  127. if (efx_masked_compare_oword(&reg, &buf, &mask))
  128. goto fail;
  129. /* Test this testable bit can be cleared in isolation */
  130. EFX_OR_OWORD(reg, original, mask);
  131. EFX_SET_OWORD32(reg, j, j, 0);
  132. efx_writeo(efx, &reg, address);
  133. efx_reado(efx, &buf, address);
  134. if (efx_masked_compare_oword(&reg, &buf, &mask))
  135. goto fail;
  136. }
  137. efx_writeo(efx, &original, address);
  138. }
  139. return 0;
  140. fail:
  141. netif_err(efx, hw, efx->net_dev,
  142. "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
  143. " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
  144. EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
  145. return -EIO;
  146. }
  147. /**************************************************************************
  148. *
  149. * Special buffer handling
  150. * Special buffers are used for event queues and the TX and RX
  151. * descriptor rings.
  152. *
  153. *************************************************************************/
  154. /*
  155. * Initialise a special buffer
  156. *
  157. * This will define a buffer (previously allocated via
  158. * efx_alloc_special_buffer()) in the buffer table, allowing
  159. * it to be used for event queues, descriptor rings etc.
  160. */
  161. static void
  162. efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  163. {
  164. efx_qword_t buf_desc;
  165. int index;
  166. dma_addr_t dma_addr;
  167. int i;
  168. EFX_BUG_ON_PARANOID(!buffer->addr);
  169. /* Write buffer descriptors to NIC */
  170. for (i = 0; i < buffer->entries; i++) {
  171. index = buffer->index + i;
  172. dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
  173. netif_dbg(efx, probe, efx->net_dev,
  174. "mapping special buffer %d at %llx\n",
  175. index, (unsigned long long)dma_addr);
  176. EFX_POPULATE_QWORD_3(buf_desc,
  177. FRF_AZ_BUF_ADR_REGION, 0,
  178. FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
  179. FRF_AZ_BUF_OWNER_ID_FBUF, 0);
  180. efx_write_buf_tbl(efx, &buf_desc, index);
  181. }
  182. }
  183. /* Unmaps a buffer and clears the buffer table entries */
  184. static void
  185. efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  186. {
  187. efx_oword_t buf_tbl_upd;
  188. unsigned int start = buffer->index;
  189. unsigned int end = (buffer->index + buffer->entries - 1);
  190. if (!buffer->entries)
  191. return;
  192. netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
  193. buffer->index, buffer->index + buffer->entries - 1);
  194. EFX_POPULATE_OWORD_4(buf_tbl_upd,
  195. FRF_AZ_BUF_UPD_CMD, 0,
  196. FRF_AZ_BUF_CLR_CMD, 1,
  197. FRF_AZ_BUF_CLR_END_ID, end,
  198. FRF_AZ_BUF_CLR_START_ID, start);
  199. efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
  200. }
  201. /*
  202. * Allocate a new special buffer
  203. *
  204. * This allocates memory for a new buffer, clears it and allocates a
  205. * new buffer ID range. It does not write into the buffer table.
  206. *
  207. * This call will allocate 4KB buffers, since 8KB buffers can't be
  208. * used for event queues and descriptor rings.
  209. */
  210. static int efx_alloc_special_buffer(struct efx_nic *efx,
  211. struct efx_special_buffer *buffer,
  212. unsigned int len)
  213. {
  214. len = ALIGN(len, EFX_BUF_SIZE);
  215. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  216. &buffer->dma_addr, GFP_KERNEL);
  217. if (!buffer->addr)
  218. return -ENOMEM;
  219. buffer->len = len;
  220. buffer->entries = len / EFX_BUF_SIZE;
  221. BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
  222. /* All zeros is a potentially valid event so memset to 0xff */
  223. memset(buffer->addr, 0xff, len);
  224. /* Select new buffer ID */
  225. buffer->index = efx->next_buffer_table;
  226. efx->next_buffer_table += buffer->entries;
  227. netif_dbg(efx, probe, efx->net_dev,
  228. "allocating special buffers %d-%d at %llx+%x "
  229. "(virt %p phys %llx)\n", buffer->index,
  230. buffer->index + buffer->entries - 1,
  231. (u64)buffer->dma_addr, len,
  232. buffer->addr, (u64)virt_to_phys(buffer->addr));
  233. return 0;
  234. }
  235. static void
  236. efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  237. {
  238. if (!buffer->addr)
  239. return;
  240. netif_dbg(efx, hw, efx->net_dev,
  241. "deallocating special buffers %d-%d at %llx+%x "
  242. "(virt %p phys %llx)\n", buffer->index,
  243. buffer->index + buffer->entries - 1,
  244. (u64)buffer->dma_addr, buffer->len,
  245. buffer->addr, (u64)virt_to_phys(buffer->addr));
  246. dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
  247. buffer->dma_addr);
  248. buffer->addr = NULL;
  249. buffer->entries = 0;
  250. }
  251. /**************************************************************************
  252. *
  253. * Generic buffer handling
  254. * These buffers are used for interrupt status and MAC stats
  255. *
  256. **************************************************************************/
  257. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  258. unsigned int len)
  259. {
  260. buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
  261. &buffer->dma_addr);
  262. if (!buffer->addr)
  263. return -ENOMEM;
  264. buffer->len = len;
  265. memset(buffer->addr, 0, len);
  266. return 0;
  267. }
  268. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  269. {
  270. if (buffer->addr) {
  271. pci_free_consistent(efx->pci_dev, buffer->len,
  272. buffer->addr, buffer->dma_addr);
  273. buffer->addr = NULL;
  274. }
  275. }
  276. /**************************************************************************
  277. *
  278. * TX path
  279. *
  280. **************************************************************************/
  281. /* Returns a pointer to the specified transmit descriptor in the TX
  282. * descriptor queue belonging to the specified channel.
  283. */
  284. static inline efx_qword_t *
  285. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  286. {
  287. return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
  288. }
  289. /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
  290. static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
  291. {
  292. unsigned write_ptr;
  293. efx_dword_t reg;
  294. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  295. EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
  296. efx_writed_page(tx_queue->efx, &reg,
  297. FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
  298. }
  299. /* Write pointer and first descriptor for TX descriptor ring */
  300. static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
  301. const efx_qword_t *txd)
  302. {
  303. unsigned write_ptr;
  304. efx_oword_t reg;
  305. BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
  306. BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
  307. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  308. EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
  309. FRF_AZ_TX_DESC_WPTR, write_ptr);
  310. reg.qword[0] = *txd;
  311. efx_writeo_page(tx_queue->efx, &reg,
  312. FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
  313. }
  314. static inline bool
  315. efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
  316. {
  317. unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  318. if (empty_read_count == 0)
  319. return false;
  320. tx_queue->empty_read_count = 0;
  321. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  322. }
  323. /* For each entry inserted into the software descriptor ring, create a
  324. * descriptor in the hardware TX descriptor ring (in host memory), and
  325. * write a doorbell.
