atmel_ssc_dai.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
  3. *
  4. * Copyright (C) 2005 SAN People
  5. * Copyright (C) 2008 Atmel
  6. *
  7. * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
  8. * ATMEL CORP.
  9. *
  10. * Based on at91-ssc.c by
  11. * Frank Mandarino <fmandarino@endrelia.com>
  12. * Based on pxa2xx Platform drivers by
  13. * Liam Girdwood <lrg@slimlogic.co.uk>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. * GNU General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public License
  26. * along with this program; if not, write to the Free Software
  27. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  28. */
  29. #include <linux/init.h>
  30. #include <linux/module.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/device.h>
  33. #include <linux/delay.h>
  34. #include <linux/clk.h>
  35. #include <linux/atmel_pdc.h>
  36. #include <linux/atmel-ssc.h>
  37. #include <sound/core.h>
  38. #include <sound/pcm.h>
  39. #include <sound/pcm_params.h>
  40. #include <sound/initval.h>
  41. #include <sound/soc.h>
  42. #include "atmel-pcm.h"
  43. #include "atmel_ssc_dai.h"
  44. #define NUM_SSC_DEVICES 3
  45. /*
  46. * SSC PDC registers required by the PCM DMA engine.
  47. */
  48. static struct atmel_pdc_regs pdc_tx_reg = {
  49. .xpr = ATMEL_PDC_TPR,
  50. .xcr = ATMEL_PDC_TCR,
  51. .xnpr = ATMEL_PDC_TNPR,
  52. .xncr = ATMEL_PDC_TNCR,
  53. };
  54. static struct atmel_pdc_regs pdc_rx_reg = {
  55. .xpr = ATMEL_PDC_RPR,
  56. .xcr = ATMEL_PDC_RCR,
  57. .xnpr = ATMEL_PDC_RNPR,
  58. .xncr = ATMEL_PDC_RNCR,
  59. };
  60. /*
  61. * SSC & PDC status bits for transmit and receive.
  62. */
  63. static struct atmel_ssc_mask ssc_tx_mask = {
  64. .ssc_enable = SSC_BIT(CR_TXEN),
  65. .ssc_disable = SSC_BIT(CR_TXDIS),
  66. .ssc_endx = SSC_BIT(SR_ENDTX),
  67. .ssc_endbuf = SSC_BIT(SR_TXBUFE),
  68. .pdc_enable = ATMEL_PDC_TXTEN,
  69. .pdc_disable = ATMEL_PDC_TXTDIS,
  70. };
  71. static struct atmel_ssc_mask ssc_rx_mask = {
  72. .ssc_enable = SSC_BIT(CR_RXEN),
  73. .ssc_disable = SSC_BIT(CR_RXDIS),
  74. .ssc_endx = SSC_BIT(SR_ENDRX),
  75. .ssc_endbuf = SSC_BIT(SR_RXBUFF),
  76. .pdc_enable = ATMEL_PDC_RXTEN,
  77. .pdc_disable = ATMEL_PDC_RXTDIS,
  78. };
  79. /*
  80. * DMA parameters.
  81. */
  82. static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
  83. {{
  84. .name = "SSC0 PCM out",
  85. .pdc = &pdc_tx_reg,
  86. .mask = &ssc_tx_mask,
  87. },
  88. {
  89. .name = "SSC0 PCM in",
  90. .pdc = &pdc_rx_reg,
  91. .mask = &ssc_rx_mask,
  92. } },
  93. {{
  94. .name = "SSC1 PCM out",
  95. .pdc = &pdc_tx_reg,
  96. .mask = &ssc_tx_mask,
  97. },
  98. {
  99. .name = "SSC1 PCM in",
  100. .pdc = &pdc_rx_reg,
  101. .mask = &ssc_rx_mask,
  102. } },
  103. {{
  104. .name = "SSC2 PCM out",
  105. .pdc = &pdc_tx_reg,
  106. .mask = &ssc_tx_mask,
  107. },
  108. {
  109. .name = "SSC2 PCM in",
  110. .pdc = &pdc_rx_reg,
  111. .mask = &ssc_rx_mask,
  112. } },
  113. };
  114. static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
  115. {
  116. .name = "ssc0",
  117. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
  118. .dir_mask = SSC_DIR_MASK_UNUSED,
  119. .initialized = 0,
  120. },
  121. {
  122. .name = "ssc1",
  123. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
  124. .dir_mask = SSC_DIR_MASK_UNUSED,
  125. .initialized = 0,
  126. },
  127. {
  128. .name = "ssc2",
  129. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
  130. .dir_mask = SSC_DIR_MASK_UNUSED,
  131. .initialized = 0,
  132. },
  133. };
  134. /*
  135. * SSC interrupt handler. Passes PDC interrupts to the DMA
  136. * interrupt handler in the PCM driver.
