ide-iops.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. /*
  2. * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
  3. *
  4. * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
  5. * Copyright (C) 2003 Red Hat <alan@redhat.com>
  6. *
  7. */
  8. #include <linux/module.h>
  9. #include <linux/types.h>
  10. #include <linux/string.h>
  11. #include <linux/kernel.h>
  12. #include <linux/timer.h>
  13. #include <linux/mm.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/major.h>
  16. #include <linux/errno.h>
  17. #include <linux/genhd.h>
  18. #include <linux/blkpg.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/ide.h>
  24. #include <linux/bitops.h>
  25. #include <linux/nmi.h>
  26. #include <asm/byteorder.h>
  27. #include <asm/irq.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/io.h>
  30. /*
  31. * Conventional PIO operations for ATA devices
  32. */
  33. static u8 ide_inb (unsigned long port)
  34. {
  35. return (u8) inb(port);
  36. }
  37. static u16 ide_inw (unsigned long port)
  38. {
  39. return (u16) inw(port);
  40. }
  41. static void ide_insw (unsigned long port, void *addr, u32 count)
  42. {
  43. insw(port, addr, count);
  44. }
  45. static void ide_insl (unsigned long port, void *addr, u32 count)
  46. {
  47. insl(port, addr, count);
  48. }
  49. static void ide_outb (u8 val, unsigned long port)
  50. {
  51. outb(val, port);
  52. }
  53. static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
  54. {
  55. outb(addr, port);
  56. }
  57. static void ide_outw (u16 val, unsigned long port)
  58. {
  59. outw(val, port);
  60. }
  61. static void ide_outsw (unsigned long port, void *addr, u32 count)
  62. {
  63. outsw(port, addr, count);
  64. }
  65. static void ide_outsl (unsigned long port, void *addr, u32 count)
  66. {
  67. outsl(port, addr, count);
  68. }
  69. void default_hwif_iops (ide_hwif_t *hwif)
  70. {
  71. hwif->OUTB = ide_outb;
  72. hwif->OUTBSYNC = ide_outbsync;
  73. hwif->OUTW = ide_outw;
  74. hwif->OUTSW = ide_outsw;
  75. hwif->OUTSL = ide_outsl;
  76. hwif->INB = ide_inb;
  77. hwif->INW = ide_inw;
  78. hwif->INSW = ide_insw;
  79. hwif->INSL = ide_insl;
  80. }
  81. /*
  82. * MMIO operations, typically used for SATA controllers
  83. */
  84. static u8 ide_mm_inb (unsigned long port)
  85. {
  86. return (u8) readb((void __iomem *) port);
  87. }
  88. static u16 ide_mm_inw (unsigned long port)
  89. {
  90. return (u16) readw((void __iomem *) port);
  91. }
  92. static void ide_mm_insw (unsigned long port, void *addr, u32 count)
  93. {
  94. __ide_mm_insw((void __iomem *) port, addr, count);
  95. }
  96. static void ide_mm_insl (unsigned long port, void *addr, u32 count)
  97. {
  98. __ide_mm_insl((void __iomem *) port, addr, count);
  99. }
  100. static void ide_mm_outb (u8 value, unsigned long port)
  101. {
  102. writeb(value, (void __iomem *) port);
  103. }
  104. static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
  105. {
  106. writeb(value, (void __iomem *) port);
  107. }
  108. static void ide_mm_outw (u16 value, unsigned long port)
  109. {
  110. writew(value, (void __iomem *) port);
  111. }
  112. static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
  113. {
  114. __ide_mm_outsw((void __iomem *) port, addr, count);
  115. }
  116. static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
  117. {
  118. __ide_mm_outsl((void __iomem *) port, addr, count);
  119. }
  120. void default_hwif_mmiops (ide_hwif_t *hwif)
  121. {
  122. hwif->OUTB = ide_mm_outb;
  123. /* Most systems will need to override OUTBSYNC, alas however
  124. this one is controller specific! */
  125. hwif->OUTBSYNC = ide_mm_outbsync;
  126. hwif->OUTW = ide_mm_outw;
  127. hwif->OUTSW = ide_mm_outsw;
  128. hwif->OUTSL = ide_mm_outsl;
  129. hwif->INB = ide_mm_inb;
  130. hwif->INW = ide_mm_inw;
  131. hwif->INSW = ide_mm_insw;
  132. hwif->INSL = ide_mm_insl;
  133. }
  134. EXPORT_SYMBOL(default_hwif_mmiops);
  135. u32 ide_read_24 (ide_drive_t *drive)
  136. {
  137. u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
  138. u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
  139. u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
  140. return (hcyl<<16)|(lcyl<<8)|sect;
  141. }
  142. void SELECT_DRIVE (ide_drive_t *drive)
  143. {
  144. if (HWIF(drive)->selectproc)
  145. HWIF(drive)->selectproc(drive);
  146. HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
  147. }
  148. EXPORT_SYMBOL(SELECT_DRIVE);
  149. void SELECT_INTERRUPT (ide_drive_t *drive)
  150. {
  151. if (HWIF(drive)->intrproc)
  152. HWIF(drive)->intrproc(drive);
  153. else
  154. HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
  155. }
  156. void SELECT_MASK (ide_drive_t *drive, int mask)
  157. {
  158. if (HWIF(drive)->maskproc)
  159. HWIF(drive)->maskproc(drive, mask);
  160. }
  161. void QUIRK_LIST (ide_drive_t *drive)
  162. {
  163. if (HWIF(drive)->quirkproc)
  164. drive->quirk_list = HWIF(drive)->quirkproc(drive);
  165. }
  166. /*
  167. * Some localbus EIDE interfaces require a special access sequence
  168. * when using 32-bit I/O instructions to transfer data. We call this
  169. * the "vlb_sync" sequence, which consists of three successive reads
  170. * of the sector count register location, with interrupts disabled
  171. * to ensure that the reads all happen together.
