e1000_main.c 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. *******************************************************************************/
  21. #include "e1000.h"
  22. char e1000_driver_name[] = "e1000";
  23. static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  24. #ifndef CONFIG_E1000_NAPI
  25. #define DRIVERNAPI
  26. #else
  27. #define DRIVERNAPI "-NAPI"
  28. #endif
  29. #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
  30. char e1000_driver_version[] = DRV_VERSION;
  31. static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  32. /* e1000_pci_tbl - PCI Device ID Table
  33. *
  34. * Last entry must be all 0s
  35. *
  36. * Macro expands to...
  37. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  38. */
  39. static struct pci_device_id e1000_pci_tbl[] = {
  40. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  41. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  42. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  43. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  44. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  45. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  46. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  47. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  48. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  51. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  52. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  53. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  54. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  59. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  60. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  61. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  65. INTEL_E1000_ETHERNET_DEVICE(0x105E),
  66. INTEL_E1000_ETHERNET_DEVICE(0x105F),
  67. INTEL_E1000_ETHERNET_DEVICE(0x1060),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  73. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  74. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  75. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107D),
  77. INTEL_E1000_ETHERNET_DEVICE(0x107E),
  78. INTEL_E1000_ETHERNET_DEVICE(0x107F),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1096),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1098),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85. INTEL_E1000_ETHERNET_DEVICE(0x109A),
  86. INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  87. INTEL_E1000_ETHERNET_DEVICE(0x10B9),
  88. /* required last entry */
  89. {0,}
  90. };
  91. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92. static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  93. struct e1000_tx_ring *txdr);
  94. static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  95. struct e1000_rx_ring *rxdr);
  96. static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  97. struct e1000_tx_ring *tx_ring);
  98. static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  99. struct e1000_rx_ring *rx_ring);
  100. /* Local Function Prototypes */
  101. static int e1000_init_module(void);
  102. static void e1000_exit_module(void);
  103. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  104. static void __devexit e1000_remove(struct pci_dev *pdev);
  105. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  106. static int e1000_sw_init(struct e1000_adapter *adapter);
  107. static int e1000_open(struct net_device *netdev);
  108. static int e1000_close(struct net_device *netdev);
  109. static void e1000_configure_tx(struct e1000_adapter *adapter);
  110. static void e1000_configure_rx(struct e1000_adapter *adapter);
  111. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  112. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  113. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  114. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  115. struct e1000_tx_ring *tx_ring);
  116. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  117. struct e1000_rx_ring *rx_ring);
  118. static void e1000_set_multi(struct net_device *netdev);
  119. static void e1000_update_phy_info(unsigned long data);
  120. static void e1000_watchdog(unsigned long data);
  121. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  122. static void e1000_82547_tx_fifo_stall(unsigned long data);
  123. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  124. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  125. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  126. static int e1000_set_mac(struct net_device *netdev, void *p);
  127. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  128. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  129. struct e1000_tx_ring *tx_ring);
  130. #ifdef CONFIG_E1000_NAPI
  131. static int e1000_clean(struct net_device *poll_dev, int *budget);
  132. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  133. struct e1000_rx_ring *rx_ring,
  134. int *work_done, int work_to_do);
  135. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  136. struct e1000_rx_ring *rx_ring,
  137. int *work_done, int work_to_do);
  138. #else
  139. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  140. struct e1000_rx_ring *rx_ring);
  141. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  142. struct e1000_rx_ring *rx_ring);
  143. #endif
  144. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  145. struct e1000_rx_ring *rx_ring,
  146. int cleaned_count);
  147. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  148. struct e1000_rx_ring *rx_ring,
  149. int cleaned_count);
  150. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  151. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  152. int cmd);
  153. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  154. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  155. static void e1000_tx_timeout(struct net_device *dev);
  156. static void e1000_reset_task(struct net_device *dev);
  157. static void e1000_smartspeed(struct e1000_adapter *adapter);
  158. static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  159. struct sk_buff *skb);
  160. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  161. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  162. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  163. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  164. #ifdef CONFIG_PM
  165. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  166. static int e1000_resume(struct pci_dev *pdev);
  167. #endif
  168. static void e1000_shutdown(struct pci_dev *pdev);
  169. #ifdef CONFIG_NET_POLL_CONTROLLER
  170. /* for netdump / net console */
  171. static void e1000_netpoll (struct net_device *netdev);
  172. #endif
  173. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
  174. pci_channel_state_t state);
  175. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
  176. static void e1000_io_resume(struct pci_dev *pdev);
  177. static struct pci_error_handlers e1000_err_handler = {
  178. .error_detected = e1000_io_error_detected,
  179. .slot_reset = e1000_io_slot_reset,
  180. .resume = e1000_io_resume,
  181. };
  182. static struct pci_driver e1000_driver = {
  183. .name = e1000_driver_name,
  184. .id_table = e1000_pci_tbl,
  185. .probe = e1000_probe,
  186. .remove = __devexit_p(e1000_remove),
  187. /* Power Managment Hooks */
  188. #ifdef CONFIG_PM
  189. .suspend = e1000_suspend,
  190. .resume = e1000_resume,
  191. #endif
  192. .shutdown = e1000_shutdown,
  193. .err_handler = &e1000_err_handler
  194. };
  195. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  196. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  197. MODULE_LICENSE("GPL");
  198. MODULE_VERSION(DRV_VERSION);
  199. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  200. module_param(debug, int, 0);
  201. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  202. /**
  203. * e1000_init_module - Driver Registration Routine
  204. *
  205. * e1000_init_module is the first routine called when the driver is
  206. * loaded. All it does is register with the PCI subsystem.
  207. **/
  208. static int __init
  209. e1000_init_module(void)
  210. {
  211. int ret;
  212. printk(KERN_INFO "%s - version %s\n",
  213. e1000_driver_string, e1000_driver_version);
  214. printk(KERN_INFO "%s\n", e1000_copyright);
  215. ret = pci_module_init(&e1000_driver);
  216. return ret;
  217. }
  218. module_init(e1000_init_module);
  219. /**
  220. * e1000_exit_module - Driver Exit Cleanup Routine
  221. *
  222. * e1000_exit_module is called just before the driver is removed
  223. * from memory.
  224. **/
  225. static void __exit
  226. e1000_exit_module(void)
  227. {
  228. pci_unregister_driver(&e1000_driver);
  229. }
  230. module_exit(e1000_exit_module);
  231. /**
  232. * e1000_irq_disable - Mask off interrupt generation on the NIC
  233. * @adapter: board private structure
  234. **/
  235. static void
  236. e1000_irq_disable(struct e1000_adapter *adapter)
  237. {
  238. atomic_inc(&adapter->irq_sem);
  239. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  240. E1000_WRITE_FLUSH(&adapter->hw);
  241. synchronize_irq(adapter->pdev->irq);
  242. }
  243. /**
  244. * e1000_irq_enable - Enable default interrupt generation settings
  245. * @adapter: board private structure
  246. **/
  247. static void
  248. e1000_irq_enable(struct e1000_adapter *adapter)
  249. {
  250. if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
  251. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  252. E1000_WRITE_FLUSH(&adapter->hw);
  253. }
  254. }
  255. static void
  256. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  257. {
  258. struct net_device *netdev = adapter->netdev;
  259. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  260. uint16_t old_vid = adapter->mng_vlan_id;
  261. if (adapter->vlgrp) {
  262. if (!adapter->vlgrp->vlan_devices[vid]) {
  263. if (adapter->hw.mng_cookie.status &
  264. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  265. e1000_vlan_rx_add_vid(netdev, vid);
  266. adapter->mng_vlan_id = vid;
  267. } else
  268. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  269. if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  270. (vid != old_vid) &&
  271. !adapter->vlgrp->vlan_devices[old_vid])
  272. e1000_vlan_rx_kill_vid(netdev, old_vid);
  273. } else
  274. adapter->mng_vlan_id = vid;
  275. }
  276. }
  277. /**
  278. * e1000_release_hw_control - release control of the h/w to f/w
  279. * @adapter: address of board private structure
  280. *
  281. * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  282. * For ASF and Pass Through versions of f/w this means that the
  283. * driver is no longer loaded. For AMT version (only with 82573) i
  284. * of the f/w this means that the netowrk i/f is closed.
  285. *
  286. **/
  287. static void
  288. e1000_release_hw_control(struct e1000_adapter *adapter)
  289. {
  290. uint32_t ctrl_ext;
  291. uint32_t swsm;
  292. /* Let firmware taken over control of h/w */
  293. switch (adapter->hw.mac_type) {
  294. case e1000_82571:
  295. case e1000_82572:
  296. case e1000_80003es2lan:
  297. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  298. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  299. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  300. break;
  301. case e1000_82573:
  302. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  303. E1000_WRITE_REG(&adapter->hw, SWSM,
  304. swsm & ~E1000_SWSM_DRV_LOAD);
  305. default:
  306. break;
  307. }
  308. }
  309. /**
  310. * e1000_get_hw_control - get control of the h/w from f/w
  311. * @adapter: address of board private structure
  312. *
  313. * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  314. * For ASF and Pass Through versions of f/w this means that
  315. * the driver is loaded. For AMT version (only with 82573)
  316. * of the f/w this means that the netowrk i/f is open.
  317. *
  318. **/
  319. static void
  320. e1000_get_hw_control(struct e1000_adapter *adapter)
  321. {
  322. uint32_t ctrl_ext;
  323. uint32_t swsm;
  324. /* Let firmware know the driver has taken over */
  325. switch (adapter->hw.mac_type) {
  326. case e1000_82571:
  327. case e1000_82572:
  328. case e1000_80003es2lan:
  329. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  330. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  331. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  332. break;
  333. case e1000_82573:
  334. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  335. E1000_WRITE_REG(&adapter->hw, SWSM,
  336. swsm | E1000_SWSM_DRV_LOAD);
  337. break;
  338. default:
  339. break;
  340. }
  341. }
  342. int
  343. e1000_up(struct e1000_adapter *adapter)
  344. {
  345. struct net_device *netdev = adapter->netdev;
  346. int i, err;
  347. /* hardware has been reset, we need to reload some things */
  348. /* Reset the PHY if it was previously powered down */
  349. if (adapter->hw.media_type == e1000_media_type_copper) {
  350. uint16_t mii_reg;
  351. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  352. if (mii_reg & MII_CR_POWER_DOWN)
  353. e1000_phy_hw_reset(&adapter->hw);
  354. }
  355. e1000_set_multi(netdev);
  356. e1000_restore_vlan(adapter);
  357. e1000_configure_tx(adapter);
  358. e1000_setup_rctl(adapter);
  359. e1000_configure_rx(adapter);
  360. /* call E1000_DESC_UNUSED which always leaves
  361. * at least 1 descriptor unused to make sure
  362. * next_to_use != next_to_clean */
  363. for (i = 0; i < adapter->num_rx_queues; i++) {
  364. struct e1000_rx_ring *ring = &adapter->rx_ring[i];
  365. adapter->alloc_rx_buf(adapter, ring,
  366. E1000_DESC_UNUSED(ring));
  367. }
  368. #ifdef CONFIG_PCI_MSI
  369. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  370. adapter->have_msi = TRUE;
  371. if ((err = pci_enable_msi(adapter->pdev))) {
  372. DPRINTK(PROBE, ERR,
  373. "Unable to allocate MSI interrupt Error: %d\n", err);
  374. adapter->have_msi = FALSE;
  375. }
  376. }
  377. #endif
  378. if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
  379. SA_SHIRQ | SA_SAMPLE_RANDOM,
  380. netdev->name, netdev))) {
  381. DPRINTK(PROBE, ERR,
  382. "Unable to allocate interrupt Error: %d\n", err);
  383. return err;
  384. }
  385. adapter->tx_queue_len = netdev->tx_queue_len;
  386. mod_timer(&adapter->watchdog_timer, jiffies);
  387. #ifdef CONFIG_E1000_NAPI
  388. netif_poll_enable(netdev);
  389. #endif
  390. e1000_irq_enable(adapter);
  391. return 0;
  392. }
  393. void
  394. e1000_down(struct e1000_adapter *adapter)
  395. {
  396. struct net_device *netdev = adapter->netdev;
  397. boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
  398. e1000_check_mng_mode(&adapter->hw);
  399. e1000_irq_disable(adapter);
  400. free_irq(adapter->pdev->irq, netdev);
  401. #ifdef CONFIG_PCI_MSI
  402. if (adapter->hw.mac_type > e1000_82547_rev_2 &&
  403. adapter->have_msi == TRUE)
  404. pci_disable_msi(adapter->pdev);
  405. #endif
  406. del_timer_sync(&adapter->tx_fifo_stall_timer);
  407. del_timer_sync(&adapter->watchdog_timer);
  408. del_timer_sync(&adapter->phy_info_timer);
  409. #ifdef CONFIG_E1000_NAPI
  410. netif_poll_disable(netdev);
  411. #endif
  412. netdev->tx_queue_len = adapter->tx_queue_len;
  413. adapter->link_speed = 0;
  414. adapter->link_duplex = 0;
  415. netif_carrier_off(netdev);
  416. netif_stop_queue(netdev);
  417. e1000_reset(adapter);
  418. e1000_clean_all_tx_rings(adapter);
  419. e1000_clean_all_rx_rings(adapter);
  420. /* Power down the PHY so no link is implied when interface is down *
  421. * The PHY cannot be powered down if any of the following is TRUE *
  422. * (a) WoL is enabled
  423. * (b) AMT is active
  424. * (c) SoL/IDER session is active */
  425. if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  426. adapter->hw.media_type == e1000_media_type_copper &&
  427. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
  428. !mng_mode_enabled &&
  429. !e1000_check_phy_reset_block(&adapter->hw)) {
  430. uint16_t mii_reg;
  431. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  432. mii_reg |= MII_CR_POWER_DOWN;
  433. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  434. mdelay(1);
  435. }
  436. }
  437. void
  438. e1000_reset(struct e1000_adapter *adapter)
  439. {
  440. uint32_t pba, manc;
  441. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  442. /* Repartition Pba for greater than 9k mtu
  443. * To take effect CTRL.RST is required.
  444. */
  445. switch (adapter->hw.mac_type) {
  446. case e1000_82547:
  447. case e1000_82547_rev_2:
  448. pba = E1000_PBA_30K;
  449. break;
  450. case e1000_82571:
  451. case e1000_82572:
  452. case e1000_80003es2lan:
  453. pba = E1000_PBA_38K;
  454. break;
  455. case e1000_82573:
  456. pba = E1000_PBA_12K;
  457. break;
  458. default:
  459. pba = E1000_PBA_48K;
  460. break;
  461. }
  462. if ((adapter->hw.mac_type != e1000_82573) &&
  463. (adapter->netdev->mtu > E1000_RXBUFFER_8192))
  464. pba -= 8; /* allocate more FIFO for Tx */
  465. if (adapter->hw.mac_type == e1000_82547) {
  466. adapter->tx_fifo_head = 0;
  467. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  468. adapter->tx_fifo_size =
  469. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  470. atomic_set(&adapter->tx_fifo_stall, 0);
  471. }
  472. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  473. /* flow control settings */
  474. /* Set the FC high water mark to 90% of the FIFO size.
  475. * Required to clear last 3 LSB */
  476. fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
  477. adapter->hw.fc_high_water = fc_high_water_mark;
  478. adapter->hw.fc_low_water = fc_high_water_mark - 8;
  479. if (adapter->hw.mac_type == e1000_80003es2lan)
  480. adapter->hw.fc_pause_time = 0xFFFF;
  481. else
  482. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  483. adapter->hw.fc_send_xon = 1;
  484. adapter->hw.fc = adapter->hw.original_fc;
  485. /* Allow time for pending master requests to run */
  486. e1000_reset_hw(&adapter->hw);
  487. if (adapter->hw.mac_type >= e1000_82544)
  488. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  489. if (e1000_init_hw(&adapter->hw))
  490. DPRINTK(PROBE, ERR, "Hardware Error\n");
  491. e1000_update_mng_vlan(adapter);
  492. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  493. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  494. e1000_reset_adaptive(&adapter->hw);
  495. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  496. if (adapter->en_mng_pt) {
  497. manc = E1000_READ_REG(&adapter->hw, MANC);
  498. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  499. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  500. }
  501. }
  502. /**
  503. * e1000_probe - Device Initialization Routine
  504. * @pdev: PCI device information struct
  505. * @ent: entry in e1000_pci_tbl
  506. *
  507. * Returns 0 on success, negative on failure
  508. *
  509. * e1000_probe initializes an adapter identified by a pci_dev structure.
  510. * The OS initialization, configuring of the adapter private structure,
  511. * and a hardware reset occur.
