security.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <linux/mman.h>
  23. #include <linux/mount.h>
  24. #include <linux/personality.h>
  25. #include <linux/backing-dev.h>
  26. #include <net/flow.h>
  27. #define MAX_LSM_EVM_XATTR 2
  28. /* Boot-time LSM user choice */
  29. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  30. CONFIG_DEFAULT_SECURITY;
  31. static struct security_operations *security_ops;
  32. static struct security_operations default_security_ops = {
  33. .name = "default",
  34. };
  35. static inline int __init verify(struct security_operations *ops)
  36. {
  37. /* verify the security_operations structure exists */
  38. if (!ops)
  39. return -EINVAL;
  40. security_fixup_ops(ops);
  41. return 0;
  42. }
  43. static void __init do_security_initcalls(void)
  44. {
  45. initcall_t *call;
  46. call = __security_initcall_start;
  47. while (call < __security_initcall_end) {
  48. (*call) ();
  49. call++;
  50. }
  51. }
  52. /**
  53. * security_init - initializes the security framework
  54. *
  55. * This should be called early in the kernel initialization sequence.
  56. */
  57. int __init security_init(void)
  58. {
  59. printk(KERN_INFO "Security Framework initialized\n");
  60. security_fixup_ops(&default_security_ops);
  61. security_ops = &default_security_ops;
  62. do_security_initcalls();
  63. return 0;
  64. }
  65. void reset_security_ops(void)
  66. {
  67. security_ops = &default_security_ops;
  68. }
  69. /* Save user chosen LSM */
  70. static int __init choose_lsm(char *str)
  71. {
  72. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  73. return 1;
  74. }
  75. __setup("security=", choose_lsm);
  76. /**
  77. * security_module_enable - Load given security module on boot ?
  78. * @ops: a pointer to the struct security_operations that is to be checked.
  79. *
  80. * Each LSM must pass this method before registering its own operations
  81. * to avoid security registration races. This method may also be used
  82. * to check if your LSM is currently loaded during kernel initialization.
  83. *
  84. * Return true if:
  85. * -The passed LSM is the one chosen by user at boot time,
  86. * -or the passed LSM is configured as the default and the user did not
  87. * choose an alternate LSM at boot time.
  88. * Otherwise, return false.
  89. */
  90. int __init security_module_enable(struct security_operations *ops)
  91. {
  92. return !strcmp(ops->name, chosen_lsm);
  93. }
  94. /**
  95. * register_security - registers a security framework with the kernel
  96. * @ops: a pointer to the struct security_options that is to be registered
  97. *
  98. * This function allows a security module to register itself with the
  99. * kernel security subsystem. Some rudimentary checking is done on the @ops
  100. * value passed to this function. You'll need to check first if your LSM
  101. * is allowed to register its @ops by calling security_module_enable(@ops).
  102. *
  103. * If there is already a security module registered with the kernel,
  104. * an error will be returned. Otherwise %0 is returned on success.