  326. */
  327. void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  328. {
  329. struct efx_tx_buffer *buffer;
  330. efx_qword_t *txd;
  331. unsigned write_ptr;
  332. unsigned old_write_count = tx_queue->write_count;
  333. BUG_ON(tx_queue->write_count == tx_queue->insert_count);
  334. do {
  335. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  336. buffer = &tx_queue->buffer[write_ptr];
  337. txd = efx_tx_desc(tx_queue, write_ptr);
  338. ++tx_queue->write_count;
  339. /* Create TX descriptor ring entry */
  340. EFX_POPULATE_QWORD_4(*txd,
  341. FSF_AZ_TX_KER_CONT, buffer->continuation,
  342. FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
  343. FSF_AZ_TX_KER_BUF_REGION, 0,
  344. FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
  345. } while (tx_queue->write_count != tx_queue->insert_count);
  346. wmb(); /* Ensure descriptors are written before they are fetched */
  347. if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
  348. txd = efx_tx_desc(tx_queue,
  349. old_write_count & tx_queue->ptr_mask);
  350. efx_push_tx_desc(tx_queue, txd);
  351. ++tx_queue->pushes;
  352. } else {
  353. efx_notify_tx_desc(tx_queue);
  354. }
  355. }
  356. /* Allocate hardware resources for a TX queue */
  357. int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  358. {
  359. struct efx_nic *efx = tx_queue->efx;
  360. unsigned entries;
  361. entries = tx_queue->ptr_mask + 1;
  362. return efx_alloc_special_buffer(efx, &tx_queue->txd,
  363. entries * sizeof(efx_qword_t));
  364. }
  365. void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  366. {
  367. struct efx_nic *efx = tx_queue->efx;
  368. efx_oword_t reg;
  369. /* Pin TX descriptor ring */
  370. efx_init_special_buffer(efx, &tx_queue->txd);
  371. /* Push TX descriptor ring to card */
  372. EFX_POPULATE_OWORD_10(reg,
  373. FRF_AZ_TX_DESCQ_EN, 1,
  374. FRF_AZ_TX_ISCSI_DDIG_EN, 0,
  375. FRF_AZ_TX_ISCSI_HDIG_EN, 0,
  376. FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
  377. FRF_AZ_TX_DESCQ_EVQ_ID,
  378. tx_queue->channel->channel,
  379. FRF_AZ_TX_DESCQ_OWNER_ID, 0,
  380. FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
  381. FRF_AZ_TX_DESCQ_SIZE,
  382. __ffs(tx_queue->txd.entries),
  383. FRF_AZ_TX_DESCQ_TYPE, 0,
  384. FRF_BZ_TX_NON_IP_DROP_DIS, 1);
  385. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  386. int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
  387. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
  388. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
  389. !csum);
  390. }
  391. efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
  392. tx_queue->queue);
  393. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
  394. /* Only 128 bits in this register */
  395. BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
  396. efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
  397. if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  398. clear_bit_le(tx_queue->queue, (void *)&reg);
  399. else
  400. set_bit_le(tx_queue->queue, (void *)&reg);
  401. efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
  402. }
  403. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  404. EFX_POPULATE_OWORD_1(reg,
  405. FRF_BZ_TX_PACE,
  406. (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
  407. FFE_BZ_TX_PACE_OFF :
  408. FFE_BZ_TX_PACE_RESERVED);
  409. efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
  410. tx_queue->queue);
  411. }
  412. }
  413. static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
  414. {
  415. struct efx_nic *efx = tx_queue->efx;
  416. efx_oword_t tx_flush_descq;
  417. EFX_POPULATE_OWORD_2(tx_flush_descq,
  418. FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
  419. FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
  420. efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
  421. }
  422. void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
  423. {
  424. struct efx_nic *efx = tx_queue->efx;
  425. efx_oword_t tx_desc_ptr;
  426. /* Remove TX descriptor ring from card */
  427. EFX_ZERO_OWORD(tx_desc_ptr);
  428. efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  429. tx_queue->queue);
  430. /* Unpin TX descriptor ring */
  431. efx_fini_special_buffer(efx, &tx_queue->txd);
  432. }
  433. /* Free buffers backing TX queue */
  434. void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  435. {
  436. efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
  437. }
  438. /**************************************************************************
  439. *
  440. * RX path
  441. *
  442. **************************************************************************/
  443. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  444. static inline efx_qword_t *
  445. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  446. {
  447. return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
  448. }
  449. /* This creates an entry in the RX descriptor queue */
  450. static inline void
  451. efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
  452. {
  453. struct efx_rx_buffer *rx_buf;
  454. efx_qword_t *rxd;
  455. rxd = efx_rx_desc(rx_queue, index);
  456. rx_buf = efx_rx_buffer(rx_queue, index);
  457. EFX_POPULATE_QWORD_3(*rxd,
  458. FSF_AZ_RX_KER_BUF_SIZE,
  459. rx_buf->len -
  460. rx_queue->efx->type->rx_buffer_padding,
  461. FSF_AZ_RX_KER_BUF_REGION, 0,
  462. FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
  463. }
  464. /* This writes to the RX_DESC_WPTR register for the specified receive
  465. * descriptor ring.
  466. */
  467. void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  468. {
  469. struct efx_nic *efx = rx_queue->efx;
  470. efx_dword_t reg;
  471. unsigned write_ptr;
  472. while (rx_queue->notified_count != rx_queue->added_count) {
  473. efx_build_rx_desc(
  474. rx_queue,
  475. rx_queue->notified_count & rx_queue->ptr_mask);
  476. ++rx_queue->notified_count;
  477. }
  478. wmb();
  479. write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
  480. EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
  481. efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
  482. efx_rx_queue_index(rx_queue));
  483. }
  484. int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  485. {
  486. struct efx_nic *efx = rx_queue->efx;
  487. unsigned entries;
  488. entries = rx_queue->ptr_mask + 1;
  489. return efx_alloc_special_buffer(efx, &rx_queue->rxd,
  490. entries * sizeof(efx_qword_t));
  491. }
  492. void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  493. {
  494. efx_oword_t rx_desc_ptr;
  495. struct efx_nic *efx = rx_queue->efx;
  496. bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
  497. bool iscsi_digest_en = is_b0;
  498. netif_dbg(efx, hw, efx->net_dev,
  499. "RX queue %d ring in special buffers %d-%d\n",
  500. efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
  501. rx_queue->rxd.index + rx_queue->rxd.entries - 1);
  502. /* Pin RX descriptor ring */
  503. efx_init_special_buffer(efx, &rx_queue->rxd);
  504. /* Push RX descriptor ring to card */
  505. EFX_POPULATE_OWORD_10(rx_desc_ptr,
  506. FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
  507. FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
  508. FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
  509. FRF_AZ_RX_DESCQ_EVQ_ID,
  510. efx_rx_queue_channel(rx_queue)->channel,
  511. FRF_AZ_RX_DESCQ_OWNER_ID, 0,
  512. FRF_AZ_RX_DESCQ_LABEL,
  513. efx_rx_queue_index(rx_queue),
  514. FRF_AZ_RX_DESCQ_SIZE,
  515. __ffs(rx_queue->rxd.entries),
  516. FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
  517. /* For >=B0 this is scatter so disable */
  518. FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
  519. FRF_AZ_RX_DESCQ_EN, 1);
  520. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  521. efx_rx_queue_index(rx_queue));
  522. }
  523. static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
  524. {
  525. struct efx_nic *efx = rx_queue->efx;
  526. efx_oword_t rx_flush_descq;
  527. EFX_POPULATE_OWORD_2(rx_flush_descq,
  528. FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
  529. FRF_AZ_RX_FLUSH_DESCQ,
  530. efx_rx_queue_index(rx_queue));
  531. efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
  532. }
  533. void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
  534. {
  535. efx_oword_t rx_desc_ptr;
  536. struct efx_nic *efx = rx_queue->efx;
  537. /* Remove RX descriptor ring from card */
  538. EFX_ZERO_OWORD(rx_desc_ptr);
  539. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  540. efx_rx_queue_index(rx_queue));
  541. /* Unpin RX descriptor ring */
  542. efx_fini_special_buffer(efx, &rx_queue->rxd);
  543. }
  544. /* Free buffers backing RX queue */
  545. void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  546. {
  547. efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
  548. }
  549. /**************************************************************************
  550. *
  551. * Flush handling
  552. *
  553. **************************************************************************/
  554. /* efx_nic_flush_queues() must be woken up when all flushes are completed,
  555. * or more RX flushes can be kicked off.