  172. */
  173. static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
  174. {
  175. (void) HWIF(drive)->INB(port);
  176. (void) HWIF(drive)->INB(port);
  177. (void) HWIF(drive)->INB(port);
  178. }
  179. /*
  180. * This is used for most PIO data transfers *from* the IDE interface
  181. */
  182. static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
  183. {
  184. ide_hwif_t *hwif = HWIF(drive);
  185. u8 io_32bit = drive->io_32bit;
  186. if (io_32bit) {
  187. if (io_32bit & 2) {
  188. unsigned long flags;
  189. local_irq_save(flags);
  190. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  191. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  192. local_irq_restore(flags);
  193. } else
  194. hwif->INSL(IDE_DATA_REG, buffer, wcount);
  195. } else {
  196. hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
  197. }
  198. }
  199. /*
  200. * This is used for most PIO data transfers *to* the IDE interface
  201. */
  202. static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
  203. {
  204. ide_hwif_t *hwif = HWIF(drive);
  205. u8 io_32bit = drive->io_32bit;
  206. if (io_32bit) {
  207. if (io_32bit & 2) {
  208. unsigned long flags;
  209. local_irq_save(flags);
  210. ata_vlb_sync(drive, IDE_NSECTOR_REG);
  211. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  212. local_irq_restore(flags);
  213. } else
  214. hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
  215. } else {
  216. hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
  217. }
  218. }
  219. /*
  220. * The following routines are mainly used by the ATAPI drivers.
  221. *
  222. * These routines will round up any request for an odd number of bytes,
  223. * so if an odd bytecount is specified, be sure that there's at least one
  224. * extra byte allocated for the buffer.
  225. */
  226. static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  227. {
  228. ide_hwif_t *hwif = HWIF(drive);
  229. ++bytecount;
  230. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  231. if (MACH_IS_ATARI || MACH_IS_Q40) {
  232. /* Atari has a byte-swapped IDE interface */
  233. insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  234. return;
  235. }
  236. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  237. hwif->ata_input_data(drive, buffer, bytecount / 4);
  238. if ((bytecount & 0x03) >= 2)
  239. hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
  240. }
  241. static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  242. {
  243. ide_hwif_t *hwif = HWIF(drive);
  244. ++bytecount;
  245. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  246. if (MACH_IS_ATARI || MACH_IS_Q40) {
  247. /* Atari has a byte-swapped IDE interface */
  248. outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
  249. return;
  250. }
  251. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  252. hwif->ata_output_data(drive, buffer, bytecount / 4);
  253. if ((bytecount & 0x03) >= 2)
  254. hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
  255. }
  256. void default_hwif_transport(ide_hwif_t *hwif)
  257. {
  258. hwif->ata_input_data = ata_input_data;
  259. hwif->ata_output_data = ata_output_data;
  260. hwif->atapi_input_bytes = atapi_input_bytes;
  261. hwif->atapi_output_bytes = atapi_output_bytes;
  262. }
  263. void ide_fix_driveid (struct hd_driveid *id)
  264. {
  265. #ifndef __LITTLE_ENDIAN
  266. # ifdef __BIG_ENDIAN
  267. int i;
  268. u16 *stringcast;
  269. id->config = __le16_to_cpu(id->config);
  270. id->cyls = __le16_to_cpu(id->cyls);
  271. id->reserved2 = __le16_to_cpu(id->reserved2);
  272. id->heads = __le16_to_cpu(id->heads);
  273. id->track_bytes = __le16_to_cpu(id->track_bytes);
  274. id->sector_bytes = __le16_to_cpu(id->sector_bytes);
  275. id->sectors = __le16_to_cpu(id->sectors);
  276. id->vendor0 = __le16_to_cpu(id->vendor0);
  277. id->vendor1 = __le16_to_cpu(id->vendor1);
  278. id->vendor2 = __le16_to_cpu(id->vendor2);
  279. stringcast = (u16 *)&id->serial_no[0];
  280. for (i = 0; i < (20/2); i++)
  281. stringcast[i] = __le16_to_cpu(stringcast[i]);
  282. id->buf_type = __le16_to_cpu(id->buf_type);
  283. id->buf_size = __le16_to_cpu(id->buf_size);
  284. id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
  285. stringcast = (u16 *)&id->fw_rev[0];
  286. for (i = 0; i < (8/2); i++)
  287. stringcast[i] = __le16_to_cpu(stringcast[i]);
  288. stringcast = (u16 *)&id->model[0];
  289. for (i = 0; i < (40/2); i++)
  290. stringcast[i] = __le16_to_cpu(stringcast[i]);
  291. id->dword_io = __le16_to_cpu(id->dword_io);
  292. id->reserved50 = __le16_to_cpu(id->reserved50);
  293. id->field_valid = __le16_to_cpu(id->field_valid);
  294. id->cur_cyls = __le16_to_cpu(id->cur_cyls);
  295. id->cur_heads = __le16_to_cpu(id->cur_heads);
