iwl-eeprom.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/slab.h>
  65. #include <linux/init.h>
  66. #include <net/mac80211.h>
  67. #include "iwl-commands.h"
  68. #include "iwl-dev.h"
  69. #include "iwl-core.h"
  70. #include "iwl-debug.h"
  71. #include "iwl-agn.h"
  72. #include "iwl-eeprom.h"
  73. #include "iwl-io.h"
  74. /************************** EEPROM BANDS ****************************
  75. *
  76. * The iwl_eeprom_band definitions below provide the mapping from the
  77. * EEPROM contents to the specific channel number supported for each
  78. * band.
  79. *
  80. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  81. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  82. * The specific geography and calibration information for that channel
  83. * is contained in the eeprom map itself.
  84. *
  85. * During init, we copy the eeprom information and channel map
  86. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  87. *
  88. * channel_map_24/52 provides the index in the channel_info array for a
  89. * given channel. We have to have two separate maps as there is channel
  90. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  91. * band_2
  92. *
  93. * A value of 0xff stored in the channel_map indicates that the channel
  94. * is not supported by the hardware at all.
  95. *
  96. * A value of 0xfe in the channel_map indicates that the channel is not
  97. * valid for Tx with the current hardware. This means that
  98. * while the system can tune and receive on a given channel, it may not
  99. * be able to associate or transmit any frames on that
  100. * channel. There is no corresponding channel information for that
  101. * entry.
  102. *
  103. *********************************************************************/
  104. /* 2.4 GHz */
  105. const u8 iwl_eeprom_band_1[14] = {
  106. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  107. };
  108. /* 5.2 GHz bands */
  109. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  110. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  111. };
  112. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  113. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  114. };
  115. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  116. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  117. };
  118. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  119. 145, 149, 153, 157, 161, 165
  120. };
  121. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  122. 1, 2, 3, 4, 5, 6, 7
  123. };
  124. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  125. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  126. };
  127. /******************************************************************************
  128. *
  129. * generic NVM functions
  130. *
  131. ******************************************************************************/
  132. /*
  133. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  134. * when accessing the EEPROM; each access is a series of pulses to/from the
  135. * EEPROM chip, not a single event, so even reads could conflict if they
  136. * weren't arbitrated by the semaphore.
  137. */
  138. #define EEPROM_SEM_TIMEOUT 10 /* milliseconds */
  139. #define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
  140. static int iwl_eeprom_acquire_semaphore(struct iwl_bus *bus)
  141. {
  142. u16 count;
  143. int ret;
  144. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  145. /* Request semaphore */
  146. iwl_set_bit(trans(bus), CSR_HW_IF_CONFIG_REG,
  147. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  148. /* See if we got it */
  149. ret = iwl_poll_bit(trans(bus), CSR_HW_IF_CONFIG_REG,
  150. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  151. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  152. EEPROM_SEM_TIMEOUT);
  153. if (ret >= 0) {
  154. IWL_DEBUG_EEPROM(trans(bus),
  155. "Acquired semaphore after %d tries.\n",
  156. count+1);
  157. return ret;
  158. }
  159. }
  160. return ret;
  161. }
  162. static void iwl_eeprom_release_semaphore(struct iwl_bus *bus)
  163. {
  164. iwl_clear_bit(trans(bus), CSR_HW_IF_CONFIG_REG,
  165. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  166. }
  167. static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
  168. {
