kvm_main.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. static struct page *fault_page;
  89. static pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. long dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. srcu_read_unlock(&kvm->srcu, idx);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  289. need_tlb_flush |= kvm->tlbs_dirty;
  290. /* we've to flush the tlb before the pages can be freed */
  291. if (need_tlb_flush)
  292. kvm_flush_remote_tlbs(kvm);
  293. spin_unlock(&kvm->mmu_lock);
  294. srcu_read_unlock(&kvm->srcu, idx);
  295. }
  296. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  297. struct mm_struct *mm,
  298. unsigned long start,
  299. unsigned long end)
  300. {
  301. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  302. spin_lock(&kvm->mmu_lock);
  303. /*
  304. * This sequence increase will notify the kvm page fault that
  305. * the page that is going to be mapped in the spte could have
  306. * been freed.
  307. */
  308. kvm->mmu_notifier_seq++;
  309. smp_wmb();
  310. /*
  311. * The above sequence increase must be visible before the
  312. * below count decrease, which is ensured by the smp_wmb above
  313. * in conjunction with the smp_rmb in mmu_notifier_retry().
  314. */
  315. kvm->mmu_notifier_count--;
  316. spin_unlock(&kvm->mmu_lock);
  317. BUG_ON(kvm->mmu_notifier_count < 0);
  318. }
  319. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  320. struct mm_struct *mm,
  321. unsigned long address)
  322. {
  323. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  324. int young, idx;
  325. idx = srcu_read_lock(&kvm->srcu);
  326. spin_lock(&kvm->mmu_lock);
  327. young = kvm_age_hva(kvm, address);
  328. if (young)
  329. kvm_flush_remote_tlbs(kvm);
  330. spin_unlock(&kvm->mmu_lock);
  331. srcu_read_unlock(&kvm->srcu, idx);
  332. return young;
  333. }
  334. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  335. struct mm_struct *mm,
  336. unsigned long address)
  337. {
  338. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  339. int young, idx;
  340. idx = srcu_read_lock(&kvm->srcu);
  341. spin_lock(&kvm->mmu_lock);
  342. young = kvm_test_age_hva(kvm, address);
  343. spin_unlock(&kvm->mmu_lock);
  344. srcu_read_unlock(&kvm->srcu, idx);
  345. return young;
  346. }
  347. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  348. struct mm_struct *mm)
  349. {
  350. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  351. int idx;
  352. idx = srcu_read_lock(&kvm->srcu);
  353. kvm_arch_flush_shadow(kvm);
  354. srcu_read_unlock(&kvm->srcu, idx);
  355. }
  356. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  357. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  358. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  359. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  360. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  361. .test_young = kvm_mmu_notifier_test_young,
  362. .change_pte = kvm_mmu_notifier_change_pte,
  363. .release = kvm_mmu_notifier_release,
  364. };
  365. static int kvm_init_mmu_notifier(struct kvm *kvm)
  366. {
  367. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  368. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  369. }
  370. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  371. static int kvm_init_mmu_notifier(struct kvm *kvm)
  372. {
  373. return 0;
  374. }
  375. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  376. static void kvm_init_memslots_id(struct kvm *kvm)
  377. {
  378. int i;
  379. struct kvm_memslots *slots = kvm->memslots;
  380. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  381. slots->id_to_index[i] = slots->memslots[i].id = i;
  382. }
  383. static struct kvm *kvm_create_vm(unsigned long type)
  384. {
  385. int r, i;
  386. struct kvm *kvm = kvm_arch_alloc_vm();
  387. if (!kvm)
  388. return ERR_PTR(-ENOMEM);
  389. r = kvm_arch_init_vm(kvm, type);
  390. if (r)
  391. goto out_err_nodisable;
  392. r = hardware_enable_all();
  393. if (r)
  394. goto out_err_nodisable;
  395. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  396. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  397. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  398. #endif
  399. r = -ENOMEM;
  400. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  401. if (!kvm->memslots)
  402. goto out_err_nosrcu;
  403. kvm_init_memslots_id(kvm);
  404. if (init_srcu_struct(&kvm->srcu))
  405. goto out_err_nosrcu;
  406. for (i = 0; i < KVM_NR_BUSES; i++) {
  407. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  408. GFP_KERNEL);
  409. if (!kvm->buses[i])
  410. goto out_err;
  411. }
  412. spin_lock_init(&kvm->mmu_lock);
  413. kvm->mm = current->mm;
  414. atomic_inc(&kvm->mm->mm_count);
  415. kvm_eventfd_init(kvm);
  416. mutex_init(&kvm->lock);
  417. mutex_init(&kvm->irq_lock);
  418. mutex_init(&kvm->slots_lock);
  419. atomic_set(&kvm->users_count, 1);
  420. r = kvm_init_mmu_notifier(kvm);
  421. if (r)
  422. goto out_err;
  423. raw_spin_lock(&kvm_lock);
  424. list_add(&kvm->vm_list, &vm_list);
  425. raw_spin_unlock(&kvm_lock);
  426. return kvm;
  427. out_err:
  428. cleanup_srcu_struct(&kvm->srcu);
  429. out_err_nosrcu:
  430. hardware_disable_all();
  431. out_err_nodisable:
  432. for (i = 0; i < KVM_NR_BUSES; i++)
  433. kfree(kvm->buses[i]);
  434. kfree(kvm->memslots);
  435. kvm_arch_free_vm(kvm);
  436. return ERR_PTR(r);
  437. }
  438. /*
  439. * Avoid using vmalloc for a small buffer.
  440. * Should not be used when the size is statically known.
  441. */
  442. void *kvm_kvzalloc(unsigned long size)
  443. {
  444. if (size > PAGE_SIZE)
  445. return vzalloc(size);
  446. else
  447. return kzalloc(size, GFP_KERNEL);
  448. }
  449. void kvm_kvfree(const void *addr)
  450. {
  451. if (is_vmalloc_addr(addr))
  452. vfree(addr);
  453. else
  454. kfree(addr);
  455. }
  456. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  457. {
  458. if (!memslot->dirty_bitmap)
  459. return;
  460. kvm_kvfree(memslot->dirty_bitmap);
  461. memslot->dirty_bitmap = NULL;
  462. }
  463. /*
  464. * Free any memory in @free but not in @dont.
  465. */
  466. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  467. struct kvm_memory_slot *dont)
  468. {
  469. if (!dont || free->rmap != dont->rmap)
  470. vfree(free->rmap);
  471. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  472. kvm_destroy_dirty_bitmap(free);
  473. kvm_arch_free_memslot(free, dont);
  474. free->npages = 0;
  475. free->rmap = NULL;
  476. }
  477. void kvm_free_physmem(struct kvm *kvm)
  478. {
  479. struct kvm_memslots *slots = kvm->memslots;
  480. struct kvm_memory_slot *memslot;
  481. kvm_for_each_memslot(memslot, slots)
  482. kvm_free_physmem_slot(memslot, NULL);
  483. kfree(kvm->memslots);
  484. }
  485. static void kvm_destroy_vm(struct kvm *kvm)
  486. {
  487. int i;
  488. struct mm_struct *mm = kvm->mm;
  489. kvm_arch_sync_events(kvm);
  490. raw_spin_lock(&kvm_lock);
  491. list_del(&kvm->vm_list);
  492. raw_spin_unlock(&kvm_lock);
  493. kvm_free_irq_routing(kvm);
  494. for (i = 0; i < KVM_NR_BUSES; i++)
  495. kvm_io_bus_destroy(kvm->buses[i]);
  496. kvm_coalesced_mmio_free(kvm);
  497. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  498. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  499. #else
  500. kvm_arch_flush_shadow(kvm);
  501. #endif
  502. kvm_arch_destroy_vm(kvm);
  503. kvm_free_physmem(kvm);
  504. cleanup_srcu_struct(&kvm->srcu);
  505. kvm_arch_free_vm(kvm);
  506. hardware_disable_all();
  507. mmdrop(mm);
  508. }
  509. void kvm_get_kvm(struct kvm *kvm)
  510. {
  511. atomic_inc(&kvm->users_count);
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  514. void kvm_put_kvm(struct kvm *kvm)
  515. {
  516. if (atomic_dec_and_test(&kvm->users_count))
  517. kvm_destroy_vm(kvm);
  518. }
  519. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  520. static int kvm_vm_release(struct inode *inode, struct file *filp)
  521. {
  522. struct kvm *kvm = filp->private_data;
  523. kvm_irqfd_release(kvm);
  524. kvm_put_kvm(kvm);
  525. return 0;
  526. }
  527. /*
  528. * Allocation size is twice as large as the actual dirty bitmap size.