  137. */
  138. static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
  139. {
  140. struct atmel_ssc_info *ssc_p = dev_id;
  141. struct atmel_pcm_dma_params *dma_params;
  142. u32 ssc_sr;
  143. u32 ssc_substream_mask;
  144. int i;
  145. ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
  146. & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
  147. /*
  148. * Loop through the substreams attached to this SSC. If
  149. * a DMA-related interrupt occurred on that substream, call
  150. * the DMA interrupt handler function, if one has been
  151. * registered in the dma_params structure by the PCM driver.
  152. */
  153. for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
  154. dma_params = ssc_p->dma_params[i];
  155. if ((dma_params != NULL) &&
  156. (dma_params->dma_intr_handler != NULL)) {
  157. ssc_substream_mask = (dma_params->mask->ssc_endx |
  158. dma_params->mask->ssc_endbuf);
  159. if (ssc_sr & ssc_substream_mask) {
  160. dma_params->dma_intr_handler(ssc_sr,
  161. dma_params->
  162. substream);
  163. }
  164. }
  165. }
  166. return IRQ_HANDLED;
  167. }
  168. /*-------------------------------------------------------------------------*\
  169. * DAI functions
  170. \*-------------------------------------------------------------------------*/
  171. /*
  172. * Startup. Only that one substream allowed in each direction.
  173. */
  174. static int atmel_ssc_startup(struct snd_pcm_substream *substream,
  175. struct snd_soc_dai *dai)
  176. {
  177. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  178. int dir_mask;
  179. pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
  180. ssc_readl(ssc_p->ssc->regs, SR));
  181. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  182. dir_mask = SSC_DIR_MASK_PLAYBACK;
  183. else
  184. dir_mask = SSC_DIR_MASK_CAPTURE;
  185. spin_lock_irq(&ssc_p->lock);
  186. if (ssc_p->dir_mask & dir_mask) {
  187. spin_unlock_irq(&ssc_p->lock);
  188. return -EBUSY;
  189. }
  190. ssc_p->dir_mask |= dir_mask;
  191. spin_unlock_irq(&ssc_p->lock);
  192. return 0;
  193. }
  194. /*
  195. * Shutdown. Clear DMA parameters and shutdown the SSC if there
  196. * are no other substreams open.
  197. */
  198. static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
  199. struct snd_soc_dai *dai)
  200. {
  201. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  202. struct atmel_pcm_dma_params *dma_params;
  203. int dir, dir_mask;
  204. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  205. dir = 0;
  206. else
  207. dir = 1;
  208. dma_params = ssc_p->dma_params[dir];
  209. if (dma_params != NULL) {
  210. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
  211. pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
  212. (dir ? "receive" : "transmit"),
  213. ssc_readl(ssc_p->ssc->regs, SR));
  214. dma_params->ssc = NULL;
  215. dma_params->substream = NULL;
  216. ssc_p->dma_params[dir] = NULL;
  217. }
  218. dir_mask = 1 << dir;
  219. spin_lock_irq(&ssc_p->lock);
  220. ssc_p->dir_mask &= ~dir_mask;
  221. if (!ssc_p->dir_mask) {
  222. if (ssc_p->initialized) {
  223. /* Shutdown the SSC clock. */
  224. pr_debug("atmel_ssc_dau: Stopping clock\n");
  225. clk_disable(ssc_p->ssc->clk);
  226. free_irq(ssc_p->ssc->irq, ssc_p);
  227. ssc_p->initialized = 0;
  228. }
  229. /* Reset the SSC */
  230. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  231. /* Clear the SSC dividers */
  232. ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
  233. }
  234. spin_unlock_irq(&ssc_p->lock);
  235. }
  236. /*
  237. * Record the DAI format for use in hw_params().
