evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  35. struct thread_map *threads)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, cpus, threads);
  40. return evlist;
  41. }
  42. void perf_evlist__config(struct perf_evlist *evlist,
  43. struct perf_record_opts *opts)
  44. {
  45. struct perf_evsel *evsel;
  46. /*
  47. * Set the evsel leader links before we configure attributes,
  48. * since some might depend on this info.
  49. */
  50. if (opts->group)
  51. perf_evlist__set_leader(evlist);
  52. if (evlist->cpus->map[0] < 0)
  53. opts->no_inherit = true;
  54. list_for_each_entry(evsel, &evlist->entries, node) {
  55. perf_evsel__config(evsel, opts);
  56. if (evlist->nr_entries > 1)
  57. perf_evsel__set_sample_id(evsel);
  58. }
  59. }
  60. static void perf_evlist__purge(struct perf_evlist *evlist)
  61. {
  62. struct perf_evsel *pos, *n;
  63. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  64. list_del_init(&pos->node);
  65. perf_evsel__delete(pos);
  66. }
  67. evlist->nr_entries = 0;
  68. }
  69. void perf_evlist__exit(struct perf_evlist *evlist)
  70. {
  71. free(evlist->mmap);
  72. free(evlist->pollfd);
  73. evlist->mmap = NULL;
  74. evlist->pollfd = NULL;
  75. }
  76. void perf_evlist__delete(struct perf_evlist *evlist)
  77. {
  78. perf_evlist__purge(evlist);
  79. perf_evlist__exit(evlist);
  80. free(evlist);
  81. }
  82. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  83. {
  84. list_add_tail(&entry->node, &evlist->entries);
  85. ++evlist->nr_entries;
  86. }
  87. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  88. struct list_head *list,
  89. int nr_entries)
  90. {
  91. list_splice_tail(list, &evlist->entries);
  92. evlist->nr_entries += nr_entries;
  93. }
  94. void __perf_evlist__set_leader(struct list_head *list)
  95. {
  96. struct perf_evsel *evsel, *leader;
  97. leader = list_entry(list->next, struct perf_evsel, node);
  98. evsel = list_entry(list->prev, struct perf_evsel, node);
  99. leader->nr_members = evsel->idx - leader->idx + 1;
  100. list_for_each_entry(evsel, list, node) {
  101. evsel->leader = leader;
  102. }
  103. }
  104. void perf_evlist__set_leader(struct perf_evlist *evlist)
  105. {
  106. if (evlist->nr_entries) {
  107. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  108. __perf_evlist__set_leader(&evlist->entries);
  109. }
  110. }
  111. int perf_evlist__add_default(struct perf_evlist *evlist)
  112. {
  113. struct perf_event_attr attr = {
  114. .type = PERF_TYPE_HARDWARE,
  115. .config = PERF_COUNT_HW_CPU_CYCLES,
  116. };
  117. struct perf_evsel *evsel;
  118. event_attr_init(&attr);
  119. evsel = perf_evsel__new(&attr, 0);
  120. if (evsel == NULL)
  121. goto error;
  122. /* use strdup() because free(evsel) assumes name is allocated */
  123. evsel->name = strdup("cycles");
  124. if (!evsel->name)
  125. goto error_free;
  126. perf_evlist__add(evlist, evsel);
  127. return 0;
  128. error_free:
  129. perf_evsel__delete(evsel);
  130. error:
  131. return -ENOMEM;
  132. }
  133. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  134. struct perf_event_attr *attrs, size_t nr_attrs)
  135. {
  136. struct perf_evsel *evsel, *n;
  137. LIST_HEAD(head);
  138. size_t i;
  139. for (i = 0; i < nr_attrs; i++) {
  140. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  141. if (evsel == NULL)
  142. goto out_delete_partial_list;
  143. list_add_tail(&evsel->node, &head);
  144. }
  145. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  146. return 0;
  147. out_delete_partial_list:
  148. list_for_each_entry_safe(evsel, n, &head, node)
  149. perf_evsel__delete(evsel);
  150. return -1;
  151. }
  152. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  153. struct perf_event_attr *attrs, size_t nr_attrs)
  154. {
  155. size_t i;
  156. for (i = 0; i < nr_attrs; i++)
  157. event_attr_init(attrs + i);
  158. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  159. }
  160. struct perf_evsel *
  161. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  162. {
  163. struct perf_evsel *evsel;
  164. list_for_each_entry(evsel, &evlist->entries, node) {
  165. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  166. (int)evsel->attr.config == id)
  167. return evsel;
  168. }
  169. return NULL;
  170. }