  105. */
  106. int __init register_security(struct security_operations *ops)
  107. {
  108. if (verify(ops)) {
  109. printk(KERN_DEBUG "%s could not verify "
  110. "security_operations structure.\n", __func__);
  111. return -EINVAL;
  112. }
  113. if (security_ops != &default_security_ops)
  114. return -EAGAIN;
  115. security_ops = ops;
  116. return 0;
  117. }
  118. /* Security operations */
  119. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  120. {
  121. #ifdef CONFIG_SECURITY_YAMA_STACKED
  122. int rc;
  123. rc = yama_ptrace_access_check(child, mode);
  124. if (rc)
  125. return rc;
  126. #endif
  127. return security_ops->ptrace_access_check(child, mode);
  128. }
  129. int security_ptrace_traceme(struct task_struct *parent)
  130. {
  131. #ifdef CONFIG_SECURITY_YAMA_STACKED
  132. int rc;
  133. rc = yama_ptrace_traceme(parent);
  134. if (rc)
  135. return rc;
  136. #endif
  137. return security_ops->ptrace_traceme(parent);
  138. }
  139. int security_capget(struct task_struct *target,
  140. kernel_cap_t *effective,
  141. kernel_cap_t *inheritable,
  142. kernel_cap_t *permitted)
  143. {
  144. return security_ops->capget(target, effective, inheritable, permitted);
  145. }
  146. int security_capset(struct cred *new, const struct cred *old,
  147. const kernel_cap_t *effective,
  148. const kernel_cap_t *inheritable,
  149. const kernel_cap_t *permitted)
  150. {
  151. return security_ops->capset(new, old,
  152. effective, inheritable, permitted);
  153. }
  154. int security_capable(const struct cred *cred, struct user_namespace *ns,
  155. int cap)
  156. {
  157. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  158. }
  159. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  160. int cap)
  161. {
  162. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  163. }
  164. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  165. {
  166. return security_ops->quotactl(cmds, type, id, sb);
  167. }
  168. int security_quota_on(struct dentry *dentry)
  169. {
  170. return security_ops->quota_on(dentry);
  171. }
  172. int security_syslog(int type)
  173. {
  174. return security_ops->syslog(type);
  175. }
  176. int security_settime(const struct timespec *ts, const struct timezone *tz)
  177. {
  178. return security_ops->settime(ts, tz);
  179. }
  180. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  181. {
  182. return security_ops->vm_enough_memory(mm, pages);
  183. }
  184. int security_bprm_set_creds(struct linux_binprm *bprm)
  185. {
  186. return security_ops->bprm_set_creds(bprm);
  187. }
  188. int security_bprm_check(struct linux_binprm *bprm)
  189. {
  190. int ret;
  191. ret = security_ops->bprm_check_security(bprm);
  192. if (ret)
  193. return ret;
  194. return ima_bprm_check(bprm);
  195. }
  196. void security_bprm_committing_creds(struct linux_binprm *bprm)
  197. {
  198. security_ops->bprm_committing_creds(bprm);
  199. }
  200. void security_bprm_committed_creds(struct linux_binprm *bprm)
  201. {
  202. security_ops->bprm_committed_creds(bprm);
  203. }
  204. int security_bprm_secureexec(struct linux_binprm *bprm)
  205. {
  206. return security_ops->bprm_secureexec(bprm);
  207. }
  208. int security_sb_alloc(struct super_block *sb)
  209. {
  210. return security_ops->sb_alloc_security(sb);
  211. }
  212. void security_sb_free(struct super_block *sb)
  213. {
  214. security_ops->sb_free_security(sb);
  215. }
  216. int security_sb_copy_data(char *orig, char *copy)
  217. {
  218. return security_ops->sb_copy_data(orig, copy);
  219. }
  220. EXPORT_SYMBOL(security_sb_copy_data);
  221. int security_sb_remount(struct super_block *sb, void *data)
  222. {
  223. return security_ops->sb_remount(sb, data);
  224. }
  225. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  226. {
  227. return security_ops->sb_kern_mount(sb, flags, data);
  228. }
  229. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  230. {
  231. return security_ops->sb_show_options(m, sb);
  232. }
  233. int security_sb_statfs(struct dentry *dentry)
  234. {
  235. return security_ops->sb_statfs(dentry);
  236. }
  237. int security_sb_mount(const char *dev_name, struct path *path,
  238. const char *type, unsigned long flags, void *data)
  239. {
  240. return security_ops->sb_mount(dev_name, path, type, flags, data);
  241. }
  242. int security_sb_umount(struct vfsmount *mnt, int flags)
  243. {
  244. return security_ops->sb_umount(mnt, flags);
  245. }
  246. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  247. {
  248. return security_ops->sb_pivotroot(old_path, new_path);
  249. }
  250. int security_sb_set_mnt_opts(struct super_block *sb,
  251. struct security_mnt_opts *opts)
  252. {
  253. return security_ops->sb_set_mnt_opts(sb, opts);
  254. }
  255. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  256. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  257. struct super_block *newsb)
  258. {
  259. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  260. }
  261. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  262. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  263. {
  264. return security_ops->sb_parse_opts_str(options, opts);
  265. }
  266. EXPORT_SYMBOL(security_sb_parse_opts_str);
  267. int security_inode_alloc(struct inode *inode)
  268. {
  269. inode->i_security = NULL;
  270. return security_ops->inode_alloc_security(inode);
  271. }