  238. */
  239. static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  240. unsigned int fmt)
  241. {
  242. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  243. ssc_p->daifmt = fmt;
  244. return 0;
  245. }
  246. /*
  247. * Record SSC clock dividers for use in hw_params().
  248. */
  249. static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
  250. int div_id, int div)
  251. {
  252. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  253. switch (div_id) {
  254. case ATMEL_SSC_CMR_DIV:
  255. /*
  256. * The same master clock divider is used for both
  257. * transmit and receive, so if a value has already
  258. * been set, it must match this value.
  259. */
  260. if (ssc_p->cmr_div == 0)
  261. ssc_p->cmr_div = div;
  262. else
  263. if (div != ssc_p->cmr_div)
  264. return -EBUSY;
  265. break;
  266. case ATMEL_SSC_TCMR_PERIOD:
  267. ssc_p->tcmr_period = div;
  268. break;
  269. case ATMEL_SSC_RCMR_PERIOD:
  270. ssc_p->rcmr_period = div;
  271. break;
  272. default:
  273. return -EINVAL;
  274. }
  275. return 0;
  276. }
  277. /*
  278. * Configure the SSC.
  279. */
  280. static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
  281. struct snd_pcm_hw_params *params,
  282. struct snd_soc_dai *dai)
  283. {
  284. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  285. int id = dai->id;
  286. struct atmel_ssc_info *ssc_p = &ssc_info[id];
  287. struct atmel_pcm_dma_params *dma_params;
  288. int dir, channels, bits;
  289. u32 tfmr, rfmr, tcmr, rcmr;
  290. int start_event;
  291. int ret;
  292. /*
  293. * Currently, there is only one set of dma params for
  294. * each direction. If more are added, this code will
  295. * have to be changed to select the proper set.
  296. */
  297. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  298. dir = 0;
  299. else
  300. dir = 1;
  301. dma_params = &ssc_dma_params[id][dir];
  302. dma_params->ssc = ssc_p->ssc;
  303. dma_params->substream = substream;
  304. ssc_p->dma_params[dir] = dma_params;
  305. /*
  306. * The snd_soc_pcm_stream->dma_data field is only used to communicate
  307. * the appropriate DMA parameters to the pcm driver hw_params()
  308. * function. It should not be used for other purposes
  309. * as it is common to all substreams.
  310. */
  311. snd_soc_dai_set_dma_data(rtd->cpu_dai, substream, dma_params);
  312. channels = params_channels(params);
  313. /*
  314. * Determine sample size in bits and the PDC increment.
  315. */
  316. switch (params_format(params)) {
  317. case SNDRV_PCM_FORMAT_S8:
  318. bits = 8;
  319. dma_params->pdc_xfer_size = 1;
  320. break;
  321. case SNDRV_PCM_FORMAT_S16_LE:
  322. bits = 16;
  323. dma_params->pdc_xfer_size = 2;
  324. break;
  325. case SNDRV_PCM_FORMAT_S24_LE:
  326. bits = 24;
  327. dma_params->pdc_xfer_size = 4;
  328. break;
  329. case SNDRV_PCM_FORMAT_S32_LE:
  330. bits = 32;
  331. dma_params->pdc_xfer_size = 4;
  332. break;
  333. default:
  334. printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
  335. return -EINVAL;
  336. }
  337. /*
  338. * The SSC only supports up to 16-bit samples in I2S format, due
  339. * to the size of the Frame Mode Register FSLEN field.