  296. id->cur_sectors = __le16_to_cpu(id->cur_sectors);
  297. id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
  298. id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
  299. id->lba_capacity = __le32_to_cpu(id->lba_capacity);
  300. id->dma_1word = __le16_to_cpu(id->dma_1word);
  301. id->dma_mword = __le16_to_cpu(id->dma_mword);
  302. id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
  303. id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
  304. id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
  305. id->eide_pio = __le16_to_cpu(id->eide_pio);
  306. id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
  307. for (i = 0; i < 2; ++i)
  308. id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
  309. for (i = 0; i < 4; ++i)
  310. id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
  311. id->queue_depth = __le16_to_cpu(id->queue_depth);
  312. for (i = 0; i < 4; ++i)
  313. id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
  314. id->major_rev_num = __le16_to_cpu(id->major_rev_num);
  315. id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
  316. id->command_set_1 = __le16_to_cpu(id->command_set_1);
  317. id->command_set_2 = __le16_to_cpu(id->command_set_2);
  318. id->cfsse = __le16_to_cpu(id->cfsse);
  319. id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
  320. id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
  321. id->csf_default = __le16_to_cpu(id->csf_default);
  322. id->dma_ultra = __le16_to_cpu(id->dma_ultra);
  323. id->trseuc = __le16_to_cpu(id->trseuc);
  324. id->trsEuc = __le16_to_cpu(id->trsEuc);
  325. id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
  326. id->mprc = __le16_to_cpu(id->mprc);
  327. id->hw_config = __le16_to_cpu(id->hw_config);
  328. id->acoustic = __le16_to_cpu(id->acoustic);
  329. id->msrqs = __le16_to_cpu(id->msrqs);
  330. id->sxfert = __le16_to_cpu(id->sxfert);
  331. id->sal = __le16_to_cpu(id->sal);
  332. id->spg = __le32_to_cpu(id->spg);
  333. id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
  334. for (i = 0; i < 22; i++)
  335. id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
  336. id->last_lun = __le16_to_cpu(id->last_lun);
  337. id->word127 = __le16_to_cpu(id->word127);
  338. id->dlf = __le16_to_cpu(id->dlf);
  339. id->csfo = __le16_to_cpu(id->csfo);
  340. for (i = 0; i < 26; i++)
  341. id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
  342. id->word156 = __le16_to_cpu(id->word156);
  343. for (i = 0; i < 3; i++)
  344. id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
  345. id->cfa_power = __le16_to_cpu(id->cfa_power);
  346. for (i = 0; i < 14; i++)
  347. id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
  348. for (i = 0; i < 31; i++)
  349. id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
  350. for (i = 0; i < 48; i++)
  351. id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
  352. id->integrity_word = __le16_to_cpu(id->integrity_word);
  353. # else
  354. # error "Please fix <asm/byteorder.h>"
  355. # endif
  356. #endif
  357. }
  358. /*
  359. * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
  360. * removing leading/trailing blanks and compressing internal blanks.
  361. * It is primarily used to tidy up the model name/number fields as
  362. * returned by the WIN_[P]IDENTIFY commands.
  363. */
  364. void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
  365. {
  366. u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
  367. if (byteswap) {
  368. /* convert from big-endian to host byte order */
  369. for (p = end ; p != s;) {
  370. unsigned short *pp = (unsigned short *) (p -= 2);
  371. *pp = ntohs(*pp);
  372. }
  373. }
  374. /* strip leading blanks */
  375. while (s != end && *s == ' ')
  376. ++s;
  377. /* compress internal blanks and strip trailing blanks */
  378. while (s != end && *s) {
  379. if (*s++ != ' ' || (s != end && *s && *s != ' '))
  380. *p++ = *(s-1);
  381. }
  382. /* wipe out trailing garbage */
  383. while (p != end)
  384. *p++ = '\0';
  385. }
  386. EXPORT_SYMBOL(ide_fixstring);
  387. /*
  388. * Needed for PCI irq sharing
  389. */
  390. int drive_is_ready (ide_drive_t *drive)
  391. {
  392. ide_hwif_t *hwif = HWIF(drive);
  393. u8 stat = 0;
  394. if (drive->waiting_for_dma)
  395. return hwif->ide_dma_test_irq(drive);
  396. #if 0
  397. /* need to guarantee 400ns since last command was issued */
  398. udelay(1);
  399. #endif
  400. #ifdef CONFIG_IDEPCI_SHARE_IRQ
  401. /*
  402. * We do a passive status test under shared PCI interrupts on
  403. * cards that truly share the ATA side interrupt, but may also share
  404. * an interrupt with another pci card/device. We make no assumptions
  405. * about possible isa-pnp and pci-pnp issues yet.