  169. u32 gp = iwl_read32(trans, CSR_EEPROM_GP) &
  170. CSR_EEPROM_GP_VALID_MSK;
  171. int ret = 0;
  172. IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
  173. switch (gp) {
  174. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  175. if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  176. IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
  177. gp);
  178. ret = -ENOENT;
  179. }
  180. break;
  181. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  182. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  183. if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  184. IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
  185. ret = -ENOENT;
  186. }
  187. break;
  188. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  189. default:
  190. IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
  191. "EEPROM_GP=0x%08x\n",
  192. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  193. ? "OTP" : "EEPROM", gp);
  194. ret = -ENOENT;
  195. break;
  196. }
  197. return ret;
  198. }
  199. u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
  200. {
  201. if (!shrd->eeprom)
  202. return 0;
  203. return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
  204. }
  205. int iwl_eeprom_check_version(struct iwl_priv *priv)
  206. {
  207. u16 eeprom_ver;
  208. u16 calib_ver;
  209. eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
  210. calib_ver = iwl_eeprom_calib_version(priv->shrd);
  211. if (eeprom_ver < cfg(priv)->eeprom_ver ||
  212. calib_ver < cfg(priv)->eeprom_calib_ver)
  213. goto err;
  214. IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
  215. eeprom_ver, calib_ver);
  216. return 0;
  217. err:
  218. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
  219. "CALIB=0x%x < 0x%x\n",
  220. eeprom_ver, cfg(priv)->eeprom_ver,
  221. calib_ver, cfg(priv)->eeprom_calib_ver);
  222. return -EINVAL;
  223. }
  224. int iwl_eeprom_check_sku(struct iwl_priv *priv)
  225. {
  226. struct iwl_shared *shrd = priv->shrd;
  227. u16 radio_cfg;
  228. if (!cfg(priv)->sku) {
  229. /* not using sku overwrite */
  230. cfg(priv)->sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
  231. if (cfg(priv)->sku & EEPROM_SKU_CAP_11N_ENABLE &&
  232. !cfg(priv)->ht_params) {
  233. IWL_ERR(priv, "Invalid 11n configuration\n");
  234. return -EINVAL;
  235. }
  236. }
  237. if (!cfg(priv)->sku) {
  238. IWL_ERR(priv, "Invalid device sku\n");
  239. return -EINVAL;
  240. }
  241. IWL_INFO(priv, "Device SKU: 0x%X\n", cfg(priv)->sku);
  242. if (!cfg(priv)->valid_tx_ant && !cfg(priv)->valid_rx_ant) {
  243. /* not using .cfg overwrite */
  244. radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);
  245. cfg(priv)->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
  246. cfg(priv)->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
  247. if (!cfg(priv)->valid_tx_ant || !cfg(priv)->valid_rx_ant) {
  248. IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
  249. cfg(priv)->valid_tx_ant,
  250. cfg(priv)->valid_rx_ant);
  251. return -EINVAL;
  252. }
  253. IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
  254. cfg(priv)->valid_tx_ant, cfg(priv)->valid_rx_ant);
  255. }
  256. /*
  257. * for some special cases,
  258. * EEPROM did not reflect the correct antenna setting
  259. * so overwrite the valid tx/rx antenna from .cfg
  260. */
  261. return 0;
  262. }
  263. void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
  264. {
  265. const u8 *addr = iwl_eeprom_query_addr(shrd,
  266. EEPROM_MAC_ADDRESS);
  267. memcpy(mac, addr, ETH_ALEN);
  268. }
  269. /******************************************************************************
  270. *
  271. * OTP related functions
  272. *
  273. ******************************************************************************/
  274. static void iwl_set_otp_access(struct iwl_bus *bus, enum iwl_access_mode mode)
  275. {
  276. iwl_read32(trans(bus), CSR_OTP_GP_REG);
  277. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  278. iwl_clear_bit(trans(bus), CSR_OTP_GP_REG,
  279. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  280. else
  281. iwl_set_bit(trans(bus), CSR_OTP_GP_REG,
  282. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  283. }
  284. static int iwl_get_nvm_type(struct iwl_bus *bus, u32 hw_rev)
  285. {