  556. */
  557. static bool efx_flush_wake(struct efx_nic *efx)
  558. {
  559. /* Ensure that all updates are visible to efx_nic_flush_queues() */
  560. smp_mb();
  561. return (atomic_read(&efx->drain_pending) == 0 ||
  562. (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
  563. && atomic_read(&efx->rxq_flush_pending) > 0));
  564. }
  565. /* Flush all the transmit queues, and continue flushing receive queues until
  566. * they're all flushed. Wait for the DRAIN events to be recieved so that there
  567. * are no more RX and TX events left on any channel. */
  568. int efx_nic_flush_queues(struct efx_nic *efx)
  569. {
  570. unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
  571. struct efx_channel *channel;
  572. struct efx_rx_queue *rx_queue;
  573. struct efx_tx_queue *tx_queue;
  574. int rc = 0;
  575. efx->type->prepare_flush(efx);
  576. efx_for_each_channel(channel, efx) {
  577. efx_for_each_channel_tx_queue(tx_queue, channel) {
  578. atomic_inc(&efx->drain_pending);
  579. efx_flush_tx_queue(tx_queue);
  580. }
  581. efx_for_each_channel_rx_queue(rx_queue, channel) {
  582. atomic_inc(&efx->drain_pending);
  583. rx_queue->flush_pending = true;
  584. atomic_inc(&efx->rxq_flush_pending);
  585. }
  586. }
  587. while (timeout && atomic_read(&efx->drain_pending) > 0) {
  588. /* The hardware supports four concurrent rx flushes, each of
  589. * which may need to be retried if there is an outstanding
  590. * descriptor fetch
  591. */
  592. efx_for_each_channel(channel, efx) {
  593. efx_for_each_channel_rx_queue(rx_queue, channel) {
  594. if (atomic_read(&efx->rxq_flush_outstanding) >=
  595. EFX_RX_FLUSH_COUNT)
  596. break;
  597. if (rx_queue->flush_pending) {
  598. rx_queue->flush_pending = false;
  599. atomic_dec(&efx->rxq_flush_pending);
  600. atomic_inc(&efx->rxq_flush_outstanding);
  601. efx_flush_rx_queue(rx_queue);
  602. }
  603. }
  604. }
  605. timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
  606. timeout);
  607. }
  608. if (atomic_read(&efx->drain_pending)) {
  609. netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
  610. "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
  611. atomic_read(&efx->rxq_flush_outstanding),
  612. atomic_read(&efx->rxq_flush_pending));
  613. rc = -ETIMEDOUT;
  614. atomic_set(&efx->drain_pending, 0);
  615. atomic_set(&efx->rxq_flush_pending, 0);
  616. atomic_set(&efx->rxq_flush_outstanding, 0);
  617. }
  618. return rc;
  619. }
  620. /**************************************************************************
  621. *
  622. * Event queue processing
  623. * Event queues are processed by per-channel tasklets.
  624. *
  625. **************************************************************************/
  626. /* Update a channel's event queue's read pointer (RPTR) register
  627. *
  628. * This writes the EVQ_RPTR_REG register for the specified channel's
  629. * event queue.
  630. */
  631. void efx_nic_eventq_read_ack(struct efx_channel *channel)
  632. {
  633. efx_dword_t reg;
  634. struct efx_nic *efx = channel->efx;
  635. EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
  636. channel->eventq_read_ptr & channel->eventq_mask);
  637. efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
  638. channel->channel);
  639. }
  640. /* Use HW to insert a SW defined event */
  641. void efx_generate_event(struct efx_nic *efx, unsigned int evq,
  642. efx_qword_t *event)
  643. {
  644. efx_oword_t drv_ev_reg;
  645. BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
  646. FRF_AZ_DRV_EV_DATA_WIDTH != 64);
  647. drv_ev_reg.u32[0] = event->u32[0];
  648. drv_ev_reg.u32[1] = event->u32[1];
  649. drv_ev_reg.u32[2] = 0;
  650. drv_ev_reg.u32[3] = 0;
  651. EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
  652. efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
  653. }
  654. static void efx_magic_event(struct efx_channel *channel, u32 magic)
  655. {
  656. efx_qword_t event;
  657. EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
  658. FSE_AZ_EV_CODE_DRV_GEN_EV,
  659. FSF_AZ_DRV_GEN_EV_MAGIC, magic);
  660. efx_generate_event(channel->efx, channel->channel, &event);
  661. }
  662. /* Handle a transmit completion event
  663. *
  664. * The NIC batches TX completion events; the message we receive is of
  665. * the form "complete all TX events up to this index".
  666. */
  667. static int
  668. efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
  669. {
  670. unsigned int tx_ev_desc_ptr;
  671. unsigned int tx_ev_q_label;
  672. struct efx_tx_queue *tx_queue;
  673. struct efx_nic *efx = channel->efx;
  674. int tx_packets = 0;
  675. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  676. return 0;
  677. if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
  678. /* Transmit completion */
  679. tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
  680. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  681. tx_queue = efx_channel_get_tx_queue(
  682. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  683. tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
  684. tx_queue->ptr_mask);
  685. channel->irq_mod_score += tx_packets;
  686. efx_xmit_done(tx_queue, tx_ev_desc_ptr);
  687. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
  688. /* Rewrite the FIFO write pointer */
  689. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  690. tx_queue = efx_channel_get_tx_queue(
  691. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  692. netif_tx_lock(efx->net_dev);
  693. efx_notify_tx_desc(tx_queue);
  694. netif_tx_unlock(efx->net_dev);
  695. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
  696. EFX_WORKAROUND_10727(efx)) {
  697. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  698. } else {
  699. netif_err(efx, tx_err, efx->net_dev,
  700. "channel %d unexpected TX event "
  701. EFX_QWORD_FMT"\n", channel->channel,
  702. EFX_QWORD_VAL(*event));
  703. }
  704. return tx_packets;
  705. }
  706. /* Detect errors included in the rx_evt_pkt_ok bit. */
  707. static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
  708. const efx_qword_t *event)
  709. {
  710. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  711. struct efx_nic *efx = rx_queue->efx;
  712. bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
  713. bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
  714. bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
  715. bool rx_ev_other_err, rx_ev_pause_frm;
  716. bool rx_ev_hdr_type, rx_ev_mcast_pkt;
  717. unsigned rx_ev_pkt_type;
  718. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  719. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  720. rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
  721. rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
  722. rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
  723. FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
  724. rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
  725. FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
  726. rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
  727. FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
  728. rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
  729. rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
  730. rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
  731. 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
  732. rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
  733. /* Every error apart from tobe_disc and pause_frm */
  734. rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
  735. rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
  736. rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
  737. /* Count errors that are not in MAC stats. Ignore expected
  738. * checksum errors during self-test. */
  739. if (rx_ev_frm_trunc)
  740. ++channel->n_rx_frm_trunc;
  741. else if (rx_ev_tobe_disc)
  742. ++channel->n_rx_tobe_disc;
  743. else if (!efx->loopback_selftest) {
  744. if (rx_ev_ip_hdr_chksum_err)
  745. ++channel->n_rx_ip_hdr_chksum_err;
  746. else if (rx_ev_tcp_udp_chksum_err)
  747. ++channel->n_rx_tcp_udp_chksum_err;
  748. }
  749. /* TOBE_DISC is expected on unicast mismatches; don't print out an
  750. * error message. FRM_TRUNC indicates RXDP dropped the packet due
  751. * to a FIFO overflow.
  752. */
  753. #ifdef DEBUG
  754. if (rx_ev_other_err && net_ratelimit()) {
  755. netif_dbg(efx, rx_err, efx->net_dev,
  756. " RX queue %d unexpected RX event "
  757. EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
  758. efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
  759. rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
  760. rx_ev_ip_hdr_chksum_err ?
  761. " [IP_HDR_CHKSUM_ERR]" : "",
  762. rx_ev_tcp_udp_chksum_err ?