  529. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  530. */
  531. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  532. {
  533. #ifndef CONFIG_S390
  534. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  535. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  536. if (!memslot->dirty_bitmap)
  537. return -ENOMEM;
  538. #endif /* !CONFIG_S390 */
  539. return 0;
  540. }
  541. static int cmp_memslot(const void *slot1, const void *slot2)
  542. {
  543. struct kvm_memory_slot *s1, *s2;
  544. s1 = (struct kvm_memory_slot *)slot1;
  545. s2 = (struct kvm_memory_slot *)slot2;
  546. if (s1->npages < s2->npages)
  547. return 1;
  548. if (s1->npages > s2->npages)
  549. return -1;
  550. return 0;
  551. }
  552. /*
  553. * Sort the memslots base on its size, so the larger slots
  554. * will get better fit.
  555. */
  556. static void sort_memslots(struct kvm_memslots *slots)
  557. {
  558. int i;
  559. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  560. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  561. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  562. slots->id_to_index[slots->memslots[i].id] = i;
  563. }
  564. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  565. {
  566. if (new) {
  567. int id = new->id;
  568. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  569. unsigned long npages = old->npages;
  570. *old = *new;
  571. if (new->npages != npages)
  572. sort_memslots(slots);
  573. }
  574. slots->generation++;
  575. }
  576. /*
  577. * Allocate some memory and give it an address in the guest physical address
  578. * space.
  579. *
  580. * Discontiguous memory is allowed, mostly for framebuffers.
  581. *
  582. * Must be called holding mmap_sem for write.
  583. */
  584. int __kvm_set_memory_region(struct kvm *kvm,
  585. struct kvm_userspace_memory_region *mem,
  586. int user_alloc)
  587. {
  588. int r;
  589. gfn_t base_gfn;
  590. unsigned long npages;
  591. unsigned long i;
  592. struct kvm_memory_slot *memslot;
  593. struct kvm_memory_slot old, new;
  594. struct kvm_memslots *slots, *old_memslots;
  595. r = -EINVAL;
  596. /* General sanity checks */
  597. if (mem->memory_size & (PAGE_SIZE - 1))
  598. goto out;
  599. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  600. goto out;
  601. /* We can read the guest memory with __xxx_user() later on. */
  602. if (user_alloc &&
  603. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  604. !access_ok(VERIFY_WRITE,
  605. (void __user *)(unsigned long)mem->userspace_addr,
  606. mem->memory_size)))
  607. goto out;
  608. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  609. goto out;
  610. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  611. goto out;
  612. memslot = id_to_memslot(kvm->memslots, mem->slot);
  613. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  614. npages = mem->memory_size >> PAGE_SHIFT;
  615. r = -EINVAL;
  616. if (npages > KVM_MEM_MAX_NR_PAGES)
  617. goto out;
  618. if (!npages)
  619. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  620. new = old = *memslot;
  621. new.id = mem->slot;
  622. new.base_gfn = base_gfn;
  623. new.npages = npages;
  624. new.flags = mem->flags;
  625. /* Disallow changing a memory slot's size. */
  626. r = -EINVAL;
  627. if (npages && old.npages && npages != old.npages)
  628. goto out_free;
  629. /* Check for overlaps */
  630. r = -EEXIST;
  631. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  632. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  633. if (s == memslot || !s->npages)
  634. continue;
  635. if (!((base_gfn + npages <= s->base_gfn) ||
  636. (base_gfn >= s->base_gfn + s->npages)))
  637. goto out_free;
  638. }
  639. /* Free page dirty bitmap if unneeded */
  640. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  641. new.dirty_bitmap = NULL;
  642. r = -ENOMEM;
  643. /* Allocate if a slot is being created */
  644. if (npages && !old.npages) {
  645. new.user_alloc = user_alloc;
  646. new.userspace_addr = mem->userspace_addr;
  647. #ifndef CONFIG_S390
  648. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  649. if (!new.rmap)
  650. goto out_free;
  651. #endif /* not defined CONFIG_S390 */
  652. if (kvm_arch_create_memslot(&new, npages))
  653. goto out_free;
  654. }
  655. /* Allocate page dirty bitmap if needed */
  656. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  657. if (kvm_create_dirty_bitmap(&new) < 0)
  658. goto out_free;
  659. /* destroy any largepage mappings for dirty tracking */
  660. }
  661. if (!npages) {
  662. struct kvm_memory_slot *slot;
  663. r = -ENOMEM;
  664. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  665. GFP_KERNEL);
  666. if (!slots)
  667. goto out_free;
  668. slot = id_to_memslot(slots, mem->slot);
  669. slot->flags |= KVM_MEMSLOT_INVALID;
  670. update_memslots(slots, NULL);
  671. old_memslots = kvm->memslots;
  672. rcu_assign_pointer(kvm->memslots, slots);
  673. synchronize_srcu_expedited(&kvm->srcu);
  674. /* From this point no new shadow pages pointing to a deleted
  675. * memslot will be created.
  676. *
  677. * validation of sp->gfn happens in:
  678. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  679. * - kvm_is_visible_gfn (mmu_check_roots)
  680. */
  681. kvm_arch_flush_shadow(kvm);
  682. kfree(old_memslots);
  683. }
  684. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  685. if (r)
  686. goto out_free;
  687. /* map/unmap the pages in iommu page table */
  688. if (npages) {
  689. r = kvm_iommu_map_pages(kvm, &new);
  690. if (r)
  691. goto out_free;
  692. } else
  693. kvm_iommu_unmap_pages(kvm, &old);
  694. r = -ENOMEM;
  695. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  696. GFP_KERNEL);
  697. if (!slots)
  698. goto out_free;
  699. /* actual memory is freed via old in kvm_free_physmem_slot below */
  700. if (!npages) {
  701. new.rmap = NULL;
  702. new.dirty_bitmap = NULL;
  703. memset(&new.arch, 0, sizeof(new.arch));
  704. }
  705. update_memslots(slots, &new);
  706. old_memslots = kvm->memslots;
  707. rcu_assign_pointer(kvm->memslots, slots);
  708. synchronize_srcu_expedited(&kvm->srcu);
  709. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  710. /*
  711. * If the new memory slot is created, we need to clear all
  712. * mmio sptes.