  512. **/
  513. static int __devinit
  514. e1000_probe(struct pci_dev *pdev,
  515. const struct pci_device_id *ent)
  516. {
  517. struct net_device *netdev;
  518. struct e1000_adapter *adapter;
  519. unsigned long mmio_start, mmio_len;
  520. static int cards_found = 0;
  521. static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
  522. int i, err, pci_using_dac;
  523. uint16_t eeprom_data;
  524. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  525. if ((err = pci_enable_device(pdev)))
  526. return err;
  527. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  528. pci_using_dac = 1;
  529. } else {
  530. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  531. E1000_ERR("No usable DMA configuration, aborting\n");
  532. return err;
  533. }
  534. pci_using_dac = 0;
  535. }
  536. if ((err = pci_request_regions(pdev, e1000_driver_name)))
  537. return err;
  538. pci_set_master(pdev);
  539. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  540. if (!netdev) {
  541. err = -ENOMEM;
  542. goto err_alloc_etherdev;
  543. }
  544. SET_MODULE_OWNER(netdev);
  545. SET_NETDEV_DEV(netdev, &pdev->dev);
  546. pci_set_drvdata(pdev, netdev);
  547. adapter = netdev_priv(netdev);
  548. adapter->netdev = netdev;
  549. adapter->pdev = pdev;
  550. adapter->hw.back = adapter;
  551. adapter->msg_enable = (1 << debug) - 1;
  552. mmio_start = pci_resource_start(pdev, BAR_0);
  553. mmio_len = pci_resource_len(pdev, BAR_0);
  554. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  555. if (!adapter->hw.hw_addr) {
  556. err = -EIO;
  557. goto err_ioremap;
  558. }
  559. for (i = BAR_1; i <= BAR_5; i++) {
  560. if (pci_resource_len(pdev, i) == 0)
  561. continue;
  562. if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  563. adapter->hw.io_base = pci_resource_start(pdev, i);
  564. break;
  565. }
  566. }
  567. netdev->open = &e1000_open;
  568. netdev->stop = &e1000_close;
  569. netdev->hard_start_xmit = &e1000_xmit_frame;
  570. netdev->get_stats = &e1000_get_stats;
  571. netdev->set_multicast_list = &e1000_set_multi;
  572. netdev->set_mac_address = &e1000_set_mac;
  573. netdev->change_mtu = &e1000_change_mtu;
  574. netdev->do_ioctl = &e1000_ioctl;
  575. e1000_set_ethtool_ops(netdev);
  576. netdev->tx_timeout = &e1000_tx_timeout;
  577. netdev->watchdog_timeo = 5 * HZ;
  578. #ifdef CONFIG_E1000_NAPI
  579. netdev->poll = &e1000_clean;
  580. netdev->weight = 64;
  581. #endif
  582. netdev->vlan_rx_register = e1000_vlan_rx_register;
  583. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  584. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  585. #ifdef CONFIG_NET_POLL_CONTROLLER
  586. netdev->poll_controller = e1000_netpoll;
  587. #endif
  588. strcpy(netdev->name, pci_name(pdev));
  589. netdev->mem_start = mmio_start;
  590. netdev->mem_end = mmio_start + mmio_len;
  591. netdev->base_addr = adapter->hw.io_base;
  592. adapter->bd_number = cards_found;
  593. /* setup the private structure */
  594. if ((err = e1000_sw_init(adapter)))
  595. goto err_sw_init;
  596. if ((err = e1000_check_phy_reset_block(&adapter->hw)))
  597. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  598. /* if ksp3, indicate if it's port a being setup */
  599. if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
  600. e1000_ksp3_port_a == 0)
  601. adapter->ksp3_port_a = 1;
  602. e1000_ksp3_port_a++;
  603. /* Reset for multiple KP3 adapters */
  604. if (e1000_ksp3_port_a == 4)
  605. e1000_ksp3_port_a = 0;
  606. if (adapter->hw.mac_type >= e1000_82543) {
  607. netdev->features = NETIF_F_SG |
  608. NETIF_F_HW_CSUM |
  609. NETIF_F_HW_VLAN_TX |
  610. NETIF_F_HW_VLAN_RX |
  611. NETIF_F_HW_VLAN_FILTER;
  612. }
  613. #ifdef NETIF_F_TSO
  614. if ((adapter->hw.mac_type >= e1000_82544) &&
  615. (adapter->hw.mac_type != e1000_82547))
  616. netdev->features |= NETIF_F_TSO;
  617. #ifdef NETIF_F_TSO_IPV6
  618. if (adapter->hw.mac_type > e1000_82547_rev_2)
  619. netdev->features |= NETIF_F_TSO_IPV6;
  620. #endif
  621. #endif
  622. if (pci_using_dac)
  623. netdev->features |= NETIF_F_HIGHDMA;
  624. /* hard_start_xmit is safe against parallel locking */
  625. netdev->features |= NETIF_F_LLTX;
  626. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  627. /* before reading the EEPROM, reset the controller to
  628. * put the device in a known good starting state */
  629. e1000_reset_hw(&adapter->hw);
  630. /* make sure the EEPROM is good */
  631. if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  632. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  633. err = -EIO;
  634. goto err_eeprom;
  635. }
  636. /* copy the MAC address out of the EEPROM */
  637. if (e1000_read_mac_addr(&adapter->hw))
  638. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  639. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  640. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  641. if (!is_valid_ether_addr(netdev->perm_addr)) {
  642. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  643. err = -EIO;
  644. goto err_eeprom;
  645. }
  646. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  647. e1000_get_bus_info(&adapter->hw);
  648. init_timer(&adapter->tx_fifo_stall_timer);
  649. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  650. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  651. init_timer(&adapter->watchdog_timer);
  652. adapter->watchdog_timer.function = &e1000_watchdog;
  653. adapter->watchdog_timer.data = (unsigned long) adapter;
  654. INIT_WORK(&adapter->watchdog_task,
  655. (void (*)(void *))e1000_watchdog_task, adapter);
  656. init_timer(&adapter->phy_info_timer);
  657. adapter->phy_info_timer.function = &e1000_update_phy_info;
  658. adapter->phy_info_timer.data = (unsigned long) adapter;
  659. INIT_WORK(&adapter->reset_task,
  660. (void (*)(void *))e1000_reset_task, netdev);
  661. /* we're going to reset, so assume we have no link for now */
  662. netif_carrier_off(netdev);
  663. netif_stop_queue(netdev);
  664. e1000_check_options(adapter);
  665. /* Initial Wake on LAN setting
  666. * If APM wake is enabled in the EEPROM,
  667. * enable the ACPI Magic Packet filter
  668. */
  669. switch (adapter->hw.mac_type) {
  670. case e1000_82542_rev2_0:
  671. case e1000_82542_rev2_1:
  672. case e1000_82543:
  673. break;
  674. case e1000_82544:
  675. e1000_read_eeprom(&adapter->hw,
  676. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  677. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  678. break;
  679. case e1000_82546:
  680. case e1000_82546_rev_3:
  681. case e1000_82571:
  682. case e1000_80003es2lan:
  683. if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
  684. e1000_read_eeprom(&adapter->hw,
  685. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  686. break;
  687. }
  688. /* Fall Through */
  689. default:
  690. e1000_read_eeprom(&adapter->hw,
  691. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  692. break;
  693. }
  694. if (eeprom_data & eeprom_apme_mask)
  695. adapter->wol |= E1000_WUFC_MAG;
  696. /* print bus type/speed/width info */
  697. {
  698. struct e1000_hw *hw = &adapter->hw;
  699. DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
  700. ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
  701. (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
  702. ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  703. (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
  704. (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
  705. (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
  706. (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
  707. ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
  708. (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
  709. (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
  710. "32-bit"));
  711. }
  712. for (i = 0; i < 6; i++)
  713. printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
  714. /* reset the hardware with the new settings */
  715. e1000_reset(adapter);
  716. /* If the controller is 82573 and f/w is AMT, do not set
  717. * DRV_LOAD until the interface is up. For all other cases,
  718. * let the f/w know that the h/w is now under the control
  719. * of the driver. */
  720. if (adapter->hw.mac_type != e1000_82573 ||
  721. !e1000_check_mng_mode(&adapter->hw))
  722. e1000_get_hw_control(adapter);
  723. strcpy(netdev->name, "eth%d");
  724. if ((err = register_netdev(netdev)))
  725. goto err_register;
  726. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  727. cards_found++;
  728. return 0;
  729. err_register:
  730. err_sw_init:
  731. err_eeprom:
  732. iounmap(adapter->hw.hw_addr);
  733. err_ioremap:
  734. free_netdev(netdev);
  735. err_alloc_etherdev:
  736. pci_release_regions(pdev);
  737. return err;
  738. }
  739. /**
  740. * e1000_remove - Device Removal Routine
  741. * @pdev: PCI device information struct
  742. *
  743. * e1000_remove is called by the PCI subsystem to alert the driver
  744. * that it should release a PCI device. The could be caused by a
  745. * Hot-Plug event, or because the driver is going to be removed from
  746. * memory.
  747. **/
  748. static void __devexit
  749. e1000_remove(struct pci_dev *pdev)
  750. {
  751. struct net_device *netdev = pci_get_drvdata(pdev);
  752. struct e1000_adapter *adapter = netdev_priv(netdev);
  753. uint32_t manc;
  754. #ifdef CONFIG_E1000_NAPI
  755. int i;
  756. #endif
  757. flush_scheduled_work();
  758. if (adapter->hw.mac_type >= e1000_82540 &&
  759. adapter->hw.media_type == e1000_media_type_copper) {
  760. manc = E1000_READ_REG(&adapter->hw, MANC);
  761. if (manc & E1000_MANC_SMBUS_EN) {
  762. manc |= E1000_MANC_ARP_EN;
  763. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  764. }
  765. }
  766. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  767. * would have already happened in close and is redundant. */
  768. e1000_release_hw_control(adapter);
  769. unregister_netdev(netdev);
  770. #ifdef CONFIG_E1000_NAPI
  771. for (i = 0; i < adapter->num_rx_queues; i++)
  772. dev_put(&adapter->polling_netdev[i]);
  773. #endif
  774. if (!e1000_check_phy_reset_block(&adapter->hw))
  775. e1000_phy_hw_reset(&adapter->hw);
  776. kfree(adapter->tx_ring);
  777. kfree(adapter->rx_ring);
  778. #ifdef CONFIG_E1000_NAPI
  779. kfree(adapter->polling_netdev);
  780. #endif
  781. iounmap(adapter->hw.hw_addr);
  782. pci_release_regions(pdev);
  783. free_netdev(netdev);
  784. pci_disable_device(pdev);
  785. }
  786. /**
  787. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  788. * @adapter: board private structure to initialize
  789. *
  790. * e1000_sw_init initializes the Adapter private data structure.
  791. * Fields are initialized based on PCI device information and
  792. * OS network device settings (MTU size).
  793. **/
  794. static int __devinit
  795. e1000_sw_init(struct e1000_adapter *adapter)
  796. {
  797. struct e1000_hw *hw = &adapter->hw;
  798. struct net_device *netdev = adapter->netdev;
  799. struct pci_dev *pdev = adapter->pdev;
  800. #ifdef CONFIG_E1000_NAPI
  801. int i;
  802. #endif
  803. /* PCI config space info */
  804. hw->vendor_id = pdev->vendor;
  805. hw->device_id = pdev->device;
  806. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  807. hw->subsystem_id = pdev->subsystem_device;
  808. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  809. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  810. adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
  811. adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
  812. hw->max_frame_size = netdev->mtu +
  813. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  814. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  815. /* identify the MAC */
  816. if (e1000_set_mac_type(hw)) {
  817. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  818. return -EIO;
  819. }
  820. /* initialize eeprom parameters */
  821. if (e1000_init_eeprom_params(hw)) {
  822. E1000_ERR("EEPROM initialization failed\n");
  823. return -EIO;
  824. }
  825. switch (hw->mac_type) {
  826. default:
  827. break;
  828. case e1000_82541:
  829. case e1000_82547:
  830. case e1000_82541_rev_2:
  831. case e1000_82547_rev_2:
  832. hw->phy_init_script = 1;
  833. break;
  834. }
  835. e1000_set_media_type(hw);
  836. hw->wait_autoneg_complete = FALSE;
  837. hw->tbi_compatibility_en = TRUE;
  838. hw->adaptive_ifs = TRUE;
  839. /* Copper options */
  840. if (hw->media_type == e1000_media_type_copper) {
  841. hw->mdix = AUTO_ALL_MODES;
  842. hw->disable_polarity_correction = FALSE;
  843. hw->master_slave = E1000_MASTER_SLAVE;
  844. }
  845. adapter->num_tx_queues = 1;
  846. adapter->num_rx_queues = 1;
  847. if (e1000_alloc_queues(adapter)) {
  848. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  849. return -ENOMEM;
  850. }
  851. #ifdef CONFIG_E1000_NAPI
  852. for (i = 0; i < adapter->num_rx_queues; i++) {
  853. adapter->polling_netdev[i].priv = adapter;
  854. adapter->polling_netdev[i].poll = &e1000_clean;
  855. adapter->polling_netdev[i].weight = 64;
  856. dev_hold(&adapter->polling_netdev[i]);
  857. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  858. }
  859. spin_lock_init(&adapter->tx_queue_lock);
  860. #endif
  861. atomic_set(&adapter->irq_sem, 1);
  862. spin_lock_init(&adapter->stats_lock);
  863. return 0;
  864. }
  865. /**
  866. * e1000_alloc_queues - Allocate memory for all rings
  867. * @adapter: board private structure to initialize
  868. *
  869. * We allocate one ring per queue at run-time since we don't know the
  870. * number of queues at compile-time. The polling_netdev array is
  871. * intended for Multiqueue, but should work fine with a single queue.
  872. **/
  873. static int __devinit
  874. e1000_alloc_queues(struct e1000_adapter *adapter)
  875. {
  876. int size;
  877. size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  878. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  879. if (!adapter->tx_ring)
  880. return -ENOMEM;
  881. memset(adapter->tx_ring, 0, size);
  882. size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  883. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  884. if (!adapter->rx_ring) {
  885. kfree(adapter->tx_ring);
  886. return -ENOMEM;
  887. }
  888. memset(adapter->rx_ring, 0, size);
  889. #ifdef CONFIG_E1000_NAPI
  890. size = sizeof(struct net_device) * adapter->num_rx_queues;
  891. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  892. if (!adapter->polling_netdev) {
  893. kfree(adapter->tx_ring);
  894. kfree(adapter->rx_ring);
  895. return -ENOMEM;
  896. }
  897. memset(adapter->polling_netdev, 0, size);
  898. #endif
  899. return E1000_SUCCESS;
  900. }
  901. /**
  902. * e1000_open - Called when a network interface is made active
  903. * @netdev: network interface device structure
  904. *
  905. * Returns 0 on success, negative value on failure
  906. *
  907. * The open entry point is called when a network interface is made
  908. * active by the system (IFF_UP). At this point all resources needed
  909. * for transmit and receive operations are allocated, the interrupt
  910. * handler is registered with the OS, the watchdog timer is started,
  911. * and the stack is notified that the interface is ready.
  912. **/
  913. static int
  914. e1000_open(struct net_device *netdev)
  915. {
  916. struct e1000_adapter *adapter = netdev_priv(netdev);
  917. int err;
  918. /* allocate transmit descriptors */
  919. if ((err = e1000_setup_all_tx_resources(adapter)))
  920. goto err_setup_tx;
  921. /* allocate receive descriptors */
  922. if ((err = e1000_setup_all_rx_resources(adapter)))
  923. goto err_setup_rx;
  924. if ((err = e1000_up(adapter)))
  925. goto err_up;
  926. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  927. if ((adapter->hw.mng_cookie.status &
  928. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  929. e1000_update_mng_vlan(adapter);
  930. }
  931. /* If AMT is enabled, let the firmware know that the network
  932. * interface is now open */
  933. if (adapter->hw.mac_type == e1000_82573 &&
  934. e1000_check_mng_mode(&adapter->hw))
  935. e1000_get_hw_control(adapter);
  936. return E1000_SUCCESS;
  937. err_up:
  938. e1000_free_all_rx_resources(adapter);
  939. err_setup_rx:
  940. e1000_free_all_tx_resources(adapter);
  941. err_setup_tx:
  942. e1000_reset(adapter);
  943. return err;
  944. }
  945. /**
  946. * e1000_close - Disables a network interface
  947. * @netdev: network interface device structure
  948. *
  949. * Returns 0, this is not allowed to fail
  950. *
  951. * The close entry point is called when an interface is de-activated
  952. * by the OS. The hardware is still under the drivers control, but
  953. * needs to be disabled. A global MAC reset is issued to stop the
  954. * hardware, and all transmit and receive resources are freed.
  955. **/
  956. static int
  957. e1000_close(struct net_device *netdev)
  958. {
  959. struct e1000_adapter *adapter = netdev_priv(netdev);
  960. e1000_down(adapter);
  961. e1000_free_all_tx_resources(adapter);
  962. e1000_free_all_rx_resources(adapter);
  963. if ((adapter->hw.mng_cookie.status &
  964. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  965. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  966. }
  967. /* If AMT is enabled, let the firmware know that the network
  968. * interface is now closed */
  969. if (adapter->hw.mac_type == e1000_82573 &&
  970. e1000_check_mng_mode(&adapter->hw))
  971. e1000_release_hw_control(adapter);
  972. return 0;
  973. }
  974. /**
  975. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  976. * @adapter: address of board private structure
  977. * @start: address of beginning of memory
  978. * @len: length of memory
  979. **/
  980. static boolean_t
  981. e1000_check_64k_bound(struct e1000_adapter *adapter,
  982. void *start, unsigned long len)
  983. {
  984. unsigned long begin = (unsigned long) start;
  985. unsigned long end = begin + len;
  986. /* First rev 82545 and 82546 need to not allow any memory
  987. * write location to cross 64k boundary due to errata 23 */
  988. if (adapter->hw.mac_type == e1000_82545 ||
  989. adapter->hw.mac_type == e1000_82546) {
  990. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  991. }
  992. return TRUE;
  993. }
  994. /**
  995. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  996. * @adapter: board private structure
  997. * @txdr: tx descriptor ring (for a specific queue) to setup
  998. *
  999. * Return 0 on success, negative on failure
  1000. **/
  1001. static int
  1002. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  1003. struct e1000_tx_ring *txdr)
  1004. {
  1005. struct pci_dev *pdev = adapter->pdev;
  1006. int size;
  1007. size = sizeof(struct e1000_buffer) * txdr->count;
  1008. txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1009. if (!txdr->buffer_info) {
  1010. DPRINTK(PROBE, ERR,
  1011. "Unable to allocate memory for the transmit descriptor ring\n");
  1012. return -ENOMEM;
  1013. }
  1014. memset(txdr->buffer_info, 0, size);
  1015. /* round up to nearest 4K */
  1016. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  1017. E1000_ROUNDUP(txdr->size, 4096);
  1018. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1019. if (!txdr->desc) {
  1020. setup_tx_desc_die:
  1021. vfree(txdr->buffer_info);
  1022. DPRINTK(PROBE, ERR,
  1023. "Unable to allocate memory for the transmit descriptor ring\n");
  1024. return -ENOMEM;
  1025. }
  1026. /* Fix for errata 23, can't cross 64kB boundary */
  1027. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1028. void *olddesc = txdr->desc;
  1029. dma_addr_t olddma = txdr->dma;
  1030. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  1031. "at %p\n", txdr->size, txdr->desc);
  1032. /* Try again, without freeing the previous */
  1033. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1034. /* Failed allocation, critical failure */
  1035. if (!txdr->desc) {
  1036. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1037. goto setup_tx_desc_die;
  1038. }
  1039. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1040. /* give up */
  1041. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1042. txdr->dma);
  1043. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1044. DPRINTK(PROBE, ERR,
  1045. "Unable to allocate aligned memory "
  1046. "for the transmit descriptor ring\n");
  1047. vfree(txdr->buffer_info);
  1048. return -ENOMEM;
  1049. } else {
  1050. /* Free old allocation, new allocation was successful */
  1051. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1052. }
  1053. }
  1054. memset(txdr->desc, 0, txdr->size);
  1055. txdr->next_to_use = 0;
  1056. txdr->next_to_clean = 0;
  1057. spin_lock_init(&txdr->tx_lock);
  1058. return 0;
  1059. }
  1060. /**
  1061. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1062. * (Descriptors) for all queues
  1063. * @adapter: board private structure
  1064. *
  1065. * If this function returns with an error, then it's possible one or
  1066. * more of the rings is populated (while the rest are not). It is the
  1067. * callers duty to clean those orphaned rings.