  763. " [TCP_UDP_CHKSUM_ERR]" : "",
  764. rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
  765. rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
  766. rx_ev_drib_nib ? " [DRIB_NIB]" : "",
  767. rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
  768. rx_ev_pause_frm ? " [PAUSE]" : "");
  769. }
  770. #endif
  771. /* The frame must be discarded if any of these are true. */
  772. return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
  773. rx_ev_tobe_disc | rx_ev_pause_frm) ?
  774. EFX_RX_PKT_DISCARD : 0;
  775. }
  776. /* Handle receive events that are not in-order. */
  777. static void
  778. efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
  779. {
  780. struct efx_nic *efx = rx_queue->efx;
  781. unsigned expected, dropped;
  782. expected = rx_queue->removed_count & rx_queue->ptr_mask;
  783. dropped = (index - expected) & rx_queue->ptr_mask;
  784. netif_info(efx, rx_err, efx->net_dev,
  785. "dropped %d events (index=%d expected=%d)\n",
  786. dropped, index, expected);
  787. efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
  788. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  789. }
  790. /* Handle a packet received event
  791. *
  792. * The NIC gives a "discard" flag if it's a unicast packet with the
  793. * wrong destination address
  794. * Also "is multicast" and "matches multicast filter" flags can be used to
  795. * discard non-matching multicast packets.
  796. */
  797. static void
  798. efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
  799. {
  800. unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
  801. unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
  802. unsigned expected_ptr;
  803. bool rx_ev_pkt_ok;
  804. u16 flags;
  805. struct efx_rx_queue *rx_queue;
  806. struct efx_nic *efx = channel->efx;
  807. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  808. return;
  809. /* Basic packet information */
  810. rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
  811. rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
  812. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  813. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
  814. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
  815. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
  816. channel->channel);
  817. rx_queue = efx_channel_get_rx_queue(channel);
  818. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
  819. expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
  820. if (unlikely(rx_ev_desc_ptr != expected_ptr))
  821. efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
  822. if (likely(rx_ev_pkt_ok)) {
  823. /* If packet is marked as OK and packet type is TCP/IP or
  824. * UDP/IP, then we can rely on the hardware checksum.
  825. */
  826. flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
  827. rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
  828. EFX_RX_PKT_CSUMMED : 0;
  829. } else {
  830. flags = efx_handle_rx_not_ok(rx_queue, event);
  831. }
  832. /* Detect multicast packets that didn't match the filter */
  833. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  834. if (rx_ev_mcast_pkt) {
  835. unsigned int rx_ev_mcast_hash_match =
  836. EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
  837. if (unlikely(!rx_ev_mcast_hash_match)) {
  838. ++channel->n_rx_mcast_mismatch;
  839. flags |= EFX_RX_PKT_DISCARD;
  840. }
  841. }
  842. channel->irq_mod_score += 2;
  843. /* Handle received packet */
  844. efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
  845. }
  846. /* If this flush done event corresponds to a &struct efx_tx_queue, then
  847. * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
  848. * of all transmit completions.
  849. */
  850. static void
  851. efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  852. {
  853. struct efx_tx_queue *tx_queue;
  854. int qid;
  855. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  856. if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
  857. tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
  858. qid % EFX_TXQ_TYPES);
  859. efx_magic_event(tx_queue->channel,
  860. EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
  861. }
  862. }
  863. /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
  864. * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
  865. * the RX queue back to the mask of RX queues in need of flushing.
  866. */
  867. static void
  868. efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  869. {
  870. struct efx_channel *channel;
  871. struct efx_rx_queue *rx_queue;
  872. int qid;
  873. bool failed;
  874. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
  875. failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
  876. if (qid >= efx->n_channels)
  877. return;
  878. channel = efx_get_channel(efx, qid);
  879. if (!efx_channel_has_rx_queue(channel))
  880. return;
  881. rx_queue = efx_channel_get_rx_queue(channel);
  882. if (failed) {
  883. netif_info(efx, hw, efx->net_dev,
  884. "RXQ %d flush retry\n", qid);
  885. rx_queue->flush_pending = true;
  886. atomic_inc(&efx->rxq_flush_pending);
  887. } else {
  888. efx_magic_event(efx_rx_queue_channel(rx_queue),
  889. EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
  890. }
  891. atomic_dec(&efx->rxq_flush_outstanding);
  892. if (efx_flush_wake(efx))
  893. wake_up(&efx->flush_wq);
  894. }
  895. static void
  896. efx_handle_drain_event(struct efx_channel *channel)
  897. {
  898. struct efx_nic *efx = channel->efx;
  899. WARN_ON(atomic_read(&efx->drain_pending) == 0);
  900. atomic_dec(&efx->drain_pending);
  901. if (efx_flush_wake(efx))
  902. wake_up(&efx->flush_wq);
  903. }
  904. static void
  905. efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
  906. {
  907. struct efx_nic *efx = channel->efx;
  908. struct efx_rx_queue *rx_queue =
  909. efx_channel_has_rx_queue(channel) ?
  910. efx_channel_get_rx_queue(channel) : NULL;
  911. unsigned magic, code;
  912. magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
  913. code = _EFX_CHANNEL_MAGIC_CODE(magic);
  914. if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
  915. /* ignore */
  916. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
  917. /* The queue must be empty, so we won't receive any rx
  918. * events, so efx_process_channel() won't refill the
  919. * queue. Refill it here */
  920. efx_fast_push_rx_descriptors(rx_queue);
  921. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
  922. rx_queue->enabled = false;
  923. efx_handle_drain_event(channel);
  924. } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
  925. efx_handle_drain_event(channel);
  926. } else {
  927. netif_dbg(efx, hw, efx->net_dev, "channel %d received "
  928. "generated event "EFX_QWORD_FMT"\n",
  929. channel->channel, EFX_QWORD_VAL(*event));
  930. }
  931. }
  932. static void
  933. efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
  934. {
  935. struct efx_nic *efx = channel->efx;
  936. unsigned int ev_sub_code;
  937. unsigned int ev_sub_data;
  938. ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
  939. ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  940. switch (ev_sub_code) {
  941. case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
  942. netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
  943. channel->channel, ev_sub_data);
  944. efx_handle_tx_flush_done(efx, event);
  945. break;
  946. case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
  947. netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
  948. channel->channel, ev_sub_data);
  949. efx_handle_rx_flush_done(efx, event);
  950. break;
  951. case FSE_AZ_EVQ_INIT_DONE_EV:
  952. netif_dbg(efx, hw, efx->net_dev,
  953. "channel %d EVQ %d initialised\n",
  954. channel->channel, ev_sub_data);
  955. break;
  956. case FSE_AZ_SRM_UPD_DONE_EV:
  957. netif_vdbg(efx, hw, efx->net_dev,
  958. "channel %d SRAM update done\n", channel->channel);
  959. break;
  960. case FSE_AZ_WAKE_UP_EV:
  961. netif_vdbg(efx, hw, efx->net_dev,
  962. "channel %d RXQ %d wakeup event\n",
  963. channel->channel, ev_sub_data);
  964. break;
  965. case FSE_AZ_TIMER_EV:
  966. netif_vdbg(efx, hw, efx->net_dev,
  967. "channel %d RX queue %d timer expired\n",
  968. channel->channel, ev_sub_data);
  969. break;
  970. case FSE_AA_RX_RECOVER_EV:
  971. netif_err(efx, rx_err, efx->net_dev,
  972. "channel %d seen DRIVER RX_RESET event. "
  973. "Resetting.\n", channel->channel);
  974. atomic_inc(&efx->rx_reset);
  975. efx_schedule_reset(efx,
  976. EFX_WORKAROUND_6555(efx) ?
  977. RESET_TYPE_RX_RECOVERY :
  978. RESET_TYPE_DISABLE);
  979. break;
  980. case FSE_BZ_RX_DSC_ERROR_EV:
  981. netif_err(efx, rx_err, efx->net_dev,
  982. "RX DMA Q %d reports descriptor fetch error."