  272. void security_inode_free(struct inode *inode)
  273. {
  274. integrity_inode_free(inode);
  275. security_ops->inode_free_security(inode);
  276. }
  277. int security_inode_init_security(struct inode *inode, struct inode *dir,
  278. const struct qstr *qstr,
  279. const initxattrs initxattrs, void *fs_data)
  280. {
  281. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  282. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  283. int ret;
  284. if (unlikely(IS_PRIVATE(inode)))
  285. return 0;
  286. memset(new_xattrs, 0, sizeof new_xattrs);
  287. if (!initxattrs)
  288. return security_ops->inode_init_security(inode, dir, qstr,
  289. NULL, NULL, NULL);
  290. lsm_xattr = new_xattrs;
  291. ret = security_ops->inode_init_security(inode, dir, qstr,
  292. &lsm_xattr->name,
  293. &lsm_xattr->value,
  294. &lsm_xattr->value_len);
  295. if (ret)
  296. goto out;
  297. evm_xattr = lsm_xattr + 1;
  298. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  299. if (ret)
  300. goto out;
  301. ret = initxattrs(inode, new_xattrs, fs_data);
  302. out:
  303. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  304. kfree(xattr->name);
  305. kfree(xattr->value);
  306. }
  307. return (ret == -EOPNOTSUPP) ? 0 : ret;
  308. }
  309. EXPORT_SYMBOL(security_inode_init_security);
  310. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  311. const struct qstr *qstr, char **name,
  312. void **value, size_t *len)
  313. {
  314. if (unlikely(IS_PRIVATE(inode)))
  315. return -EOPNOTSUPP;
  316. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  317. len);
  318. }
  319. EXPORT_SYMBOL(security_old_inode_init_security);
  320. #ifdef CONFIG_SECURITY_PATH
  321. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  322. unsigned int dev)
  323. {
  324. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  325. return 0;
  326. return security_ops->path_mknod(dir, dentry, mode, dev);
  327. }
  328. EXPORT_SYMBOL(security_path_mknod);
  329. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  330. {
  331. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  332. return 0;
  333. return security_ops->path_mkdir(dir, dentry, mode);
  334. }
  335. EXPORT_SYMBOL(security_path_mkdir);
  336. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  337. {
  338. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  339. return 0;
  340. return security_ops->path_rmdir(dir, dentry);
  341. }
  342. int security_path_unlink(struct path *dir, struct dentry *dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  345. return 0;
  346. return security_ops->path_unlink(dir, dentry);
  347. }
  348. EXPORT_SYMBOL(security_path_unlink);
  349. int security_path_symlink(struct path *dir, struct dentry *dentry,
  350. const char *old_name)
  351. {
  352. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  353. return 0;
  354. return security_ops->path_symlink(dir, dentry, old_name);
  355. }
  356. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  357. struct dentry *new_dentry)
  358. {
  359. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  360. return 0;
  361. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  362. }
  363. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  364. struct path *new_dir, struct dentry *new_dentry)
  365. {
  366. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  367. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  368. return 0;
  369. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  370. new_dentry);
  371. }
  372. EXPORT_SYMBOL(security_path_rename);
  373. int security_path_truncate(struct path *path)
  374. {
  375. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  376. return 0;
  377. return security_ops->path_truncate(path);
  378. }
  379. int security_path_chmod(struct path *path, umode_t mode)
  380. {
  381. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  382. return 0;
  383. return security_ops->path_chmod(path, mode);
  384. }
  385. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  386. {
  387. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  388. return 0;
  389. return security_ops->path_chown(path, uid, gid);
  390. }
  391. int security_path_chroot(struct path *path)
  392. {
  393. return security_ops->path_chroot(path);
  394. }
  395. #endif
  396. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  397. {
  398. if (unlikely(IS_PRIVATE(dir)))
  399. return 0;
  400. return security_ops->inode_create(dir, dentry, mode);
  401. }
  402. EXPORT_SYMBOL_GPL(security_inode_create);
  403. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  404. struct dentry *new_dentry)
  405. {
  406. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  407. return 0;
  408. return security_ops->inode_link(old_dentry, dir, new_dentry);
  409. }
  410. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  411. {
  412. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  413. return 0;
  414. return security_ops->inode_unlink(dir, dentry);
  415. }
  416. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  417. const char *old_name)
  418. {
  419. if (unlikely(IS_PRIVATE(dir)))
  420. return 0;
  421. return security_ops->inode_symlink(dir, dentry, old_name);
  422. }
  423. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  424. {
  425. if (unlikely(IS_PRIVATE(dir)))
  426. return 0;
  427. return security_ops->inode_mkdir(dir, dentry, mode);
  428. }