  1068. *
  1069. * Return 0 on success, negative on failure
  1070. **/
  1071. int
  1072. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1073. {
  1074. int i, err = 0;
  1075. for (i = 0; i < adapter->num_tx_queues; i++) {
  1076. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1077. if (err) {
  1078. DPRINTK(PROBE, ERR,
  1079. "Allocation for Tx Queue %u failed\n", i);
  1080. break;
  1081. }
  1082. }
  1083. return err;
  1084. }
  1085. /**
  1086. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1087. * @adapter: board private structure
  1088. *
  1089. * Configure the Tx unit of the MAC after a reset.
  1090. **/
  1091. static void
  1092. e1000_configure_tx(struct e1000_adapter *adapter)
  1093. {
  1094. uint64_t tdba;
  1095. struct e1000_hw *hw = &adapter->hw;
  1096. uint32_t tdlen, tctl, tipg, tarc;
  1097. uint32_t ipgr1, ipgr2;
  1098. /* Setup the HW Tx Head and Tail descriptor pointers */
  1099. switch (adapter->num_tx_queues) {
  1100. case 1:
  1101. default:
  1102. tdba = adapter->tx_ring[0].dma;
  1103. tdlen = adapter->tx_ring[0].count *
  1104. sizeof(struct e1000_tx_desc);
  1105. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1106. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1107. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1108. E1000_WRITE_REG(hw, TDH, 0);
  1109. E1000_WRITE_REG(hw, TDT, 0);
  1110. adapter->tx_ring[0].tdh = E1000_TDH;
  1111. adapter->tx_ring[0].tdt = E1000_TDT;
  1112. break;
  1113. }
  1114. /* Set the default values for the Tx Inter Packet Gap timer */
  1115. if (hw->media_type == e1000_media_type_fiber ||
  1116. hw->media_type == e1000_media_type_internal_serdes)
  1117. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1118. else
  1119. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1120. switch (hw->mac_type) {
  1121. case e1000_82542_rev2_0:
  1122. case e1000_82542_rev2_1:
  1123. tipg = DEFAULT_82542_TIPG_IPGT;
  1124. ipgr1 = DEFAULT_82542_TIPG_IPGR1;
  1125. ipgr2 = DEFAULT_82542_TIPG_IPGR2;
  1126. break;
  1127. case e1000_80003es2lan:
  1128. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1129. ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
  1130. break;
  1131. default:
  1132. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1133. ipgr2 = DEFAULT_82543_TIPG_IPGR2;
  1134. break;
  1135. }
  1136. tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
  1137. tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
  1138. E1000_WRITE_REG(hw, TIPG, tipg);
  1139. /* Set the Tx Interrupt Delay register */
  1140. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1141. if (hw->mac_type >= e1000_82540)
  1142. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1143. /* Program the Transmit Control Register */
  1144. tctl = E1000_READ_REG(hw, TCTL);
  1145. tctl &= ~E1000_TCTL_CT;
  1146. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1147. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1148. #ifdef DISABLE_MULR
  1149. /* disable Multiple Reads for debugging */
  1150. tctl &= ~E1000_TCTL_MULR;
  1151. #endif
  1152. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1153. tarc = E1000_READ_REG(hw, TARC0);
  1154. tarc |= ((1 << 25) | (1 << 21));
  1155. E1000_WRITE_REG(hw, TARC0, tarc);
  1156. tarc = E1000_READ_REG(hw, TARC1);
  1157. tarc |= (1 << 25);
  1158. if (tctl & E1000_TCTL_MULR)
  1159. tarc &= ~(1 << 28);
  1160. else
  1161. tarc |= (1 << 28);
  1162. E1000_WRITE_REG(hw, TARC1, tarc);
  1163. } else if (hw->mac_type == e1000_80003es2lan) {
  1164. tarc = E1000_READ_REG(hw, TARC0);
  1165. tarc |= 1;
  1166. if (hw->media_type == e1000_media_type_internal_serdes)
  1167. tarc |= (1 << 20);
  1168. E1000_WRITE_REG(hw, TARC0, tarc);
  1169. tarc = E1000_READ_REG(hw, TARC1);
  1170. tarc |= 1;
  1171. E1000_WRITE_REG(hw, TARC1, tarc);
  1172. }
  1173. e1000_config_collision_dist(hw);
  1174. /* Setup Transmit Descriptor Settings for eop descriptor */
  1175. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1176. E1000_TXD_CMD_IFCS;
  1177. if (hw->mac_type < e1000_82543)
  1178. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1179. else
  1180. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1181. /* Cache if we're 82544 running in PCI-X because we'll
  1182. * need this to apply a workaround later in the send path. */
  1183. if (hw->mac_type == e1000_82544 &&
  1184. hw->bus_type == e1000_bus_type_pcix)
  1185. adapter->pcix_82544 = 1;
  1186. E1000_WRITE_REG(hw, TCTL, tctl);
  1187. }
  1188. /**
  1189. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1190. * @adapter: board private structure
  1191. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1192. *
  1193. * Returns 0 on success, negative on failure
  1194. **/
  1195. static int
  1196. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1197. struct e1000_rx_ring *rxdr)
  1198. {
  1199. struct pci_dev *pdev = adapter->pdev;
  1200. int size, desc_len;
  1201. size = sizeof(struct e1000_buffer) * rxdr->count;
  1202. rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1203. if (!rxdr->buffer_info) {
  1204. DPRINTK(PROBE, ERR,
  1205. "Unable to allocate memory for the receive descriptor ring\n");
  1206. return -ENOMEM;
  1207. }
  1208. memset(rxdr->buffer_info, 0, size);
  1209. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1210. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1211. if (!rxdr->ps_page) {
  1212. vfree(rxdr->buffer_info);
  1213. DPRINTK(PROBE, ERR,
  1214. "Unable to allocate memory for the receive descriptor ring\n");
  1215. return -ENOMEM;
  1216. }
  1217. memset(rxdr->ps_page, 0, size);
  1218. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1219. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1220. if (!rxdr->ps_page_dma) {
  1221. vfree(rxdr->buffer_info);
  1222. kfree(rxdr->ps_page);
  1223. DPRINTK(PROBE, ERR,
  1224. "Unable to allocate memory for the receive descriptor ring\n");
  1225. return -ENOMEM;
  1226. }
  1227. memset(rxdr->ps_page_dma, 0, size);
  1228. if (adapter->hw.mac_type <= e1000_82547_rev_2)
  1229. desc_len = sizeof(struct e1000_rx_desc);
  1230. else
  1231. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1232. /* Round up to nearest 4K */
  1233. rxdr->size = rxdr->count * desc_len;
  1234. E1000_ROUNDUP(rxdr->size, 4096);
  1235. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1236. if (!rxdr->desc) {
  1237. DPRINTK(PROBE, ERR,
  1238. "Unable to allocate memory for the receive descriptor ring\n");
  1239. setup_rx_desc_die:
  1240. vfree(rxdr->buffer_info);
  1241. kfree(rxdr->ps_page);
  1242. kfree(rxdr->ps_page_dma);
  1243. return -ENOMEM;
  1244. }
  1245. /* Fix for errata 23, can't cross 64kB boundary */
  1246. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1247. void *olddesc = rxdr->desc;
  1248. dma_addr_t olddma = rxdr->dma;
  1249. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1250. "at %p\n", rxdr->size, rxdr->desc);
  1251. /* Try again, without freeing the previous */
  1252. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1253. /* Failed allocation, critical failure */
  1254. if (!rxdr->desc) {
  1255. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1256. DPRINTK(PROBE, ERR,
  1257. "Unable to allocate memory "
  1258. "for the receive descriptor ring\n");
  1259. goto setup_rx_desc_die;
  1260. }
  1261. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1262. /* give up */
  1263. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1264. rxdr->dma);
  1265. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1266. DPRINTK(PROBE, ERR,
  1267. "Unable to allocate aligned memory "
  1268. "for the receive descriptor ring\n");
  1269. goto setup_rx_desc_die;
  1270. } else {
  1271. /* Free old allocation, new allocation was successful */
  1272. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1273. }
  1274. }
  1275. memset(rxdr->desc, 0, rxdr->size);
  1276. rxdr->next_to_clean = 0;
  1277. rxdr->next_to_use = 0;
  1278. return 0;
  1279. }
  1280. /**
  1281. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1282. * (Descriptors) for all queues
  1283. * @adapter: board private structure
  1284. *
  1285. * If this function returns with an error, then it's possible one or
  1286. * more of the rings is populated (while the rest are not). It is the
  1287. * callers duty to clean those orphaned rings.
  1288. *
  1289. * Return 0 on success, negative on failure
  1290. **/
  1291. int
  1292. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1293. {
  1294. int i, err = 0;
  1295. for (i = 0; i < adapter->num_rx_queues; i++) {
  1296. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1297. if (err) {
  1298. DPRINTK(PROBE, ERR,
  1299. "Allocation for Rx Queue %u failed\n", i);
  1300. break;
  1301. }
  1302. }
  1303. return err;
  1304. }
  1305. /**
  1306. * e1000_setup_rctl - configure the receive control registers
  1307. * @adapter: Board private structure
  1308. **/
  1309. #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
  1310. (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
  1311. static void
  1312. e1000_setup_rctl(struct e1000_adapter *adapter)
  1313. {
  1314. uint32_t rctl, rfctl;
  1315. uint32_t psrctl = 0;
  1316. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1317. uint32_t pages = 0;
  1318. #endif
  1319. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1320. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1321. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1322. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1323. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1324. if (adapter->hw.mac_type > e1000_82543)
  1325. rctl |= E1000_RCTL_SECRC;
  1326. if (adapter->hw.tbi_compatibility_on == 1)
  1327. rctl |= E1000_RCTL_SBP;
  1328. else
  1329. rctl &= ~E1000_RCTL_SBP;
  1330. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1331. rctl &= ~E1000_RCTL_LPE;
  1332. else
  1333. rctl |= E1000_RCTL_LPE;
  1334. /* Setup buffer sizes */
  1335. rctl &= ~E1000_RCTL_SZ_4096;
  1336. rctl |= E1000_RCTL_BSEX;
  1337. switch (adapter->rx_buffer_len) {
  1338. case E1000_RXBUFFER_256:
  1339. rctl |= E1000_RCTL_SZ_256;
  1340. rctl &= ~E1000_RCTL_BSEX;
  1341. break;
  1342. case E1000_RXBUFFER_512:
  1343. rctl |= E1000_RCTL_SZ_512;
  1344. rctl &= ~E1000_RCTL_BSEX;
  1345. break;
  1346. case E1000_RXBUFFER_1024:
  1347. rctl |= E1000_RCTL_SZ_1024;
  1348. rctl &= ~E1000_RCTL_BSEX;
  1349. break;
  1350. case E1000_RXBUFFER_2048:
  1351. default:
  1352. rctl |= E1000_RCTL_SZ_2048;
  1353. rctl &= ~E1000_RCTL_BSEX;
  1354. break;
  1355. case E1000_RXBUFFER_4096:
  1356. rctl |= E1000_RCTL_SZ_4096;
  1357. break;
  1358. case E1000_RXBUFFER_8192:
  1359. rctl |= E1000_RCTL_SZ_8192;
  1360. break;
  1361. case E1000_RXBUFFER_16384:
  1362. rctl |= E1000_RCTL_SZ_16384;
  1363. break;
  1364. }
  1365. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1366. /* 82571 and greater support packet-split where the protocol
  1367. * header is placed in skb->data and the packet data is
  1368. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1369. * In the case of a non-split, skb->data is linearly filled,
  1370. * followed by the page buffers. Therefore, skb->data is
  1371. * sized to hold the largest protocol header.
  1372. */
  1373. pages = PAGE_USE_COUNT(adapter->netdev->mtu);
  1374. if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
  1375. PAGE_SIZE <= 16384)
  1376. adapter->rx_ps_pages = pages;
  1377. else
  1378. adapter->rx_ps_pages = 0;
  1379. #endif
  1380. if (adapter->rx_ps_pages) {
  1381. /* Configure extra packet-split registers */
  1382. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1383. rfctl |= E1000_RFCTL_EXTEN;
  1384. /* disable IPv6 packet split support */
  1385. rfctl |= E1000_RFCTL_IPV6_DIS;
  1386. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1387. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1388. psrctl |= adapter->rx_ps_bsize0 >>
  1389. E1000_PSRCTL_BSIZE0_SHIFT;
  1390. switch (adapter->rx_ps_pages) {
  1391. case 3:
  1392. psrctl |= PAGE_SIZE <<
  1393. E1000_PSRCTL_BSIZE3_SHIFT;
  1394. case 2:
  1395. psrctl |= PAGE_SIZE <<
  1396. E1000_PSRCTL_BSIZE2_SHIFT;
  1397. case 1:
  1398. psrctl |= PAGE_SIZE >>
  1399. E1000_PSRCTL_BSIZE1_SHIFT;
  1400. break;
  1401. }
  1402. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1403. }
  1404. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1405. }
  1406. /**
  1407. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1408. * @adapter: board private structure
  1409. *
  1410. * Configure the Rx unit of the MAC after a reset.