  983. " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
  984. efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
  985. break;
  986. case FSE_BZ_TX_DSC_ERROR_EV:
  987. netif_err(efx, tx_err, efx->net_dev,
  988. "TX DMA Q %d reports descriptor fetch error."
  989. " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
  990. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  991. break;
  992. default:
  993. netif_vdbg(efx, hw, efx->net_dev,
  994. "channel %d unknown driver event code %d "
  995. "data %04x\n", channel->channel, ev_sub_code,
  996. ev_sub_data);
  997. break;
  998. }
  999. }
  1000. int efx_nic_process_eventq(struct efx_channel *channel, int budget)
  1001. {
  1002. struct efx_nic *efx = channel->efx;
  1003. unsigned int read_ptr;
  1004. efx_qword_t event, *p_event;
  1005. int ev_code;
  1006. int tx_packets = 0;
  1007. int spent = 0;
  1008. read_ptr = channel->eventq_read_ptr;
  1009. for (;;) {
  1010. p_event = efx_event(channel, read_ptr);
  1011. event = *p_event;
  1012. if (!efx_event_present(&event))
  1013. /* End of events */
  1014. break;
  1015. netif_vdbg(channel->efx, intr, channel->efx->net_dev,
  1016. "channel %d event is "EFX_QWORD_FMT"\n",
  1017. channel->channel, EFX_QWORD_VAL(event));
  1018. /* Clear this event by marking it all ones */
  1019. EFX_SET_QWORD(*p_event);
  1020. ++read_ptr;
  1021. ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
  1022. switch (ev_code) {
  1023. case FSE_AZ_EV_CODE_RX_EV:
  1024. efx_handle_rx_event(channel, &event);
  1025. if (++spent == budget)
  1026. goto out;
  1027. break;
  1028. case FSE_AZ_EV_CODE_TX_EV:
  1029. tx_packets += efx_handle_tx_event(channel, &event);
  1030. if (tx_packets > efx->txq_entries) {
  1031. spent = budget;
  1032. goto out;
  1033. }
  1034. break;
  1035. case FSE_AZ_EV_CODE_DRV_GEN_EV:
  1036. efx_handle_generated_event(channel, &event);
  1037. break;
  1038. case FSE_AZ_EV_CODE_DRIVER_EV:
  1039. efx_handle_driver_event(channel, &event);
  1040. break;
  1041. case FSE_CZ_EV_CODE_MCDI_EV:
  1042. efx_mcdi_process_event(channel, &event);
  1043. break;
  1044. case FSE_AZ_EV_CODE_GLOBAL_EV:
  1045. if (efx->type->handle_global_event &&
  1046. efx->type->handle_global_event(channel, &event))
  1047. break;
  1048. /* else fall through */
  1049. default:
  1050. netif_err(channel->efx, hw, channel->efx->net_dev,
  1051. "channel %d unknown event type %d (data "
  1052. EFX_QWORD_FMT ")\n", channel->channel,
  1053. ev_code, EFX_QWORD_VAL(event));
  1054. }
  1055. }
  1056. out:
  1057. channel->eventq_read_ptr = read_ptr;
  1058. return spent;
  1059. }
  1060. /* Check whether an event is present in the eventq at the current
  1061. * read pointer. Only useful for self-test.
  1062. */
  1063. bool efx_nic_event_present(struct efx_channel *channel)
  1064. {
  1065. return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
  1066. }
  1067. /* Allocate buffer table entries for event queue */
  1068. int efx_nic_probe_eventq(struct efx_channel *channel)
  1069. {
  1070. struct efx_nic *efx = channel->efx;
  1071. unsigned entries;
  1072. entries = channel->eventq_mask + 1;
  1073. return efx_alloc_special_buffer(efx, &channel->eventq,
  1074. entries * sizeof(efx_qword_t));
  1075. }
  1076. void efx_nic_init_eventq(struct efx_channel *channel)
  1077. {
  1078. efx_oword_t reg;
  1079. struct efx_nic *efx = channel->efx;
  1080. netif_dbg(efx, hw, efx->net_dev,
  1081. "channel %d event queue in special buffers %d-%d\n",
  1082. channel->channel, channel->eventq.index,
  1083. channel->eventq.index + channel->eventq.entries - 1);
  1084. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
  1085. EFX_POPULATE_OWORD_3(reg,
  1086. FRF_CZ_TIMER_Q_EN, 1,
  1087. FRF_CZ_HOST_NOTIFY_MODE, 0,
  1088. FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
  1089. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1090. }
  1091. /* Pin event queue buffer */
  1092. efx_init_special_buffer(efx, &channel->eventq);
  1093. /* Fill event queue with all ones (i.e. empty events) */
  1094. memset(channel->eventq.addr, 0xff, channel->eventq.len);
  1095. /* Push event queue to card */
  1096. EFX_POPULATE_OWORD_3(reg,
  1097. FRF_AZ_EVQ_EN, 1,
  1098. FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
  1099. FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
  1100. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1101. channel->channel);
  1102. efx->type->push_irq_moderation(channel);
  1103. }
  1104. void efx_nic_fini_eventq(struct efx_channel *channel)
  1105. {
  1106. efx_oword_t reg;
  1107. struct efx_nic *efx = channel->efx;
  1108. /* Remove event queue from card */
  1109. EFX_ZERO_OWORD(reg);
  1110. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1111. channel->channel);
  1112. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1113. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1114. /* Unpin event queue */
  1115. efx_fini_special_buffer(efx, &channel->eventq);
  1116. }
  1117. /* Free buffers backing event queue */
  1118. void efx_nic_remove_eventq(struct efx_channel *channel)
  1119. {
  1120. efx_free_special_buffer(channel->efx, &channel->eventq);
  1121. }
  1122. void efx_nic_generate_test_event(struct efx_channel *channel)
  1123. {
  1124. efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
  1125. }
  1126. void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  1127. {
  1128. efx_magic_event(efx_rx_queue_channel(rx_queue),
  1129. EFX_CHANNEL_MAGIC_FILL(rx_queue));
  1130. }
  1131. /**************************************************************************
  1132. *
  1133. * Hardware interrupts
  1134. * The hardware interrupt handler does very little work; all the event
  1135. * queue processing is carried out by per-channel tasklets.
  1136. *
  1137. **************************************************************************/
  1138. /* Enable/disable/generate interrupts */
  1139. static inline void efx_nic_interrupts(struct efx_nic *efx,
  1140. bool enabled, bool force)
  1141. {
  1142. efx_oword_t int_en_reg_ker;
  1143. EFX_POPULATE_OWORD_3(int_en_reg_ker,
  1144. FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
  1145. FRF_AZ_KER_INT_KER, force,
  1146. FRF_AZ_DRV_INT_EN_KER, enabled);
  1147. efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
  1148. }
  1149. void efx_nic_enable_interrupts(struct efx_nic *efx)
  1150. {
  1151. EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
  1152. wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
  1153. efx_nic_interrupts(efx, true, false);
  1154. }
  1155. void efx_nic_disable_interrupts(struct efx_nic *efx)
  1156. {
  1157. /* Disable interrupts */
  1158. efx_nic_interrupts(efx, false, false);
  1159. }
  1160. /* Generate a test interrupt
  1161. * Interrupt must already have been enabled, otherwise nasty things
  1162. * may happen.