  171. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  172. const char *sys, const char *name, void *handler)
  173. {
  174. struct perf_evsel *evsel;
  175. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  176. if (evsel == NULL)
  177. return -1;
  178. evsel->handler.func = handler;
  179. perf_evlist__add(evlist, evsel);
  180. return 0;
  181. }
  182. void perf_evlist__disable(struct perf_evlist *evlist)
  183. {
  184. int cpu, thread;
  185. struct perf_evsel *pos;
  186. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  187. list_for_each_entry(pos, &evlist->entries, node) {
  188. if (!perf_evsel__is_group_leader(pos))
  189. continue;
  190. for (thread = 0; thread < evlist->threads->nr; thread++)
  191. ioctl(FD(pos, cpu, thread),
  192. PERF_EVENT_IOC_DISABLE, 0);
  193. }
  194. }
  195. }
  196. void perf_evlist__enable(struct perf_evlist *evlist)
  197. {
  198. int cpu, thread;
  199. struct perf_evsel *pos;
  200. for (cpu = 0; cpu < cpu_map__nr(evlist->cpus); cpu++) {
  201. list_for_each_entry(pos, &evlist->entries, node) {
  202. if (!perf_evsel__is_group_leader(pos))
  203. continue;
  204. for (thread = 0; thread < evlist->threads->nr; thread++)
  205. ioctl(FD(pos, cpu, thread),
  206. PERF_EVENT_IOC_ENABLE, 0);
  207. }
  208. }
  209. }
  210. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  211. {
  212. int nfds = cpu_map__nr(evlist->cpus) * evlist->threads->nr * evlist->nr_entries;
  213. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  214. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  215. }
  216. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  217. {
  218. fcntl(fd, F_SETFL, O_NONBLOCK);
  219. evlist->pollfd[evlist->nr_fds].fd = fd;
  220. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  221. evlist->nr_fds++;
  222. }
  223. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  224. struct perf_evsel *evsel,
  225. int cpu, int thread, u64 id)
  226. {
  227. int hash;
  228. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  229. sid->id = id;
  230. sid->evsel = evsel;
  231. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  232. hlist_add_head(&sid->node, &evlist->heads[hash]);
  233. }
  234. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  235. int cpu, int thread, u64 id)
  236. {
  237. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  238. evsel->id[evsel->ids++] = id;
  239. }
  240. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  241. struct perf_evsel *evsel,
  242. int cpu, int thread, int fd)
  243. {
  244. u64 read_data[4] = { 0, };
  245. int id_idx = 1; /* The first entry is the counter value */
  246. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  247. read(fd, &read_data, sizeof(read_data)) == -1)
  248. return -1;
  249. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  250. ++id_idx;
  251. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  252. ++id_idx;
  253. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  254. return 0;
  255. }
  256. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  257. {
  258. struct hlist_head *head;
  259. struct perf_sample_id *sid;
  260. int hash;
  261. if (evlist->nr_entries == 1)
  262. return perf_evlist__first(evlist);
  263. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  264. head = &evlist->heads[hash];
  265. hlist_for_each_entry(sid, head, node)
  266. if (sid->id == id)
  267. return sid->evsel;
  268. if (!perf_evlist__sample_id_all(evlist))
  269. return perf_evlist__first(evlist);
  270. return NULL;
  271. }
  272. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  273. {
  274. struct perf_mmap *md = &evlist->mmap[idx];
  275. unsigned int head = perf_mmap__read_head(md);
  276. unsigned int old = md->prev;
  277. unsigned char *data = md->base + page_size;
  278. union perf_event *event = NULL;
  279. if (evlist->overwrite) {
  280. /*
  281. * If we're further behind than half the buffer, there's a chance
  282. * the writer will bite our tail and mess up the samples under us.
  283. *
  284. * If we somehow ended up ahead of the head, we got messed up.
  285. *
  286. * In either case, truncate and restart at head.
  287. */
  288. int diff = head - old;
  289. if (diff > md->mask / 2 || diff < 0) {
  290. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  291. /*
  292. * head points to a known good entry, start there.