  286. u32 otpgp;
  287. int nvm_type;
  288. /* OTP only valid for CP/PP and after */
  289. switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
  290. case CSR_HW_REV_TYPE_NONE:
  291. IWL_ERR(bus, "Unknown hardware type\n");
  292. return -ENOENT;
  293. case CSR_HW_REV_TYPE_5300:
  294. case CSR_HW_REV_TYPE_5350:
  295. case CSR_HW_REV_TYPE_5100:
  296. case CSR_HW_REV_TYPE_5150:
  297. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  298. break;
  299. default:
  300. otpgp = iwl_read32(trans(bus), CSR_OTP_GP_REG);
  301. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  302. nvm_type = NVM_DEVICE_TYPE_OTP;
  303. else
  304. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  305. break;
  306. }
  307. return nvm_type;
  308. }
  309. static int iwl_init_otp_access(struct iwl_bus *bus)
  310. {
  311. int ret;
  312. /* Enable 40MHz radio clock */
  313. iwl_write32(trans(bus), CSR_GP_CNTRL,
  314. iwl_read32(trans(bus), CSR_GP_CNTRL) |
  315. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  316. /* wait for clock to be ready */
  317. ret = iwl_poll_bit(trans(bus), CSR_GP_CNTRL,
  318. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  319. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  320. 25000);
  321. if (ret < 0)
  322. IWL_ERR(bus, "Time out access OTP\n");
  323. else {
  324. iwl_set_bits_prph(trans(bus), APMG_PS_CTRL_REG,
  325. APMG_PS_CTRL_VAL_RESET_REQ);
  326. udelay(5);
  327. iwl_clear_bits_prph(trans(bus), APMG_PS_CTRL_REG,
  328. APMG_PS_CTRL_VAL_RESET_REQ);
  329. /*
  330. * CSR auto clock gate disable bit -
  331. * this is only applicable for HW with OTP shadow RAM
  332. */
  333. if (cfg(bus)->base_params->shadow_ram_support)
  334. iwl_set_bit(trans(bus), CSR_DBG_LINK_PWR_MGMT_REG,
  335. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  336. }
  337. return ret;
  338. }
  339. static int iwl_read_otp_word(struct iwl_bus *bus, u16 addr, __le16 *eeprom_data)
  340. {
  341. int ret = 0;
  342. u32 r;
  343. u32 otpgp;
  344. iwl_write32(trans(bus), CSR_EEPROM_REG,
  345. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  346. ret = iwl_poll_bit(trans(bus), CSR_EEPROM_REG,
  347. CSR_EEPROM_REG_READ_VALID_MSK,
  348. CSR_EEPROM_REG_READ_VALID_MSK,
  349. IWL_EEPROM_ACCESS_TIMEOUT);
  350. if (ret < 0) {
  351. IWL_ERR(bus, "Time out reading OTP[%d]\n", addr);
  352. return ret;
  353. }
  354. r = iwl_read32(trans(bus), CSR_EEPROM_REG);
  355. /* check for ECC errors: */
  356. otpgp = iwl_read32(trans(bus), CSR_OTP_GP_REG);
  357. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  358. /* stop in this case */
  359. /* set the uncorrectable OTP ECC bit for acknowledgement */
  360. iwl_set_bit(trans(bus), CSR_OTP_GP_REG,
  361. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  362. IWL_ERR(bus, "Uncorrectable OTP ECC error, abort OTP read\n");
  363. return -EINVAL;
  364. }
  365. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  366. /* continue in this case */
  367. /* set the correctable OTP ECC bit for acknowledgement */
  368. iwl_set_bit(trans(bus), CSR_OTP_GP_REG,
  369. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  370. IWL_ERR(bus, "Correctable OTP ECC error, continue read\n");
  371. }
  372. *eeprom_data = cpu_to_le16(r >> 16);
  373. return 0;
  374. }
  375. /*
  376. * iwl_is_otp_empty: check for empty OTP
  377. */
  378. static bool iwl_is_otp_empty(struct iwl_bus *bus)
  379. {
  380. u16 next_link_addr = 0;
  381. __le16 link_value;
  382. bool is_empty = false;
  383. /* locate the beginning of OTP link list */
  384. if (!iwl_read_otp_word(bus, next_link_addr, &link_value)) {
  385. if (!link_value) {
  386. IWL_ERR(bus, "OTP is empty\n");
  387. is_empty = true;
  388. }
  389. } else {
  390. IWL_ERR(bus, "Unable to read first block of OTP list.\n");
  391. is_empty = true;
  392. }
  393. return is_empty;
  394. }
  395. /*
  396. * iwl_find_otp_image: find EEPROM image in OTP
  397. * finding the OTP block that contains the EEPROM image.
  398. * the last valid block on the link list (the block _before_ the last block)
  399. * is the block we should read and used to configure the device.
  400. * If all the available OTP blocks are full, the last block will be the block
  401. * we should read and used to configure the device.