  713. */
  714. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  715. kvm_arch_flush_shadow(kvm);
  716. kvm_free_physmem_slot(&old, &new);
  717. kfree(old_memslots);
  718. return 0;
  719. out_free:
  720. kvm_free_physmem_slot(&new, &old);
  721. out:
  722. return r;
  723. }
  724. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  725. int kvm_set_memory_region(struct kvm *kvm,
  726. struct kvm_userspace_memory_region *mem,
  727. int user_alloc)
  728. {
  729. int r;
  730. mutex_lock(&kvm->slots_lock);
  731. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  732. mutex_unlock(&kvm->slots_lock);
  733. return r;
  734. }
  735. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  736. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  737. struct
  738. kvm_userspace_memory_region *mem,
  739. int user_alloc)
  740. {
  741. if (mem->slot >= KVM_MEMORY_SLOTS)
  742. return -EINVAL;
  743. return kvm_set_memory_region(kvm, mem, user_alloc);
  744. }
  745. int kvm_get_dirty_log(struct kvm *kvm,
  746. struct kvm_dirty_log *log, int *is_dirty)
  747. {
  748. struct kvm_memory_slot *memslot;
  749. int r, i;
  750. unsigned long n;
  751. unsigned long any = 0;
  752. r = -EINVAL;
  753. if (log->slot >= KVM_MEMORY_SLOTS)
  754. goto out;
  755. memslot = id_to_memslot(kvm->memslots, log->slot);
  756. r = -ENOENT;
  757. if (!memslot->dirty_bitmap)
  758. goto out;
  759. n = kvm_dirty_bitmap_bytes(memslot);
  760. for (i = 0; !any && i < n/sizeof(long); ++i)
  761. any = memslot->dirty_bitmap[i];
  762. r = -EFAULT;
  763. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  764. goto out;
  765. if (any)
  766. *is_dirty = 1;
  767. r = 0;
  768. out:
  769. return r;
  770. }
  771. bool kvm_largepages_enabled(void)
  772. {
  773. return largepages_enabled;
  774. }
  775. void kvm_disable_largepages(void)
  776. {
  777. largepages_enabled = false;
  778. }
  779. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  780. int is_error_page(struct page *page)
  781. {
  782. return page == bad_page || page == hwpoison_page || page == fault_page;
  783. }
  784. EXPORT_SYMBOL_GPL(is_error_page);
  785. int is_error_pfn(pfn_t pfn)
  786. {
  787. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  788. }
  789. EXPORT_SYMBOL_GPL(is_error_pfn);
  790. int is_hwpoison_pfn(pfn_t pfn)
  791. {
  792. return pfn == hwpoison_pfn;
  793. }
  794. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  795. int is_noslot_pfn(pfn_t pfn)
  796. {
  797. return pfn == bad_pfn;
  798. }
  799. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  800. int is_invalid_pfn(pfn_t pfn)
  801. {
  802. return pfn == hwpoison_pfn || pfn == fault_pfn;
  803. }
  804. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  805. static inline unsigned long bad_hva(void)
  806. {
  807. return PAGE_OFFSET;
  808. }
  809. int kvm_is_error_hva(unsigned long addr)
  810. {
  811. return addr == bad_hva();
  812. }
  813. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  814. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  815. {
  816. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  817. }
  818. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  819. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  820. {
  821. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  822. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  823. memslot->flags & KVM_MEMSLOT_INVALID)
  824. return 0;
  825. return 1;
  826. }
  827. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  828. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  829. {
  830. struct vm_area_struct *vma;
  831. unsigned long addr, size;
  832. size = PAGE_SIZE;
  833. addr = gfn_to_hva(kvm, gfn);
  834. if (kvm_is_error_hva(addr))
  835. return PAGE_SIZE;
  836. down_read(&current->mm->mmap_sem);
  837. vma = find_vma(current->mm, addr);
  838. if (!vma)
  839. goto out;
  840. size = vma_kernel_pagesize(vma);
  841. out:
  842. up_read(&current->mm->mmap_sem);
  843. return size;
  844. }
  845. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  846. gfn_t *nr_pages)
  847. {
  848. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  849. return bad_hva();
  850. if (nr_pages)
  851. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  852. return gfn_to_hva_memslot(slot, gfn);
  853. }
  854. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  855. {
  856. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  857. }
  858. EXPORT_SYMBOL_GPL(gfn_to_hva);
  859. pfn_t get_fault_pfn(void)
  860. {
  861. get_page(fault_page);
  862. return fault_pfn;
  863. }
  864. EXPORT_SYMBOL_GPL(get_fault_pfn);
  865. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  866. unsigned long start, int write, struct page **page)
  867. {
  868. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  869. if (write)
  870. flags |= FOLL_WRITE;
  871. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  872. }
  873. static inline int check_user_page_hwpoison(unsigned long addr)
  874. {
  875. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  876. rc = __get_user_pages(current, current->mm, addr, 1,
  877. flags, NULL, NULL, NULL);
  878. return rc == -EHWPOISON;
  879. }
  880. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  881. bool *async, bool write_fault, bool *writable)
  882. {
  883. struct page *page[1];
  884. int npages = 0;
  885. pfn_t pfn;
  886. /* we can do it either atomically or asynchronously, not both */
  887. BUG_ON(atomic && async);
  888. BUG_ON(!write_fault && !writable);
  889. if (writable)
  890. *writable = true;
  891. if (atomic || async)
  892. npages = __get_user_pages_fast(addr, 1, 1, page);
  893. if (unlikely(npages != 1) && !atomic) {
  894. might_sleep();
  895. if (writable)
  896. *writable = write_fault;
  897. if (async) {
  898. down_read(&current->mm->mmap_sem);
  899. npages = get_user_page_nowait(current, current->mm,
  900. addr, write_fault, page);
  901. up_read(&current->mm->mmap_sem);
  902. } else
  903. npages = get_user_pages_fast(addr, 1, write_fault,
  904. page);
  905. /* map read fault as writable if possible */
  906. if (unlikely(!write_fault) && npages == 1) {
  907. struct page *wpage[1];
  908. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  909. if (npages == 1) {
  910. *writable = true;
  911. put_page(page[0]);
  912. page[0] = wpage[0];
  913. }
  914. npages = 1;
  915. }
  916. }
  917. if (unlikely(npages != 1)) {
  918. struct vm_area_struct *vma;
  919. if (atomic)
  920. return get_fault_pfn();
  921. down_read(&current->mm->mmap_sem);
  922. if (npages == -EHWPOISON ||
  923. (!async && check_user_page_hwpoison(addr))) {
  924. up_read(&current->mm->mmap_sem);
  925. get_page(hwpoison_page);
  926. return page_to_pfn(hwpoison_page);
  927. }
  928. vma = find_vma_intersection(current->mm, addr, addr+1);
  929. if (vma == NULL)
  930. pfn = get_fault_pfn();
  931. else if ((vma->vm_flags & VM_PFNMAP)) {
  932. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  933. vma->vm_pgoff;
  934. BUG_ON(!kvm_is_mmio_pfn(pfn));
  935. } else {
  936. if (async && (vma->vm_flags & VM_WRITE))
  937. *async = true;
  938. pfn = get_fault_pfn();
  939. }
  940. up_read(&current->mm->mmap_sem);
  941. } else
  942. pfn = page_to_pfn(page[0]);
  943. return pfn;
  944. }
  945. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  946. {
  947. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  948. }
  949. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  950. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  951. bool write_fault, bool *writable)
  952. {
  953. unsigned long addr;
  954. if (async)
  955. *async = false;
  956. addr = gfn_to_hva(kvm, gfn);
  957. if (kvm_is_error_hva(addr)) {
  958. get_page(bad_page);
  959. return page_to_pfn(bad_page);
  960. }
  961. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  962. }
  963. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  964. {
  965. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  966. }
  967. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  968. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  969. bool write_fault, bool *writable)
  970. {
  971. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  972. }
  973. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  974. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  975. {
  976. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  977. }
  978. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  979. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  980. bool *writable)
  981. {
  982. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  983. }
  984. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  985. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  986. struct kvm_memory_slot *slot, gfn_t gfn)
  987. {
  988. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  989. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  990. }
  991. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  992. int nr_pages)
  993. {
  994. unsigned long addr;
  995. gfn_t entry;
  996. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  997. if (kvm_is_error_hva(addr))
  998. return -1;
  999. if (entry < nr_pages)
  1000. return 0;
  1001. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1002. }
  1003. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1004. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1005. {
  1006. pfn_t pfn;
  1007. pfn = gfn_to_pfn(kvm, gfn);
  1008. if (!kvm_is_mmio_pfn(pfn))
  1009. return pfn_to_page(pfn);
  1010. WARN_ON(kvm_is_mmio_pfn(pfn));
  1011. get_page(bad_page);
  1012. return bad_page;
  1013. }
  1014. EXPORT_SYMBOL_GPL(gfn_to_page);
  1015. void kvm_release_page_clean(struct page *page)
  1016. {
  1017. kvm_release_pfn_clean(page_to_pfn(page));
  1018. }
  1019. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1020. void kvm_release_pfn_clean(pfn_t pfn)
  1021. {
  1022. if (!kvm_is_mmio_pfn(pfn))
  1023. put_page(pfn_to_page(pfn));
  1024. }
  1025. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1026. void kvm_release_page_dirty(struct page *page)
  1027. {
  1028. kvm_release_pfn_dirty(page_to_pfn(page));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1031. void kvm_release_pfn_dirty(pfn_t pfn)
  1032. {
  1033. kvm_set_pfn_dirty(pfn);
  1034. kvm_release_pfn_clean(pfn);
  1035. }
  1036. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1037. void kvm_set_page_dirty(struct page *page)
  1038. {
  1039. kvm_set_pfn_dirty(page_to_pfn(page));
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1042. void kvm_set_pfn_dirty(pfn_t pfn)
  1043. {
  1044. if (!kvm_is_mmio_pfn(pfn)) {
  1045. struct page *page = pfn_to_page(pfn);