  293. */
  294. old = head;
  295. }
  296. }
  297. if (old != head) {
  298. size_t size;
  299. event = (union perf_event *)&data[old & md->mask];
  300. size = event->header.size;
  301. /*
  302. * Event straddles the mmap boundary -- header should always
  303. * be inside due to u64 alignment of output.
  304. */
  305. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  306. unsigned int offset = old;
  307. unsigned int len = min(sizeof(*event), size), cpy;
  308. void *dst = &md->event_copy;
  309. do {
  310. cpy = min(md->mask + 1 - (offset & md->mask), len);
  311. memcpy(dst, &data[offset & md->mask], cpy);
  312. offset += cpy;
  313. dst += cpy;
  314. len -= cpy;
  315. } while (len);
  316. event = &md->event_copy;
  317. }
  318. old += size;
  319. }
  320. md->prev = old;
  321. if (!evlist->overwrite)
  322. perf_mmap__write_tail(md, old);
  323. return event;
  324. }
  325. void perf_evlist__munmap(struct perf_evlist *evlist)
  326. {
  327. int i;
  328. for (i = 0; i < evlist->nr_mmaps; i++) {
  329. if (evlist->mmap[i].base != NULL) {
  330. munmap(evlist->mmap[i].base, evlist->mmap_len);
  331. evlist->mmap[i].base = NULL;
  332. }
  333. }
  334. free(evlist->mmap);
  335. evlist->mmap = NULL;
  336. }
  337. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  338. {
  339. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  340. if (cpu_map__all(evlist->cpus))
  341. evlist->nr_mmaps = evlist->threads->nr;
  342. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  343. return evlist->mmap != NULL ? 0 : -ENOMEM;
  344. }
  345. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  346. int idx, int prot, int mask, int fd)
  347. {
  348. evlist->mmap[idx].prev = 0;
  349. evlist->mmap[idx].mask = mask;
  350. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  351. MAP_SHARED, fd, 0);
  352. if (evlist->mmap[idx].base == MAP_FAILED) {
  353. evlist->mmap[idx].base = NULL;
  354. return -1;
  355. }
  356. perf_evlist__add_pollfd(evlist, fd);
  357. return 0;
  358. }
  359. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  360. {
  361. struct perf_evsel *evsel;
  362. int cpu, thread;
  363. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  364. int output = -1;
  365. for (thread = 0; thread < evlist->threads->nr; thread++) {
  366. list_for_each_entry(evsel, &evlist->entries, node) {
  367. int fd = FD(evsel, cpu, thread);
  368. if (output == -1) {
  369. output = fd;
  370. if (__perf_evlist__mmap(evlist, cpu,
  371. prot, mask, output) < 0)
  372. goto out_unmap;
  373. } else {
  374. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  375. goto out_unmap;
  376. }
  377. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  378. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  379. goto out_unmap;
  380. }
  381. }
  382. }
  383. return 0;
  384. out_unmap:
  385. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  386. if (evlist->mmap[cpu].base != NULL) {
  387. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  388. evlist->mmap[cpu].base = NULL;
  389. }
  390. }
  391. return -1;
  392. }
  393. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  394. {
  395. struct perf_evsel *evsel;
  396. int thread;
  397. for (thread = 0; thread < evlist->threads->nr; thread++) {
  398. int output = -1;
  399. list_for_each_entry(evsel, &evlist->entries, node) {
  400. int fd = FD(evsel, 0, thread);
  401. if (output == -1) {
  402. output = fd;
  403. if (__perf_evlist__mmap(evlist, thread,
  404. prot, mask, output) < 0)
  405. goto out_unmap;
  406. } else {
  407. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  408. goto out_unmap;
  409. }
  410. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  411. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  412. goto out_unmap;
  413. }
  414. }
  415. return 0;
  416. out_unmap:
  417. for (thread = 0; thread < evlist->threads->nr; thread++) {
  418. if (evlist->mmap[thread].base != NULL) {
  419. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  420. evlist->mmap[thread].base = NULL;
  421. }
  422. }
  423. return -1;
  424. }
  425. /** perf_evlist__mmap - Create per cpu maps to receive events
  426. *
  427. * @evlist - list of events
  428. * @pages - map length in pages
  429. * @overwrite - overwrite older events?