  340. */
  341. if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
  342. && bits > 16) {
  343. printk(KERN_WARNING
  344. "atmel_ssc_dai: sample size %d "
  345. "is too large for I2S\n", bits);
  346. return -EINVAL;
  347. }
  348. /*
  349. * Compute SSC register settings.
  350. */
  351. switch (ssc_p->daifmt
  352. & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
  353. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
  354. /*
  355. * I2S format, SSC provides BCLK and LRC clocks.
  356. *
  357. * The SSC transmit and receive clocks are generated
  358. * from the MCK divider, and the BCLK signal
  359. * is output on the SSC TK line.
  360. */
  361. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  362. | SSC_BF(RCMR_STTDLY, START_DELAY)
  363. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  364. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  365. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  366. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  367. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  368. | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
  369. | SSC_BF(RFMR_FSLEN, (bits - 1))
  370. | SSC_BF(RFMR_DATNB, (channels - 1))
  371. | SSC_BIT(RFMR_MSBF)
  372. | SSC_BF(RFMR_LOOP, 0)
  373. | SSC_BF(RFMR_DATLEN, (bits - 1));
  374. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  375. | SSC_BF(TCMR_STTDLY, START_DELAY)
  376. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  377. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  378. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  379. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  380. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  381. | SSC_BF(TFMR_FSDEN, 0)
  382. | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
  383. | SSC_BF(TFMR_FSLEN, (bits - 1))
  384. | SSC_BF(TFMR_DATNB, (channels - 1))
  385. | SSC_BIT(TFMR_MSBF)
  386. | SSC_BF(TFMR_DATDEF, 0)
  387. | SSC_BF(TFMR_DATLEN, (bits - 1));
  388. break;
  389. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
  390. /*
  391. * I2S format, CODEC supplies BCLK and LRC clocks.
  392. *
  393. * The SSC transmit clock is obtained from the BCLK signal on
  394. * on the TK line, and the SSC receive clock is
  395. * generated from the transmit clock.
  396. *
  397. * For single channel data, one sample is transferred
  398. * on the falling edge of the LRC clock.
  399. * For two channel data, one sample is
  400. * transferred on both edges of the LRC clock.
  401. */
  402. start_event = ((channels == 1)
  403. ? SSC_START_FALLING_RF
  404. : SSC_START_EDGE_RF);
  405. rcmr = SSC_BF(RCMR_PERIOD, 0)
  406. | SSC_BF(RCMR_STTDLY, START_DELAY)
  407. | SSC_BF(RCMR_START, start_event)
  408. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  409. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  410. | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK);
  411. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  412. | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
  413. | SSC_BF(RFMR_FSLEN, 0)
  414. | SSC_BF(RFMR_DATNB, 0)
  415. | SSC_BIT(RFMR_MSBF)
  416. | SSC_BF(RFMR_LOOP, 0)
  417. | SSC_BF(RFMR_DATLEN, (bits - 1));
  418. tcmr = SSC_BF(TCMR_PERIOD, 0)
  419. | SSC_BF(TCMR_STTDLY, START_DELAY)
  420. | SSC_BF(TCMR_START, start_event)
  421. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  422. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  423. | SSC_BF(TCMR_CKS, SSC_CKS_PIN);
  424. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  425. | SSC_BF(TFMR_FSDEN, 0)
  426. | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
  427. | SSC_BF(TFMR_FSLEN, 0)
  428. | SSC_BF(TFMR_DATNB, 0)
  429. | SSC_BIT(TFMR_MSBF)
  430. | SSC_BF(TFMR_DATDEF, 0)
  431. | SSC_BF(TFMR_DATLEN, (bits - 1));
  432. break;
  433. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
  434. /*
  435. * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
  436. *
  437. * The SSC transmit and receive clocks are generated from the
  438. * MCK divider, and the BCLK signal is output
  439. * on the SSC TK line.