  1163. */
  1164. void efx_nic_generate_interrupt(struct efx_nic *efx)
  1165. {
  1166. efx_nic_interrupts(efx, true, true);
  1167. }
  1168. /* Process a fatal interrupt
  1169. * Disable bus mastering ASAP and schedule a reset
  1170. */
  1171. irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
  1172. {
  1173. struct falcon_nic_data *nic_data = efx->nic_data;
  1174. efx_oword_t *int_ker = efx->irq_status.addr;
  1175. efx_oword_t fatal_intr;
  1176. int error, mem_perr;
  1177. efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
  1178. error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
  1179. netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
  1180. EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
  1181. EFX_OWORD_VAL(fatal_intr),
  1182. error ? "disabling bus mastering" : "no recognised error");
  1183. /* If this is a memory parity error dump which blocks are offending */
  1184. mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
  1185. EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
  1186. if (mem_perr) {
  1187. efx_oword_t reg;
  1188. efx_reado(efx, &reg, FR_AZ_MEM_STAT);
  1189. netif_err(efx, hw, efx->net_dev,
  1190. "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
  1191. EFX_OWORD_VAL(reg));
  1192. }
  1193. /* Disable both devices */
  1194. pci_clear_master(efx->pci_dev);
  1195. if (efx_nic_is_dual_func(efx))
  1196. pci_clear_master(nic_data->pci_dev2);
  1197. efx_nic_disable_interrupts(efx);
  1198. /* Count errors and reset or disable the NIC accordingly */
  1199. if (efx->int_error_count == 0 ||
  1200. time_after(jiffies, efx->int_error_expire)) {
  1201. efx->int_error_count = 0;
  1202. efx->int_error_expire =
  1203. jiffies + EFX_INT_ERROR_EXPIRE * HZ;
  1204. }
  1205. if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
  1206. netif_err(efx, hw, efx->net_dev,
  1207. "SYSTEM ERROR - reset scheduled\n");
  1208. efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
  1209. } else {
  1210. netif_err(efx, hw, efx->net_dev,
  1211. "SYSTEM ERROR - max number of errors seen."
  1212. "NIC will be disabled\n");
  1213. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1214. }
  1215. return IRQ_HANDLED;
  1216. }
  1217. /* Handle a legacy interrupt
  1218. * Acknowledges the interrupt and schedule event queue processing.
  1219. */
  1220. static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
  1221. {
  1222. struct efx_nic *efx = dev_id;
  1223. efx_oword_t *int_ker = efx->irq_status.addr;
  1224. irqreturn_t result = IRQ_NONE;
  1225. struct efx_channel *channel;
  1226. efx_dword_t reg;
  1227. u32 queues;
  1228. int syserr;
  1229. /* Could this be ours? If interrupts are disabled then the
  1230. * channel state may not be valid.
  1231. */
  1232. if (!efx->legacy_irq_enabled)
  1233. return result;
  1234. /* Read the ISR which also ACKs the interrupts */
  1235. efx_readd(efx, &reg, FR_BZ_INT_ISR0);
  1236. queues = EFX_EXTRACT_DWORD(reg, 0, 31);
  1237. /* Handle non-event-queue sources */
  1238. if (queues & (1U << efx->irq_level)) {
  1239. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1240. if (unlikely(syserr))
  1241. return efx_nic_fatal_interrupt(efx);
  1242. efx->last_irq_cpu = raw_smp_processor_id();
  1243. }
  1244. if (queues != 0) {
  1245. if (EFX_WORKAROUND_15783(efx))
  1246. efx->irq_zero_count = 0;
  1247. /* Schedule processing of any interrupting queues */
  1248. efx_for_each_channel(channel, efx) {
  1249. if (queues & 1)
  1250. efx_schedule_channel_irq(channel);
  1251. queues >>= 1;
  1252. }
  1253. result = IRQ_HANDLED;
  1254. } else if (EFX_WORKAROUND_15783(efx)) {
  1255. efx_qword_t *event;
  1256. /* We can't return IRQ_HANDLED more than once on seeing ISR=0
  1257. * because this might be a shared interrupt. */
  1258. if (efx->irq_zero_count++ == 0)
  1259. result = IRQ_HANDLED;
  1260. /* Ensure we schedule or rearm all event queues */
  1261. efx_for_each_channel(channel, efx) {
  1262. event = efx_event(channel, channel->eventq_read_ptr);
  1263. if (efx_event_present(event))
  1264. efx_schedule_channel_irq(channel);
  1265. else
  1266. efx_nic_eventq_read_ack(channel);
  1267. }
  1268. }
  1269. if (result == IRQ_HANDLED)
  1270. netif_vdbg(efx, intr, efx->net_dev,
  1271. "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
  1272. irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
  1273. return result;
  1274. }
  1275. /* Handle an MSI interrupt
  1276. *
  1277. * Handle an MSI hardware interrupt. This routine schedules event
  1278. * queue processing. No interrupt acknowledgement cycle is necessary.
  1279. * Also, we never need to check that the interrupt is for us, since
  1280. * MSI interrupts cannot be shared.
  1281. */
  1282. static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
  1283. {
  1284. struct efx_channel *channel = *(struct efx_channel **)dev_id;
  1285. struct efx_nic *efx = channel->efx;
  1286. efx_oword_t *int_ker = efx->irq_status.addr;
  1287. int syserr;
  1288. netif_vdbg(efx, intr, efx->net_dev,
  1289. "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1290. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1291. /* Handle non-event-queue sources */
  1292. if (channel->channel == efx->irq_level) {
  1293. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1294. if (unlikely(syserr))
  1295. return efx_nic_fatal_interrupt(efx);
  1296. efx->last_irq_cpu = raw_smp_processor_id();
  1297. }
  1298. /* Schedule processing of the channel */
  1299. efx_schedule_channel_irq(channel);
  1300. return IRQ_HANDLED;
  1301. }
  1302. /* Setup RSS indirection table.
  1303. * This maps from the hash value of the packet to RXQ
  1304. */
  1305. void efx_nic_push_rx_indir_table(struct efx_nic *efx)
  1306. {
  1307. size_t i = 0;
  1308. efx_dword_t dword;
  1309. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
  1310. return;
  1311. BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
  1312. FR_BZ_RX_INDIRECTION_TBL_ROWS);
  1313. for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
  1314. EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
  1315. efx->rx_indir_table[i]);
  1316. efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
  1317. }
  1318. }
  1319. /* Hook interrupt handler(s)
  1320. * Try MSI and then legacy interrupts.
  1321. */
  1322. int efx_nic_init_interrupt(struct efx_nic *efx)
  1323. {
  1324. struct efx_channel *channel;
  1325. int rc;
  1326. if (!EFX_INT_MODE_USE_MSI(efx)) {
  1327. irq_handler_t handler;
  1328. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1329. handler = efx_legacy_interrupt;
  1330. else
  1331. handler = falcon_legacy_interrupt_a1;
  1332. rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
  1333. efx->name, efx);
  1334. if (rc) {
  1335. netif_err(efx, drv, efx->net_dev,
  1336. "failed to hook legacy IRQ %d\n",
  1337. efx->pci_dev->irq);
  1338. goto fail1;
  1339. }
  1340. return 0;
  1341. }
  1342. /* Hook MSI or MSI-X interrupt */
  1343. efx_for_each_channel(channel, efx) {
  1344. rc = request_irq(channel->irq, efx_msi_interrupt,
  1345. IRQF_PROBE_SHARED, /* Not shared */
  1346. efx->channel_name[channel->channel],
  1347. &efx->channel[channel->channel]);
  1348. if (rc) {
  1349. netif_err(efx, drv, efx->net_dev,
  1350. "failed to hook IRQ %d\n", channel->irq);
  1351. goto fail2;
  1352. }
  1353. }
  1354. return 0;
  1355. fail2:
  1356. efx_for_each_channel(channel, efx)
  1357. free_irq(channel->irq, &efx->channel[channel->channel]);
  1358. fail1:
  1359. return rc;
  1360. }
  1361. void efx_nic_fini_interrupt(struct efx_nic *efx)
  1362. {
  1363. struct efx_channel *channel;
  1364. efx_oword_t reg;
  1365. /* Disable MSI/MSI-X interrupts */
  1366. efx_for_each_channel(channel, efx) {
  1367. if (channel->irq)
  1368. free_irq(channel->irq, &efx->channel[channel->channel]);
  1369. }
  1370. /* ACK legacy interrupt */
  1371. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1372. efx_reado(efx, &reg, FR_BZ_INT_ISR0);
  1373. else
  1374. falcon_irq_ack_a1(efx);
  1375. /* Disable legacy interrupt */
  1376. if (efx->legacy_irq)
  1377. free_irq(efx->legacy_irq, efx);
  1378. }
  1379. u32 efx_nic_fpga_ver(struct efx_nic *efx)
  1380. {
  1381. efx_oword_t altera_build;
  1382. efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
  1383. return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
  1384. }
  1385. void efx_nic_init_common(struct efx_nic *efx)
  1386. {
  1387. efx_oword_t temp;
  1388. /* Set positions of descriptor caches in SRAM. */
  1389. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
  1390. efx->type->tx_dc_base / 8);
  1391. efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
  1392. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
  1393. efx->type->rx_dc_base / 8);
  1394. efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
  1395. /* Set TX descriptor cache size. */
  1396. BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
  1397. EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
  1398. efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
  1399. /* Set RX descriptor cache size. Set low watermark to size-8, as
  1400. * this allows most efficient prefetching.