  406. */
  407. if (IDE_CONTROL_REG)
  408. stat = hwif->INB(IDE_ALTSTATUS_REG);
  409. else
  410. #endif /* CONFIG_IDEPCI_SHARE_IRQ */
  411. /* Note: this may clear a pending IRQ!! */
  412. stat = hwif->INB(IDE_STATUS_REG);
  413. if (stat & BUSY_STAT)
  414. /* drive busy: definitely not interrupting */
  415. return 0;
  416. /* drive ready: *might* be interrupting */
  417. return 1;
  418. }
  419. EXPORT_SYMBOL(drive_is_ready);
  420. /*
  421. * This routine busy-waits for the drive status to be not "busy".
  422. * It then checks the status for all of the "good" bits and none
  423. * of the "bad" bits, and if all is okay it returns 0. All other
  424. * cases return error -- caller may then invoke ide_error().
  425. *
  426. * This routine should get fixed to not hog the cpu during extra long waits..
  427. * That could be done by busy-waiting for the first jiffy or two, and then
  428. * setting a timer to wake up at half second intervals thereafter,
  429. * until timeout is achieved, before timing out.
  430. */
  431. static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
  432. {
  433. ide_hwif_t *hwif = drive->hwif;
  434. unsigned long flags;
  435. int i;
  436. u8 stat;
  437. udelay(1); /* spec allows drive 400ns to assert "BUSY" */
  438. if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  439. local_irq_set(flags);
  440. timeout += jiffies;
  441. while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
  442. if (time_after(jiffies, timeout)) {
  443. /*
  444. * One last read after the timeout in case
  445. * heavy interrupt load made us not make any
  446. * progress during the timeout..
  447. */
  448. stat = hwif->INB(IDE_STATUS_REG);
  449. if (!(stat & BUSY_STAT))
  450. break;
  451. local_irq_restore(flags);
  452. *rstat = stat;
  453. return -EBUSY;
  454. }
  455. }
  456. local_irq_restore(flags);
  457. }
  458. /*
  459. * Allow status to settle, then read it again.
  460. * A few rare drives vastly violate the 400ns spec here,
  461. * so we'll wait up to 10usec for a "good" status
  462. * rather than expensively fail things immediately.
  463. * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
  464. */
  465. for (i = 0; i < 10; i++) {
  466. udelay(1);
  467. if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
  468. *rstat = stat;
  469. return 0;
  470. }
  471. }
  472. *rstat = stat;
  473. return -EFAULT;
  474. }
  475. /*
  476. * In case of error returns error value after doing "*startstop = ide_error()".
  477. * The caller should return the updated value of "startstop" in this case,
  478. * "startstop" is unchanged when the function returns 0.
  479. */
  480. int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
  481. {
  482. int err;
  483. u8 stat;
  484. /* bail early if we've exceeded max_failures */
  485. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  486. *startstop = ide_stopped;
  487. return 1;
  488. }
  489. err = __ide_wait_stat(drive, good, bad, timeout, &stat);
  490. if (err) {
  491. char *s = (err == -EBUSY) ? "status timeout" : "status error";
  492. *startstop = ide_error(drive, s, stat);
  493. }
  494. return err;
  495. }
  496. EXPORT_SYMBOL(ide_wait_stat);
  497. /**
  498. * ide_in_drive_list - look for drive in black/white list
  499. * @id: drive identifier
  500. * @drive_table: list to inspect
  501. *
  502. * Look for a drive in the blacklist and the whitelist tables
  503. * Returns 1 if the drive is found in the table.
  504. */
  505. int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
  506. {
  507. for ( ; drive_table->id_model; drive_table++)
  508. if ((!strcmp(drive_table->id_model, id->model)) &&
  509. (!drive_table->id_firmware ||
  510. strstr(id->fw_rev, drive_table->id_firmware)))
  511. return 1;
  512. return 0;
  513. }
  514. EXPORT_SYMBOL_GPL(ide_in_drive_list);
  515. /*
  516. * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
  517. * We list them here and depend on the device side cable detection for them.
  518. *
  519. * Some optical devices with the buggy firmwares have the same problem.
  520. */
  521. static const struct drive_list_entry ivb_list[] = {
  522. { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
  523. { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
  524. { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
  525. { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
  526. { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
  527. { NULL , NULL }
  528. };
  529. /*
  530. * All hosts that use the 80c ribbon must use!
  531. * The name is derived from upper byte of word 93 and the 80c ribbon.