  429. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  430. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  431. {
  432. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  433. return 0;
  434. return security_ops->inode_rmdir(dir, dentry);
  435. }
  436. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  437. {
  438. if (unlikely(IS_PRIVATE(dir)))
  439. return 0;
  440. return security_ops->inode_mknod(dir, dentry, mode, dev);
  441. }
  442. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  443. struct inode *new_dir, struct dentry *new_dentry)
  444. {
  445. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  446. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  447. return 0;
  448. return security_ops->inode_rename(old_dir, old_dentry,
  449. new_dir, new_dentry);
  450. }
  451. int security_inode_readlink(struct dentry *dentry)
  452. {
  453. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  454. return 0;
  455. return security_ops->inode_readlink(dentry);
  456. }
  457. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  458. {
  459. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  460. return 0;
  461. return security_ops->inode_follow_link(dentry, nd);
  462. }
  463. int security_inode_permission(struct inode *inode, int mask)
  464. {
  465. if (unlikely(IS_PRIVATE(inode)))
  466. return 0;
  467. return security_ops->inode_permission(inode, mask);
  468. }
  469. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  470. {
  471. int ret;
  472. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  473. return 0;
  474. ret = security_ops->inode_setattr(dentry, attr);
  475. if (ret)
  476. return ret;
  477. return evm_inode_setattr(dentry, attr);
  478. }
  479. EXPORT_SYMBOL_GPL(security_inode_setattr);
  480. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  481. {
  482. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  483. return 0;
  484. return security_ops->inode_getattr(mnt, dentry);
  485. }
  486. int security_inode_setxattr(struct dentry *dentry, const char *name,
  487. const void *value, size_t size, int flags)
  488. {
  489. int ret;
  490. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  491. return 0;
  492. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  493. if (ret)
  494. return ret;
  495. ret = ima_inode_setxattr(dentry, name, value, size);
  496. if (ret)
  497. return ret;
  498. return evm_inode_setxattr(dentry, name, value, size);
  499. }
  500. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  501. const void *value, size_t size, int flags)
  502. {
  503. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  504. return;
  505. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  506. evm_inode_post_setxattr(dentry, name, value, size);
  507. }
  508. int security_inode_getxattr(struct dentry *dentry, const char *name)
  509. {
  510. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  511. return 0;
  512. return security_ops->inode_getxattr(dentry, name);
  513. }
  514. int security_inode_listxattr(struct dentry *dentry)
  515. {
  516. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  517. return 0;
  518. return security_ops->inode_listxattr(dentry);
  519. }
  520. int security_inode_removexattr(struct dentry *dentry, const char *name)
  521. {
  522. int ret;
  523. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  524. return 0;
  525. ret = security_ops->inode_removexattr(dentry, name);
  526. if (ret)
  527. return ret;
  528. ret = ima_inode_removexattr(dentry, name);
  529. if (ret)
  530. return ret;
  531. return evm_inode_removexattr(dentry, name);
  532. }
  533. int security_inode_need_killpriv(struct dentry *dentry)
  534. {
  535. return security_ops->inode_need_killpriv(dentry);
  536. }
  537. int security_inode_killpriv(struct dentry *dentry)
  538. {
  539. return security_ops->inode_killpriv(dentry);
  540. }
  541. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  542. {
  543. if (unlikely(IS_PRIVATE(inode)))
  544. return -EOPNOTSUPP;
  545. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  546. }
  547. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  548. {
  549. if (unlikely(IS_PRIVATE(inode)))
  550. return -EOPNOTSUPP;
  551. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  552. }
  553. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  554. {
  555. if (unlikely(IS_PRIVATE(inode)))
  556. return 0;
  557. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  558. }
  559. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  560. {
  561. security_ops->inode_getsecid(inode, secid);
  562. }
  563. int security_file_permission(struct file *file, int mask)
  564. {
  565. int ret;
  566. ret = security_ops->file_permission(file, mask);
  567. if (ret)
  568. return ret;
  569. return fsnotify_perm(file, mask);
  570. }
  571. int security_file_alloc(struct file *file)
  572. {
  573. return security_ops->file_alloc_security(file);
  574. }
  575. void security_file_free(struct file *file)
  576. {
  577. security_ops->file_free_security(file);
  578. }
  579. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  580. {
  581. return security_ops->file_ioctl(file, cmd, arg);
  582. }
  583. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  584. {
  585. /*
  586. * Does we have PROT_READ and does the application expect
  587. * it to imply PROT_EXEC? If not, nothing to talk about...