  430. *
  431. * If overwrite is false the user needs to signal event consuption using:
  432. *
  433. * struct perf_mmap *m = &evlist->mmap[cpu];
  434. * unsigned int head = perf_mmap__read_head(m);
  435. *
  436. * perf_mmap__write_tail(m, head)
  437. *
  438. * Using perf_evlist__read_on_cpu does this automatically.
  439. */
  440. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  441. bool overwrite)
  442. {
  443. struct perf_evsel *evsel;
  444. const struct cpu_map *cpus = evlist->cpus;
  445. const struct thread_map *threads = evlist->threads;
  446. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  447. /* 512 kiB: default amount of unprivileged mlocked memory */
  448. if (pages == UINT_MAX)
  449. pages = (512 * 1024) / page_size;
  450. else if (!is_power_of_2(pages))
  451. return -EINVAL;
  452. mask = pages * page_size - 1;
  453. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  454. return -ENOMEM;
  455. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  456. return -ENOMEM;
  457. evlist->overwrite = overwrite;
  458. evlist->mmap_len = (pages + 1) * page_size;
  459. list_for_each_entry(evsel, &evlist->entries, node) {
  460. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  461. evsel->sample_id == NULL &&
  462. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  463. return -ENOMEM;
  464. }
  465. if (cpu_map__all(cpus))
  466. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  467. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  468. }
  469. int perf_evlist__create_maps(struct perf_evlist *evlist,
  470. struct perf_target *target)
  471. {
  472. evlist->threads = thread_map__new_str(target->pid, target->tid,
  473. target->uid);
  474. if (evlist->threads == NULL)
  475. return -1;
  476. if (perf_target__has_task(target))
  477. evlist->cpus = cpu_map__dummy_new();
  478. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  479. evlist->cpus = cpu_map__dummy_new();
  480. else
  481. evlist->cpus = cpu_map__new(target->cpu_list);
  482. if (evlist->cpus == NULL)
  483. goto out_delete_threads;
  484. return 0;
  485. out_delete_threads:
  486. thread_map__delete(evlist->threads);
  487. return -1;
  488. }
  489. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  490. {
  491. cpu_map__delete(evlist->cpus);
  492. thread_map__delete(evlist->threads);
  493. evlist->cpus = NULL;
  494. evlist->threads = NULL;
  495. }
  496. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  497. {
  498. struct perf_evsel *evsel;
  499. int err = 0;
  500. const int ncpus = cpu_map__nr(evlist->cpus),
  501. nthreads = evlist->threads->nr;
  502. list_for_each_entry(evsel, &evlist->entries, node) {
  503. if (evsel->filter == NULL)
  504. continue;
  505. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  506. if (err)
  507. break;
  508. }
  509. return err;
  510. }
  511. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  512. {
  513. struct perf_evsel *evsel;
  514. int err = 0;
  515. const int ncpus = cpu_map__nr(evlist->cpus),
  516. nthreads = evlist->threads->nr;
  517. list_for_each_entry(evsel, &evlist->entries, node) {
  518. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  519. if (err)
  520. break;
  521. }
  522. return err;
  523. }
  524. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  525. {
  526. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  527. list_for_each_entry_continue(pos, &evlist->entries, node) {
  528. if (first->attr.sample_type != pos->attr.sample_type)
  529. return false;
  530. }
  531. return true;
  532. }
  533. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  534. {
  535. struct perf_evsel *first = perf_evlist__first(evlist);
  536. return first->attr.sample_type;
  537. }
  538. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  539. {
  540. struct perf_evsel *first = perf_evlist__first(evlist);
  541. struct perf_sample *data;
  542. u64 sample_type;
  543. u16 size = 0;
  544. if (!first->attr.sample_id_all)
  545. goto out;
  546. sample_type = first->attr.sample_type;
  547. if (sample_type & PERF_SAMPLE_TID)
  548. size += sizeof(data->tid) * 2;
  549. if (sample_type & PERF_SAMPLE_TIME)
  550. size += sizeof(data->time);
  551. if (sample_type & PERF_SAMPLE_ID)
  552. size += sizeof(data->id);