  532. */
  533. u8 eighty_ninty_three (ide_drive_t *drive)
  534. {
  535. ide_hwif_t *hwif = drive->hwif;
  536. struct hd_driveid *id = drive->id;
  537. int ivb = ide_in_drive_list(id, ivb_list);
  538. if (hwif->cbl == ATA_CBL_PATA40_SHORT)
  539. return 1;
  540. if (ivb)
  541. printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
  542. drive->name);
  543. if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
  544. goto no_80w;
  545. if (ide_dev_is_sata(id))
  546. return 1;
  547. /*
  548. * FIXME:
  549. * - force bit13 (80c cable present) check also for !ivb devices
  550. * (unless the slave device is pre-ATA3)
  551. */
  552. if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
  553. return 1;
  554. no_80w:
  555. if (drive->udma33_warned == 1)
  556. return 0;
  557. printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
  558. "limiting max speed to UDMA33\n",
  559. drive->name,
  560. hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
  561. drive->udma33_warned = 1;
  562. return 0;
  563. }
  564. int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
  565. {
  566. if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
  567. (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
  568. (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
  569. if (eighty_ninty_three(drive) == 0) {
  570. printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
  571. "be set\n", drive->name);
  572. return 1;
  573. }
  574. }
  575. return 0;
  576. }
  577. /*
  578. * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
  579. * 1 : Safe to update drive->id DMA registers.
  580. * 0 : OOPs not allowed.
  581. */
  582. int set_transfer (ide_drive_t *drive, ide_task_t *args)
  583. {
  584. if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
  585. (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
  586. (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
  587. (drive->id->dma_ultra ||
  588. drive->id->dma_mword ||
  589. drive->id->dma_1word))
  590. return 1;
  591. return 0;
  592. }
  593. #ifdef CONFIG_BLK_DEV_IDEDMA
  594. static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
  595. {
  596. if (!drive->crc_count)
  597. return drive->current_speed;
  598. drive->crc_count = 0;
  599. switch(drive->current_speed) {
  600. case XFER_UDMA_7: return XFER_UDMA_6;
  601. case XFER_UDMA_6: return XFER_UDMA_5;
  602. case XFER_UDMA_5: return XFER_UDMA_4;
  603. case XFER_UDMA_4: return XFER_UDMA_3;
  604. case XFER_UDMA_3: return XFER_UDMA_2;
  605. case XFER_UDMA_2: return XFER_UDMA_1;
  606. case XFER_UDMA_1: return XFER_UDMA_0;
  607. /*
  608. * OOPS we do not goto non Ultra DMA modes
  609. * without iCRC's available we force
  610. * the system to PIO and make the user
  611. * invoke the ATA-1 ATA-2 DMA modes.
  612. */
  613. case XFER_UDMA_0:
  614. default: return XFER_PIO_4;
  615. }
  616. }
  617. #endif /* CONFIG_BLK_DEV_IDEDMA */
  618. int ide_driveid_update(ide_drive_t *drive)
  619. {
  620. ide_hwif_t *hwif = drive->hwif;
  621. struct hd_driveid *id;
  622. unsigned long timeout, flags;
  623. /*
  624. * Re-read drive->id for possible DMA mode
  625. * change (copied from ide-probe.c)
  626. */
  627. SELECT_MASK(drive, 1);
  628. if (IDE_CONTROL_REG)
  629. hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
  630. msleep(50);
  631. hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
  632. timeout = jiffies + WAIT_WORSTCASE;
  633. do {
  634. if (time_after(jiffies, timeout)) {
  635. SELECT_MASK(drive, 0);
  636. return 0; /* drive timed-out */
  637. }
  638. msleep(50); /* give drive a breather */
  639. } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
  640. msleep(50); /* wait for IRQ and DRQ_STAT */
  641. if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
  642. SELECT_MASK(drive, 0);
  643. printk("%s: CHECK for good STATUS\n", drive->name);
  644. return 0;
  645. }
  646. local_irq_save(flags);
  647. SELECT_MASK(drive, 0);
  648. id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
  649. if (!id) {
  650. local_irq_restore(flags);
  651. return 0;
  652. }
  653. ata_input_data(drive, id, SECTOR_WORDS);
  654. (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
  655. local_irq_enable();
  656. local_irq_restore(flags);
  657. ide_fix_driveid(id);
  658. if (id) {
  659. drive->id->dma_ultra = id->dma_ultra;
  660. drive->id->dma_mword = id->dma_mword;
  661. drive->id->dma_1word = id->dma_1word;
  662. /* anything more ? */
  663. kfree(id);
  664. if (drive->using_dma && ide_id_dma_bug(drive))
  665. ide_dma_off(drive);
  666. }
  667. return 1;
  668. }
  669. int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
  670. {
  671. ide_hwif_t *hwif = drive->hwif;
  672. int error = 0;
  673. u8 stat;
  674. // while (HWGROUP(drive)->busy)
  675. // msleep(50);
  676. #ifdef CONFIG_BLK_DEV_IDEDMA
  677. if (hwif->ide_dma_on) /* check if host supports DMA */
  678. hwif->dma_host_off(drive);
  679. #endif
  680. /* Skip setting PIO flow-control modes on pre-EIDE drives */
  681. if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
  682. goto skip;
  683. /*
  684. * Don't use ide_wait_cmd here - it will
  685. * attempt to set_geometry and recalibrate,
  686. * but for some reason these don't work at
  687. * this point (lost interrupt).