  1411. **/
  1412. static void
  1413. e1000_configure_rx(struct e1000_adapter *adapter)
  1414. {
  1415. uint64_t rdba;
  1416. struct e1000_hw *hw = &adapter->hw;
  1417. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1418. if (adapter->rx_ps_pages) {
  1419. /* this is a 32 byte descriptor */
  1420. rdlen = adapter->rx_ring[0].count *
  1421. sizeof(union e1000_rx_desc_packet_split);
  1422. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1423. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1424. } else {
  1425. rdlen = adapter->rx_ring[0].count *
  1426. sizeof(struct e1000_rx_desc);
  1427. adapter->clean_rx = e1000_clean_rx_irq;
  1428. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1429. }
  1430. /* disable receives while setting up the descriptors */
  1431. rctl = E1000_READ_REG(hw, RCTL);
  1432. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1433. /* set the Receive Delay Timer Register */
  1434. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1435. if (hw->mac_type >= e1000_82540) {
  1436. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1437. if (adapter->itr > 1)
  1438. E1000_WRITE_REG(hw, ITR,
  1439. 1000000000 / (adapter->itr * 256));
  1440. }
  1441. if (hw->mac_type >= e1000_82571) {
  1442. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1443. /* Reset delay timers after every interrupt */
  1444. ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
  1445. #ifdef CONFIG_E1000_NAPI
  1446. /* Auto-Mask interrupts upon ICR read. */
  1447. ctrl_ext |= E1000_CTRL_EXT_IAME;
  1448. #endif
  1449. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1450. E1000_WRITE_REG(hw, IAM, ~0);
  1451. E1000_WRITE_FLUSH(hw);
  1452. }
  1453. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1454. * the Base and Length of the Rx Descriptor Ring */
  1455. switch (adapter->num_rx_queues) {
  1456. case 1:
  1457. default:
  1458. rdba = adapter->rx_ring[0].dma;
  1459. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1460. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1461. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1462. E1000_WRITE_REG(hw, RDH, 0);
  1463. E1000_WRITE_REG(hw, RDT, 0);
  1464. adapter->rx_ring[0].rdh = E1000_RDH;
  1465. adapter->rx_ring[0].rdt = E1000_RDT;
  1466. break;
  1467. }
  1468. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1469. if (hw->mac_type >= e1000_82543) {
  1470. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1471. if (adapter->rx_csum == TRUE) {
  1472. rxcsum |= E1000_RXCSUM_TUOFL;
  1473. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1474. * Must be used in conjunction with packet-split. */
  1475. if ((hw->mac_type >= e1000_82571) &&
  1476. (adapter->rx_ps_pages)) {
  1477. rxcsum |= E1000_RXCSUM_IPPCSE;
  1478. }
  1479. } else {
  1480. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1481. /* don't need to clear IPPCSE as it defaults to 0 */
  1482. }
  1483. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1484. }
  1485. if (hw->mac_type == e1000_82573)
  1486. E1000_WRITE_REG(hw, ERT, 0x0100);
  1487. /* Enable Receives */
  1488. E1000_WRITE_REG(hw, RCTL, rctl);
  1489. }
  1490. /**
  1491. * e1000_free_tx_resources - Free Tx Resources per Queue
  1492. * @adapter: board private structure
  1493. * @tx_ring: Tx descriptor ring for a specific queue
  1494. *
  1495. * Free all transmit software resources
  1496. **/
  1497. static void
  1498. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1499. struct e1000_tx_ring *tx_ring)
  1500. {
  1501. struct pci_dev *pdev = adapter->pdev;
  1502. e1000_clean_tx_ring(adapter, tx_ring);
  1503. vfree(tx_ring->buffer_info);
  1504. tx_ring->buffer_info = NULL;
  1505. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1506. tx_ring->desc = NULL;
  1507. }
  1508. /**
  1509. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1510. * @adapter: board private structure
  1511. *
  1512. * Free all transmit software resources
  1513. **/
  1514. void
  1515. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1516. {
  1517. int i;
  1518. for (i = 0; i < adapter->num_tx_queues; i++)
  1519. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1520. }
  1521. static void
  1522. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1523. struct e1000_buffer *buffer_info)
  1524. {
  1525. if (buffer_info->dma) {
  1526. pci_unmap_page(adapter->pdev,
  1527. buffer_info->dma,
  1528. buffer_info->length,
  1529. PCI_DMA_TODEVICE);
  1530. }
  1531. if (buffer_info->skb)
  1532. dev_kfree_skb_any(buffer_info->skb);
  1533. memset(buffer_info, 0, sizeof(struct e1000_buffer));
  1534. }
  1535. /**
  1536. * e1000_clean_tx_ring - Free Tx Buffers
  1537. * @adapter: board private structure
  1538. * @tx_ring: ring to be cleaned
  1539. **/
  1540. static void
  1541. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1542. struct e1000_tx_ring *tx_ring)
  1543. {
  1544. struct e1000_buffer *buffer_info;
  1545. unsigned long size;
  1546. unsigned int i;
  1547. /* Free all the Tx ring sk_buffs */
  1548. for (i = 0; i < tx_ring->count; i++) {
  1549. buffer_info = &tx_ring->buffer_info[i];
  1550. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1551. }
  1552. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1553. memset(tx_ring->buffer_info, 0, size);
  1554. /* Zero out the descriptor ring */
  1555. memset(tx_ring->desc, 0, tx_ring->size);
  1556. tx_ring->next_to_use = 0;
  1557. tx_ring->next_to_clean = 0;
  1558. tx_ring->last_tx_tso = 0;
  1559. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1560. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1561. }
  1562. /**
  1563. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1564. * @adapter: board private structure
  1565. **/
  1566. static void
  1567. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1568. {
  1569. int i;
  1570. for (i = 0; i < adapter->num_tx_queues; i++)
  1571. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1572. }
  1573. /**
  1574. * e1000_free_rx_resources - Free Rx Resources
  1575. * @adapter: board private structure
  1576. * @rx_ring: ring to clean the resources from
  1577. *
  1578. * Free all receive software resources
  1579. **/
  1580. static void
  1581. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1582. struct e1000_rx_ring *rx_ring)
  1583. {
  1584. struct pci_dev *pdev = adapter->pdev;
  1585. e1000_clean_rx_ring(adapter, rx_ring);
  1586. vfree(rx_ring->buffer_info);
  1587. rx_ring->buffer_info = NULL;
  1588. kfree(rx_ring->ps_page);
  1589. rx_ring->ps_page = NULL;
  1590. kfree(rx_ring->ps_page_dma);
  1591. rx_ring->ps_page_dma = NULL;
  1592. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1593. rx_ring->desc = NULL;
  1594. }
  1595. /**
  1596. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1597. * @adapter: board private structure
  1598. *
  1599. * Free all receive software resources
  1600. **/
  1601. void
  1602. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1603. {
  1604. int i;
  1605. for (i = 0; i < adapter->num_rx_queues; i++)
  1606. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1607. }
  1608. /**
  1609. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1610. * @adapter: board private structure
  1611. * @rx_ring: ring to free buffers from
  1612. **/
  1613. static void
  1614. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1615. struct e1000_rx_ring *rx_ring)
  1616. {
  1617. struct e1000_buffer *buffer_info;
  1618. struct e1000_ps_page *ps_page;
  1619. struct e1000_ps_page_dma *ps_page_dma;
  1620. struct pci_dev *pdev = adapter->pdev;
  1621. unsigned long size;
  1622. unsigned int i, j;
  1623. /* Free all the Rx ring sk_buffs */
  1624. for (i = 0; i < rx_ring->count; i++) {
  1625. buffer_info = &rx_ring->buffer_info[i];
  1626. if (buffer_info->skb) {
  1627. pci_unmap_single(pdev,
  1628. buffer_info->dma,
  1629. buffer_info->length,
  1630. PCI_DMA_FROMDEVICE);
  1631. dev_kfree_skb(buffer_info->skb);
  1632. buffer_info->skb = NULL;
  1633. }
  1634. ps_page = &rx_ring->ps_page[i];
  1635. ps_page_dma = &rx_ring->ps_page_dma[i];
  1636. for (j = 0; j < adapter->rx_ps_pages; j++) {
  1637. if (!ps_page->ps_page[j]) break;
  1638. pci_unmap_page(pdev,
  1639. ps_page_dma->ps_page_dma[j],
  1640. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1641. ps_page_dma->ps_page_dma[j] = 0;
  1642. put_page(ps_page->ps_page[j]);
  1643. ps_page->ps_page[j] = NULL;
  1644. }
  1645. }
  1646. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1647. memset(rx_ring->buffer_info, 0, size);
  1648. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1649. memset(rx_ring->ps_page, 0, size);
  1650. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1651. memset(rx_ring->ps_page_dma, 0, size);
  1652. /* Zero out the descriptor ring */
  1653. memset(rx_ring->desc, 0, rx_ring->size);
  1654. rx_ring->next_to_clean = 0;
  1655. rx_ring->next_to_use = 0;
  1656. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1657. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1658. }
  1659. /**
  1660. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1661. * @adapter: board private structure
  1662. **/
  1663. static void
  1664. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1665. {
  1666. int i;
  1667. for (i = 0; i < adapter->num_rx_queues; i++)
  1668. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1669. }
  1670. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1671. * and memory write and invalidate disabled for certain operations
  1672. */
  1673. static void
  1674. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1675. {
  1676. struct net_device *netdev = adapter->netdev;
  1677. uint32_t rctl;
  1678. e1000_pci_clear_mwi(&adapter->hw);
  1679. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1680. rctl |= E1000_RCTL_RST;
  1681. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1682. E1000_WRITE_FLUSH(&adapter->hw);
  1683. mdelay(5);
  1684. if (netif_running(netdev))
  1685. e1000_clean_all_rx_rings(adapter);
  1686. }
  1687. static void
  1688. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1689. {
  1690. struct net_device *netdev = adapter->netdev;
  1691. uint32_t rctl;
  1692. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1693. rctl &= ~E1000_RCTL_RST;
  1694. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1695. E1000_WRITE_FLUSH(&adapter->hw);
  1696. mdelay(5);
  1697. if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1698. e1000_pci_set_mwi(&adapter->hw);
  1699. if (netif_running(netdev)) {
  1700. /* No need to loop, because 82542 supports only 1 queue */
  1701. struct e1000_rx_ring *ring = &adapter->rx_ring[0];
  1702. e1000_configure_rx(adapter);
  1703. adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
  1704. }
  1705. }
  1706. /**
  1707. * e1000_set_mac - Change the Ethernet Address of the NIC
  1708. * @netdev: network interface device structure
  1709. * @p: pointer to an address structure
  1710. *
  1711. * Returns 0 on success, negative on failure
  1712. **/
  1713. static int
  1714. e1000_set_mac(struct net_device *netdev, void *p)
  1715. {
  1716. struct e1000_adapter *adapter = netdev_priv(netdev);
  1717. struct sockaddr *addr = p;
  1718. if (!is_valid_ether_addr(addr->sa_data))
  1719. return -EADDRNOTAVAIL;
  1720. /* 82542 2.0 needs to be in reset to write receive address registers */
  1721. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1722. e1000_enter_82542_rst(adapter);
  1723. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1724. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1725. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1726. /* With 82571 controllers, LAA may be overwritten (with the default)
  1727. * due to controller reset from the other port. */
  1728. if (adapter->hw.mac_type == e1000_82571) {
  1729. /* activate the work around */
  1730. adapter->hw.laa_is_present = 1;
  1731. /* Hold a copy of the LAA in RAR[14] This is done so that
  1732. * between the time RAR[0] gets clobbered and the time it
  1733. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1734. * of the RARs and no incoming packets directed to this port
  1735. * are dropped. Eventaully the LAA will be in RAR[0] and
  1736. * RAR[14] */
  1737. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1738. E1000_RAR_ENTRIES - 1);
  1739. }
  1740. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1741. e1000_leave_82542_rst(adapter);
  1742. return 0;
  1743. }
  1744. /**
  1745. * e1000_set_multi - Multicast and Promiscuous mode set
  1746. * @netdev: network interface device structure
  1747. *
  1748. * The set_multi entry point is called whenever the multicast address
  1749. * list or the network interface flags are updated. This routine is
  1750. * responsible for configuring the hardware for proper multicast,
  1751. * promiscuous mode, and all-multi behavior.
  1752. **/
  1753. static void
  1754. e1000_set_multi(struct net_device *netdev)
  1755. {
  1756. struct e1000_adapter *adapter = netdev_priv(netdev);
  1757. struct e1000_hw *hw = &adapter->hw;
  1758. struct dev_mc_list *mc_ptr;
  1759. uint32_t rctl;
  1760. uint32_t hash_value;
  1761. int i, rar_entries = E1000_RAR_ENTRIES;
  1762. /* reserve RAR[14] for LAA over-write work-around */
  1763. if (adapter->hw.mac_type == e1000_82571)
  1764. rar_entries--;
  1765. /* Check for Promiscuous and All Multicast modes */
  1766. rctl = E1000_READ_REG(hw, RCTL);
  1767. if (netdev->flags & IFF_PROMISC) {
  1768. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1769. } else if (netdev->flags & IFF_ALLMULTI) {
  1770. rctl |= E1000_RCTL_MPE;
  1771. rctl &= ~E1000_RCTL_UPE;
  1772. } else {
  1773. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1774. }
  1775. E1000_WRITE_REG(hw, RCTL, rctl);
  1776. /* 82542 2.0 needs to be in reset to write receive address registers */
  1777. if (hw->mac_type == e1000_82542_rev2_0)
  1778. e1000_enter_82542_rst(adapter);
  1779. /* load the first 14 multicast address into the exact filters 1-14
  1780. * RAR 0 is used for the station MAC adddress
  1781. * if there are not 14 addresses, go ahead and clear the filters
  1782. * -- with 82571 controllers only 0-13 entries are filled here
  1783. */
  1784. mc_ptr = netdev->mc_list;
  1785. for (i = 1; i < rar_entries; i++) {
  1786. if (mc_ptr) {
  1787. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1788. mc_ptr = mc_ptr->next;
  1789. } else {
  1790. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1791. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1792. }
  1793. }
  1794. /* clear the old settings from the multicast hash table */
  1795. for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1796. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1797. /* load any remaining addresses into the hash table */
  1798. for (; mc_ptr; mc_ptr = mc_ptr->next) {
  1799. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1800. e1000_mta_set(hw, hash_value);
  1801. }
  1802. if (hw->mac_type == e1000_82542_rev2_0)
  1803. e1000_leave_82542_rst(adapter);
  1804. }
  1805. /* Need to wait a few seconds after link up to get diagnostic information from
  1806. * the phy */
  1807. static void
  1808. e1000_update_phy_info(unsigned long data)
  1809. {
  1810. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1811. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1812. }
  1813. /**
  1814. * e1000_82547_tx_fifo_stall - Timer Call-back
  1815. * @data: pointer to adapter cast into an unsigned long
  1816. **/
  1817. static void
  1818. e1000_82547_tx_fifo_stall(unsigned long data)
  1819. {
  1820. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1821. struct net_device *netdev = adapter->netdev;
  1822. uint32_t tctl;
  1823. if (atomic_read(&adapter->tx_fifo_stall)) {
  1824. if ((E1000_READ_REG(&adapter->hw, TDT) ==
  1825. E1000_READ_REG(&adapter->hw, TDH)) &&
  1826. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1827. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1828. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1829. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1830. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1831. E1000_WRITE_REG(&adapter->hw, TCTL,
  1832. tctl & ~E1000_TCTL_EN);
  1833. E1000_WRITE_REG(&adapter->hw, TDFT,
  1834. adapter->tx_head_addr);
  1835. E1000_WRITE_REG(&adapter->hw, TDFH,
  1836. adapter->tx_head_addr);
  1837. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1838. adapter->tx_head_addr);
  1839. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1840. adapter->tx_head_addr);
  1841. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1842. E1000_WRITE_FLUSH(&adapter->hw);
  1843. adapter->tx_fifo_head = 0;
  1844. atomic_set(&adapter->tx_fifo_stall, 0);
  1845. netif_wake_queue(netdev);
  1846. } else {
  1847. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1848. }
  1849. }
  1850. }
  1851. /**
  1852. * e1000_watchdog - Timer Call-back
  1853. * @data: pointer to adapter cast into an unsigned long
  1854. **/
  1855. static void
  1856. e1000_watchdog(unsigned long data)
  1857. {
  1858. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1859. /* Do the rest outside of interrupt context */
  1860. schedule_work(&adapter->watchdog_task);
  1861. }
  1862. static void
  1863. e1000_watchdog_task(struct e1000_adapter *adapter)
  1864. {
  1865. struct net_device *netdev = adapter->netdev;
  1866. struct e1000_tx_ring *txdr = adapter->tx_ring;
  1867. uint32_t link, tctl;
  1868. e1000_check_for_link(&adapter->hw);
  1869. if (adapter->hw.mac_type == e1000_82573) {
  1870. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1871. if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1872. e1000_update_mng_vlan(adapter);
  1873. }
  1874. if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1875. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1876. link = !adapter->hw.serdes_link_down;
  1877. else
  1878. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1879. if (link) {
  1880. if (!netif_carrier_ok(netdev)) {
  1881. boolean_t txb2b = 1;
  1882. e1000_get_speed_and_duplex(&adapter->hw,
  1883. &adapter->link_speed,
  1884. &adapter->link_duplex);
  1885. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1886. adapter->link_speed,
  1887. adapter->link_duplex == FULL_DUPLEX ?
  1888. "Full Duplex" : "Half Duplex");
  1889. /* tweak tx_queue_len according to speed/duplex
  1890. * and adjust the timeout factor */
  1891. netdev->tx_queue_len = adapter->tx_queue_len;
  1892. adapter->tx_timeout_factor = 1;
  1893. switch (adapter->link_speed) {
  1894. case SPEED_10:
  1895. txb2b = 0;
  1896. netdev->tx_queue_len = 10;
  1897. adapter->tx_timeout_factor = 8;
  1898. break;
  1899. case SPEED_100:
  1900. txb2b = 0;
  1901. netdev->tx_queue_len = 100;
  1902. /* maybe add some timeout factor ? */
  1903. break;
  1904. }
  1905. if ((adapter->hw.mac_type == e1000_82571 ||
  1906. adapter->hw.mac_type == e1000_82572) &&
  1907. txb2b == 0) {
  1908. #define SPEED_MODE_BIT (1 << 21)
  1909. uint32_t tarc0;
  1910. tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
  1911. tarc0 &= ~SPEED_MODE_BIT;
  1912. E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
  1913. }
  1914. #ifdef NETIF_F_TSO
  1915. /* disable TSO for pcie and 10/100 speeds, to avoid
  1916. * some hardware issues */
  1917. if (!adapter->tso_force &&
  1918. adapter->hw.bus_type == e1000_bus_type_pci_express){
  1919. switch (adapter->link_speed) {
  1920. case SPEED_10:
  1921. case SPEED_100:
  1922. DPRINTK(PROBE,INFO,
  1923. "10/100 speed: disabling TSO\n");
  1924. netdev->features &= ~NETIF_F_TSO;
  1925. break;
  1926. case SPEED_1000:
  1927. netdev->features |= NETIF_F_TSO;
  1928. break;
  1929. default:
  1930. /* oops */
  1931. break;
  1932. }
  1933. }
  1934. #endif
  1935. /* enable transmits in the hardware, need to do this
  1936. * after setting TARC0 */
  1937. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1938. tctl |= E1000_TCTL_EN;
  1939. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1940. netif_carrier_on(netdev);
  1941. netif_wake_queue(netdev);
  1942. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1943. adapter->smartspeed = 0;
  1944. }
  1945. } else {
  1946. if (netif_carrier_ok(netdev)) {
  1947. adapter->link_speed = 0;
  1948. adapter->link_duplex = 0;
  1949. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1950. netif_carrier_off(netdev);
  1951. netif_stop_queue(netdev);
  1952. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1953. /* 80003ES2LAN workaround--
  1954. * For packet buffer work-around on link down event;
  1955. * disable receives in the ISR and
  1956. * reset device here in the watchdog
  1957. */
  1958. if (adapter->hw.mac_type == e1000_80003es2lan) {
  1959. /* reset device */
  1960. schedule_work(&adapter->reset_task);
  1961. }
  1962. }
  1963. e1000_smartspeed(adapter);
  1964. }
  1965. e1000_update_stats(adapter);
  1966. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1967. adapter->tpt_old = adapter->stats.tpt;
  1968. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1969. adapter->colc_old = adapter->stats.colc;
  1970. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1971. adapter->gorcl_old = adapter->stats.gorcl;
  1972. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1973. adapter->gotcl_old = adapter->stats.gotcl;
  1974. e1000_update_adaptive(&adapter->hw);
  1975. if (!netif_carrier_ok(netdev)) {
  1976. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1977. /* We've lost link, so the controller stops DMA,
  1978. * but we've got queued Tx work that's never going
  1979. * to get done, so reset controller to flush Tx.