  1401. */
  1402. BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
  1403. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
  1404. efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
  1405. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
  1406. efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
  1407. /* Program INT_KER address */
  1408. EFX_POPULATE_OWORD_2(temp,
  1409. FRF_AZ_NORM_INT_VEC_DIS_KER,
  1410. EFX_INT_MODE_USE_MSI(efx),
  1411. FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
  1412. efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
  1413. if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
  1414. /* Use an interrupt level unused by event queues */
  1415. efx->irq_level = 0x1f;
  1416. else
  1417. /* Use a valid MSI-X vector */
  1418. efx->irq_level = 0;
  1419. /* Enable all the genuinely fatal interrupts. (They are still
  1420. * masked by the overall interrupt mask, controlled by
  1421. * falcon_interrupts()).
  1422. *
  1423. * Note: All other fatal interrupts are enabled
  1424. */
  1425. EFX_POPULATE_OWORD_3(temp,
  1426. FRF_AZ_ILL_ADR_INT_KER_EN, 1,
  1427. FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
  1428. FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
  1429. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1430. EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
  1431. EFX_INVERT_OWORD(temp);
  1432. efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
  1433. efx_nic_push_rx_indir_table(efx);
  1434. /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
  1435. * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
  1436. */
  1437. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  1438. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
  1439. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
  1440. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
  1441. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
  1442. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
  1443. /* Enable SW_EV to inherit in char driver - assume harmless here */
  1444. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
  1445. /* Prefetch threshold 2 => fetch when descriptor cache half empty */
  1446. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
  1447. /* Disable hardware watchdog which can misfire */
  1448. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
  1449. /* Squash TX of packets of 16 bytes or less */
  1450. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1451. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  1452. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  1453. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  1454. EFX_POPULATE_OWORD_4(temp,
  1455. /* Default values */
  1456. FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
  1457. FRF_BZ_TX_PACE_SB_AF, 0xb,
  1458. FRF_BZ_TX_PACE_FB_BASE, 0,
  1459. /* Allow large pace values in the
  1460. * fast bin. */
  1461. FRF_BZ_TX_PACE_BIN_TH,
  1462. FFE_BZ_TX_PACE_RESERVED);
  1463. efx_writeo(efx, &temp, FR_BZ_TX_PACE);
  1464. }
  1465. }
  1466. /* Register dump */
  1467. #define REGISTER_REVISION_A 1
  1468. #define REGISTER_REVISION_B 2
  1469. #define REGISTER_REVISION_C 3
  1470. #define REGISTER_REVISION_Z 3 /* latest revision */
  1471. struct efx_nic_reg {
  1472. u32 offset:24;
  1473. u32 min_revision:2, max_revision:2;
  1474. };
  1475. #define REGISTER(name, min_rev, max_rev) { \
  1476. FR_ ## min_rev ## max_rev ## _ ## name, \
  1477. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
  1478. }
  1479. #define REGISTER_AA(name) REGISTER(name, A, A)
  1480. #define REGISTER_AB(name) REGISTER(name, A, B)
  1481. #define REGISTER_AZ(name) REGISTER(name, A, Z)
  1482. #define REGISTER_BB(name) REGISTER(name, B, B)
  1483. #define REGISTER_BZ(name) REGISTER(name, B, Z)
  1484. #define REGISTER_CZ(name) REGISTER(name, C, Z)
  1485. static const struct efx_nic_reg efx_nic_regs[] = {
  1486. REGISTER_AZ(ADR_REGION),
  1487. REGISTER_AZ(INT_EN_KER),
  1488. REGISTER_BZ(INT_EN_CHAR),
  1489. REGISTER_AZ(INT_ADR_KER),
  1490. REGISTER_BZ(INT_ADR_CHAR),
  1491. /* INT_ACK_KER is WO */
  1492. /* INT_ISR0 is RC */
  1493. REGISTER_AZ(HW_INIT),
  1494. REGISTER_CZ(USR_EV_CFG),
  1495. REGISTER_AB(EE_SPI_HCMD),
  1496. REGISTER_AB(EE_SPI_HADR),
  1497. REGISTER_AB(EE_SPI_HDATA),
  1498. REGISTER_AB(EE_BASE_PAGE),
  1499. REGISTER_AB(EE_VPD_CFG0),
  1500. /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
  1501. /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
  1502. /* PCIE_CORE_INDIRECT is indirect */
  1503. REGISTER_AB(NIC_STAT),
  1504. REGISTER_AB(GPIO_CTL),
  1505. REGISTER_AB(GLB_CTL),
  1506. /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
  1507. REGISTER_BZ(DP_CTRL),
  1508. REGISTER_AZ(MEM_STAT),
  1509. REGISTER_AZ(CS_DEBUG),
  1510. REGISTER_AZ(ALTERA_BUILD),
  1511. REGISTER_AZ(CSR_SPARE),
  1512. REGISTER_AB(PCIE_SD_CTL0123),
  1513. REGISTER_AB(PCIE_SD_CTL45),
  1514. REGISTER_AB(PCIE_PCS_CTL_STAT),
  1515. /* DEBUG_DATA_OUT is not used */
  1516. /* DRV_EV is WO */
  1517. REGISTER_AZ(EVQ_CTL),
  1518. REGISTER_AZ(EVQ_CNT1),
  1519. REGISTER_AZ(EVQ_CNT2),
  1520. REGISTER_AZ(BUF_TBL_CFG),
  1521. REGISTER_AZ(SRM_RX_DC_CFG),
  1522. REGISTER_AZ(SRM_TX_DC_CFG),
  1523. REGISTER_AZ(SRM_CFG),
  1524. /* BUF_TBL_UPD is WO */
  1525. REGISTER_AZ(SRM_UPD_EVQ),
  1526. REGISTER_AZ(SRAM_PARITY),
  1527. REGISTER_AZ(RX_CFG),
  1528. REGISTER_BZ(RX_FILTER_CTL),
  1529. /* RX_FLUSH_DESCQ is WO */
  1530. REGISTER_AZ(RX_DC_CFG),
  1531. REGISTER_AZ(RX_DC_PF_WM),
  1532. REGISTER_BZ(RX_RSS_TKEY),
  1533. /* RX_NODESC_DROP is RC */
  1534. REGISTER_AA(RX_SELF_RST),
  1535. /* RX_DEBUG, RX_PUSH_DROP are not used */
  1536. REGISTER_CZ(RX_RSS_IPV6_REG1),
  1537. REGISTER_CZ(RX_RSS_IPV6_REG2),
  1538. REGISTER_CZ(RX_RSS_IPV6_REG3),
  1539. /* TX_FLUSH_DESCQ is WO */
  1540. REGISTER_AZ(TX_DC_CFG),
  1541. REGISTER_AA(TX_CHKSM_CFG),
  1542. REGISTER_AZ(TX_CFG),
  1543. /* TX_PUSH_DROP is not used */
  1544. REGISTER_AZ(TX_RESERVED),
  1545. REGISTER_BZ(TX_PACE),
  1546. /* TX_PACE_DROP_QID is RC */
  1547. REGISTER_BB(TX_VLAN),
  1548. REGISTER_BZ(TX_IPFIL_PORTEN),
  1549. REGISTER_AB(MD_TXD),
  1550. REGISTER_AB(MD_RXD),
  1551. REGISTER_AB(MD_CS),
  1552. REGISTER_AB(MD_PHY_ADR),
  1553. REGISTER_AB(MD_ID),