  440. */
  441. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  442. | SSC_BF(RCMR_STTDLY, 1)
  443. | SSC_BF(RCMR_START, SSC_START_RISING_RF)
  444. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  445. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  446. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  447. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  448. | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
  449. | SSC_BF(RFMR_FSLEN, 0)
  450. | SSC_BF(RFMR_DATNB, (channels - 1))
  451. | SSC_BIT(RFMR_MSBF)
  452. | SSC_BF(RFMR_LOOP, 0)
  453. | SSC_BF(RFMR_DATLEN, (bits - 1));
  454. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  455. | SSC_BF(TCMR_STTDLY, 1)
  456. | SSC_BF(TCMR_START, SSC_START_RISING_RF)
  457. | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
  458. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  459. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  460. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  461. | SSC_BF(TFMR_FSDEN, 0)
  462. | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
  463. | SSC_BF(TFMR_FSLEN, 0)
  464. | SSC_BF(TFMR_DATNB, (channels - 1))
  465. | SSC_BIT(TFMR_MSBF)
  466. | SSC_BF(TFMR_DATDEF, 0)
  467. | SSC_BF(TFMR_DATLEN, (bits - 1));
  468. break;
  469. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
  470. default:
  471. printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
  472. ssc_p->daifmt);
  473. return -EINVAL;
  474. }
  475. pr_debug("atmel_ssc_hw_params: "
  476. "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
  477. rcmr, rfmr, tcmr, tfmr);
  478. if (!ssc_p->initialized) {
  479. /* Enable PMC peripheral clock for this SSC */
  480. pr_debug("atmel_ssc_dai: Starting clock\n");
  481. clk_enable(ssc_p->ssc->clk);
  482. /* Reset the SSC and its PDC registers */
  483. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  484. ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
  485. ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
  486. ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
  487. ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
  488. ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
  489. ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
  490. ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
  491. ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
  492. ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
  493. ssc_p->name, ssc_p);
  494. if (ret < 0) {
  495. printk(KERN_WARNING
  496. "atmel_ssc_dai: request_irq failure\n");
  497. pr_debug("Atmel_ssc_dai: Stoping clock\n");
  498. clk_disable(ssc_p->ssc->clk);
  499. return ret;
  500. }
  501. ssc_p->initialized = 1;
  502. }
  503. /* set SSC clock mode register */
  504. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
  505. /* set receive clock mode and format */
  506. ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
  507. ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
  508. /* set transmit clock mode and format */
  509. ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
  510. ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
  511. pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
  512. return 0;
  513. }
  514. static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
  515. struct snd_soc_dai *dai)
  516. {
  517. struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
  518. struct atmel_pcm_dma_params *dma_params;
  519. int dir;
  520. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  521. dir = 0;
  522. else
  523. dir = 1;
  524. dma_params = ssc_p->dma_params[dir];
  525. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
  526. pr_debug("%s enabled SSC_SR=0x%08x\n",
  527. dir ? "receive" : "transmit",
  528. ssc_readl(ssc_p->ssc->regs, SR));
  529. return 0;
  530. }
  531. #ifdef CONFIG_PM
  532. static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
  533. {
  534. struct atmel_ssc_info *ssc_p;
  535. if (!cpu_dai->active)
  536. return 0;
  537. ssc_p = &ssc_info[cpu_dai->id];
  538. /* Save the status register before disabling transmit and receive */
  539. ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
  540. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
  541. /* Save the current interrupt mask, then disable unmasked interrupts */
  542. ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
  543. ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
  544. ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