  1980. * (Do the reset outside of interrupt context). */
  1981. adapter->tx_timeout_count++;
  1982. schedule_work(&adapter->reset_task);
  1983. }
  1984. }
  1985. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1986. if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1987. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1988. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1989. * else is between 2000-8000. */
  1990. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1991. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1992. adapter->gotcl - adapter->gorcl :
  1993. adapter->gorcl - adapter->gotcl) / 10000;
  1994. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1995. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1996. }
  1997. /* Cause software interrupt to ensure rx ring is cleaned */
  1998. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1999. /* Force detection of hung controller every watchdog period */
  2000. adapter->detect_tx_hung = TRUE;
  2001. /* With 82571 controllers, LAA may be overwritten due to controller
  2002. * reset from the other port. Set the appropriate LAA in RAR[0] */
  2003. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  2004. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  2005. /* Reset the timer */
  2006. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2007. }
  2008. #define E1000_TX_FLAGS_CSUM 0x00000001
  2009. #define E1000_TX_FLAGS_VLAN 0x00000002
  2010. #define E1000_TX_FLAGS_TSO 0x00000004
  2011. #define E1000_TX_FLAGS_IPV4 0x00000008
  2012. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  2013. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  2014. static int
  2015. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2016. struct sk_buff *skb)
  2017. {
  2018. #ifdef NETIF_F_TSO
  2019. struct e1000_context_desc *context_desc;
  2020. struct e1000_buffer *buffer_info;
  2021. unsigned int i;
  2022. uint32_t cmd_length = 0;
  2023. uint16_t ipcse = 0, tucse, mss;
  2024. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  2025. int err;
  2026. if (skb_shinfo(skb)->tso_size) {
  2027. if (skb_header_cloned(skb)) {
  2028. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2029. if (err)
  2030. return err;
  2031. }
  2032. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2033. mss = skb_shinfo(skb)->tso_size;
  2034. if (skb->protocol == htons(ETH_P_IP)) {
  2035. skb->nh.iph->tot_len = 0;
  2036. skb->nh.iph->check = 0;
  2037. skb->h.th->check =
  2038. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  2039. skb->nh.iph->daddr,
  2040. 0,
  2041. IPPROTO_TCP,
  2042. 0);
  2043. cmd_length = E1000_TXD_CMD_IP;
  2044. ipcse = skb->h.raw - skb->data - 1;
  2045. #ifdef NETIF_F_TSO_IPV6
  2046. } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
  2047. skb->nh.ipv6h->payload_len = 0;
  2048. skb->h.th->check =
  2049. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  2050. &skb->nh.ipv6h->daddr,
  2051. 0,
  2052. IPPROTO_TCP,
  2053. 0);
  2054. ipcse = 0;
  2055. #endif
  2056. }
  2057. ipcss = skb->nh.raw - skb->data;
  2058. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  2059. tucss = skb->h.raw - skb->data;
  2060. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  2061. tucse = 0;
  2062. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  2063. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  2064. i = tx_ring->next_to_use;
  2065. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2066. buffer_info = &tx_ring->buffer_info[i];
  2067. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  2068. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  2069. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  2070. context_desc->upper_setup.tcp_fields.tucss = tucss;
  2071. context_desc->upper_setup.tcp_fields.tucso = tucso;
  2072. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  2073. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  2074. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  2075. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  2076. buffer_info->time_stamp = jiffies;
  2077. if (++i == tx_ring->count) i = 0;
  2078. tx_ring->next_to_use = i;
  2079. return TRUE;
  2080. }
  2081. #endif
  2082. return FALSE;
  2083. }
  2084. static boolean_t
  2085. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2086. struct sk_buff *skb)
  2087. {
  2088. struct e1000_context_desc *context_desc;
  2089. struct e1000_buffer *buffer_info;
  2090. unsigned int i;
  2091. uint8_t css;
  2092. if (likely(skb->ip_summed == CHECKSUM_HW)) {
  2093. css = skb->h.raw - skb->data;
  2094. i = tx_ring->next_to_use;
  2095. buffer_info = &tx_ring->buffer_info[i];
  2096. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2097. context_desc->upper_setup.tcp_fields.tucss = css;
  2098. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2099. context_desc->upper_setup.tcp_fields.tucse = 0;
  2100. context_desc->tcp_seg_setup.data = 0;
  2101. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2102. buffer_info->time_stamp = jiffies;
  2103. if (unlikely(++i == tx_ring->count)) i = 0;
  2104. tx_ring->next_to_use = i;
  2105. return TRUE;
  2106. }
  2107. return FALSE;
  2108. }
  2109. #define E1000_MAX_TXD_PWR 12
  2110. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2111. static int
  2112. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2113. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2114. unsigned int nr_frags, unsigned int mss)
  2115. {
  2116. struct e1000_buffer *buffer_info;
  2117. unsigned int len = skb->len;
  2118. unsigned int offset = 0, size, count = 0, i;
  2119. unsigned int f;
  2120. len -= skb->data_len;
  2121. i = tx_ring->next_to_use;
  2122. while (len) {
  2123. buffer_info = &tx_ring->buffer_info[i];
  2124. size = min(len, max_per_txd);
  2125. #ifdef NETIF_F_TSO
  2126. /* Workaround for Controller erratum --
  2127. * descriptor for non-tso packet in a linear SKB that follows a
  2128. * tso gets written back prematurely before the data is fully
  2129. * DMA'd to the controller */
  2130. if (!skb->data_len && tx_ring->last_tx_tso &&
  2131. !skb_shinfo(skb)->tso_size) {
  2132. tx_ring->last_tx_tso = 0;
  2133. size -= 4;
  2134. }
  2135. /* Workaround for premature desc write-backs
  2136. * in TSO mode. Append 4-byte sentinel desc */
  2137. if (unlikely(mss && !nr_frags && size == len && size > 8))
  2138. size -= 4;
  2139. #endif
  2140. /* work-around for errata 10 and it applies
  2141. * to all controllers in PCI-X mode
  2142. * The fix is to make sure that the first descriptor of a
  2143. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2144. */
  2145. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2146. (size > 2015) && count == 0))
  2147. size = 2015;
  2148. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2149. * terminating buffers within evenly-aligned dwords. */
  2150. if (unlikely(adapter->pcix_82544 &&
  2151. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2152. size > 4))
  2153. size -= 4;
  2154. buffer_info->length = size;
  2155. buffer_info->dma =
  2156. pci_map_single(adapter->pdev,
  2157. skb->data + offset,
  2158. size,
  2159. PCI_DMA_TODEVICE);
  2160. buffer_info->time_stamp = jiffies;
  2161. len -= size;
  2162. offset += size;
  2163. count++;
  2164. if (unlikely(++i == tx_ring->count)) i = 0;
  2165. }
  2166. for (f = 0; f < nr_frags; f++) {
  2167. struct skb_frag_struct *frag;
  2168. frag = &skb_shinfo(skb)->frags[f];
  2169. len = frag->size;
  2170. offset = frag->page_offset;
  2171. while (len) {
  2172. buffer_info = &tx_ring->buffer_info[i];
  2173. size = min(len, max_per_txd);
  2174. #ifdef NETIF_F_TSO
  2175. /* Workaround for premature desc write-backs
  2176. * in TSO mode. Append 4-byte sentinel desc */
  2177. if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2178. size -= 4;
  2179. #endif
  2180. /* Workaround for potential 82544 hang in PCI-X.
  2181. * Avoid terminating buffers within evenly-aligned
  2182. * dwords. */
  2183. if (unlikely(adapter->pcix_82544 &&
  2184. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2185. size > 4))
  2186. size -= 4;
  2187. buffer_info->length = size;
  2188. buffer_info->dma =
  2189. pci_map_page(adapter->pdev,
  2190. frag->page,
  2191. offset,
  2192. size,
  2193. PCI_DMA_TODEVICE);
  2194. buffer_info->time_stamp = jiffies;
  2195. len -= size;
  2196. offset += size;
  2197. count++;
  2198. if (unlikely(++i == tx_ring->count)) i = 0;
  2199. }
  2200. }
  2201. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2202. tx_ring->buffer_info[i].skb = skb;
  2203. tx_ring->buffer_info[first].next_to_watch = i;
  2204. return count;
  2205. }
  2206. static void
  2207. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2208. int tx_flags, int count)
  2209. {
  2210. struct e1000_tx_desc *tx_desc = NULL;
  2211. struct e1000_buffer *buffer_info;
  2212. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2213. unsigned int i;
  2214. if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2215. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2216. E1000_TXD_CMD_TSE;
  2217. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2218. if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2219. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2220. }
  2221. if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2222. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2223. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2224. }
  2225. if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2226. txd_lower |= E1000_TXD_CMD_VLE;
  2227. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2228. }
  2229. i = tx_ring->next_to_use;
  2230. while (count--) {
  2231. buffer_info = &tx_ring->buffer_info[i];
  2232. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2233. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2234. tx_desc->lower.data =
  2235. cpu_to_le32(txd_lower | buffer_info->length);
  2236. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2237. if (unlikely(++i == tx_ring->count)) i = 0;
  2238. }
  2239. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2240. /* Force memory writes to complete before letting h/w
  2241. * know there are new descriptors to fetch. (Only
  2242. * applicable for weak-ordered memory model archs,
  2243. * such as IA-64). */
  2244. wmb();
  2245. tx_ring->next_to_use = i;
  2246. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2247. }
  2248. /**
  2249. * 82547 workaround to avoid controller hang in half-duplex environment.
  2250. * The workaround is to avoid queuing a large packet that would span
  2251. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2252. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2253. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2254. * to the beginning of the Tx FIFO.
  2255. **/
  2256. #define E1000_FIFO_HDR 0x10
  2257. #define E1000_82547_PAD_LEN 0x3E0
  2258. static int
  2259. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2260. {
  2261. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2262. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2263. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2264. if (adapter->link_duplex != HALF_DUPLEX)
  2265. goto no_fifo_stall_required;
  2266. if (atomic_read(&adapter->tx_fifo_stall))
  2267. return 1;
  2268. if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2269. atomic_set(&adapter->tx_fifo_stall, 1);
  2270. return 1;
  2271. }
  2272. no_fifo_stall_required:
  2273. adapter->tx_fifo_head += skb_fifo_len;
  2274. if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2275. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2276. return 0;
  2277. }
  2278. #define MINIMUM_DHCP_PACKET_SIZE 282
  2279. static int
  2280. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2281. {
  2282. struct e1000_hw *hw = &adapter->hw;
  2283. uint16_t length, offset;
  2284. if (vlan_tx_tag_present(skb)) {
  2285. if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2286. ( adapter->hw.mng_cookie.status &
  2287. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2288. return 0;
  2289. }
  2290. if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
  2291. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2292. if ((htons(ETH_P_IP) == eth->h_proto)) {
  2293. const struct iphdr *ip =
  2294. (struct iphdr *)((uint8_t *)skb->data+14);
  2295. if (IPPROTO_UDP == ip->protocol) {
  2296. struct udphdr *udp =
  2297. (struct udphdr *)((uint8_t *)ip +
  2298. (ip->ihl << 2));
  2299. if (ntohs(udp->dest) == 67) {
  2300. offset = (uint8_t *)udp + 8 - skb->data;
  2301. length = skb->len - offset;
  2302. return e1000_mng_write_dhcp_info(hw,
  2303. (uint8_t *)udp + 8,
  2304. length);
  2305. }
  2306. }
  2307. }
  2308. }
  2309. return 0;
  2310. }
  2311. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2312. static int
  2313. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2314. {
  2315. struct e1000_adapter *adapter = netdev_priv(netdev);
  2316. struct e1000_tx_ring *tx_ring;
  2317. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2318. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2319. unsigned int tx_flags = 0;
  2320. unsigned int len = skb->len;
  2321. unsigned long flags;
  2322. unsigned int nr_frags = 0;
  2323. unsigned int mss = 0;
  2324. int count = 0;
  2325. int tso;
  2326. unsigned int f;
  2327. len -= skb->data_len;
  2328. tx_ring = adapter->tx_ring;
  2329. if (unlikely(skb->len <= 0)) {
  2330. dev_kfree_skb_any(skb);
  2331. return NETDEV_TX_OK;
  2332. }
  2333. #ifdef NETIF_F_TSO
  2334. mss = skb_shinfo(skb)->tso_size;
  2335. /* The controller does a simple calculation to
  2336. * make sure there is enough room in the FIFO before
  2337. * initiating the DMA for each buffer. The calc is:
  2338. * 4 = ceil(buffer len/mss). To make sure we don't
  2339. * overrun the FIFO, adjust the max buffer len if mss
  2340. * drops. */
  2341. if (mss) {
  2342. uint8_t hdr_len;
  2343. max_per_txd = min(mss << 2, max_per_txd);
  2344. max_txd_pwr = fls(max_per_txd) - 1;
  2345. /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
  2346. * points to just header, pull a few bytes of payload from
  2347. * frags into skb->data */
  2348. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2349. if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
  2350. switch (adapter->hw.mac_type) {
  2351. unsigned int pull_size;
  2352. case e1000_82571:
  2353. case e1000_82572:
  2354. case e1000_82573:
  2355. pull_size = min((unsigned int)4, skb->data_len);
  2356. if (!__pskb_pull_tail(skb, pull_size)) {
  2357. printk(KERN_ERR
  2358. "__pskb_pull_tail failed.\n");
  2359. dev_kfree_skb_any(skb);
  2360. return NETDEV_TX_OK;
  2361. }
  2362. len = skb->len - skb->data_len;
  2363. break;
  2364. default:
  2365. /* do nothing */
  2366. break;
  2367. }
  2368. }
  2369. }
  2370. /* reserve a descriptor for the offload context */
  2371. if ((mss) || (skb->ip_summed == CHECKSUM_HW))
  2372. count++;
  2373. count++;
  2374. #else
  2375. if (skb->ip_summed == CHECKSUM_HW)
  2376. count++;
  2377. #endif
  2378. #ifdef NETIF_F_TSO
  2379. /* Controller Erratum workaround */
  2380. if (!skb->data_len && tx_ring->last_tx_tso &&
  2381. !skb_shinfo(skb)->tso_size)
  2382. count++;
  2383. #endif
  2384. count += TXD_USE_COUNT(len, max_txd_pwr);
  2385. if (adapter->pcix_82544)
  2386. count++;
  2387. /* work-around for errata 10 and it applies to all controllers
  2388. * in PCI-X mode, so add one more descriptor to the count
  2389. */
  2390. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2391. (len > 2015)))
  2392. count++;
  2393. nr_frags = skb_shinfo(skb)->nr_frags;
  2394. for (f = 0; f < nr_frags; f++)
  2395. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2396. max_txd_pwr);
  2397. if (adapter->pcix_82544)
  2398. count += nr_frags;
  2399. if (adapter->hw.tx_pkt_filtering &&
  2400. (adapter->hw.mac_type == e1000_82573))
  2401. e1000_transfer_dhcp_info(adapter, skb);
  2402. local_irq_save(flags);
  2403. if (!spin_trylock(&tx_ring->tx_lock)) {
  2404. /* Collision - tell upper layer to requeue */
  2405. local_irq_restore(flags);
  2406. return NETDEV_TX_LOCKED;
  2407. }
  2408. /* need: count + 2 desc gap to keep tail from touching
  2409. * head, otherwise try next time */
  2410. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2411. netif_stop_queue(netdev);
  2412. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2413. return NETDEV_TX_BUSY;
  2414. }
  2415. if (unlikely(adapter->hw.mac_type == e1000_82547)) {
  2416. if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2417. netif_stop_queue(netdev);
  2418. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2419. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2420. return NETDEV_TX_BUSY;
  2421. }
  2422. }
  2423. if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2424. tx_flags |= E1000_TX_FLAGS_VLAN;
  2425. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2426. }
  2427. first = tx_ring->next_to_use;
  2428. tso = e1000_tso(adapter, tx_ring, skb);
  2429. if (tso < 0) {
  2430. dev_kfree_skb_any(skb);
  2431. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2432. return NETDEV_TX_OK;
  2433. }
  2434. if (likely(tso)) {
  2435. tx_ring->last_tx_tso = 1;
  2436. tx_flags |= E1000_TX_FLAGS_TSO;
  2437. } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2438. tx_flags |= E1000_TX_FLAGS_CSUM;
  2439. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2440. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2441. * no longer assume, we must. */
  2442. if (likely(skb->protocol == htons(ETH_P_IP)))
  2443. tx_flags |= E1000_TX_FLAGS_IPV4;
  2444. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2445. e1000_tx_map(adapter, tx_ring, skb, first,
  2446. max_per_txd, nr_frags, mss));
  2447. netdev->trans_start = jiffies;
  2448. /* Make sure there is space in the ring for the next send. */
  2449. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2450. netif_stop_queue(netdev);
  2451. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2452. return NETDEV_TX_OK;
  2453. }
  2454. /**
  2455. * e1000_tx_timeout - Respond to a Tx Hang
  2456. * @netdev: network interface device structure
  2457. **/
  2458. static void
  2459. e1000_tx_timeout(struct net_device *netdev)
  2460. {
  2461. struct e1000_adapter *adapter = netdev_priv(netdev);
  2462. /* Do the reset outside of interrupt context */
  2463. adapter->tx_timeout_count++;
  2464. schedule_work(&adapter->reset_task);
  2465. }
  2466. static void
  2467. e1000_reset_task(struct net_device *netdev)
  2468. {
  2469. struct e1000_adapter *adapter = netdev_priv(netdev);
  2470. e1000_down(adapter);
  2471. e1000_up(adapter);
  2472. }
  2473. /**
  2474. * e1000_get_stats - Get System Network Statistics
  2475. * @netdev: network interface device structure
  2476. *
  2477. * Returns the address of the device statistics structure.
  2478. * The statistics are actually updated from the timer callback.