  402. * only perform this operation if shadow RAM is disabled
  403. */
  404. static int iwl_find_otp_image(struct iwl_bus *bus,
  405. u16 *validblockaddr)
  406. {
  407. u16 next_link_addr = 0, valid_addr;
  408. __le16 link_value = 0;
  409. int usedblocks = 0;
  410. /* set addressing mode to absolute to traverse the link list */
  411. iwl_set_otp_access(bus, IWL_OTP_ACCESS_ABSOLUTE);
  412. /* checking for empty OTP or error */
  413. if (iwl_is_otp_empty(bus))
  414. return -EINVAL;
  415. /*
  416. * start traverse link list
  417. * until reach the max number of OTP blocks
  418. * different devices have different number of OTP blocks
  419. */
  420. do {
  421. /* save current valid block address
  422. * check for more block on the link list
  423. */
  424. valid_addr = next_link_addr;
  425. next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
  426. IWL_DEBUG_EEPROM(bus, "OTP blocks %d addr 0x%x\n",
  427. usedblocks, next_link_addr);
  428. if (iwl_read_otp_word(bus, next_link_addr, &link_value))
  429. return -EINVAL;
  430. if (!link_value) {
  431. /*
  432. * reach the end of link list, return success and
  433. * set address point to the starting address
  434. * of the image
  435. */
  436. *validblockaddr = valid_addr;
  437. /* skip first 2 bytes (link list pointer) */
  438. *validblockaddr += 2;
  439. return 0;
  440. }
  441. /* more in the link list, continue */
  442. usedblocks++;
  443. } while (usedblocks <= cfg(bus)->base_params->max_ll_items);
  444. /* OTP has no valid blocks */
  445. IWL_DEBUG_EEPROM(bus, "OTP has no valid blocks\n");
  446. return -EINVAL;
  447. }
  448. /******************************************************************************
  449. *
  450. * Tx Power related functions
  451. *
  452. ******************************************************************************/
  453. /**
  454. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  455. * find the highest tx power from all chains for the channel
  456. */
  457. static s8 iwl_get_max_txpower_avg(struct iwl_cfg *cfg,
  458. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  459. int element, s8 *max_txpower_in_half_dbm)
  460. {
  461. s8 max_txpower_avg = 0; /* (dBm) */
  462. /* Take the highest tx power from any valid chains */
  463. if ((cfg->valid_tx_ant & ANT_A) &&
  464. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  465. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  466. if ((cfg->valid_tx_ant & ANT_B) &&
  467. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  468. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  469. if ((cfg->valid_tx_ant & ANT_C) &&
  470. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  471. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  472. if (((cfg->valid_tx_ant == ANT_AB) |
  473. (cfg->valid_tx_ant == ANT_BC) |
  474. (cfg->valid_tx_ant == ANT_AC)) &&
  475. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  476. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  477. if ((cfg->valid_tx_ant == ANT_ABC) &&
  478. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  479. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  480. /*
  481. * max. tx power in EEPROM is in 1/2 dBm format
  482. * convert from 1/2 dBm to dBm (round-up convert)
  483. * but we also do not want to loss 1/2 dBm resolution which
  484. * will impact performance
  485. */
  486. *max_txpower_in_half_dbm = max_txpower_avg;
  487. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  488. }
  489. static void
  490. iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
  491. struct iwl_eeprom_enhanced_txpwr *txp,
  492. s8 max_txpower_avg)
  493. {
  494. int ch_idx;
  495. bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
  496. enum ieee80211_band band;
  497. band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
  498. IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
  499. for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
  500. struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
  501. /* update matching channel or from common data only */
  502. if (txp->channel != 0 && ch_info->channel != txp->channel)
  503. continue;
  504. /* update matching band only */
  505. if (band != ch_info->band)
  506. continue;
  507. if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
  508. ch_info->max_power_avg = max_txpower_avg;
  509. ch_info->curr_txpow = max_txpower_avg;
  510. ch_info->scan_power = max_txpower_avg;
  511. }
  512. if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
  513. ch_info->ht40_max_power_avg = max_txpower_avg;
  514. }
  515. }
  516. #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
  517. #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
  518. #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
  519. #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
  520. ? # x " " : "")
  521. void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
  522. {
  523. struct iwl_shared *shrd = priv->shrd;
  524. struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
  525. int idx, entries;
  526. __le16 *txp_len;
  527. s8 max_txp_avg, max_txp_avg_halfdbm;
  528. BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
  529. /* the length is in 16-bit words, but we want entries */
  530. txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
  531. entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
  532. txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);
  533. for (idx = 0; idx < entries; idx++) {
  534. txp = &txp_array[idx];
  535. /* skip invalid entries */
  536. if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
  537. continue;
  538. IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
  539. (txp->channel && (txp->flags &
  540. IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
  541. "Common " : (txp->channel) ?