  553. if (sample_type & PERF_SAMPLE_STREAM_ID)
  554. size += sizeof(data->stream_id);
  555. if (sample_type & PERF_SAMPLE_CPU)
  556. size += sizeof(data->cpu) * 2;
  557. out:
  558. return size;
  559. }
  560. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  561. {
  562. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  563. list_for_each_entry_continue(pos, &evlist->entries, node) {
  564. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  565. return false;
  566. }
  567. return true;
  568. }
  569. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  570. {
  571. struct perf_evsel *first = perf_evlist__first(evlist);
  572. return first->attr.sample_id_all;
  573. }
  574. void perf_evlist__set_selected(struct perf_evlist *evlist,
  575. struct perf_evsel *evsel)
  576. {
  577. evlist->selected = evsel;
  578. }
  579. int perf_evlist__open(struct perf_evlist *evlist)
  580. {
  581. struct perf_evsel *evsel;
  582. int err, ncpus, nthreads;
  583. list_for_each_entry(evsel, &evlist->entries, node) {
  584. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  585. if (err < 0)
  586. goto out_err;
  587. }
  588. return 0;
  589. out_err:
  590. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  591. nthreads = evlist->threads ? evlist->threads->nr : 1;
  592. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  593. perf_evsel__close(evsel, ncpus, nthreads);
  594. errno = -err;
  595. return err;
  596. }
  597. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  598. struct perf_record_opts *opts,
  599. const char *argv[])
  600. {
  601. int child_ready_pipe[2], go_pipe[2];
  602. char bf;
  603. if (pipe(child_ready_pipe) < 0) {
  604. perror("failed to create 'ready' pipe");
  605. return -1;
  606. }
  607. if (pipe(go_pipe) < 0) {
  608. perror("failed to create 'go' pipe");
  609. goto out_close_ready_pipe;
  610. }
  611. evlist->workload.pid = fork();
  612. if (evlist->workload.pid < 0) {
  613. perror("failed to fork");
  614. goto out_close_pipes;
  615. }
  616. if (!evlist->workload.pid) {
  617. if (opts->pipe_output)
  618. dup2(2, 1);
  619. close(child_ready_pipe[0]);
  620. close(go_pipe[1]);
  621. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  622. /*
  623. * Do a dummy execvp to get the PLT entry resolved,
  624. * so we avoid the resolver overhead on the real
  625. * execvp call.
  626. */
  627. execvp("", (char **)argv);
  628. /*
  629. * Tell the parent we're ready to go
  630. */
  631. close(child_ready_pipe[1]);
  632. /*
  633. * Wait until the parent tells us to go.
  634. */
  635. if (read(go_pipe[0], &bf, 1) == -1)
  636. perror("unable to read pipe");
  637. execvp(argv[0], (char **)argv);
  638. perror(argv[0]);
  639. kill(getppid(), SIGUSR1);
  640. exit(-1);
  641. }
  642. if (perf_target__none(&opts->target))
  643. evlist->threads->map[0] = evlist->workload.pid;
  644. close(child_ready_pipe[1]);
  645. close(go_pipe[0]);
  646. /*
  647. * wait for child to settle
  648. */
  649. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  650. perror("unable to read pipe");
  651. goto out_close_pipes;
  652. }
  653. evlist->workload.cork_fd = go_pipe[1];
  654. close(child_ready_pipe[0]);
  655. return 0;
  656. out_close_pipes:
  657. close(go_pipe[0]);
  658. close(go_pipe[1]);
  659. out_close_ready_pipe:
  660. close(child_ready_pipe[0]);
  661. close(child_ready_pipe[1]);
  662. return -1;
  663. }
  664. int perf_evlist__start_workload(struct perf_evlist *evlist)
  665. {
  666. if (evlist->workload.cork_fd > 0) {
  667. /*
  668. * Remove the cork, let it rip!
  669. */
  670. return close(evlist->workload.cork_fd);
  671. }
  672. return 0;
  673. }
  674. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  675. struct perf_sample *sample)
  676. {
  677. struct perf_evsel *evsel = perf_evlist__first(evlist);
  678. return perf_evsel__parse_sample(evsel, event, sample);
  679. }
  680. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  681. {
  682. struct perf_evsel *evsel;
  683. size_t printed = 0;
  684. list_for_each_entry(evsel, &evlist->entries, node) {
  685. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  686. perf_evsel__name(evsel));
  687. }
  688. return printed + fprintf(fp, "\n");;
  689. }