  1046. if (!PageReserved(page))
  1047. SetPageDirty(page);
  1048. }
  1049. }
  1050. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1051. void kvm_set_pfn_accessed(pfn_t pfn)
  1052. {
  1053. if (!kvm_is_mmio_pfn(pfn))
  1054. mark_page_accessed(pfn_to_page(pfn));
  1055. }
  1056. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1057. void kvm_get_pfn(pfn_t pfn)
  1058. {
  1059. if (!kvm_is_mmio_pfn(pfn))
  1060. get_page(pfn_to_page(pfn));
  1061. }
  1062. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1063. static int next_segment(unsigned long len, int offset)
  1064. {
  1065. if (len > PAGE_SIZE - offset)
  1066. return PAGE_SIZE - offset;
  1067. else
  1068. return len;
  1069. }
  1070. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1071. int len)
  1072. {
  1073. int r;
  1074. unsigned long addr;
  1075. addr = gfn_to_hva(kvm, gfn);
  1076. if (kvm_is_error_hva(addr))
  1077. return -EFAULT;
  1078. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1079. if (r)
  1080. return -EFAULT;
  1081. return 0;
  1082. }
  1083. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1084. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1085. {
  1086. gfn_t gfn = gpa >> PAGE_SHIFT;
  1087. int seg;
  1088. int offset = offset_in_page(gpa);
  1089. int ret;
  1090. while ((seg = next_segment(len, offset)) != 0) {
  1091. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1092. if (ret < 0)
  1093. return ret;
  1094. offset = 0;
  1095. len -= seg;
  1096. data += seg;
  1097. ++gfn;
  1098. }
  1099. return 0;
  1100. }
  1101. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1102. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1103. unsigned long len)
  1104. {
  1105. int r;
  1106. unsigned long addr;
  1107. gfn_t gfn = gpa >> PAGE_SHIFT;
  1108. int offset = offset_in_page(gpa);
  1109. addr = gfn_to_hva(kvm, gfn);
  1110. if (kvm_is_error_hva(addr))
  1111. return -EFAULT;
  1112. pagefault_disable();
  1113. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1114. pagefault_enable();
  1115. if (r)
  1116. return -EFAULT;
  1117. return 0;
  1118. }
  1119. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1120. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1121. int offset, int len)
  1122. {
  1123. int r;
  1124. unsigned long addr;
  1125. addr = gfn_to_hva(kvm, gfn);
  1126. if (kvm_is_error_hva(addr))
  1127. return -EFAULT;
  1128. r = __copy_to_user((void __user *)addr + offset, data, len);
  1129. if (r)
  1130. return -EFAULT;
  1131. mark_page_dirty(kvm, gfn);
  1132. return 0;
  1133. }
  1134. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1135. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1136. unsigned long len)
  1137. {
  1138. gfn_t gfn = gpa >> PAGE_SHIFT;
  1139. int seg;
  1140. int offset = offset_in_page(gpa);
  1141. int ret;
  1142. while ((seg = next_segment(len, offset)) != 0) {
  1143. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1144. if (ret < 0)
  1145. return ret;
  1146. offset = 0;
  1147. len -= seg;
  1148. data += seg;
  1149. ++gfn;
  1150. }
  1151. return 0;
  1152. }
  1153. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1154. gpa_t gpa)
  1155. {
  1156. struct kvm_memslots *slots = kvm_memslots(kvm);
  1157. int offset = offset_in_page(gpa);
  1158. gfn_t gfn = gpa >> PAGE_SHIFT;
  1159. ghc->gpa = gpa;
  1160. ghc->generation = slots->generation;
  1161. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1162. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1163. if (!kvm_is_error_hva(ghc->hva))
  1164. ghc->hva += offset;
  1165. else
  1166. return -EFAULT;
  1167. return 0;
  1168. }
  1169. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1170. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1171. void *data, unsigned long len)
  1172. {
  1173. struct kvm_memslots *slots = kvm_memslots(kvm);
  1174. int r;
  1175. if (slots->generation != ghc->generation)
  1176. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1177. if (kvm_is_error_hva(ghc->hva))
  1178. return -EFAULT;
  1179. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1180. if (r)
  1181. return -EFAULT;
  1182. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1183. return 0;
  1184. }
  1185. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1186. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1187. void *data, unsigned long len)
  1188. {
  1189. struct kvm_memslots *slots = kvm_memslots(kvm);
  1190. int r;
  1191. if (slots->generation != ghc->generation)
  1192. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1193. if (kvm_is_error_hva(ghc->hva))
  1194. return -EFAULT;
  1195. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1196. if (r)
  1197. return -EFAULT;
  1198. return 0;
  1199. }
  1200. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1201. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1202. {
  1203. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1204. offset, len);
  1205. }
  1206. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1207. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1208. {
  1209. gfn_t gfn = gpa >> PAGE_SHIFT;
  1210. int seg;
  1211. int offset = offset_in_page(gpa);
  1212. int ret;
  1213. while ((seg = next_segment(len, offset)) != 0) {
  1214. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1215. if (ret < 0)
  1216. return ret;
  1217. offset = 0;
  1218. len -= seg;
  1219. ++gfn;
  1220. }
  1221. return 0;
  1222. }
  1223. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1224. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1225. gfn_t gfn)
  1226. {
  1227. if (memslot && memslot->dirty_bitmap) {
  1228. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1229. /* TODO: introduce set_bit_le() and use it */
  1230. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1231. }
  1232. }
  1233. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1234. {
  1235. struct kvm_memory_slot *memslot;
  1236. memslot = gfn_to_memslot(kvm, gfn);
  1237. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1238. }
  1239. /*
  1240. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1241. */
  1242. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1243. {
  1244. DEFINE_WAIT(wait);
  1245. for (;;) {
  1246. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1247. if (kvm_arch_vcpu_runnable(vcpu)) {
  1248. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1249. break;
  1250. }
  1251. if (kvm_cpu_has_pending_timer(vcpu))
  1252. break;
  1253. if (signal_pending(current))
  1254. break;
  1255. schedule();
  1256. }
  1257. finish_wait(&vcpu->wq, &wait);
  1258. }
  1259. #ifndef CONFIG_S390
  1260. /*
  1261. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1262. */
  1263. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1264. {
  1265. int me;
  1266. int cpu = vcpu->cpu;
  1267. wait_queue_head_t *wqp;
  1268. wqp = kvm_arch_vcpu_wq(vcpu);
  1269. if (waitqueue_active(wqp)) {
  1270. wake_up_interruptible(wqp);
  1271. ++vcpu->stat.halt_wakeup;
  1272. }
  1273. me = get_cpu();
  1274. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1275. if (kvm_arch_vcpu_should_kick(vcpu))
  1276. smp_send_reschedule(cpu);
  1277. put_cpu();
  1278. }
  1279. #endif /* !CONFIG_S390 */
  1280. void kvm_resched(struct kvm_vcpu *vcpu)
  1281. {
  1282. if (!need_resched())
  1283. return;
  1284. cond_resched();
  1285. }
  1286. EXPORT_SYMBOL_GPL(kvm_resched);
  1287. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1288. {
  1289. struct pid *pid;
  1290. struct task_struct *task = NULL;
  1291. rcu_read_lock();
  1292. pid = rcu_dereference(target->pid);
  1293. if (pid)
  1294. task = get_pid_task(target->pid, PIDTYPE_PID);
  1295. rcu_read_unlock();
  1296. if (!task)
  1297. return false;
  1298. if (task->flags & PF_VCPU) {
  1299. put_task_struct(task);
  1300. return false;
  1301. }
  1302. if (yield_to(task, 1)) {
  1303. put_task_struct(task);
  1304. return true;
  1305. }
  1306. put_task_struct(task);
  1307. return false;
  1308. }
  1309. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1310. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1311. {
  1312. struct kvm *kvm = me->kvm;
  1313. struct kvm_vcpu *vcpu;
  1314. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1315. int yielded = 0;
  1316. int pass;
  1317. int i;
  1318. /*
  1319. * We boost the priority of a VCPU that is runnable but not
  1320. * currently running, because it got preempted by something
  1321. * else and called schedule in __vcpu_run. Hopefully that
  1322. * VCPU is holding the lock that we need and will release it.
  1323. * We approximate round-robin by starting at the last boosted VCPU.
  1324. */
  1325. for (pass = 0; pass < 2 && !yielded; pass++) {
  1326. kvm_for_each_vcpu(i, vcpu, kvm) {
  1327. if (!pass && i <= last_boosted_vcpu) {
  1328. i = last_boosted_vcpu;
  1329. continue;
  1330. } else if (pass && i > last_boosted_vcpu)
  1331. break;
  1332. if (vcpu == me)
  1333. continue;
  1334. if (waitqueue_active(&vcpu->wq))
  1335. continue;
  1336. if (kvm_vcpu_yield_to(vcpu)) {
  1337. kvm->last_boosted_vcpu = i;
  1338. yielded = 1;
  1339. break;
  1340. }
  1341. }
  1342. }
  1343. }
  1344. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1345. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1346. {
  1347. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1348. struct page *page;
  1349. if (vmf->pgoff == 0)
  1350. page = virt_to_page(vcpu->run);
  1351. #ifdef CONFIG_X86
  1352. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1353. page = virt_to_page(vcpu->arch.pio_data);
  1354. #endif
  1355. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1356. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1357. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1358. #endif
  1359. else
  1360. return kvm_arch_vcpu_fault(vcpu, vmf);
  1361. get_page(page);
  1362. vmf->page = page;
  1363. return 0;
  1364. }
  1365. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1366. .fault = kvm_vcpu_fault,
  1367. };
  1368. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1369. {
  1370. vma->vm_ops = &kvm_vcpu_vm_ops;
  1371. return 0;
  1372. }
  1373. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1374. {
  1375. struct kvm_vcpu *vcpu = filp->private_data;
  1376. kvm_put_kvm(vcpu->kvm);
  1377. return 0;
  1378. }
  1379. static struct file_operations kvm_vcpu_fops = {
  1380. .release = kvm_vcpu_release,
  1381. .unlocked_ioctl = kvm_vcpu_ioctl,
  1382. #ifdef CONFIG_COMPAT
  1383. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1384. #endif
  1385. .mmap = kvm_vcpu_mmap,
  1386. .llseek = noop_llseek,
  1387. };
  1388. /*
  1389. * Allocates an inode for the vcpu.