  688. */
  689. /*
  690. * Select the drive, and issue the SETFEATURES command
  691. */
  692. disable_irq_nosync(hwif->irq);
  693. /*
  694. * FIXME: we race against the running IRQ here if
  695. * this is called from non IRQ context. If we use
  696. * disable_irq() we hang on the error path. Work
  697. * is needed.
  698. */
  699. udelay(1);
  700. SELECT_DRIVE(drive);
  701. SELECT_MASK(drive, 0);
  702. udelay(1);
  703. if (IDE_CONTROL_REG)
  704. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  705. hwif->OUTB(speed, IDE_NSECTOR_REG);
  706. hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
  707. hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
  708. if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
  709. hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
  710. error = __ide_wait_stat(drive, drive->ready_stat,
  711. BUSY_STAT|DRQ_STAT|ERR_STAT,
  712. WAIT_CMD, &stat);
  713. SELECT_MASK(drive, 0);
  714. enable_irq(hwif->irq);
  715. if (error) {
  716. (void) ide_dump_status(drive, "set_drive_speed_status", stat);
  717. return error;
  718. }
  719. drive->id->dma_ultra &= ~0xFF00;
  720. drive->id->dma_mword &= ~0x0F00;
  721. drive->id->dma_1word &= ~0x0F00;
  722. skip:
  723. #ifdef CONFIG_BLK_DEV_IDEDMA
  724. if (speed >= XFER_SW_DMA_0)
  725. hwif->dma_host_on(drive);
  726. else if (hwif->ide_dma_on) /* check if host supports DMA */
  727. hwif->dma_off_quietly(drive);
  728. #endif
  729. switch(speed) {
  730. case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
  731. case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
  732. case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
  733. case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
  734. case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
  735. case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
  736. case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
  737. case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
  738. case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
  739. case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
  740. case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
  741. case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
  742. case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
  743. case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
  744. default: break;
  745. }
  746. if (!drive->init_speed)
  747. drive->init_speed = speed;
  748. drive->current_speed = speed;
  749. return error;
  750. }
  751. /*
  752. * This should get invoked any time we exit the driver to
  753. * wait for an interrupt response from a drive. handler() points
  754. * at the appropriate code to handle the next interrupt, and a
  755. * timer is started to prevent us from waiting forever in case
  756. * something goes wrong (see the ide_timer_expiry() handler later on).
  757. *
  758. * See also ide_execute_command
  759. */
  760. static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  761. unsigned int timeout, ide_expiry_t *expiry)
  762. {
  763. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  764. if (hwgroup->handler != NULL) {
  765. printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
  766. "old=%p, new=%p\n",
  767. drive->name, hwgroup->handler, handler);
  768. }
  769. hwgroup->handler = handler;
  770. hwgroup->expiry = expiry;
  771. hwgroup->timer.expires = jiffies + timeout;
  772. hwgroup->req_gen_timer = hwgroup->req_gen;
  773. add_timer(&hwgroup->timer);
  774. }
  775. void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  776. unsigned int timeout, ide_expiry_t *expiry)
  777. {
  778. unsigned long flags;
  779. spin_lock_irqsave(&ide_lock, flags);
  780. __ide_set_handler(drive, handler, timeout, expiry);
  781. spin_unlock_irqrestore(&ide_lock, flags);
  782. }
  783. EXPORT_SYMBOL(ide_set_handler);
  784. /**
  785. * ide_execute_command - execute an IDE command
  786. * @drive: IDE drive to issue the command against
  787. * @command: command byte to write
  788. * @handler: handler for next phase
  789. * @timeout: timeout for command
  790. * @expiry: handler to run on timeout
  791. *
  792. * Helper function to issue an IDE command. This handles the
  793. * atomicity requirements, command timing and ensures that the
  794. * handler and IRQ setup do not race. All IDE command kick off
  795. * should go via this function or do equivalent locking.
  796. */
  797. void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
  798. {
  799. unsigned long flags;
  800. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  801. ide_hwif_t *hwif = HWIF(drive);
  802. spin_lock_irqsave(&ide_lock, flags);
  803. BUG_ON(hwgroup->handler);
  804. hwgroup->handler = handler;
  805. hwgroup->expiry = expiry;
  806. hwgroup->timer.expires = jiffies + timeout;
  807. hwgroup->req_gen_timer = hwgroup->req_gen;
  808. add_timer(&hwgroup->timer);
  809. hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
  810. /* Drive takes 400nS to respond, we must avoid the IRQ being
  811. serviced before that.