  588. */
  589. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  590. return prot;
  591. if (!(current->personality & READ_IMPLIES_EXEC))
  592. return prot;
  593. /*
  594. * if that's an anonymous mapping, let it.
  595. */
  596. if (!file)
  597. return prot | PROT_EXEC;
  598. /*
  599. * ditto if it's not on noexec mount, except that on !MMU we need
  600. * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
  601. */
  602. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  603. #ifndef CONFIG_MMU
  604. unsigned long caps = 0;
  605. struct address_space *mapping = file->f_mapping;
  606. if (mapping && mapping->backing_dev_info)
  607. caps = mapping->backing_dev_info->capabilities;
  608. if (!(caps & BDI_CAP_EXEC_MAP))
  609. return prot;
  610. #endif
  611. return prot | PROT_EXEC;
  612. }
  613. /* anything on noexec mount won't get PROT_EXEC */
  614. return prot;
  615. }
  616. int security_mmap_file(struct file *file, unsigned long prot,
  617. unsigned long flags)
  618. {
  619. int ret;
  620. ret = security_ops->mmap_file(file, prot,
  621. mmap_prot(file, prot), flags);
  622. if (ret)
  623. return ret;
  624. return ima_file_mmap(file, prot);
  625. }
  626. int security_mmap_addr(unsigned long addr)
  627. {
  628. return security_ops->mmap_addr(addr);
  629. }
  630. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  631. unsigned long prot)
  632. {
  633. return security_ops->file_mprotect(vma, reqprot, prot);
  634. }
  635. int security_file_lock(struct file *file, unsigned int cmd)
  636. {
  637. return security_ops->file_lock(file, cmd);
  638. }
  639. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  640. {
  641. return security_ops->file_fcntl(file, cmd, arg);
  642. }
  643. int security_file_set_fowner(struct file *file)
  644. {
  645. return security_ops->file_set_fowner(file);
  646. }
  647. int security_file_send_sigiotask(struct task_struct *tsk,
  648. struct fown_struct *fown, int sig)
  649. {
  650. return security_ops->file_send_sigiotask(tsk, fown, sig);
  651. }
  652. int security_file_receive(struct file *file)
  653. {
  654. return security_ops->file_receive(file);
  655. }
  656. int security_file_open(struct file *file, const struct cred *cred)
  657. {
  658. int ret;
  659. ret = security_ops->file_open(file, cred);
  660. if (ret)
  661. return ret;
  662. return fsnotify_perm(file, MAY_OPEN);
  663. }
  664. int security_task_create(unsigned long clone_flags)
  665. {
  666. return security_ops->task_create(clone_flags);
  667. }
  668. void security_task_free(struct task_struct *task)
  669. {
  670. #ifdef CONFIG_SECURITY_YAMA_STACKED
  671. yama_task_free(task);
  672. #endif
  673. security_ops->task_free(task);
  674. }
  675. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  676. {
  677. return security_ops->cred_alloc_blank(cred, gfp);
  678. }
  679. void security_cred_free(struct cred *cred)
  680. {
  681. security_ops->cred_free(cred);
  682. }
  683. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  684. {
  685. return security_ops->cred_prepare(new, old, gfp);
  686. }
  687. void security_transfer_creds(struct cred *new, const struct cred *old)
  688. {
  689. security_ops->cred_transfer(new, old);
  690. }
  691. int security_kernel_act_as(struct cred *new, u32 secid)
  692. {
  693. return security_ops->kernel_act_as(new, secid);
  694. }
  695. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  696. {
  697. return security_ops->kernel_create_files_as(new, inode);
  698. }
  699. int security_kernel_module_request(char *kmod_name)
  700. {
  701. return security_ops->kernel_module_request(kmod_name);
  702. }
  703. int security_kernel_module_from_file(struct file *file)
  704. {
  705. int ret;
  706. ret = security_ops->kernel_module_from_file(file);
  707. if (ret)
  708. return ret;
  709. return ima_module_check(file);
  710. }
  711. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  712. int flags)