  1554. /* MD_STAT is RC */
  1555. REGISTER_AB(MAC_STAT_DMA),
  1556. REGISTER_AB(MAC_CTRL),
  1557. REGISTER_BB(GEN_MODE),
  1558. REGISTER_AB(MAC_MC_HASH_REG0),
  1559. REGISTER_AB(MAC_MC_HASH_REG1),
  1560. REGISTER_AB(GM_CFG1),
  1561. REGISTER_AB(GM_CFG2),
  1562. /* GM_IPG and GM_HD are not used */
  1563. REGISTER_AB(GM_MAX_FLEN),
  1564. /* GM_TEST is not used */
  1565. REGISTER_AB(GM_ADR1),
  1566. REGISTER_AB(GM_ADR2),
  1567. REGISTER_AB(GMF_CFG0),
  1568. REGISTER_AB(GMF_CFG1),
  1569. REGISTER_AB(GMF_CFG2),
  1570. REGISTER_AB(GMF_CFG3),
  1571. REGISTER_AB(GMF_CFG4),
  1572. REGISTER_AB(GMF_CFG5),
  1573. REGISTER_BB(TX_SRC_MAC_CTL),
  1574. REGISTER_AB(XM_ADR_LO),
  1575. REGISTER_AB(XM_ADR_HI),
  1576. REGISTER_AB(XM_GLB_CFG),
  1577. REGISTER_AB(XM_TX_CFG),
  1578. REGISTER_AB(XM_RX_CFG),
  1579. REGISTER_AB(XM_MGT_INT_MASK),
  1580. REGISTER_AB(XM_FC),
  1581. REGISTER_AB(XM_PAUSE_TIME),
  1582. REGISTER_AB(XM_TX_PARAM),
  1583. REGISTER_AB(XM_RX_PARAM),
  1584. /* XM_MGT_INT_MSK (note no 'A') is RC */
  1585. REGISTER_AB(XX_PWR_RST),
  1586. REGISTER_AB(XX_SD_CTL),
  1587. REGISTER_AB(XX_TXDRV_CTL),
  1588. /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
  1589. /* XX_CORE_STAT is partly RC */
  1590. };
  1591. struct efx_nic_reg_table {
  1592. u32 offset:24;
  1593. u32 min_revision:2, max_revision:2;
  1594. u32 step:6, rows:21;
  1595. };
  1596. #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
  1597. offset, \
  1598. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
  1599. step, rows \
  1600. }
  1601. #define REGISTER_TABLE(name, min_rev, max_rev) \
  1602. REGISTER_TABLE_DIMENSIONS( \
  1603. name, FR_ ## min_rev ## max_rev ## _ ## name, \
  1604. min_rev, max_rev, \
  1605. FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
  1606. FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
  1607. #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
  1608. #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
  1609. #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
  1610. #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
  1611. #define REGISTER_TABLE_BB_CZ(name) \
  1612. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
  1613. FR_BZ_ ## name ## _STEP, \
  1614. FR_BB_ ## name ## _ROWS), \
  1615. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
  1616. FR_BZ_ ## name ## _STEP, \
  1617. FR_CZ_ ## name ## _ROWS)
  1618. #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
  1619. static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
  1620. /* DRIVER is not used */
  1621. /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
  1622. REGISTER_TABLE_BB(TX_IPFIL_TBL),
  1623. REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
  1624. REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
  1625. REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
  1626. REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
  1627. REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
  1628. REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
  1629. REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
  1630. /* We can't reasonably read all of the buffer table (up to 8MB!).
  1631. * However this driver will only use a few entries. Reading
  1632. * 1K entries allows for some expansion of queue count and
  1633. * size before we need to change the version. */
  1634. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
  1635. A, A, 8, 1024),
  1636. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
  1637. B, Z, 8, 1024),
  1638. REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
  1639. REGISTER_TABLE_BB_CZ(TIMER_TBL),
  1640. REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
  1641. REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
  1642. /* TX_FILTER_TBL0 is huge and not used by this driver */
  1643. REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
  1644. REGISTER_TABLE_CZ(MC_TREG_SMEM),
  1645. /* MSIX_PBA_TABLE is not mapped */
  1646. /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
  1647. REGISTER_TABLE_BZ(RX_FILTER_TBL0),
  1648. };
  1649. size_t efx_nic_get_regs_len(struct efx_nic *efx)
  1650. {
  1651. const struct efx_nic_reg *reg;
  1652. const struct efx_nic_reg_table *table;
  1653. size_t len = 0;
  1654. for (reg = efx_nic_regs;
  1655. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1656. reg++)
  1657. if (efx->type->revision >= reg->min_revision &&
  1658. efx->type->revision <= reg->max_revision)
  1659. len += sizeof(efx_oword_t);
  1660. for (table = efx_nic_reg_tables;
  1661. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1662. table++)
  1663. if (efx->type->revision >= table->min_revision &&
  1664. efx->type->revision <= table->max_revision)
  1665. len += table->rows * min_t(size_t, table->step, 16);
  1666. return len;
  1667. }
  1668. void efx_nic_get_regs(struct efx_nic *efx, void *buf)
  1669. {
  1670. const struct efx_nic_reg *reg;
  1671. const struct efx_nic_reg_table *table;
  1672. for (reg = efx_nic_regs;
  1673. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1674. reg++) {
  1675. if (efx->type->revision >= reg->min_revision &&
  1676. efx->type->revision <= reg->max_revision) {
  1677. efx_reado(efx, (efx_oword_t *)buf, reg->offset);
  1678. buf += sizeof(efx_oword_t);
  1679. }
  1680. }
  1681. for (table = efx_nic_reg_tables;
  1682. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1683. table++) {
  1684. size_t size, i;
  1685. if (!(efx->type->revision >= table->min_revision &&
  1686. efx->type->revision <= table->max_revision))
  1687. continue;
  1688. size = min_t(size_t, table->step, 16);
  1689. for (i = 0; i < table->rows; i++) {
  1690. switch (table->step) {
  1691. case 4: /* 32-bit register or SRAM */
  1692. efx_readd_table(efx, buf, table->offset, i);
  1693. break;
  1694. case 8: /* 64-bit SRAM */
  1695. efx_sram_readq(efx,
  1696. efx->membase + table->offset,
  1697. buf, i);
  1698. break;
  1699. case 16: /* 128-bit register */
  1700. efx_reado_table(efx, buf, table->offset, i);
  1701. break;
  1702. case 32: /* 128-bit register, interleaved */
  1703. efx_reado_table(efx, buf, table->offset, 2 * i);
  1704. break;
  1705. default:
  1706. WARN_ON(1);
  1707. return;
  1708. }
  1709. buf += size;
  1710. }
  1711. }
  1712. }