  812. FIXME: we could skip this delay with care on non shared
  813. devices
  814. */
  815. ndelay(400);
  816. spin_unlock_irqrestore(&ide_lock, flags);
  817. }
  818. EXPORT_SYMBOL(ide_execute_command);
  819. /* needed below */
  820. static ide_startstop_t do_reset1 (ide_drive_t *, int);
  821. /*
  822. * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  823. * during an atapi drive reset operation. If the drive has not yet responded,
  824. * and we have not yet hit our maximum waiting time, then the timer is restarted
  825. * for another 50ms.
  826. */
  827. static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
  828. {
  829. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  830. ide_hwif_t *hwif = HWIF(drive);
  831. u8 stat;
  832. SELECT_DRIVE(drive);
  833. udelay (10);
  834. if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  835. printk("%s: ATAPI reset complete\n", drive->name);
  836. } else {
  837. if (time_before(jiffies, hwgroup->poll_timeout)) {
  838. BUG_ON(HWGROUP(drive)->handler != NULL);
  839. ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  840. /* continue polling */
  841. return ide_started;
  842. }
  843. /* end of polling */
  844. hwgroup->polling = 0;
  845. printk("%s: ATAPI reset timed-out, status=0x%02x\n",
  846. drive->name, stat);
  847. /* do it the old fashioned way */
  848. return do_reset1(drive, 1);
  849. }
  850. /* done polling */
  851. hwgroup->polling = 0;
  852. hwgroup->resetting = 0;
  853. return ide_stopped;
  854. }
  855. /*
  856. * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  857. * during an ide reset operation. If the drives have not yet responded,
  858. * and we have not yet hit our maximum waiting time, then the timer is restarted
  859. * for another 50ms.
  860. */
  861. static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
  862. {
  863. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  864. ide_hwif_t *hwif = HWIF(drive);
  865. u8 tmp;
  866. if (hwif->reset_poll != NULL) {
  867. if (hwif->reset_poll(drive)) {
  868. printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
  869. hwif->name, drive->name);
  870. return ide_stopped;
  871. }
  872. }
  873. if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
  874. if (time_before(jiffies, hwgroup->poll_timeout)) {
  875. BUG_ON(HWGROUP(drive)->handler != NULL);
  876. ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  877. /* continue polling */
  878. return ide_started;
  879. }
  880. printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
  881. drive->failures++;
  882. } else {
  883. printk("%s: reset: ", hwif->name);
  884. if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
  885. printk("success\n");
  886. drive->failures = 0;
  887. } else {
  888. drive->failures++;
  889. printk("master: ");
  890. switch (tmp & 0x7f) {
  891. case 1: printk("passed");
  892. break;
  893. case 2: printk("formatter device error");
  894. break;
  895. case 3: printk("sector buffer error");
  896. break;
  897. case 4: printk("ECC circuitry error");
  898. break;
  899. case 5: printk("controlling MPU error");
  900. break;
  901. default:printk("error (0x%02x?)", tmp);
  902. }
  903. if (tmp & 0x80)
  904. printk("; slave: failed");
  905. printk("\n");
  906. }
  907. }
  908. hwgroup->polling = 0; /* done polling */
  909. hwgroup->resetting = 0; /* done reset attempt */
  910. return ide_stopped;
  911. }
  912. static void check_dma_crc(ide_drive_t *drive)
  913. {
  914. #ifdef CONFIG_BLK_DEV_IDEDMA
  915. if (drive->crc_count) {
  916. drive->hwif->dma_off_quietly(drive);
  917. ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
  918. if (drive->current_speed >= XFER_SW_DMA_0)
  919. (void) HWIF(drive)->ide_dma_on(drive);
  920. } else
  921. ide_dma_off(drive);
  922. #endif
  923. }
  924. static void ide_disk_pre_reset(ide_drive_t *drive)
  925. {
  926. int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
  927. drive->special.all = 0;
  928. drive->special.b.set_geometry = legacy;
  929. drive->special.b.recalibrate = legacy;
  930. if (OK_TO_RESET_CONTROLLER)
  931. drive->mult_count = 0;
  932. if (!drive->keep_settings && !drive->using_dma)
  933. drive->mult_req = 0;
  934. if (drive->mult_req != drive->mult_count)
  935. drive->special.b.set_multmode = 1;
  936. }
  937. static void pre_reset(ide_drive_t *drive)
  938. {
  939. if (drive->media == ide_disk)
  940. ide_disk_pre_reset(drive);
  941. else
  942. drive->post_reset = 1;
  943. if (!drive->keep_settings) {
  944. if (drive->using_dma) {
  945. check_dma_crc(drive);
  946. } else {
  947. drive->unmask = 0;
  948. drive->io_32bit = 0;
  949. }
  950. return;
  951. }
  952. if (drive->using_dma)
  953. check_dma_crc(drive);
  954. if (HWIF(drive)->pre_reset != NULL)
  955. HWIF(drive)->pre_reset(drive);
  956. if (drive->current_speed != 0xff)
  957. drive->desired_speed = drive->current_speed;
  958. drive->current_speed = 0xff;
  959. }
  960. /*
  961. * do_reset1() attempts to recover a confused drive by resetting it.