  542. "Channel" : "Common",
  543. (txp->channel),
  544. TXP_CHECK_AND_PRINT(VALID),
  545. TXP_CHECK_AND_PRINT(BAND_52G),
  546. TXP_CHECK_AND_PRINT(OFDM),
  547. TXP_CHECK_AND_PRINT(40MHZ),
  548. TXP_CHECK_AND_PRINT(HT_AP),
  549. TXP_CHECK_AND_PRINT(RES1),
  550. TXP_CHECK_AND_PRINT(RES2),
  551. TXP_CHECK_AND_PRINT(COMMON_TYPE),
  552. txp->flags);
  553. IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
  554. "chain_B: 0X%02x chain_C: 0X%02x\n",
  555. txp->chain_a_max, txp->chain_b_max,
  556. txp->chain_c_max);
  557. IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
  558. "MIMO3: 0x%02x High 20_on_40: 0x%02x "
  559. "Low 20_on_40: 0x%02x\n",
  560. txp->mimo2_max, txp->mimo3_max,
  561. ((txp->delta_20_in_40 & 0xf0) >> 4),
  562. (txp->delta_20_in_40 & 0x0f));
  563. max_txp_avg = iwl_get_max_txpower_avg(cfg(priv), txp_array, idx,
  564. &max_txp_avg_halfdbm);
  565. /*
  566. * Update the user limit values values to the highest
  567. * power supported by any channel
  568. */
  569. if (max_txp_avg > priv->tx_power_user_lmt)
  570. priv->tx_power_user_lmt = max_txp_avg;
  571. if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
  572. priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
  573. iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
  574. }
  575. }
  576. /**
  577. * iwl_eeprom_init - read EEPROM contents
  578. *
  579. * Load the EEPROM contents from adapter into shrd->eeprom
  580. *
  581. * NOTE: This routine uses the non-debug IO access functions.
  582. */
  583. int iwl_eeprom_init(struct iwl_priv *priv, u32 hw_rev)
  584. {
  585. struct iwl_shared *shrd = priv->shrd;
  586. __le16 *e;
  587. u32 gp = iwl_read32(trans(priv), CSR_EEPROM_GP);
  588. int sz;
  589. int ret;
  590. u16 addr;
  591. u16 validblockaddr = 0;
  592. u16 cache_addr = 0;
  593. trans(priv)->nvm_device_type = iwl_get_nvm_type(bus(priv), hw_rev);
  594. if (trans(priv)->nvm_device_type == -ENOENT)
  595. return -ENOENT;
  596. /* allocate eeprom */
  597. sz = cfg(priv)->base_params->eeprom_size;
  598. IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz);
  599. shrd->eeprom = kzalloc(sz, GFP_KERNEL);
  600. if (!shrd->eeprom) {
  601. ret = -ENOMEM;
  602. goto alloc_err;
  603. }
  604. e = (__le16 *)shrd->eeprom;
  605. ret = iwl_eeprom_verify_signature(trans(priv));
  606. if (ret < 0) {
  607. IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  608. ret = -ENOENT;
  609. goto err;
  610. }
  611. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  612. ret = iwl_eeprom_acquire_semaphore(bus(priv));
  613. if (ret < 0) {
  614. IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
  615. ret = -ENOENT;
  616. goto err;
  617. }
  618. if (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  619. ret = iwl_init_otp_access(bus(priv));
  620. if (ret) {
  621. IWL_ERR(priv, "Failed to initialize OTP access.\n");
  622. ret = -ENOENT;
  623. goto done;
  624. }
  625. iwl_write32(trans(priv), CSR_EEPROM_GP,
  626. iwl_read32(trans(priv), CSR_EEPROM_GP) &
  627. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  628. iwl_set_bit(trans(priv), CSR_OTP_GP_REG,
  629. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  630. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  631. /* traversing the linked list if no shadow ram supported */
  632. if (!cfg(priv)->base_params->shadow_ram_support) {
  633. if (iwl_find_otp_image(bus(priv), &validblockaddr)) {
  634. ret = -ENOENT;
  635. goto done;
  636. }
  637. }
  638. for (addr = validblockaddr; addr < validblockaddr + sz;
  639. addr += sizeof(u16)) {
  640. __le16 eeprom_data;
  641. ret = iwl_read_otp_word(bus(priv), addr, &eeprom_data);