  2479. **/
  2480. static struct net_device_stats *
  2481. e1000_get_stats(struct net_device *netdev)
  2482. {
  2483. struct e1000_adapter *adapter = netdev_priv(netdev);
  2484. /* only return the current stats */
  2485. return &adapter->net_stats;
  2486. }
  2487. /**
  2488. * e1000_change_mtu - Change the Maximum Transfer Unit
  2489. * @netdev: network interface device structure
  2490. * @new_mtu: new value for maximum frame size
  2491. *
  2492. * Returns 0 on success, negative on failure
  2493. **/
  2494. static int
  2495. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2496. {
  2497. struct e1000_adapter *adapter = netdev_priv(netdev);
  2498. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2499. uint16_t eeprom_data = 0;
  2500. if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2501. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2502. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2503. return -EINVAL;
  2504. }
  2505. /* Adapter-specific max frame size limits. */
  2506. switch (adapter->hw.mac_type) {
  2507. case e1000_undefined ... e1000_82542_rev2_1:
  2508. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2509. DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
  2510. return -EINVAL;
  2511. }
  2512. break;
  2513. case e1000_82573:
  2514. /* only enable jumbo frames if ASPM is disabled completely
  2515. * this means both bits must be zero in 0x1A bits 3:2 */
  2516. e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
  2517. &eeprom_data);
  2518. if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
  2519. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2520. DPRINTK(PROBE, ERR,
  2521. "Jumbo Frames not supported.\n");
  2522. return -EINVAL;
  2523. }
  2524. break;
  2525. }
  2526. /* fall through to get support */
  2527. case e1000_82571:
  2528. case e1000_82572:
  2529. case e1000_80003es2lan:
  2530. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2531. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2532. DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
  2533. return -EINVAL;
  2534. }
  2535. break;
  2536. default:
  2537. /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
  2538. break;
  2539. }
  2540. /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
  2541. * means we reserve 2 more, this pushes us to allocate from the next
  2542. * larger slab size
  2543. * i.e. RXBUFFER_2048 --> size-4096 slab */
  2544. if (max_frame <= E1000_RXBUFFER_256)
  2545. adapter->rx_buffer_len = E1000_RXBUFFER_256;
  2546. else if (max_frame <= E1000_RXBUFFER_512)
  2547. adapter->rx_buffer_len = E1000_RXBUFFER_512;
  2548. else if (max_frame <= E1000_RXBUFFER_1024)
  2549. adapter->rx_buffer_len = E1000_RXBUFFER_1024;
  2550. else if (max_frame <= E1000_RXBUFFER_2048)
  2551. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2552. else if (max_frame <= E1000_RXBUFFER_4096)
  2553. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2554. else if (max_frame <= E1000_RXBUFFER_8192)
  2555. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2556. else if (max_frame <= E1000_RXBUFFER_16384)
  2557. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2558. /* adjust allocation if LPE protects us, and we aren't using SBP */
  2559. #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
  2560. if (!adapter->hw.tbi_compatibility_on &&
  2561. ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
  2562. (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
  2563. adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  2564. netdev->mtu = new_mtu;
  2565. if (netif_running(netdev)) {
  2566. e1000_down(adapter);
  2567. e1000_up(adapter);
  2568. }
  2569. adapter->hw.max_frame_size = max_frame;
  2570. return 0;
  2571. }
  2572. /**
  2573. * e1000_update_stats - Update the board statistics counters
  2574. * @adapter: board private structure
  2575. **/
  2576. void
  2577. e1000_update_stats(struct e1000_adapter *adapter)
  2578. {
  2579. struct e1000_hw *hw = &adapter->hw;
  2580. unsigned long flags;
  2581. uint16_t phy_tmp;
  2582. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2583. /* Prevent stats update while adapter is being reset */
  2584. if (adapter->link_speed == 0)
  2585. return;
  2586. spin_lock_irqsave(&adapter->stats_lock, flags);
  2587. /* these counters are modified from e1000_adjust_tbi_stats,
  2588. * called from the interrupt context, so they must only
  2589. * be written while holding adapter->stats_lock
  2590. */
  2591. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2592. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2593. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2594. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2595. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2596. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2597. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2598. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2599. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2600. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2601. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2602. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2603. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2604. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2605. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2606. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2607. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2608. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2609. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2610. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2611. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2612. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2613. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2614. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2615. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2616. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2617. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2618. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2619. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2620. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2621. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2622. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2623. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2624. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2625. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2626. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2627. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2628. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2629. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2630. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2631. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2632. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2633. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2634. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2635. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2636. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2637. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2638. /* used for adaptive IFS */
  2639. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2640. adapter->stats.tpt += hw->tx_packet_delta;
  2641. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2642. adapter->stats.colc += hw->collision_delta;
  2643. if (hw->mac_type >= e1000_82543) {
  2644. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2645. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2646. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2647. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2648. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2649. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2650. }
  2651. if (hw->mac_type > e1000_82547_rev_2) {
  2652. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2653. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2654. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2655. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2656. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2657. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2658. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2659. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2660. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2661. }
  2662. /* Fill out the OS statistics structure */
  2663. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2664. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2665. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2666. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2667. adapter->net_stats.multicast = adapter->stats.mprc;
  2668. adapter->net_stats.collisions = adapter->stats.colc;
  2669. /* Rx Errors */
  2670. /* RLEC on some newer hardware can be incorrect so build
  2671. * our own version based on RUC and ROC */
  2672. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2673. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2674. adapter->stats.ruc + adapter->stats.roc +
  2675. adapter->stats.cexterr;
  2676. adapter->net_stats.rx_length_errors = adapter->stats.ruc +
  2677. adapter->stats.roc;
  2678. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2679. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2680. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2681. /* Tx Errors */
  2682. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2683. adapter->stats.latecol;
  2684. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2685. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2686. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2687. /* Tx Dropped needs to be maintained elsewhere */
  2688. /* Phy Stats */
  2689. if (hw->media_type == e1000_media_type_copper) {
  2690. if ((adapter->link_speed == SPEED_1000) &&
  2691. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2692. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2693. adapter->phy_stats.idle_errors += phy_tmp;
  2694. }
  2695. if ((hw->mac_type <= e1000_82546) &&
  2696. (hw->phy_type == e1000_phy_m88) &&
  2697. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2698. adapter->phy_stats.receive_errors += phy_tmp;
  2699. }
  2700. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2701. }
  2702. /**
  2703. * e1000_intr - Interrupt Handler
  2704. * @irq: interrupt number
  2705. * @data: pointer to a network interface device structure
  2706. * @pt_regs: CPU registers structure
  2707. **/
  2708. static irqreturn_t
  2709. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2710. {
  2711. struct net_device *netdev = data;
  2712. struct e1000_adapter *adapter = netdev_priv(netdev);
  2713. struct e1000_hw *hw = &adapter->hw;
  2714. uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
  2715. #ifndef CONFIG_E1000_NAPI
  2716. int i;
  2717. #else
  2718. /* Interrupt Auto-Mask...upon reading ICR,
  2719. * interrupts are masked. No need for the
  2720. * IMC write, but it does mean we should
  2721. * account for it ASAP. */
  2722. if (likely(hw->mac_type >= e1000_82571))
  2723. atomic_inc(&adapter->irq_sem);
  2724. #endif
  2725. if (unlikely(!icr)) {
  2726. #ifdef CONFIG_E1000_NAPI
  2727. if (hw->mac_type >= e1000_82571)
  2728. e1000_irq_enable(adapter);
  2729. #endif
  2730. return IRQ_NONE; /* Not our interrupt */
  2731. }
  2732. if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2733. hw->get_link_status = 1;
  2734. /* 80003ES2LAN workaround--
  2735. * For packet buffer work-around on link down event;
  2736. * disable receives here in the ISR and
  2737. * reset adapter in watchdog
  2738. */
  2739. if (netif_carrier_ok(netdev) &&
  2740. (adapter->hw.mac_type == e1000_80003es2lan)) {
  2741. /* disable receives */
  2742. rctl = E1000_READ_REG(hw, RCTL);
  2743. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  2744. }
  2745. mod_timer(&adapter->watchdog_timer, jiffies);
  2746. }
  2747. #ifdef CONFIG_E1000_NAPI
  2748. if (unlikely(hw->mac_type < e1000_82571)) {
  2749. atomic_inc(&adapter->irq_sem);
  2750. E1000_WRITE_REG(hw, IMC, ~0);
  2751. E1000_WRITE_FLUSH(hw);
  2752. }
  2753. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2754. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2755. else
  2756. e1000_irq_enable(adapter);
  2757. #else
  2758. /* Writing IMC and IMS is needed for 82547.
  2759. * Due to Hub Link bus being occupied, an interrupt
  2760. * de-assertion message is not able to be sent.
  2761. * When an interrupt assertion message is generated later,
  2762. * two messages are re-ordered and sent out.
  2763. * That causes APIC to think 82547 is in de-assertion
  2764. * state, while 82547 is in assertion state, resulting
  2765. * in dead lock. Writing IMC forces 82547 into
  2766. * de-assertion state.
  2767. */
  2768. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
  2769. atomic_inc(&adapter->irq_sem);
  2770. E1000_WRITE_REG(hw, IMC, ~0);
  2771. }
  2772. for (i = 0; i < E1000_MAX_INTR; i++)
  2773. if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2774. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2775. break;
  2776. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2777. e1000_irq_enable(adapter);
  2778. #endif
  2779. return IRQ_HANDLED;
  2780. }
  2781. #ifdef CONFIG_E1000_NAPI
  2782. /**
  2783. * e1000_clean - NAPI Rx polling callback
  2784. * @adapter: board private structure
  2785. **/
  2786. static int
  2787. e1000_clean(struct net_device *poll_dev, int *budget)
  2788. {
  2789. struct e1000_adapter *adapter;
  2790. int work_to_do = min(*budget, poll_dev->quota);
  2791. int tx_cleaned = 0, i = 0, work_done = 0;
  2792. /* Must NOT use netdev_priv macro here. */
  2793. adapter = poll_dev->priv;
  2794. /* Keep link state information with original netdev */
  2795. if (!netif_carrier_ok(adapter->netdev))
  2796. goto quit_polling;
  2797. while (poll_dev != &adapter->polling_netdev[i]) {
  2798. i++;
  2799. BUG_ON(i == adapter->num_rx_queues);
  2800. }
  2801. if (likely(adapter->num_tx_queues == 1)) {
  2802. /* e1000_clean is called per-cpu. This lock protects
  2803. * tx_ring[0] from being cleaned by multiple cpus
  2804. * simultaneously. A failure obtaining the lock means
  2805. * tx_ring[0] is currently being cleaned anyway. */
  2806. if (spin_trylock(&adapter->tx_queue_lock)) {
  2807. tx_cleaned = e1000_clean_tx_irq(adapter,
  2808. &adapter->tx_ring[0]);
  2809. spin_unlock(&adapter->tx_queue_lock);
  2810. }
  2811. } else
  2812. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2813. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2814. &work_done, work_to_do);
  2815. *budget -= work_done;
  2816. poll_dev->quota -= work_done;
  2817. /* If no Tx and not enough Rx work done, exit the polling mode */
  2818. if ((!tx_cleaned && (work_done == 0)) ||
  2819. !netif_running(adapter->netdev)) {
  2820. quit_polling:
  2821. netif_rx_complete(poll_dev);
  2822. e1000_irq_enable(adapter);
  2823. return 0;
  2824. }
  2825. return 1;
  2826. }
  2827. #endif
  2828. /**
  2829. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2830. * @adapter: board private structure
  2831. **/
  2832. static boolean_t
  2833. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2834. struct e1000_tx_ring *tx_ring)
  2835. {
  2836. struct net_device *netdev = adapter->netdev;
  2837. struct e1000_tx_desc *tx_desc, *eop_desc;
  2838. struct e1000_buffer *buffer_info;
  2839. unsigned int i, eop;
  2840. #ifdef CONFIG_E1000_NAPI
  2841. unsigned int count = 0;
  2842. #endif
  2843. boolean_t cleaned = FALSE;
  2844. i = tx_ring->next_to_clean;
  2845. eop = tx_ring->buffer_info[i].next_to_watch;
  2846. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2847. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2848. for (cleaned = FALSE; !cleaned; ) {
  2849. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2850. buffer_info = &tx_ring->buffer_info[i];
  2851. cleaned = (i == eop);
  2852. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  2853. memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
  2854. if (unlikely(++i == tx_ring->count)) i = 0;
  2855. }
  2856. eop = tx_ring->buffer_info[i].next_to_watch;
  2857. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2858. #ifdef CONFIG_E1000_NAPI
  2859. #define E1000_TX_WEIGHT 64
  2860. /* weight of a sort for tx, to avoid endless transmit cleanup */
  2861. if (count++ == E1000_TX_WEIGHT) break;
  2862. #endif
  2863. }
  2864. tx_ring->next_to_clean = i;
  2865. #define TX_WAKE_THRESHOLD 32
  2866. if (unlikely(cleaned && netif_queue_stopped(netdev) &&
  2867. netif_carrier_ok(netdev))) {
  2868. spin_lock(&tx_ring->tx_lock);
  2869. if (netif_queue_stopped(netdev) &&
  2870. (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
  2871. netif_wake_queue(netdev);
  2872. spin_unlock(&tx_ring->tx_lock);
  2873. }
  2874. if (adapter->detect_tx_hung) {
  2875. /* Detect a transmit hang in hardware, this serializes the
  2876. * check with the clearing of time_stamp and movement of i */
  2877. adapter->detect_tx_hung = FALSE;
  2878. if (tx_ring->buffer_info[eop].dma &&
  2879. time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
  2880. (adapter->tx_timeout_factor * HZ))
  2881. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2882. E1000_STATUS_TXOFF)) {
  2883. /* detected Tx unit hang */
  2884. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2885. " Tx Queue <%lu>\n"
  2886. " TDH <%x>\n"
  2887. " TDT <%x>\n"
  2888. " next_to_use <%x>\n"
  2889. " next_to_clean <%x>\n"
  2890. "buffer_info[next_to_clean]\n"
  2891. " time_stamp <%lx>\n"
  2892. " next_to_watch <%x>\n"
  2893. " jiffies <%lx>\n"
  2894. " next_to_watch.status <%x>\n",
  2895. (unsigned long)((tx_ring - adapter->tx_ring) /
  2896. sizeof(struct e1000_tx_ring)),
  2897. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2898. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2899. tx_ring->next_to_use,
  2900. tx_ring->next_to_clean,
  2901. tx_ring->buffer_info[eop].time_stamp,
  2902. eop,
  2903. jiffies,
  2904. eop_desc->upper.fields.status);
  2905. netif_stop_queue(netdev);
  2906. }
  2907. }
  2908. return cleaned;
  2909. }
  2910. /**
  2911. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2912. * @adapter: board private structure
  2913. * @status_err: receive descriptor status and error fields
  2914. * @csum: receive descriptor csum field
  2915. * @sk_buff: socket buffer with received data
  2916. **/
  2917. static void
  2918. e1000_rx_checksum(struct e1000_adapter *adapter,
  2919. uint32_t status_err, uint32_t csum,
  2920. struct sk_buff *skb)
  2921. {
  2922. uint16_t status = (uint16_t)status_err;
  2923. uint8_t errors = (uint8_t)(status_err >> 24);
  2924. skb->ip_summed = CHECKSUM_NONE;
  2925. /* 82543 or newer only */
  2926. if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2927. /* Ignore Checksum bit is set */
  2928. if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2929. /* TCP/UDP checksum error bit is set */
  2930. if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2931. /* let the stack verify checksum errors */
  2932. adapter->hw_csum_err++;
  2933. return;
  2934. }
  2935. /* TCP/UDP Checksum has not been calculated */
  2936. if (adapter->hw.mac_type <= e1000_82547_rev_2) {
  2937. if (!(status & E1000_RXD_STAT_TCPCS))
  2938. return;
  2939. } else {
  2940. if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2941. return;
  2942. }
  2943. /* It must be a TCP or UDP packet with a valid checksum */
  2944. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2945. /* TCP checksum is good */
  2946. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2947. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2948. /* IP fragment with UDP payload */
  2949. /* Hardware complements the payload checksum, so we undo it
  2950. * and then put the value in host order for further stack use.