  545. ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
  546. ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
  547. ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
  548. ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
  549. return 0;
  550. }
  551. static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
  552. {
  553. struct atmel_ssc_info *ssc_p;
  554. u32 cr;
  555. if (!cpu_dai->active)
  556. return 0;
  557. ssc_p = &ssc_info[cpu_dai->id];
  558. /* restore SSC register settings */
  559. ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
  560. ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
  561. ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
  562. ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
  563. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
  564. /* re-enable interrupts */
  565. ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
  566. /* Re-enable receive and transmit as appropriate */
  567. cr = 0;
  568. cr |=
  569. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
  570. cr |=
  571. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
  572. ssc_writel(ssc_p->ssc->regs, CR, cr);
  573. return 0;
  574. }
  575. #else /* CONFIG_PM */
  576. # define atmel_ssc_suspend NULL
  577. # define atmel_ssc_resume NULL
  578. #endif /* CONFIG_PM */
  579. #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
  580. #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
  581. SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  582. static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
  583. .startup = atmel_ssc_startup,
  584. .shutdown = atmel_ssc_shutdown,
  585. .prepare = atmel_ssc_prepare,
  586. .hw_params = atmel_ssc_hw_params,
  587. .set_fmt = atmel_ssc_set_dai_fmt,
  588. .set_clkdiv = atmel_ssc_set_dai_clkdiv,
  589. };
  590. static struct snd_soc_dai_driver atmel_ssc_dai = {
  591. .suspend = atmel_ssc_suspend,
  592. .resume = atmel_ssc_resume,
  593. .playback = {
  594. .channels_min = 1,
  595. .channels_max = 2,
  596. .rates = ATMEL_SSC_RATES,
  597. .formats = ATMEL_SSC_FORMATS,},
  598. .capture = {
  599. .channels_min = 1,
  600. .channels_max = 2,
  601. .rates = ATMEL_SSC_RATES,
  602. .formats = ATMEL_SSC_FORMATS,},
  603. .ops = &atmel_ssc_dai_ops,
  604. };
  605. static int asoc_ssc_init(struct device *dev)
  606. {
  607. struct platform_device *pdev = to_platform_device(dev);
  608. struct ssc_device *ssc = platform_get_drvdata(pdev);
  609. int ret;
  610. ret = snd_soc_register_dai(dev, &atmel_ssc_dai);
  611. if (ret) {
  612. dev_err(dev, "Could not register DAI: %d\n", ret);
  613. goto err;
  614. }
  615. if (ssc->pdata->use_dma)
  616. ret = atmel_pcm_dma_platform_register(dev);
  617. else
  618. ret = atmel_pcm_pdc_platform_register(dev);
  619. if (ret) {
  620. dev_err(dev, "Could not register PCM: %d\n", ret);
  621. goto err_unregister_dai;
  622. };
  623. return 0;
  624. err_unregister_dai:
  625. snd_soc_unregister_dai(dev);
  626. err:
  627. return ret;
  628. }
  629. static void asoc_ssc_exit(struct device *dev)
  630. {
  631. struct platform_device *pdev = to_platform_device(dev);
  632. struct ssc_device *ssc = platform_get_drvdata(pdev);
  633. if (ssc->pdata->use_dma)
  634. atmel_pcm_dma_platform_unregister(dev);
  635. else
  636. atmel_pcm_pdc_platform_unregister(dev);
  637. snd_soc_unregister_dai(dev);
  638. }
  639. /**
  640. * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
  641. */
  642. int atmel_ssc_set_audio(int ssc_id)
  643. {
  644. struct ssc_device *ssc;
  645. int ret;
  646. /* If we can grab the SSC briefly to parent the DAI device off it */
  647. ssc = ssc_request(ssc_id);
  648. if (IS_ERR(ssc)) {
  649. pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
  650. PTR_ERR(ssc));
  651. return PTR_ERR(ssc);
  652. } else {
  653. ssc_info[ssc_id].ssc = ssc;
  654. }
  655. ret = asoc_ssc_init(&ssc->pdev->dev);
  656. return ret;
  657. }
  658. EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
  659. void atmel_ssc_put_audio(int ssc_id)
  660. {
  661. struct ssc_device *ssc = ssc_info[ssc_id].ssc;
  662. asoc_ssc_exit(&ssc->pdev->dev);
  663. ssc_free(ssc);
  664. }
  665. EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
  666. /* Module information */
  667. MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
  668. MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
  669. MODULE_LICENSE("GPL");