  642. if (ret)
  643. goto done;
  644. e[cache_addr / 2] = eeprom_data;
  645. cache_addr += sizeof(u16);
  646. }
  647. } else {
  648. /* eeprom is an array of 16bit values */
  649. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  650. u32 r;
  651. iwl_write32(trans(priv), CSR_EEPROM_REG,
  652. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  653. ret = iwl_poll_bit(trans(priv), CSR_EEPROM_REG,
  654. CSR_EEPROM_REG_READ_VALID_MSK,
  655. CSR_EEPROM_REG_READ_VALID_MSK,
  656. IWL_EEPROM_ACCESS_TIMEOUT);
  657. if (ret < 0) {
  658. IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
  659. goto done;
  660. }
  661. r = iwl_read32(trans(priv), CSR_EEPROM_REG);
  662. e[addr / 2] = cpu_to_le16(r >> 16);
  663. }
  664. }
  665. IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n",
  666. (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  667. ? "OTP" : "EEPROM",
  668. iwl_eeprom_query16(shrd, EEPROM_VERSION));
  669. ret = 0;
  670. done:
  671. iwl_eeprom_release_semaphore(bus(priv));
  672. err:
  673. if (ret)
  674. iwl_eeprom_free(priv->shrd);
  675. alloc_err:
  676. return ret;
  677. }
  678. void iwl_eeprom_free(struct iwl_shared *shrd)
  679. {
  680. kfree(shrd->eeprom);
  681. shrd->eeprom = NULL;
  682. }
  683. static void iwl_init_band_reference(const struct iwl_priv *priv,
  684. int eep_band, int *eeprom_ch_count,
  685. const struct iwl_eeprom_channel **eeprom_ch_info,
  686. const u8 **eeprom_ch_index)
  687. {
  688. struct iwl_shared *shrd = priv->shrd;
  689. u32 offset = cfg(priv)->lib->
  690. eeprom_ops.regulatory_bands[eep_band - 1];
  691. switch (eep_band) {
  692. case 1: /* 2.4GHz band */
  693. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  694. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  695. iwl_eeprom_query_addr(shrd, offset);
  696. *eeprom_ch_index = iwl_eeprom_band_1;
  697. break;
  698. case 2: /* 4.9GHz band */
  699. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  700. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  701. iwl_eeprom_query_addr(shrd, offset);
  702. *eeprom_ch_index = iwl_eeprom_band_2;
  703. break;
  704. case 3: /* 5.2GHz band */
  705. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  706. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  707. iwl_eeprom_query_addr(shrd, offset);
  708. *eeprom_ch_index = iwl_eeprom_band_3;
  709. break;
  710. case 4: /* 5.5GHz band */
  711. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  712. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  713. iwl_eeprom_query_addr(shrd, offset);
  714. *eeprom_ch_index = iwl_eeprom_band_4;
  715. break;
  716. case 5: /* 5.7GHz band */
  717. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  718. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  719. iwl_eeprom_query_addr(shrd, offset);
  720. *eeprom_ch_index = iwl_eeprom_band_5;
  721. break;
  722. case 6: /* 2.4GHz ht40 channels */
  723. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  724. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  725. iwl_eeprom_query_addr(shrd, offset);
  726. *eeprom_ch_index = iwl_eeprom_band_6;
  727. break;
  728. case 7: /* 5 GHz ht40 channels */
  729. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  730. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  731. iwl_eeprom_query_addr(shrd, offset);
  732. *eeprom_ch_index = iwl_eeprom_band_7;
  733. break;
  734. default:
  735. BUG();
  736. return;
  737. }
  738. }
  739. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  740. ? # x " " : "")
  741. /**
  742. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  743. *
  744. * Does not set up a command, or touch hardware.