  962. * Unfortunately, resetting a disk drive actually resets all devices on
  963. * the same interface, so it can really be thought of as resetting the
  964. * interface rather than resetting the drive.
  965. *
  966. * ATAPI devices have their own reset mechanism which allows them to be
  967. * individually reset without clobbering other devices on the same interface.
  968. *
  969. * Unfortunately, the IDE interface does not generate an interrupt to let
  970. * us know when the reset operation has finished, so we must poll for this.
  971. * Equally poor, though, is the fact that this may a very long time to complete,
  972. * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
  973. * we set a timer to poll at 50ms intervals.
  974. */
  975. static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
  976. {
  977. unsigned int unit;
  978. unsigned long flags;
  979. ide_hwif_t *hwif;
  980. ide_hwgroup_t *hwgroup;
  981. spin_lock_irqsave(&ide_lock, flags);
  982. hwif = HWIF(drive);
  983. hwgroup = HWGROUP(drive);
  984. /* We must not reset with running handlers */
  985. BUG_ON(hwgroup->handler != NULL);
  986. /* For an ATAPI device, first try an ATAPI SRST. */
  987. if (drive->media != ide_disk && !do_not_try_atapi) {
  988. hwgroup->resetting = 1;
  989. pre_reset(drive);
  990. SELECT_DRIVE(drive);
  991. udelay (20);
  992. hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
  993. ndelay(400);
  994. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  995. hwgroup->polling = 1;
  996. __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  997. spin_unlock_irqrestore(&ide_lock, flags);
  998. return ide_started;
  999. }
  1000. /*
  1001. * First, reset any device state data we were maintaining
  1002. * for any of the drives on this interface.
  1003. */
  1004. for (unit = 0; unit < MAX_DRIVES; ++unit)
  1005. pre_reset(&hwif->drives[unit]);
  1006. #if OK_TO_RESET_CONTROLLER
  1007. if (!IDE_CONTROL_REG) {
  1008. spin_unlock_irqrestore(&ide_lock, flags);
  1009. return ide_stopped;
  1010. }
  1011. hwgroup->resetting = 1;
  1012. /*
  1013. * Note that we also set nIEN while resetting the device,
  1014. * to mask unwanted interrupts from the interface during the reset.
  1015. * However, due to the design of PC hardware, this will cause an
  1016. * immediate interrupt due to the edge transition it produces.
  1017. * This single interrupt gives us a "fast poll" for drives that
  1018. * recover from reset very quickly, saving us the first 50ms wait time.
  1019. */
  1020. /* set SRST and nIEN */
  1021. hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
  1022. /* more than enough time */
  1023. udelay(10);
  1024. if (drive->quirk_list == 2) {
  1025. /* clear SRST and nIEN */
  1026. hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
  1027. } else {
  1028. /* clear SRST, leave nIEN */
  1029. hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
  1030. }
  1031. /* more than enough time */
  1032. udelay(10);
  1033. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  1034. hwgroup->polling = 1;
  1035. __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  1036. /*
  1037. * Some weird controller like resetting themselves to a strange
  1038. * state when the disks are reset this way. At least, the Winbond
  1039. * 553 documentation says that
  1040. */
  1041. if (hwif->resetproc != NULL) {
  1042. hwif->resetproc(drive);
  1043. }
  1044. #endif /* OK_TO_RESET_CONTROLLER */
  1045. spin_unlock_irqrestore(&ide_lock, flags);
  1046. return ide_started;
  1047. }
  1048. /*
  1049. * ide_do_reset() is the entry point to the drive/interface reset code.
  1050. */
  1051. ide_startstop_t ide_do_reset (ide_drive_t *drive)
  1052. {
  1053. return do_reset1(drive, 0);
  1054. }
  1055. EXPORT_SYMBOL(ide_do_reset);
  1056. /*
  1057. * ide_wait_not_busy() waits for the currently selected device on the hwif
  1058. * to report a non-busy status, see comments in probe_hwif().
  1059. */
  1060. int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
  1061. {
  1062. u8 stat = 0;
  1063. while(timeout--) {
  1064. /*
  1065. * Turn this into a schedule() sleep once I'm sure
  1066. * about locking issues (2.5 work ?).
  1067. */
  1068. mdelay(1);
  1069. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1070. if ((stat & BUSY_STAT) == 0)
  1071. return 0;
  1072. /*
  1073. * Assume a value of 0xff means nothing is connected to
  1074. * the interface and it doesn't implement the pull-down
  1075. * resistor on D7.
  1076. */
  1077. if (stat == 0xff)
  1078. return -ENODEV;
  1079. touch_softlockup_watchdog();
  1080. touch_nmi_watchdog();
  1081. }
  1082. return -EBUSY;
  1083. }
  1084. EXPORT_SYMBOL_GPL(ide_wait_not_busy);