  2951. */
  2952. csum = ntohl(csum ^ 0xFFFF);
  2953. skb->csum = csum;
  2954. skb->ip_summed = CHECKSUM_HW;
  2955. }
  2956. adapter->hw_csum_good++;
  2957. }
  2958. /**
  2959. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2960. * @adapter: board private structure
  2961. **/
  2962. static boolean_t
  2963. #ifdef CONFIG_E1000_NAPI
  2964. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2965. struct e1000_rx_ring *rx_ring,
  2966. int *work_done, int work_to_do)
  2967. #else
  2968. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2969. struct e1000_rx_ring *rx_ring)
  2970. #endif
  2971. {
  2972. struct net_device *netdev = adapter->netdev;
  2973. struct pci_dev *pdev = adapter->pdev;
  2974. struct e1000_rx_desc *rx_desc, *next_rxd;
  2975. struct e1000_buffer *buffer_info, *next_buffer;
  2976. unsigned long flags;
  2977. uint32_t length;
  2978. uint8_t last_byte;
  2979. unsigned int i;
  2980. int cleaned_count = 0;
  2981. boolean_t cleaned = FALSE;
  2982. i = rx_ring->next_to_clean;
  2983. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2984. buffer_info = &rx_ring->buffer_info[i];
  2985. while (rx_desc->status & E1000_RXD_STAT_DD) {
  2986. struct sk_buff *skb, *next_skb;
  2987. u8 status;
  2988. #ifdef CONFIG_E1000_NAPI
  2989. if (*work_done >= work_to_do)
  2990. break;
  2991. (*work_done)++;
  2992. #endif
  2993. status = rx_desc->status;
  2994. skb = buffer_info->skb;
  2995. buffer_info->skb = NULL;
  2996. prefetch(skb->data - NET_IP_ALIGN);
  2997. if (++i == rx_ring->count) i = 0;
  2998. next_rxd = E1000_RX_DESC(*rx_ring, i);
  2999. prefetch(next_rxd);
  3000. next_buffer = &rx_ring->buffer_info[i];
  3001. next_skb = next_buffer->skb;
  3002. prefetch(next_skb->data - NET_IP_ALIGN);
  3003. cleaned = TRUE;
  3004. cleaned_count++;
  3005. pci_unmap_single(pdev,
  3006. buffer_info->dma,
  3007. buffer_info->length,
  3008. PCI_DMA_FROMDEVICE);
  3009. length = le16_to_cpu(rx_desc->length);
  3010. if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
  3011. /* All receives must fit into a single buffer */
  3012. E1000_DBG("%s: Receive packet consumed multiple"
  3013. " buffers\n", netdev->name);
  3014. dev_kfree_skb_irq(skb);
  3015. goto next_desc;
  3016. }
  3017. if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  3018. last_byte = *(skb->data + length - 1);
  3019. if (TBI_ACCEPT(&adapter->hw, status,
  3020. rx_desc->errors, length, last_byte)) {
  3021. spin_lock_irqsave(&adapter->stats_lock, flags);
  3022. e1000_tbi_adjust_stats(&adapter->hw,
  3023. &adapter->stats,
  3024. length, skb->data);
  3025. spin_unlock_irqrestore(&adapter->stats_lock,
  3026. flags);
  3027. length--;
  3028. } else {
  3029. /* recycle */
  3030. buffer_info->skb = skb;
  3031. goto next_desc;
  3032. }
  3033. }
  3034. /* code added for copybreak, this should improve
  3035. * performance for small packets with large amounts
  3036. * of reassembly being done in the stack */
  3037. #define E1000_CB_LENGTH 256
  3038. if (length < E1000_CB_LENGTH) {
  3039. struct sk_buff *new_skb =
  3040. dev_alloc_skb(length + NET_IP_ALIGN);
  3041. if (new_skb) {
  3042. skb_reserve(new_skb, NET_IP_ALIGN);
  3043. new_skb->dev = netdev;
  3044. memcpy(new_skb->data - NET_IP_ALIGN,
  3045. skb->data - NET_IP_ALIGN,
  3046. length + NET_IP_ALIGN);
  3047. /* save the skb in buffer_info as good */
  3048. buffer_info->skb = skb;
  3049. skb = new_skb;
  3050. skb_put(skb, length);
  3051. }
  3052. } else
  3053. skb_put(skb, length);
  3054. /* end copybreak code */
  3055. /* Receive Checksum Offload */
  3056. e1000_rx_checksum(adapter,
  3057. (uint32_t)(status) |
  3058. ((uint32_t)(rx_desc->errors) << 24),
  3059. le16_to_cpu(rx_desc->csum), skb);
  3060. skb->protocol = eth_type_trans(skb, netdev);
  3061. #ifdef CONFIG_E1000_NAPI
  3062. if (unlikely(adapter->vlgrp &&
  3063. (status & E1000_RXD_STAT_VP))) {
  3064. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3065. le16_to_cpu(rx_desc->special) &
  3066. E1000_RXD_SPC_VLAN_MASK);
  3067. } else {
  3068. netif_receive_skb(skb);
  3069. }
  3070. #else /* CONFIG_E1000_NAPI */
  3071. if (unlikely(adapter->vlgrp &&
  3072. (status & E1000_RXD_STAT_VP))) {
  3073. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3074. le16_to_cpu(rx_desc->special) &
  3075. E1000_RXD_SPC_VLAN_MASK);
  3076. } else {
  3077. netif_rx(skb);
  3078. }
  3079. #endif /* CONFIG_E1000_NAPI */
  3080. netdev->last_rx = jiffies;
  3081. next_desc:
  3082. rx_desc->status = 0;
  3083. /* return some buffers to hardware, one at a time is too slow */
  3084. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3085. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3086. cleaned_count = 0;
  3087. }
  3088. /* use prefetched values */
  3089. rx_desc = next_rxd;
  3090. buffer_info = next_buffer;
  3091. }
  3092. rx_ring->next_to_clean = i;
  3093. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3094. if (cleaned_count)
  3095. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3096. return cleaned;
  3097. }
  3098. /**
  3099. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  3100. * @adapter: board private structure
  3101. **/
  3102. static boolean_t
  3103. #ifdef CONFIG_E1000_NAPI
  3104. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3105. struct e1000_rx_ring *rx_ring,
  3106. int *work_done, int work_to_do)
  3107. #else
  3108. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3109. struct e1000_rx_ring *rx_ring)
  3110. #endif
  3111. {
  3112. union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
  3113. struct net_device *netdev = adapter->netdev;
  3114. struct pci_dev *pdev = adapter->pdev;
  3115. struct e1000_buffer *buffer_info, *next_buffer;
  3116. struct e1000_ps_page *ps_page;
  3117. struct e1000_ps_page_dma *ps_page_dma;
  3118. struct sk_buff *skb, *next_skb;
  3119. unsigned int i, j;
  3120. uint32_t length, staterr;
  3121. int cleaned_count = 0;
  3122. boolean_t cleaned = FALSE;
  3123. i = rx_ring->next_to_clean;
  3124. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3125. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3126. buffer_info = &rx_ring->buffer_info[i];
  3127. while (staterr & E1000_RXD_STAT_DD) {
  3128. buffer_info = &rx_ring->buffer_info[i];
  3129. ps_page = &rx_ring->ps_page[i];
  3130. ps_page_dma = &rx_ring->ps_page_dma[i];
  3131. #ifdef CONFIG_E1000_NAPI
  3132. if (unlikely(*work_done >= work_to_do))
  3133. break;
  3134. (*work_done)++;
  3135. #endif
  3136. skb = buffer_info->skb;
  3137. /* in the packet split case this is header only */
  3138. prefetch(skb->data - NET_IP_ALIGN);
  3139. if (++i == rx_ring->count) i = 0;
  3140. next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
  3141. prefetch(next_rxd);
  3142. next_buffer = &rx_ring->buffer_info[i];
  3143. next_skb = next_buffer->skb;
  3144. prefetch(next_skb->data - NET_IP_ALIGN);
  3145. cleaned = TRUE;
  3146. cleaned_count++;
  3147. pci_unmap_single(pdev, buffer_info->dma,
  3148. buffer_info->length,
  3149. PCI_DMA_FROMDEVICE);
  3150. if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  3151. E1000_DBG("%s: Packet Split buffers didn't pick up"
  3152. " the full packet\n", netdev->name);
  3153. dev_kfree_skb_irq(skb);
  3154. goto next_desc;
  3155. }
  3156. if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3157. dev_kfree_skb_irq(skb);
  3158. goto next_desc;
  3159. }
  3160. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3161. if (unlikely(!length)) {
  3162. E1000_DBG("%s: Last part of the packet spanning"
  3163. " multiple descriptors\n", netdev->name);
  3164. dev_kfree_skb_irq(skb);
  3165. goto next_desc;
  3166. }
  3167. /* Good Receive */
  3168. skb_put(skb, length);
  3169. {
  3170. /* this looks ugly, but it seems compiler issues make it
  3171. more efficient than reusing j */
  3172. int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
  3173. /* page alloc/put takes too long and effects small packet
  3174. * throughput, so unsplit small packets and save the alloc/put*/
  3175. if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
  3176. u8 *vaddr;
  3177. /* there is no documentation about how to call
  3178. * kmap_atomic, so we can't hold the mapping
  3179. * very long */
  3180. pci_dma_sync_single_for_cpu(pdev,
  3181. ps_page_dma->ps_page_dma[0],
  3182. PAGE_SIZE,
  3183. PCI_DMA_FROMDEVICE);
  3184. vaddr = kmap_atomic(ps_page->ps_page[0],
  3185. KM_SKB_DATA_SOFTIRQ);
  3186. memcpy(skb->tail, vaddr, l1);
  3187. kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
  3188. pci_dma_sync_single_for_device(pdev,
  3189. ps_page_dma->ps_page_dma[0],
  3190. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3191. skb_put(skb, l1);
  3192. length += l1;
  3193. goto copydone;
  3194. } /* if */
  3195. }
  3196. for (j = 0; j < adapter->rx_ps_pages; j++) {
  3197. if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
  3198. break;
  3199. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3200. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3201. ps_page_dma->ps_page_dma[j] = 0;
  3202. skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
  3203. length);
  3204. ps_page->ps_page[j] = NULL;
  3205. skb->len += length;
  3206. skb->data_len += length;
  3207. skb->truesize += length;
  3208. }
  3209. copydone:
  3210. e1000_rx_checksum(adapter, staterr,
  3211. le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
  3212. skb->protocol = eth_type_trans(skb, netdev);
  3213. if (likely(rx_desc->wb.upper.header_status &
  3214. cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
  3215. adapter->rx_hdr_split++;
  3216. #ifdef CONFIG_E1000_NAPI
  3217. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3218. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3219. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3220. E1000_RXD_SPC_VLAN_MASK);
  3221. } else {
  3222. netif_receive_skb(skb);
  3223. }
  3224. #else /* CONFIG_E1000_NAPI */
  3225. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3226. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3227. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3228. E1000_RXD_SPC_VLAN_MASK);
  3229. } else {
  3230. netif_rx(skb);
  3231. }
  3232. #endif /* CONFIG_E1000_NAPI */
  3233. netdev->last_rx = jiffies;
  3234. next_desc:
  3235. rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
  3236. buffer_info->skb = NULL;
  3237. /* return some buffers to hardware, one at a time is too slow */
  3238. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3239. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3240. cleaned_count = 0;
  3241. }
  3242. /* use prefetched values */
  3243. rx_desc = next_rxd;
  3244. buffer_info = next_buffer;
  3245. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3246. }
  3247. rx_ring->next_to_clean = i;
  3248. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3249. if (cleaned_count)
  3250. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3251. return cleaned;
  3252. }
  3253. /**
  3254. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3255. * @adapter: address of board private structure
  3256. **/
  3257. static void
  3258. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3259. struct e1000_rx_ring *rx_ring,
  3260. int cleaned_count)
  3261. {
  3262. struct net_device *netdev = adapter->netdev;
  3263. struct pci_dev *pdev = adapter->pdev;
  3264. struct e1000_rx_desc *rx_desc;
  3265. struct e1000_buffer *buffer_info;
  3266. struct sk_buff *skb;
  3267. unsigned int i;
  3268. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3269. i = rx_ring->next_to_use;
  3270. buffer_info = &rx_ring->buffer_info[i];
  3271. while (cleaned_count--) {
  3272. if (!(skb = buffer_info->skb))
  3273. skb = dev_alloc_skb(bufsz);
  3274. else {
  3275. skb_trim(skb, 0);
  3276. goto map_skb;
  3277. }
  3278. if (unlikely(!skb)) {
  3279. /* Better luck next round */
  3280. adapter->alloc_rx_buff_failed++;
  3281. break;
  3282. }
  3283. /* Fix for errata 23, can't cross 64kB boundary */
  3284. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3285. struct sk_buff *oldskb = skb;
  3286. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3287. "at %p\n", bufsz, skb->data);
  3288. /* Try again, without freeing the previous */
  3289. skb = dev_alloc_skb(bufsz);
  3290. /* Failed allocation, critical failure */
  3291. if (!skb) {
  3292. dev_kfree_skb(oldskb);
  3293. break;
  3294. }
  3295. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3296. /* give up */
  3297. dev_kfree_skb(skb);
  3298. dev_kfree_skb(oldskb);
  3299. break; /* while !buffer_info->skb */
  3300. } else {
  3301. /* Use new allocation */
  3302. dev_kfree_skb(oldskb);
  3303. }
  3304. }
  3305. /* Make buffer alignment 2 beyond a 16 byte boundary
  3306. * this will result in a 16 byte aligned IP header after
  3307. * the 14 byte MAC header is removed
  3308. */
  3309. skb_reserve(skb, NET_IP_ALIGN);
  3310. skb->dev = netdev;
  3311. buffer_info->skb = skb;
  3312. buffer_info->length = adapter->rx_buffer_len;
  3313. map_skb:
  3314. buffer_info->dma = pci_map_single(pdev,
  3315. skb->data,
  3316. adapter->rx_buffer_len,
  3317. PCI_DMA_FROMDEVICE);
  3318. /* Fix for errata 23, can't cross 64kB boundary */
  3319. if (!e1000_check_64k_bound(adapter,
  3320. (void *)(unsigned long)buffer_info->dma,
  3321. adapter->rx_buffer_len)) {
  3322. DPRINTK(RX_ERR, ERR,
  3323. "dma align check failed: %u bytes at %p\n",
  3324. adapter->rx_buffer_len,
  3325. (void *)(unsigned long)buffer_info->dma);
  3326. dev_kfree_skb(skb);
  3327. buffer_info->skb = NULL;
  3328. pci_unmap_single(pdev, buffer_info->dma,
  3329. adapter->rx_buffer_len,
  3330. PCI_DMA_FROMDEVICE);
  3331. break; /* while !buffer_info->skb */
  3332. }
  3333. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3334. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3335. if (unlikely(++i == rx_ring->count))
  3336. i = 0;
  3337. buffer_info = &rx_ring->buffer_info[i];
  3338. }
  3339. if (likely(rx_ring->next_to_use != i)) {
  3340. rx_ring->next_to_use = i;
  3341. if (unlikely(i-- == 0))
  3342. i = (rx_ring->count - 1);
  3343. /* Force memory writes to complete before letting h/w
  3344. * know there are new descriptors to fetch. (Only
  3345. * applicable for weak-ordered memory model archs,
  3346. * such as IA-64). */
  3347. wmb();
  3348. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3349. }
  3350. }
  3351. /**
  3352. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3353. * @adapter: address of board private structure
  3354. **/
  3355. static void
  3356. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3357. struct e1000_rx_ring *rx_ring,
  3358. int cleaned_count)
  3359. {
  3360. struct net_device *netdev = adapter->netdev;
  3361. struct pci_dev *pdev = adapter->pdev;
  3362. union e1000_rx_desc_packet_split *rx_desc;
  3363. struct e1000_buffer *buffer_info;
  3364. struct e1000_ps_page *ps_page;
  3365. struct e1000_ps_page_dma *ps_page_dma;
  3366. struct sk_buff *skb;
  3367. unsigned int i, j;
  3368. i = rx_ring->next_to_use;
  3369. buffer_info = &rx_ring->buffer_info[i];
  3370. ps_page = &rx_ring->ps_page[i];
  3371. ps_page_dma = &rx_ring->ps_page_dma[i];
  3372. while (cleaned_count--) {
  3373. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3374. for (j = 0; j < PS_PAGE_BUFFERS; j++) {
  3375. if (j < adapter->rx_ps_pages) {
  3376. if (likely(!ps_page->ps_page[j])) {
  3377. ps_page->ps_page[j] =
  3378. alloc_page(GFP_ATOMIC);
  3379. if (unlikely(!ps_page->ps_page[j])) {
  3380. adapter->alloc_rx_buff_failed++;
  3381. goto no_buffers;
  3382. }
  3383. ps_page_dma->ps_page_dma[j] =
  3384. pci_map_page(pdev,
  3385. ps_page->ps_page[j],
  3386. 0, PAGE_SIZE,
  3387. PCI_DMA_FROMDEVICE);
  3388. }
  3389. /* Refresh the desc even if buffer_addrs didn't
  3390. * change because each write-back erases
  3391. * this info.
  3392. */
  3393. rx_desc->read.buffer_addr[j+1] =
  3394. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3395. } else
  3396. rx_desc->read.buffer_addr[j+1] = ~0;
  3397. }
  3398. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3399. if (unlikely(!skb)) {
  3400. adapter->alloc_rx_buff_failed++;
  3401. break;
  3402. }
  3403. /* Make buffer alignment 2 beyond a 16 byte boundary
  3404. * this will result in a 16 byte aligned IP header after
  3405. * the 14 byte MAC header is removed
  3406. */
  3407. skb_reserve(skb, NET_IP_ALIGN);
  3408. skb->dev = netdev;
  3409. buffer_info->skb = skb;
  3410. buffer_info->length = adapter->rx_ps_bsize0;
  3411. buffer_info->dma = pci_map_single(pdev, skb->data,
  3412. adapter->rx_ps_bsize0,
  3413. PCI_DMA_FROMDEVICE);
  3414. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3415. if (unlikely(++i == rx_ring->count)) i = 0;
  3416. buffer_info = &rx_ring->buffer_info[i];
  3417. ps_page = &rx_ring->ps_page[i];
  3418. ps_page_dma = &rx_ring->ps_page_dma[i];
  3419. }
  3420. no_buffers:
  3421. if (likely(rx_ring->next_to_use != i)) {
  3422. rx_ring->next_to_use = i;
  3423. if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
  3424. /* Force memory writes to complete before letting h/w
  3425. * know there are new descriptors to fetch. (Only
  3426. * applicable for weak-ordered memory model archs,
  3427. * such as IA-64). */
  3428. wmb();
  3429. /* Hardware increments by 16 bytes, but packet split
  3430. * descriptors are 32 bytes...so we increment tail
  3431. * twice as much.