  745. */
  746. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  747. enum ieee80211_band band, u16 channel,
  748. const struct iwl_eeprom_channel *eeprom_ch,
  749. u8 clear_ht40_extension_channel)
  750. {
  751. struct iwl_channel_info *ch_info;
  752. ch_info = (struct iwl_channel_info *)
  753. iwl_get_channel_info(priv, band, channel);
  754. if (!is_channel_valid(ch_info))
  755. return -1;
  756. IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  757. " Ad-Hoc %ssupported\n",
  758. ch_info->channel,
  759. is_channel_a_band(ch_info) ?
  760. "5.2" : "2.4",
  761. CHECK_AND_PRINT(IBSS),
  762. CHECK_AND_PRINT(ACTIVE),
  763. CHECK_AND_PRINT(RADAR),
  764. CHECK_AND_PRINT(WIDE),
  765. CHECK_AND_PRINT(DFS),
  766. eeprom_ch->flags,
  767. eeprom_ch->max_power_avg,
  768. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  769. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  770. "" : "not ");
  771. ch_info->ht40_eeprom = *eeprom_ch;
  772. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  773. ch_info->ht40_flags = eeprom_ch->flags;
  774. if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
  775. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  776. return 0;
  777. }
  778. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  779. ? # x " " : "")
  780. /**
  781. * iwl_init_channel_map - Set up driver's info for all possible channels
  782. */
  783. int iwl_init_channel_map(struct iwl_priv *priv)
  784. {
  785. int eeprom_ch_count = 0;
  786. const u8 *eeprom_ch_index = NULL;
  787. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  788. int band, ch;
  789. struct iwl_channel_info *ch_info;
  790. if (priv->channel_count) {
  791. IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
  792. return 0;
  793. }
  794. IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
  795. priv->channel_count =
  796. ARRAY_SIZE(iwl_eeprom_band_1) +
  797. ARRAY_SIZE(iwl_eeprom_band_2) +
  798. ARRAY_SIZE(iwl_eeprom_band_3) +
  799. ARRAY_SIZE(iwl_eeprom_band_4) +
  800. ARRAY_SIZE(iwl_eeprom_band_5);
  801. IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
  802. priv->channel_count);
  803. priv->channel_info = kcalloc(priv->channel_count,
  804. sizeof(struct iwl_channel_info),
  805. GFP_KERNEL);
  806. if (!priv->channel_info) {
  807. IWL_ERR(priv, "Could not allocate channel_info\n");
  808. priv->channel_count = 0;
  809. return -ENOMEM;
  810. }
  811. ch_info = priv->channel_info;
  812. /* Loop through the 5 EEPROM bands adding them in order to the
  813. * channel map we maintain (that contains additional information than
  814. * what just in the EEPROM) */
  815. for (band = 1; band <= 5; band++) {
  816. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  817. &eeprom_ch_info, &eeprom_ch_index);
  818. /* Loop through each band adding each of the channels */
  819. for (ch = 0; ch < eeprom_ch_count; ch++) {
  820. ch_info->channel = eeprom_ch_index[ch];
  821. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  822. IEEE80211_BAND_5GHZ;
  823. /* permanently store EEPROM's channel regulatory flags
  824. * and max power in channel info database. */
  825. ch_info->eeprom = eeprom_ch_info[ch];
  826. /* Copy the run-time flags so they are there even on
  827. * invalid channels */
  828. ch_info->flags = eeprom_ch_info[ch].flags;
  829. /* First write that ht40 is not enabled, and then enable
  830. * one by one */
  831. ch_info->ht40_extension_channel =
  832. IEEE80211_CHAN_NO_HT40;
  833. if (!(is_channel_valid(ch_info))) {
  834. IWL_DEBUG_EEPROM(priv,
  835. "Ch. %d Flags %x [%sGHz] - "
  836. "No traffic\n",
  837. ch_info->channel,
  838. ch_info->flags,
  839. is_channel_a_band(ch_info) ?