  1390. */
  1391. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1392. {
  1393. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1394. }
  1395. /*
  1396. * Creates some virtual cpus. Good luck creating more than one.
  1397. */
  1398. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1399. {
  1400. int r;
  1401. struct kvm_vcpu *vcpu, *v;
  1402. vcpu = kvm_arch_vcpu_create(kvm, id);
  1403. if (IS_ERR(vcpu))
  1404. return PTR_ERR(vcpu);
  1405. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1406. r = kvm_arch_vcpu_setup(vcpu);
  1407. if (r)
  1408. goto vcpu_destroy;
  1409. mutex_lock(&kvm->lock);
  1410. if (!kvm_vcpu_compatible(vcpu)) {
  1411. r = -EINVAL;
  1412. goto unlock_vcpu_destroy;
  1413. }
  1414. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1415. r = -EINVAL;
  1416. goto unlock_vcpu_destroy;
  1417. }
  1418. kvm_for_each_vcpu(r, v, kvm)
  1419. if (v->vcpu_id == id) {
  1420. r = -EEXIST;
  1421. goto unlock_vcpu_destroy;
  1422. }
  1423. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1424. /* Now it's all set up, let userspace reach it */
  1425. kvm_get_kvm(kvm);
  1426. r = create_vcpu_fd(vcpu);
  1427. if (r < 0) {
  1428. kvm_put_kvm(kvm);
  1429. goto unlock_vcpu_destroy;
  1430. }
  1431. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1432. smp_wmb();
  1433. atomic_inc(&kvm->online_vcpus);
  1434. mutex_unlock(&kvm->lock);
  1435. return r;
  1436. unlock_vcpu_destroy:
  1437. mutex_unlock(&kvm->lock);
  1438. vcpu_destroy:
  1439. kvm_arch_vcpu_destroy(vcpu);
  1440. return r;
  1441. }
  1442. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1443. {
  1444. if (sigset) {
  1445. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1446. vcpu->sigset_active = 1;
  1447. vcpu->sigset = *sigset;
  1448. } else
  1449. vcpu->sigset_active = 0;
  1450. return 0;
  1451. }
  1452. static long kvm_vcpu_ioctl(struct file *filp,
  1453. unsigned int ioctl, unsigned long arg)
  1454. {
  1455. struct kvm_vcpu *vcpu = filp->private_data;
  1456. void __user *argp = (void __user *)arg;
  1457. int r;
  1458. struct kvm_fpu *fpu = NULL;
  1459. struct kvm_sregs *kvm_sregs = NULL;
  1460. if (vcpu->kvm->mm != current->mm)
  1461. return -EIO;
  1462. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1463. /*
  1464. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1465. * so vcpu_load() would break it.
  1466. */
  1467. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1468. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1469. #endif
  1470. vcpu_load(vcpu);
  1471. switch (ioctl) {
  1472. case KVM_RUN:
  1473. r = -EINVAL;
  1474. if (arg)
  1475. goto out;
  1476. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1477. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1478. break;
  1479. case KVM_GET_REGS: {
  1480. struct kvm_regs *kvm_regs;
  1481. r = -ENOMEM;
  1482. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1483. if (!kvm_regs)
  1484. goto out;
  1485. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1486. if (r)
  1487. goto out_free1;
  1488. r = -EFAULT;
  1489. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1490. goto out_free1;
  1491. r = 0;
  1492. out_free1:
  1493. kfree(kvm_regs);
  1494. break;
  1495. }
  1496. case KVM_SET_REGS: {
  1497. struct kvm_regs *kvm_regs;
  1498. r = -ENOMEM;
  1499. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1500. if (IS_ERR(kvm_regs)) {
  1501. r = PTR_ERR(kvm_regs);
  1502. goto out;
  1503. }
  1504. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1505. if (r)
  1506. goto out_free2;
  1507. r = 0;
  1508. out_free2:
  1509. kfree(kvm_regs);
  1510. break;
  1511. }
  1512. case KVM_GET_SREGS: {
  1513. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1514. r = -ENOMEM;
  1515. if (!kvm_sregs)
  1516. goto out;
  1517. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1518. if (r)
  1519. goto out;
  1520. r = -EFAULT;
  1521. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1522. goto out;
  1523. r = 0;
  1524. break;
  1525. }
  1526. case KVM_SET_SREGS: {
  1527. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1528. if (IS_ERR(kvm_sregs)) {
  1529. r = PTR_ERR(kvm_sregs);
  1530. goto out;
  1531. }
  1532. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1533. if (r)
  1534. goto out;
  1535. r = 0;
  1536. break;
  1537. }
  1538. case KVM_GET_MP_STATE: {
  1539. struct kvm_mp_state mp_state;
  1540. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1541. if (r)
  1542. goto out;
  1543. r = -EFAULT;
  1544. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1545. goto out;
  1546. r = 0;
  1547. break;
  1548. }
  1549. case KVM_SET_MP_STATE: {
  1550. struct kvm_mp_state mp_state;
  1551. r = -EFAULT;
  1552. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1553. goto out;
  1554. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1555. if (r)
  1556. goto out;
  1557. r = 0;
  1558. break;
  1559. }
  1560. case KVM_TRANSLATE: {
  1561. struct kvm_translation tr;
  1562. r = -EFAULT;
  1563. if (copy_from_user(&tr, argp, sizeof tr))
  1564. goto out;
  1565. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1566. if (r)
  1567. goto out;
  1568. r = -EFAULT;
  1569. if (copy_to_user(argp, &tr, sizeof tr))
  1570. goto out;
  1571. r = 0;
  1572. break;
  1573. }
  1574. case KVM_SET_GUEST_DEBUG: {
  1575. struct kvm_guest_debug dbg;
  1576. r = -EFAULT;
  1577. if (copy_from_user(&dbg, argp, sizeof dbg))
  1578. goto out;
  1579. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1580. if (r)
  1581. goto out;
  1582. r = 0;
  1583. break;
  1584. }
  1585. case KVM_SET_SIGNAL_MASK: {
  1586. struct kvm_signal_mask __user *sigmask_arg = argp;
  1587. struct kvm_signal_mask kvm_sigmask;
  1588. sigset_t sigset, *p;
  1589. p = NULL;
  1590. if (argp) {
  1591. r = -EFAULT;
  1592. if (copy_from_user(&kvm_sigmask, argp,
  1593. sizeof kvm_sigmask))
  1594. goto out;
  1595. r = -EINVAL;
  1596. if (kvm_sigmask.len != sizeof sigset)
  1597. goto out;
  1598. r = -EFAULT;
  1599. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1600. sizeof sigset))
  1601. goto out;
  1602. p = &sigset;
  1603. }
  1604. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1605. break;
  1606. }
  1607. case KVM_GET_FPU: {
  1608. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1609. r = -ENOMEM;
  1610. if (!fpu)
  1611. goto out;
  1612. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1613. if (r)
  1614. goto out;
  1615. r = -EFAULT;
  1616. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1617. goto out;
  1618. r = 0;
  1619. break;
  1620. }
  1621. case KVM_SET_FPU: {
  1622. fpu = memdup_user(argp, sizeof(*fpu));
  1623. if (IS_ERR(fpu)) {
  1624. r = PTR_ERR(fpu);
  1625. goto out;
  1626. }
  1627. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1628. if (r)
  1629. goto out;
  1630. r = 0;
  1631. break;
  1632. }
  1633. default:
  1634. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1635. }
  1636. out:
  1637. vcpu_put(vcpu);
  1638. kfree(fpu);
  1639. kfree(kvm_sregs);
  1640. return r;
  1641. }
  1642. #ifdef CONFIG_COMPAT
  1643. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1644. unsigned int ioctl, unsigned long arg)
  1645. {
  1646. struct kvm_vcpu *vcpu = filp->private_data;
  1647. void __user *argp = compat_ptr(arg);
  1648. int r;
  1649. if (vcpu->kvm->mm != current->mm)
  1650. return -EIO;
  1651. switch (ioctl) {
  1652. case KVM_SET_SIGNAL_MASK: {
  1653. struct kvm_signal_mask __user *sigmask_arg = argp;
  1654. struct kvm_signal_mask kvm_sigmask;
  1655. compat_sigset_t csigset;
  1656. sigset_t sigset;
  1657. if (argp) {
  1658. r = -EFAULT;