  3432. */
  3433. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3434. }
  3435. }
  3436. /**
  3437. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3438. * @adapter:
  3439. **/
  3440. static void
  3441. e1000_smartspeed(struct e1000_adapter *adapter)
  3442. {
  3443. uint16_t phy_status;
  3444. uint16_t phy_ctrl;
  3445. if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3446. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3447. return;
  3448. if (adapter->smartspeed == 0) {
  3449. /* If Master/Slave config fault is asserted twice,
  3450. * we assume back-to-back */
  3451. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3452. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3453. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3454. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3455. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3456. if (phy_ctrl & CR_1000T_MS_ENABLE) {
  3457. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3458. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3459. phy_ctrl);
  3460. adapter->smartspeed++;
  3461. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3462. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3463. &phy_ctrl)) {
  3464. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3465. MII_CR_RESTART_AUTO_NEG);
  3466. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3467. phy_ctrl);
  3468. }
  3469. }
  3470. return;
  3471. } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3472. /* If still no link, perhaps using 2/3 pair cable */
  3473. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3474. phy_ctrl |= CR_1000T_MS_ENABLE;
  3475. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3476. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3477. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3478. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3479. MII_CR_RESTART_AUTO_NEG);
  3480. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3481. }
  3482. }
  3483. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3484. if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3485. adapter->smartspeed = 0;
  3486. }
  3487. /**
  3488. * e1000_ioctl -
  3489. * @netdev:
  3490. * @ifreq:
  3491. * @cmd:
  3492. **/
  3493. static int
  3494. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3495. {
  3496. switch (cmd) {
  3497. case SIOCGMIIPHY:
  3498. case SIOCGMIIREG:
  3499. case SIOCSMIIREG:
  3500. return e1000_mii_ioctl(netdev, ifr, cmd);
  3501. default:
  3502. return -EOPNOTSUPP;
  3503. }
  3504. }
  3505. /**
  3506. * e1000_mii_ioctl -
  3507. * @netdev:
  3508. * @ifreq:
  3509. * @cmd:
  3510. **/
  3511. static int
  3512. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3513. {
  3514. struct e1000_adapter *adapter = netdev_priv(netdev);
  3515. struct mii_ioctl_data *data = if_mii(ifr);
  3516. int retval;
  3517. uint16_t mii_reg;
  3518. uint16_t spddplx;
  3519. unsigned long flags;
  3520. if (adapter->hw.media_type != e1000_media_type_copper)
  3521. return -EOPNOTSUPP;
  3522. switch (cmd) {
  3523. case SIOCGMIIPHY:
  3524. data->phy_id = adapter->hw.phy_addr;
  3525. break;
  3526. case SIOCGMIIREG:
  3527. if (!capable(CAP_NET_ADMIN))
  3528. return -EPERM;
  3529. spin_lock_irqsave(&adapter->stats_lock, flags);
  3530. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3531. &data->val_out)) {
  3532. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3533. return -EIO;
  3534. }
  3535. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3536. break;
  3537. case SIOCSMIIREG:
  3538. if (!capable(CAP_NET_ADMIN))
  3539. return -EPERM;
  3540. if (data->reg_num & ~(0x1F))
  3541. return -EFAULT;
  3542. mii_reg = data->val_in;
  3543. spin_lock_irqsave(&adapter->stats_lock, flags);
  3544. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3545. mii_reg)) {
  3546. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3547. return -EIO;
  3548. }
  3549. if (adapter->hw.media_type == e1000_media_type_copper) {
  3550. switch (data->reg_num) {
  3551. case PHY_CTRL:
  3552. if (mii_reg & MII_CR_POWER_DOWN)
  3553. break;
  3554. if (mii_reg & MII_CR_AUTO_NEG_EN) {
  3555. adapter->hw.autoneg = 1;
  3556. adapter->hw.autoneg_advertised = 0x2F;
  3557. } else {
  3558. if (mii_reg & 0x40)
  3559. spddplx = SPEED_1000;
  3560. else if (mii_reg & 0x2000)
  3561. spddplx = SPEED_100;
  3562. else
  3563. spddplx = SPEED_10;
  3564. spddplx += (mii_reg & 0x100)
  3565. ? DUPLEX_FULL :
  3566. DUPLEX_HALF;
  3567. retval = e1000_set_spd_dplx(adapter,
  3568. spddplx);
  3569. if (retval) {
  3570. spin_unlock_irqrestore(
  3571. &adapter->stats_lock,
  3572. flags);
  3573. return retval;
  3574. }
  3575. }
  3576. if (netif_running(adapter->netdev)) {
  3577. e1000_down(adapter);
  3578. e1000_up(adapter);
  3579. } else
  3580. e1000_reset(adapter);
  3581. break;
  3582. case M88E1000_PHY_SPEC_CTRL:
  3583. case M88E1000_EXT_PHY_SPEC_CTRL:
  3584. if (e1000_phy_reset(&adapter->hw)) {
  3585. spin_unlock_irqrestore(
  3586. &adapter->stats_lock, flags);
  3587. return -EIO;
  3588. }
  3589. break;
  3590. }
  3591. } else {
  3592. switch (data->reg_num) {
  3593. case PHY_CTRL:
  3594. if (mii_reg & MII_CR_POWER_DOWN)
  3595. break;
  3596. if (netif_running(adapter->netdev)) {
  3597. e1000_down(adapter);
  3598. e1000_up(adapter);
  3599. } else
  3600. e1000_reset(adapter);
  3601. break;
  3602. }
  3603. }
  3604. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3605. break;
  3606. default:
  3607. return -EOPNOTSUPP;
  3608. }
  3609. return E1000_SUCCESS;
  3610. }
  3611. void
  3612. e1000_pci_set_mwi(struct e1000_hw *hw)
  3613. {
  3614. struct e1000_adapter *adapter = hw->back;
  3615. int ret_val = pci_set_mwi(adapter->pdev);
  3616. if (ret_val)
  3617. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3618. }
  3619. void
  3620. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3621. {
  3622. struct e1000_adapter *adapter = hw->back;
  3623. pci_clear_mwi(adapter->pdev);
  3624. }
  3625. void
  3626. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3627. {
  3628. struct e1000_adapter *adapter = hw->back;
  3629. pci_read_config_word(adapter->pdev, reg, value);
  3630. }
  3631. void
  3632. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3633. {
  3634. struct e1000_adapter *adapter = hw->back;
  3635. pci_write_config_word(adapter->pdev, reg, *value);
  3636. }
  3637. uint32_t
  3638. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3639. {
  3640. return inl(port);
  3641. }
  3642. void
  3643. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3644. {
  3645. outl(value, port);
  3646. }
  3647. static void
  3648. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3649. {
  3650. struct e1000_adapter *adapter = netdev_priv(netdev);
  3651. uint32_t ctrl, rctl;
  3652. e1000_irq_disable(adapter);
  3653. adapter->vlgrp = grp;
  3654. if (grp) {
  3655. /* enable VLAN tag insert/strip */
  3656. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3657. ctrl |= E1000_CTRL_VME;
  3658. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3659. /* enable VLAN receive filtering */
  3660. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3661. rctl |= E1000_RCTL_VFE;
  3662. rctl &= ~E1000_RCTL_CFIEN;
  3663. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3664. e1000_update_mng_vlan(adapter);
  3665. } else {
  3666. /* disable VLAN tag insert/strip */
  3667. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3668. ctrl &= ~E1000_CTRL_VME;
  3669. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3670. /* disable VLAN filtering */
  3671. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3672. rctl &= ~E1000_RCTL_VFE;
  3673. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3674. if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3675. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3676. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3677. }
  3678. }
  3679. e1000_irq_enable(adapter);
  3680. }
  3681. static void
  3682. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3683. {
  3684. struct e1000_adapter *adapter = netdev_priv(netdev);
  3685. uint32_t vfta, index;
  3686. if ((adapter->hw.mng_cookie.status &
  3687. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3688. (vid == adapter->mng_vlan_id))
  3689. return;
  3690. /* add VID to filter table */
  3691. index = (vid >> 5) & 0x7F;
  3692. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3693. vfta |= (1 << (vid & 0x1F));
  3694. e1000_write_vfta(&adapter->hw, index, vfta);
  3695. }
  3696. static void
  3697. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3698. {
  3699. struct e1000_adapter *adapter = netdev_priv(netdev);
  3700. uint32_t vfta, index;
  3701. e1000_irq_disable(adapter);
  3702. if (adapter->vlgrp)
  3703. adapter->vlgrp->vlan_devices[vid] = NULL;
  3704. e1000_irq_enable(adapter);
  3705. if ((adapter->hw.mng_cookie.status &
  3706. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3707. (vid == adapter->mng_vlan_id)) {
  3708. /* release control to f/w */
  3709. e1000_release_hw_control(adapter);
  3710. return;
  3711. }
  3712. /* remove VID from filter table */
  3713. index = (vid >> 5) & 0x7F;
  3714. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3715. vfta &= ~(1 << (vid & 0x1F));
  3716. e1000_write_vfta(&adapter->hw, index, vfta);
  3717. }
  3718. static void
  3719. e1000_restore_vlan(struct e1000_adapter *adapter)
  3720. {
  3721. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3722. if (adapter->vlgrp) {
  3723. uint16_t vid;
  3724. for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3725. if (!adapter->vlgrp->vlan_devices[vid])
  3726. continue;
  3727. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3728. }
  3729. }
  3730. }
  3731. int
  3732. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3733. {
  3734. adapter->hw.autoneg = 0;
  3735. /* Fiber NICs only allow 1000 gbps Full duplex */
  3736. if ((adapter->hw.media_type == e1000_media_type_fiber) &&
  3737. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3738. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3739. return -EINVAL;
  3740. }
  3741. switch (spddplx) {
  3742. case SPEED_10 + DUPLEX_HALF:
  3743. adapter->hw.forced_speed_duplex = e1000_10_half;
  3744. break;
  3745. case SPEED_10 + DUPLEX_FULL:
  3746. adapter->hw.forced_speed_duplex = e1000_10_full;
  3747. break;
  3748. case SPEED_100 + DUPLEX_HALF:
  3749. adapter->hw.forced_speed_duplex = e1000_100_half;
  3750. break;
  3751. case SPEED_100 + DUPLEX_FULL:
  3752. adapter->hw.forced_speed_duplex = e1000_100_full;
  3753. break;
  3754. case SPEED_1000 + DUPLEX_FULL:
  3755. adapter->hw.autoneg = 1;
  3756. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3757. break;
  3758. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3759. default:
  3760. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3761. return -EINVAL;
  3762. }
  3763. return 0;
  3764. }
  3765. #ifdef CONFIG_PM
  3766. /* Save/restore 16 or 64 dwords of PCI config space depending on which
  3767. * bus we're on (PCI(X) vs. PCI-E)
  3768. */
  3769. #define PCIE_CONFIG_SPACE_LEN 256
  3770. #define PCI_CONFIG_SPACE_LEN 64
  3771. static int
  3772. e1000_pci_save_state(struct e1000_adapter *adapter)
  3773. {
  3774. struct pci_dev *dev = adapter->pdev;
  3775. int size;
  3776. int i;
  3777. if (adapter->hw.mac_type >= e1000_82571)
  3778. size = PCIE_CONFIG_SPACE_LEN;
  3779. else
  3780. size = PCI_CONFIG_SPACE_LEN;
  3781. WARN_ON(adapter->config_space != NULL);
  3782. adapter->config_space = kmalloc(size, GFP_KERNEL);
  3783. if (!adapter->config_space) {
  3784. DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
  3785. return -ENOMEM;
  3786. }
  3787. for (i = 0; i < (size / 4); i++)
  3788. pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
  3789. return 0;
  3790. }
  3791. static void
  3792. e1000_pci_restore_state(struct e1000_adapter *adapter)
  3793. {
  3794. struct pci_dev *dev = adapter->pdev;
  3795. int size;
  3796. int i;
  3797. if (adapter->config_space == NULL)
  3798. return;
  3799. if (adapter->hw.mac_type >= e1000_82571)
  3800. size = PCIE_CONFIG_SPACE_LEN;
  3801. else
  3802. size = PCI_CONFIG_SPACE_LEN;
  3803. for (i = 0; i < (size / 4); i++)
  3804. pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
  3805. kfree(adapter->config_space);
  3806. adapter->config_space = NULL;
  3807. return;
  3808. }
  3809. #endif /* CONFIG_PM */
  3810. static int
  3811. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3812. {
  3813. struct net_device *netdev = pci_get_drvdata(pdev);
  3814. struct e1000_adapter *adapter = netdev_priv(netdev);
  3815. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  3816. uint32_t wufc = adapter->wol;
  3817. int retval = 0;
  3818. netif_device_detach(netdev);
  3819. if (netif_running(netdev))
  3820. e1000_down(adapter);
  3821. #ifdef CONFIG_PM
  3822. /* Implement our own version of pci_save_state(pdev) because pci-
  3823. * express adapters have 256-byte config spaces. */
  3824. retval = e1000_pci_save_state(adapter);
  3825. if (retval)
  3826. return retval;
  3827. #endif
  3828. status = E1000_READ_REG(&adapter->hw, STATUS);
  3829. if (status & E1000_STATUS_LU)
  3830. wufc &= ~E1000_WUFC_LNKC;
  3831. if (wufc) {
  3832. e1000_setup_rctl(adapter);
  3833. e1000_set_multi(netdev);
  3834. /* turn on all-multi mode if wake on multicast is enabled */
  3835. if (adapter->wol & E1000_WUFC_MC) {
  3836. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3837. rctl |= E1000_RCTL_MPE;
  3838. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3839. }
  3840. if (adapter->hw.mac_type >= e1000_82540) {
  3841. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3842. /* advertise wake from D3Cold */
  3843. #define E1000_CTRL_ADVD3WUC 0x00100000
  3844. /* phy power management enable */
  3845. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3846. ctrl |= E1000_CTRL_ADVD3WUC |
  3847. E1000_CTRL_EN_PHY_PWR_MGMT;
  3848. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3849. }
  3850. if (adapter->hw.media_type == e1000_media_type_fiber ||
  3851. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3852. /* keep the laser running in D3 */
  3853. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3854. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3855. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3856. }
  3857. /* Allow time for pending master requests to run */
  3858. e1000_disable_pciex_master(&adapter->hw);
  3859. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3860. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3861. pci_enable_wake(pdev, PCI_D3hot, 1);
  3862. pci_enable_wake(pdev, PCI_D3cold, 1);
  3863. } else {
  3864. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3865. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3866. pci_enable_wake(pdev, PCI_D3hot, 0);
  3867. pci_enable_wake(pdev, PCI_D3cold, 0);
  3868. }
  3869. if (adapter->hw.mac_type >= e1000_82540 &&
  3870. adapter->hw.media_type == e1000_media_type_copper) {
  3871. manc = E1000_READ_REG(&adapter->hw, MANC);
  3872. if (manc & E1000_MANC_SMBUS_EN) {
  3873. manc |= E1000_MANC_ARP_EN;
  3874. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3875. pci_enable_wake(pdev, PCI_D3hot, 1);
  3876. pci_enable_wake(pdev, PCI_D3cold, 1);
  3877. }
  3878. }
  3879. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  3880. * would have already happened in close and is redundant. */
  3881. e1000_release_hw_control(adapter);
  3882. pci_disable_device(pdev);
  3883. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3884. return 0;
  3885. }
  3886. #ifdef CONFIG_PM
  3887. static int
  3888. e1000_resume(struct pci_dev *pdev)
  3889. {
  3890. struct net_device *netdev = pci_get_drvdata(pdev);
  3891. struct e1000_adapter *adapter = netdev_priv(netdev);
  3892. uint32_t manc, ret_val;
  3893. pci_set_power_state(pdev, PCI_D0);
  3894. e1000_pci_restore_state(adapter);
  3895. ret_val = pci_enable_device(pdev);
  3896. pci_set_master(pdev);
  3897. pci_enable_wake(pdev, PCI_D3hot, 0);
  3898. pci_enable_wake(pdev, PCI_D3cold, 0);
  3899. e1000_reset(adapter);
  3900. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3901. if (netif_running(netdev))
  3902. e1000_up(adapter);
  3903. netif_device_attach(netdev);
  3904. if (adapter->hw.mac_type >= e1000_82540 &&
  3905. adapter->hw.media_type == e1000_media_type_copper) {
  3906. manc = E1000_READ_REG(&adapter->hw, MANC);
  3907. manc &= ~(E1000_MANC_ARP_EN);
  3908. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3909. }
  3910. /* If the controller is 82573 and f/w is AMT, do not set
  3911. * DRV_LOAD until the interface is up. For all other cases,
  3912. * let the f/w know that the h/w is now under the control
  3913. * of the driver. */
  3914. if (adapter->hw.mac_type != e1000_82573 ||
  3915. !e1000_check_mng_mode(&adapter->hw))
  3916. e1000_get_hw_control(adapter);
  3917. return 0;
  3918. }
  3919. #endif
  3920. static void e1000_shutdown(struct pci_dev *pdev)
  3921. {
  3922. e1000_suspend(pdev, PMSG_SUSPEND);
  3923. }
  3924. #ifdef CONFIG_NET_POLL_CONTROLLER
  3925. /*
  3926. * Polling 'interrupt' - used by things like netconsole to send skbs
  3927. * without having to re-enable interrupts. It's not called while
  3928. * the interrupt routine is executing.
  3929. */
  3930. static void
  3931. e1000_netpoll(struct net_device *netdev)
  3932. {
  3933. struct e1000_adapter *adapter = netdev_priv(netdev);
  3934. disable_irq(adapter->pdev->irq);
  3935. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3936. e1000_clean_tx_irq(adapter, adapter->tx_ring);
  3937. #ifndef CONFIG_E1000_NAPI
  3938. adapter->clean_rx(adapter, adapter->rx_ring);
  3939. #endif
  3940. enable_irq(adapter->pdev->irq);
  3941. }
  3942. #endif
  3943. /**
  3944. * e1000_io_error_detected - called when PCI error is detected
  3945. * @pdev: Pointer to PCI device
  3946. * @state: The current pci conneection state
  3947. *
  3948. * This function is called after a PCI bus error affecting
  3949. * this device has been detected.
  3950. */
  3951. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
  3952. {
  3953. struct net_device *netdev = pci_get_drvdata(pdev);
  3954. struct e1000_adapter *adapter = netdev->priv;
  3955. netif_device_detach(netdev);
  3956. if (netif_running(netdev))
  3957. e1000_down(adapter);
  3958. /* Request a slot slot reset. */
  3959. return PCI_ERS_RESULT_NEED_RESET;
  3960. }
  3961. /**
  3962. * e1000_io_slot_reset - called after the pci bus has been reset.
  3963. * @pdev: Pointer to PCI device
  3964. *
  3965. * Restart the card from scratch, as if from a cold-boot. Implementation
  3966. * resembles the first-half of the e1000_resume routine.
  3967. */
  3968. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
  3969. {
  3970. struct net_device *netdev = pci_get_drvdata(pdev);
  3971. struct e1000_adapter *adapter = netdev->priv;
  3972. if (pci_enable_device(pdev)) {
  3973. printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
  3974. return PCI_ERS_RESULT_DISCONNECT;
  3975. }
  3976. pci_set_master(pdev);
  3977. pci_enable_wake(pdev, 3, 0);
  3978. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3979. /* Perform card reset only on one instance of the card */
  3980. if (PCI_FUNC (pdev->devfn) != 0)
  3981. return PCI_ERS_RESULT_RECOVERED;
  3982. e1000_reset(adapter);
  3983. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3984. return PCI_ERS_RESULT_RECOVERED;
  3985. }
  3986. /**
  3987. * e1000_io_resume - called when traffic can start flowing again.
  3988. * @pdev: Pointer to PCI device
  3989. *
  3990. * This callback is called when the error recovery driver tells us that
  3991. * its OK to resume normal operation. Implementation resembles the
  3992. * second-half of the e1000_resume routine.
  3993. */
  3994. static void e1000_io_resume(struct pci_dev *pdev)
  3995. {
  3996. struct net_device *netdev = pci_get_drvdata(pdev);
  3997. struct e1000_adapter *adapter = netdev->priv;
  3998. uint32_t manc, swsm;
  3999. if (netif_running(netdev)) {
  4000. if (e1000_up(adapter)) {
  4001. printk("e1000: can't bring device back up after reset\n");
  4002. return;
  4003. }
  4004. }
  4005. netif_device_attach(netdev);
  4006. if (adapter->hw.mac_type >= e1000_82540 &&
  4007. adapter->hw.media_type == e1000_media_type_copper) {
  4008. manc = E1000_READ_REG(&adapter->hw, MANC);
  4009. manc &= ~(E1000_MANC_ARP_EN);
  4010. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  4011. }
  4012. switch (adapter->hw.mac_type) {
  4013. case e1000_82573:
  4014. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  4015. E1000_WRITE_REG(&adapter->hw, SWSM,
  4016. swsm | E1000_SWSM_DRV_LOAD);
  4017. break;
  4018. default:
  4019. break;
  4020. }
  4021. if (netif_running(netdev))
  4022. mod_timer(&adapter->watchdog_timer, jiffies);
  4023. }
  4024. /* e1000_main.c */