  840. "5.2" : "2.4");
  841. ch_info++;
  842. continue;
  843. }
  844. /* Initialize regulatory-based run-time data */
  845. ch_info->max_power_avg = ch_info->curr_txpow =
  846. eeprom_ch_info[ch].max_power_avg;
  847. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  848. ch_info->min_power = 0;
  849. IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
  850. "%s%s%s%s%s%s(0x%02x %ddBm):"
  851. " Ad-Hoc %ssupported\n",
  852. ch_info->channel,
  853. is_channel_a_band(ch_info) ?
  854. "5.2" : "2.4",
  855. CHECK_AND_PRINT_I(VALID),
  856. CHECK_AND_PRINT_I(IBSS),
  857. CHECK_AND_PRINT_I(ACTIVE),
  858. CHECK_AND_PRINT_I(RADAR),
  859. CHECK_AND_PRINT_I(WIDE),
  860. CHECK_AND_PRINT_I(DFS),
  861. eeprom_ch_info[ch].flags,
  862. eeprom_ch_info[ch].max_power_avg,
  863. ((eeprom_ch_info[ch].
  864. flags & EEPROM_CHANNEL_IBSS)
  865. && !(eeprom_ch_info[ch].
  866. flags & EEPROM_CHANNEL_RADAR))
  867. ? "" : "not ");
  868. ch_info++;
  869. }
  870. }
  871. /* Check if we do have HT40 channels */
  872. if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
  873. EEPROM_REGULATORY_BAND_NO_HT40 &&
  874. cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
  875. EEPROM_REGULATORY_BAND_NO_HT40)
  876. return 0;
  877. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  878. for (band = 6; band <= 7; band++) {
  879. enum ieee80211_band ieeeband;
  880. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  881. &eeprom_ch_info, &eeprom_ch_index);
  882. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  883. ieeeband =
  884. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  885. /* Loop through each band adding each of the channels */
  886. for (ch = 0; ch < eeprom_ch_count; ch++) {
  887. /* Set up driver's info for lower half */
  888. iwl_mod_ht40_chan_info(priv, ieeeband,
  889. eeprom_ch_index[ch],
  890. &eeprom_ch_info[ch],
  891. IEEE80211_CHAN_NO_HT40PLUS);
  892. /* Set up driver's info for upper half */
  893. iwl_mod_ht40_chan_info(priv, ieeeband,
  894. eeprom_ch_index[ch] + 4,
  895. &eeprom_ch_info[ch],
  896. IEEE80211_CHAN_NO_HT40MINUS);
  897. }
  898. }
  899. /* for newer device (6000 series and up)
  900. * EEPROM contain enhanced tx power information
  901. * driver need to process addition information
  902. * to determine the max channel tx power limits
  903. */
  904. if (cfg(priv)->lib->eeprom_ops.update_enhanced_txpower)
  905. cfg(priv)->lib->eeprom_ops.update_enhanced_txpower(priv);
  906. return 0;
  907. }
  908. /*
  909. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  910. */
  911. void iwl_free_channel_map(struct iwl_priv *priv)
  912. {
  913. kfree(priv->channel_info);
  914. priv->channel_count = 0;
  915. }
  916. /**
  917. * iwl_get_channel_info - Find driver's private channel info
  918. *
  919. * Based on band and channel number.
  920. */
  921. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  922. enum ieee80211_band band, u16 channel)
  923. {
  924. int i;
  925. switch (band) {
  926. case IEEE80211_BAND_5GHZ:
  927. for (i = 14; i < priv->channel_count; i++) {
  928. if (priv->channel_info[i].channel == channel)
  929. return &priv->channel_info[i];
  930. }
  931. break;
  932. case IEEE80211_BAND_2GHZ:
  933. if (channel >= 1 && channel <= 14)
  934. return &priv->channel_info[channel - 1];
  935. break;
  936. default:
  937. BUG();
  938. }
  939. return NULL;
  940. }
  941. void iwl_rf_config(struct iwl_priv *priv)
  942. {
  943. u16 radio_cfg;
  944. radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);
  945. /* write radio config values to register */
  946. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
  947. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  948. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  949. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  950. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  951. IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
  952. EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
  953. EEPROM_RF_CFG_STEP_MSK(radio_cfg),
  954. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  955. } else
  956. WARN_ON(1);
  957. /* set CSR_HW_CONFIG_REG for uCode use */
  958. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  959. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  960. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  961. }