  1659. if (copy_from_user(&kvm_sigmask, argp,
  1660. sizeof kvm_sigmask))
  1661. goto out;
  1662. r = -EINVAL;
  1663. if (kvm_sigmask.len != sizeof csigset)
  1664. goto out;
  1665. r = -EFAULT;
  1666. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1667. sizeof csigset))
  1668. goto out;
  1669. }
  1670. sigset_from_compat(&sigset, &csigset);
  1671. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1672. break;
  1673. }
  1674. default:
  1675. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1676. }
  1677. out:
  1678. return r;
  1679. }
  1680. #endif
  1681. static long kvm_vm_ioctl(struct file *filp,
  1682. unsigned int ioctl, unsigned long arg)
  1683. {
  1684. struct kvm *kvm = filp->private_data;
  1685. void __user *argp = (void __user *)arg;
  1686. int r;
  1687. if (kvm->mm != current->mm)
  1688. return -EIO;
  1689. switch (ioctl) {
  1690. case KVM_CREATE_VCPU:
  1691. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1692. if (r < 0)
  1693. goto out;
  1694. break;
  1695. case KVM_SET_USER_MEMORY_REGION: {
  1696. struct kvm_userspace_memory_region kvm_userspace_mem;
  1697. r = -EFAULT;
  1698. if (copy_from_user(&kvm_userspace_mem, argp,
  1699. sizeof kvm_userspace_mem))
  1700. goto out;
  1701. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1702. if (r)
  1703. goto out;
  1704. break;
  1705. }
  1706. case KVM_GET_DIRTY_LOG: {
  1707. struct kvm_dirty_log log;
  1708. r = -EFAULT;
  1709. if (copy_from_user(&log, argp, sizeof log))
  1710. goto out;
  1711. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1712. if (r)
  1713. goto out;
  1714. break;
  1715. }
  1716. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1717. case KVM_REGISTER_COALESCED_MMIO: {
  1718. struct kvm_coalesced_mmio_zone zone;
  1719. r = -EFAULT;
  1720. if (copy_from_user(&zone, argp, sizeof zone))
  1721. goto out;
  1722. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1723. if (r)
  1724. goto out;
  1725. r = 0;
  1726. break;
  1727. }
  1728. case KVM_UNREGISTER_COALESCED_MMIO: {
  1729. struct kvm_coalesced_mmio_zone zone;
  1730. r = -EFAULT;
  1731. if (copy_from_user(&zone, argp, sizeof zone))
  1732. goto out;
  1733. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1734. if (r)
  1735. goto out;
  1736. r = 0;
  1737. break;
  1738. }
  1739. #endif
  1740. case KVM_IRQFD: {
  1741. struct kvm_irqfd data;
  1742. r = -EFAULT;
  1743. if (copy_from_user(&data, argp, sizeof data))
  1744. goto out;
  1745. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1746. break;
  1747. }
  1748. case KVM_IOEVENTFD: {
  1749. struct kvm_ioeventfd data;
  1750. r = -EFAULT;
  1751. if (copy_from_user(&data, argp, sizeof data))
  1752. goto out;
  1753. r = kvm_ioeventfd(kvm, &data);
  1754. break;
  1755. }
  1756. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1757. case KVM_SET_BOOT_CPU_ID:
  1758. r = 0;
  1759. mutex_lock(&kvm->lock);
  1760. if (atomic_read(&kvm->online_vcpus) != 0)
  1761. r = -EBUSY;
  1762. else
  1763. kvm->bsp_vcpu_id = arg;
  1764. mutex_unlock(&kvm->lock);
  1765. break;
  1766. #endif
  1767. #ifdef CONFIG_HAVE_KVM_MSI
  1768. case KVM_SIGNAL_MSI: {
  1769. struct kvm_msi msi;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&msi, argp, sizeof msi))
  1772. goto out;
  1773. r = kvm_send_userspace_msi(kvm, &msi);
  1774. break;
  1775. }
  1776. #endif
  1777. default:
  1778. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1779. if (r == -ENOTTY)
  1780. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1781. }
  1782. out:
  1783. return r;
  1784. }
  1785. #ifdef CONFIG_COMPAT
  1786. struct compat_kvm_dirty_log {
  1787. __u32 slot;
  1788. __u32 padding1;
  1789. union {
  1790. compat_uptr_t dirty_bitmap; /* one bit per page */
  1791. __u64 padding2;
  1792. };
  1793. };
  1794. static long kvm_vm_compat_ioctl(struct file *filp,
  1795. unsigned int ioctl, unsigned long arg)
  1796. {
  1797. struct kvm *kvm = filp->private_data;
  1798. int r;
  1799. if (kvm->mm != current->mm)
  1800. return -EIO;
  1801. switch (ioctl) {
  1802. case KVM_GET_DIRTY_LOG: {
  1803. struct compat_kvm_dirty_log compat_log;
  1804. struct kvm_dirty_log log;
  1805. r = -EFAULT;
  1806. if (copy_from_user(&compat_log, (void __user *)arg,
  1807. sizeof(compat_log)))
  1808. goto out;
  1809. log.slot = compat_log.slot;
  1810. log.padding1 = compat_log.padding1;
  1811. log.padding2 = compat_log.padding2;
  1812. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1813. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1814. if (r)
  1815. goto out;
  1816. break;
  1817. }
  1818. default:
  1819. r = kvm_vm_ioctl(filp, ioctl, arg);
  1820. }
  1821. out:
  1822. return r;
  1823. }
  1824. #endif
  1825. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1826. {
  1827. struct page *page[1];
  1828. unsigned long addr;
  1829. int npages;
  1830. gfn_t gfn = vmf->pgoff;
  1831. struct kvm *kvm = vma->vm_file->private_data;
  1832. addr = gfn_to_hva(kvm, gfn);
  1833. if (kvm_is_error_hva(addr))
  1834. return VM_FAULT_SIGBUS;
  1835. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1836. NULL);
  1837. if (unlikely(npages != 1))
  1838. return VM_FAULT_SIGBUS;
  1839. vmf->page = page[0];
  1840. return 0;
  1841. }
  1842. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1843. .fault = kvm_vm_fault,
  1844. };
  1845. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1846. {
  1847. vma->vm_ops = &kvm_vm_vm_ops;
  1848. return 0;
  1849. }
  1850. static struct file_operations kvm_vm_fops = {
  1851. .release = kvm_vm_release,
  1852. .unlocked_ioctl = kvm_vm_ioctl,
  1853. #ifdef CONFIG_COMPAT
  1854. .compat_ioctl = kvm_vm_compat_ioctl,
  1855. #endif
  1856. .mmap = kvm_vm_mmap,
  1857. .llseek = noop_llseek,
  1858. };
  1859. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1860. {
  1861. int r;
  1862. struct kvm *kvm;
  1863. kvm = kvm_create_vm(type);
  1864. if (IS_ERR(kvm))
  1865. return PTR_ERR(kvm);
  1866. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1867. r = kvm_coalesced_mmio_init(kvm);
  1868. if (r < 0) {
  1869. kvm_put_kvm(kvm);
  1870. return r;
  1871. }
  1872. #endif
  1873. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1874. if (r < 0)
  1875. kvm_put_kvm(kvm);
  1876. return r;
  1877. }
  1878. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1879. {
  1880. switch (arg) {
  1881. case KVM_CAP_USER_MEMORY:
  1882. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1883. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1884. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1885. case KVM_CAP_SET_BOOT_CPU_ID:
  1886. #endif
  1887. case KVM_CAP_INTERNAL_ERROR_DATA:
  1888. #ifdef CONFIG_HAVE_KVM_MSI
  1889. case KVM_CAP_SIGNAL_MSI:
  1890. #endif
  1891. return 1;
  1892. #ifdef KVM_CAP_IRQ_ROUTING
  1893. case KVM_CAP_IRQ_ROUTING:
  1894. return KVM_MAX_IRQ_ROUTES;
  1895. #endif
  1896. default:
  1897. break;
  1898. }
  1899. return kvm_dev_ioctl_check_extension(arg);
  1900. }
  1901. static long kvm_dev_ioctl(struct file *filp,
  1902. unsigned int ioctl, unsigned long arg)
  1903. {
  1904. long r = -EINVAL;
  1905. switch (ioctl) {
  1906. case KVM_GET_API_VERSION:
  1907. r = -EINVAL;
  1908. if (arg)
  1909. goto out;
  1910. r = KVM_API_VERSION;
  1911. break;
  1912. case KVM_CREATE_VM:
  1913. r = kvm_dev_ioctl_create_vm(arg);
  1914. break;
  1915. case KVM_CHECK_EXTENSION:
  1916. r = kvm_dev_ioctl_check_extension_generic(arg);
  1917. break;
  1918. case KVM_GET_VCPU_MMAP_SIZE:
  1919. r = -EINVAL;
  1920. if (arg)
  1921. goto out;
  1922. r = PAGE_SIZE; /* struct kvm_run */
  1923. #ifdef CONFIG_X86
  1924. r += PAGE_SIZE; /* pio data page */