  713. {
  714. return security_ops->task_fix_setuid(new, old, flags);
  715. }
  716. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  717. {
  718. return security_ops->task_setpgid(p, pgid);
  719. }
  720. int security_task_getpgid(struct task_struct *p)
  721. {
  722. return security_ops->task_getpgid(p);
  723. }
  724. int security_task_getsid(struct task_struct *p)
  725. {
  726. return security_ops->task_getsid(p);
  727. }
  728. void security_task_getsecid(struct task_struct *p, u32 *secid)
  729. {
  730. security_ops->task_getsecid(p, secid);
  731. }
  732. EXPORT_SYMBOL(security_task_getsecid);
  733. int security_task_setnice(struct task_struct *p, int nice)
  734. {
  735. return security_ops->task_setnice(p, nice);
  736. }
  737. int security_task_setioprio(struct task_struct *p, int ioprio)
  738. {
  739. return security_ops->task_setioprio(p, ioprio);
  740. }
  741. int security_task_getioprio(struct task_struct *p)
  742. {
  743. return security_ops->task_getioprio(p);
  744. }
  745. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  746. struct rlimit *new_rlim)
  747. {
  748. return security_ops->task_setrlimit(p, resource, new_rlim);
  749. }
  750. int security_task_setscheduler(struct task_struct *p)
  751. {
  752. return security_ops->task_setscheduler(p);
  753. }
  754. int security_task_getscheduler(struct task_struct *p)
  755. {
  756. return security_ops->task_getscheduler(p);
  757. }
  758. int security_task_movememory(struct task_struct *p)
  759. {
  760. return security_ops->task_movememory(p);
  761. }
  762. int security_task_kill(struct task_struct *p, struct siginfo *info,
  763. int sig, u32 secid)
  764. {
  765. return security_ops->task_kill(p, info, sig, secid);
  766. }
  767. int security_task_wait(struct task_struct *p)
  768. {
  769. return security_ops->task_wait(p);
  770. }
  771. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  772. unsigned long arg4, unsigned long arg5)
  773. {
  774. #ifdef CONFIG_SECURITY_YAMA_STACKED
  775. int rc;
  776. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  777. if (rc != -ENOSYS)
  778. return rc;
  779. #endif
  780. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  781. }
  782. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  783. {
  784. security_ops->task_to_inode(p, inode);
  785. }
  786. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  787. {
  788. return security_ops->ipc_permission(ipcp, flag);
  789. }
  790. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  791. {
  792. security_ops->ipc_getsecid(ipcp, secid);
  793. }
  794. int security_msg_msg_alloc(struct msg_msg *msg)
  795. {
  796. return security_ops->msg_msg_alloc_security(msg);
  797. }
  798. void security_msg_msg_free(struct msg_msg *msg)
  799. {
  800. security_ops->msg_msg_free_security(msg);
  801. }
  802. int security_msg_queue_alloc(struct msg_queue *msq)
  803. {
  804. return security_ops->msg_queue_alloc_security(msq);
  805. }
  806. void security_msg_queue_free(struct msg_queue *msq)
  807. {
  808. security_ops->msg_queue_free_security(msq);
  809. }
  810. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  811. {
  812. return security_ops->msg_queue_associate(msq, msqflg);
  813. }
  814. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  815. {
  816. return security_ops->msg_queue_msgctl(msq, cmd);
  817. }
  818. int security_msg_queue_msgsnd(struct msg_queue *msq,
  819. struct msg_msg *msg, int msqflg)
  820. {
  821. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  822. }
  823. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  824. struct task_struct *target, long type, int mode)
  825. {
  826. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  827. }
  828. int security_shm_alloc(struct shmid_kernel *shp)
  829. {
  830. return security_ops->shm_alloc_security(shp);
  831. }
  832. void security_shm_free(struct shmid_kernel *shp)
  833. {