  1925. #endif
  1926. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1927. r += PAGE_SIZE; /* coalesced mmio ring page */
  1928. #endif
  1929. break;
  1930. case KVM_TRACE_ENABLE:
  1931. case KVM_TRACE_PAUSE:
  1932. case KVM_TRACE_DISABLE:
  1933. r = -EOPNOTSUPP;
  1934. break;
  1935. default:
  1936. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1937. }
  1938. out:
  1939. return r;
  1940. }
  1941. static struct file_operations kvm_chardev_ops = {
  1942. .unlocked_ioctl = kvm_dev_ioctl,
  1943. .compat_ioctl = kvm_dev_ioctl,
  1944. .llseek = noop_llseek,
  1945. };
  1946. static struct miscdevice kvm_dev = {
  1947. KVM_MINOR,
  1948. "kvm",
  1949. &kvm_chardev_ops,
  1950. };
  1951. static void hardware_enable_nolock(void *junk)
  1952. {
  1953. int cpu = raw_smp_processor_id();
  1954. int r;
  1955. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1956. return;
  1957. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1958. r = kvm_arch_hardware_enable(NULL);
  1959. if (r) {
  1960. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1961. atomic_inc(&hardware_enable_failed);
  1962. printk(KERN_INFO "kvm: enabling virtualization on "
  1963. "CPU%d failed\n", cpu);
  1964. }
  1965. }
  1966. static void hardware_enable(void *junk)
  1967. {
  1968. raw_spin_lock(&kvm_lock);
  1969. hardware_enable_nolock(junk);
  1970. raw_spin_unlock(&kvm_lock);
  1971. }
  1972. static void hardware_disable_nolock(void *junk)
  1973. {
  1974. int cpu = raw_smp_processor_id();
  1975. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1976. return;
  1977. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1978. kvm_arch_hardware_disable(NULL);
  1979. }
  1980. static void hardware_disable(void *junk)
  1981. {
  1982. raw_spin_lock(&kvm_lock);
  1983. hardware_disable_nolock(junk);
  1984. raw_spin_unlock(&kvm_lock);
  1985. }
  1986. static void hardware_disable_all_nolock(void)
  1987. {
  1988. BUG_ON(!kvm_usage_count);
  1989. kvm_usage_count--;
  1990. if (!kvm_usage_count)
  1991. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1992. }
  1993. static void hardware_disable_all(void)
  1994. {
  1995. raw_spin_lock(&kvm_lock);
  1996. hardware_disable_all_nolock();
  1997. raw_spin_unlock(&kvm_lock);
  1998. }
  1999. static int hardware_enable_all(void)
  2000. {
  2001. int r = 0;
  2002. raw_spin_lock(&kvm_lock);
  2003. kvm_usage_count++;
  2004. if (kvm_usage_count == 1) {
  2005. atomic_set(&hardware_enable_failed, 0);
  2006. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2007. if (atomic_read(&hardware_enable_failed)) {
  2008. hardware_disable_all_nolock();
  2009. r = -EBUSY;
  2010. }
  2011. }
  2012. raw_spin_unlock(&kvm_lock);
  2013. return r;
  2014. }
  2015. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2016. void *v)
  2017. {
  2018. int cpu = (long)v;
  2019. if (!kvm_usage_count)
  2020. return NOTIFY_OK;
  2021. val &= ~CPU_TASKS_FROZEN;
  2022. switch (val) {
  2023. case CPU_DYING:
  2024. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2025. cpu);
  2026. hardware_disable(NULL);
  2027. break;
  2028. case CPU_STARTING:
  2029. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2030. cpu);
  2031. hardware_enable(NULL);
  2032. break;
  2033. }
  2034. return NOTIFY_OK;
  2035. }
  2036. asmlinkage void kvm_spurious_fault(void)
  2037. {
  2038. /* Fault while not rebooting. We want the trace. */
  2039. BUG();
  2040. }
  2041. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2042. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2043. void *v)
  2044. {
  2045. /*
  2046. * Some (well, at least mine) BIOSes hang on reboot if
  2047. * in vmx root mode.
  2048. *
  2049. * And Intel TXT required VMX off for all cpu when system shutdown.
  2050. */
  2051. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2052. kvm_rebooting = true;
  2053. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2054. return NOTIFY_OK;
  2055. }
  2056. static struct notifier_block kvm_reboot_notifier = {
  2057. .notifier_call = kvm_reboot,
  2058. .priority = 0,
  2059. };
  2060. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2061. {
  2062. int i;
  2063. for (i = 0; i < bus->dev_count; i++) {
  2064. struct kvm_io_device *pos = bus->range[i].dev;
  2065. kvm_iodevice_destructor(pos);
  2066. }
  2067. kfree(bus);
  2068. }
  2069. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2070. {
  2071. const struct kvm_io_range *r1 = p1;
  2072. const struct kvm_io_range *r2 = p2;
  2073. if (r1->addr < r2->addr)
  2074. return -1;
  2075. if (r1->addr + r1->len > r2->addr + r2->len)
  2076. return 1;
  2077. return 0;
  2078. }
  2079. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2080. gpa_t addr, int len)
  2081. {
  2082. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2083. .addr = addr,
  2084. .len = len,
  2085. .dev = dev,
  2086. };
  2087. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2088. kvm_io_bus_sort_cmp, NULL);
  2089. return 0;
  2090. }
  2091. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2092. gpa_t addr, int len)
  2093. {
  2094. struct kvm_io_range *range, key;
  2095. int off;
  2096. key = (struct kvm_io_range) {
  2097. .addr = addr,
  2098. .len = len,
  2099. };
  2100. range = bsearch(&key, bus->range, bus->dev_count,
  2101. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2102. if (range == NULL)
  2103. return -ENOENT;
  2104. off = range - bus->range;
  2105. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2106. off--;
  2107. return off;
  2108. }
  2109. /* kvm_io_bus_write - called under kvm->slots_lock */
  2110. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2111. int len, const void *val)
  2112. {
  2113. int idx;
  2114. struct kvm_io_bus *bus;
  2115. struct kvm_io_range range;
  2116. range = (struct kvm_io_range) {
  2117. .addr = addr,
  2118. .len = len,
  2119. };
  2120. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2121. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2122. if (idx < 0)
  2123. return -EOPNOTSUPP;
  2124. while (idx < bus->dev_count &&
  2125. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2126. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2127. return 0;
  2128. idx++;
  2129. }
  2130. return -EOPNOTSUPP;
  2131. }
  2132. /* kvm_io_bus_read - called under kvm->slots_lock */
  2133. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2134. int len, void *val)
  2135. {
  2136. int idx;
  2137. struct kvm_io_bus *bus;
  2138. struct kvm_io_range range;
  2139. range = (struct kvm_io_range) {
  2140. .addr = addr,
  2141. .len = len,
  2142. };
  2143. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2144. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2145. if (idx < 0)
  2146. return -EOPNOTSUPP;
  2147. while (idx < bus->dev_count &&
  2148. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2149. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2150. return 0;
  2151. idx++;
  2152. }
  2153. return -EOPNOTSUPP;
  2154. }
  2155. /* Caller must hold slots_lock. */
  2156. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2157. int len, struct kvm_io_device *dev)
  2158. {
  2159. struct kvm_io_bus *new_bus, *bus;
  2160. bus = kvm->buses[bus_idx];
  2161. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2162. return -ENOSPC;
  2163. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2164. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2165. if (!new_bus)
  2166. return -ENOMEM;
  2167. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2168. sizeof(struct kvm_io_range)));
  2169. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2170. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2171. synchronize_srcu_expedited(&kvm->srcu);
  2172. kfree(bus);
  2173. return 0;
  2174. }
  2175. /* Caller must hold slots_lock. */
  2176. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2177. struct kvm_io_device *dev)
  2178. {
  2179. int i, r;
  2180. struct kvm_io_bus *new_bus, *bus;
  2181. bus = kvm->buses[bus_idx];
  2182. r = -ENOENT;
  2183. for (i = 0; i < bus->dev_count; i++)
  2184. if (bus->range[i].dev == dev) {
  2185. r = 0;
  2186. break;
  2187. }
  2188. if (r)
  2189. return r;
  2190. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2191. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2192. if (!new_bus)
  2193. return -ENOMEM;
  2194. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2195. new_bus->dev_count--;
  2196. memcpy(new_bus->range + i, bus->range + i + 1,
  2197. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2198. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2199. synchronize_srcu_expedited(&kvm->srcu);
  2200. kfree(bus);
  2201. return r;
  2202. }
  2203. static struct notifier_block kvm_cpu_notifier = {
  2204. .notifier_call = kvm_cpu_hotplug,
  2205. };
  2206. static int vm_stat_get(void *_offset, u64 *val)
  2207. {
  2208. unsigned offset = (long)_offset;
  2209. struct kvm *kvm;
  2210. *val = 0;
  2211. raw_spin_lock(&kvm_lock);
  2212. list_for_each_entry(kvm, &vm_list, vm_list)
  2213. *val += *(u32 *)((void *)kvm + offset);
  2214. raw_spin_unlock(&kvm_lock);
  2215. return 0;
  2216. }
  2217. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2218. static int vcpu_stat_get(void *_offset, u64 *val)
  2219. {
  2220. unsigned offset = (long)_offset;
  2221. struct kvm *kvm;
  2222. struct kvm_vcpu *vcpu;
  2223. int i;
  2224. *val = 0;
  2225. raw_spin_lock(&kvm_lock);
  2226. list_for_each_entry(kvm, &vm_list, vm_list)
  2227. kvm_for_each_vcpu(i, vcpu, kvm)
  2228. *val += *(u32 *)((void *)vcpu + offset);
  2229. raw_spin_unlock(&kvm_lock);
  2230. return 0;
  2231. }
  2232. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2233. static const struct file_operations *stat_fops[] = {
  2234. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2235. [KVM_STAT_VM] = &vm_stat_fops,
  2236. };
  2237. static int kvm_init_debug(void)
  2238. {
  2239. int r = -EFAULT;
  2240. struct kvm_stats_debugfs_item *p;
  2241. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2242. if (kvm_debugfs_dir == NULL)
  2243. goto out;
  2244. for (p = debugfs_entries; p->name; ++p) {
  2245. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2246. (void *)(long)p->offset,
  2247. stat_fops[p->kind]);
  2248. if (p->dentry == NULL)
  2249. goto out_dir;
  2250. }
  2251. return 0;
  2252. out_dir:
  2253. debugfs_remove_recursive(kvm_debugfs_dir);
  2254. out:
  2255. return r;
  2256. }
  2257. static void kvm_exit_debug(void)
  2258. {
  2259. struct kvm_stats_debugfs_item *p;
  2260. for (p = debugfs_entries; p->name; ++p)
  2261. debugfs_remove(p->dentry);
  2262. debugfs_remove(kvm_debugfs_dir);
  2263. }
  2264. static int kvm_suspend(void)
  2265. {
  2266. if (kvm_usage_count)
  2267. hardware_disable_nolock(NULL);
  2268. return 0;
  2269. }
  2270. static void kvm_resume(void)
  2271. {
  2272. if (kvm_usage_count) {
  2273. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2274. hardware_enable_nolock(NULL);
  2275. }
  2276. }
  2277. static struct syscore_ops kvm_syscore_ops = {
  2278. .suspend = kvm_suspend,
  2279. .resume = kvm_resume,
  2280. };
  2281. struct page *bad_page;
  2282. pfn_t bad_pfn;
  2283. static inline
  2284. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2285. {
  2286. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2287. }
  2288. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2289. {
  2290. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2291. kvm_arch_vcpu_load(vcpu, cpu);
  2292. }
  2293. static void kvm_sched_out(struct preempt_notifier *pn,
  2294. struct task_struct *next)
  2295. {
  2296. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2297. kvm_arch_vcpu_put(vcpu);
  2298. }
  2299. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2300. struct module *module)
  2301. {
  2302. int r;
  2303. int cpu;
  2304. r = kvm_arch_init(opaque);
  2305. if (r)
  2306. goto out_fail;
  2307. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2308. if (bad_page == NULL) {
  2309. r = -ENOMEM;
  2310. goto out;
  2311. }
  2312. bad_pfn = page_to_pfn(bad_page);
  2313. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2314. if (hwpoison_page == NULL) {
  2315. r = -ENOMEM;
  2316. goto out_free_0;
  2317. }
  2318. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2319. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2320. if (fault_page == NULL) {
  2321. r = -ENOMEM;
  2322. goto out_free_0;
  2323. }
  2324. fault_pfn = page_to_pfn(fault_page);
  2325. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2326. r = -ENOMEM;
  2327. goto out_free_0;
  2328. }
  2329. r = kvm_arch_hardware_setup();
  2330. if (r < 0)
  2331. goto out_free_0a;
  2332. for_each_online_cpu(cpu) {
  2333. smp_call_function_single(cpu,
  2334. kvm_arch_check_processor_compat,
  2335. &r, 1);
  2336. if (r < 0)
  2337. goto out_free_1;
  2338. }
  2339. r = register_cpu_notifier(&kvm_cpu_notifier);
  2340. if (r)
  2341. goto out_free_2;
  2342. register_reboot_notifier(&kvm_reboot_notifier);
  2343. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2344. if (!vcpu_align)
  2345. vcpu_align = __alignof__(struct kvm_vcpu);
  2346. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2347. 0, NULL);
  2348. if (!kvm_vcpu_cache) {
  2349. r = -ENOMEM;
  2350. goto out_free_3;
  2351. }
  2352. r = kvm_async_pf_init();
  2353. if (r)
  2354. goto out_free;
  2355. kvm_chardev_ops.owner = module;
  2356. kvm_vm_fops.owner = module;
  2357. kvm_vcpu_fops.owner = module;
  2358. r = misc_register(&kvm_dev);
  2359. if (r) {
  2360. printk(KERN_ERR "kvm: misc device register failed\n");
  2361. goto out_unreg;
  2362. }
  2363. register_syscore_ops(&kvm_syscore_ops);
  2364. kvm_preempt_ops.sched_in = kvm_sched_in;
  2365. kvm_preempt_ops.sched_out = kvm_sched_out;
  2366. r = kvm_init_debug();
  2367. if (r) {
  2368. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2369. goto out_undebugfs;
  2370. }
  2371. return 0;
  2372. out_undebugfs:
  2373. unregister_syscore_ops(&kvm_syscore_ops);
  2374. out_unreg:
  2375. kvm_async_pf_deinit();
  2376. out_free:
  2377. kmem_cache_destroy(kvm_vcpu_cache);
  2378. out_free_3:
  2379. unregister_reboot_notifier(&kvm_reboot_notifier);
  2380. unregister_cpu_notifier(&kvm_cpu_notifier);
  2381. out_free_2:
  2382. out_free_1:
  2383. kvm_arch_hardware_unsetup();
  2384. out_free_0a:
  2385. free_cpumask_var(cpus_hardware_enabled);
  2386. out_free_0:
  2387. if (fault_page)
  2388. __free_page(fault_page);
  2389. if (hwpoison_page)
  2390. __free_page(hwpoison_page);
  2391. __free_page(bad_page);
  2392. out:
  2393. kvm_arch_exit();
  2394. out_fail:
  2395. return r;
  2396. }
  2397. EXPORT_SYMBOL_GPL(kvm_init);
  2398. void kvm_exit(void)
  2399. {
  2400. kvm_exit_debug();
  2401. misc_deregister(&kvm_dev);
  2402. kmem_cache_destroy(kvm_vcpu_cache);
  2403. kvm_async_pf_deinit();
  2404. unregister_syscore_ops(&kvm_syscore_ops);
  2405. unregister_reboot_notifier(&kvm_reboot_notifier);
  2406. unregister_cpu_notifier(&kvm_cpu_notifier);
  2407. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2408. kvm_arch_hardware_unsetup();
  2409. kvm_arch_exit();
  2410. free_cpumask_var(cpus_hardware_enabled);
  2411. __free_page(hwpoison_page);
  2412. __free_page(bad_page);
  2413. }
  2414. EXPORT_SYMBOL_GPL(kvm_exit);