  834. security_ops->shm_free_security(shp);
  835. }
  836. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  837. {
  838. return security_ops->shm_associate(shp, shmflg);
  839. }
  840. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  841. {
  842. return security_ops->shm_shmctl(shp, cmd);
  843. }
  844. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  845. {
  846. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  847. }
  848. int security_sem_alloc(struct sem_array *sma)
  849. {
  850. return security_ops->sem_alloc_security(sma);
  851. }
  852. void security_sem_free(struct sem_array *sma)
  853. {
  854. security_ops->sem_free_security(sma);
  855. }
  856. int security_sem_associate(struct sem_array *sma, int semflg)
  857. {
  858. return security_ops->sem_associate(sma, semflg);
  859. }
  860. int security_sem_semctl(struct sem_array *sma, int cmd)
  861. {
  862. return security_ops->sem_semctl(sma, cmd);
  863. }
  864. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  865. unsigned nsops, int alter)
  866. {
  867. return security_ops->sem_semop(sma, sops, nsops, alter);
  868. }
  869. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  870. {
  871. if (unlikely(inode && IS_PRIVATE(inode)))
  872. return;
  873. security_ops->d_instantiate(dentry, inode);
  874. }
  875. EXPORT_SYMBOL(security_d_instantiate);
  876. int security_getprocattr(struct task_struct *p, char *name, char **value)
  877. {
  878. return security_ops->getprocattr(p, name, value);
  879. }
  880. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  881. {
  882. return security_ops->setprocattr(p, name, value, size);
  883. }
  884. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  885. {
  886. return security_ops->netlink_send(sk, skb);
  887. }
  888. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  889. {
  890. return security_ops->secid_to_secctx(secid, secdata, seclen);
  891. }
  892. EXPORT_SYMBOL(security_secid_to_secctx);
  893. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  894. {
  895. return security_ops->secctx_to_secid(secdata, seclen, secid);
  896. }
  897. EXPORT_SYMBOL(security_secctx_to_secid);
  898. void security_release_secctx(char *secdata, u32 seclen)
  899. {
  900. security_ops->release_secctx(secdata, seclen);
  901. }
  902. EXPORT_SYMBOL(security_release_secctx);
  903. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  904. {
  905. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  906. }
  907. EXPORT_SYMBOL(security_inode_notifysecctx);
  908. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  909. {
  910. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  911. }
  912. EXPORT_SYMBOL(security_inode_setsecctx);
  913. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  914. {
  915. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  916. }
  917. EXPORT_SYMBOL(security_inode_getsecctx);
  918. #ifdef CONFIG_SECURITY_NETWORK
  919. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  920. {
  921. return security_ops->unix_stream_connect(sock, other, newsk);
  922. }
  923. EXPORT_SYMBOL(security_unix_stream_connect);
  924. int security_unix_may_send(struct socket *sock, struct socket *other)
  925. {
  926. return security_ops->unix_may_send(sock, other);
  927. }
  928. EXPORT_SYMBOL(security_unix_may_send);
  929. int security_socket_create(int family, int type, int protocol, int kern)
  930. {
  931. return security_ops->socket_create(family, type, protocol, kern);
  932. }
  933. int security_socket_post_create(struct socket *sock, int family,
  934. int type, int protocol, int kern)
  935. {
  936. return security_ops->socket_post_create(sock, family, type,
  937. protocol, kern);
  938. }
  939. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  940. {
  941. return security_ops->socket_bind(sock, address, addrlen);
  942. }
  943. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  944. {
  945. return security_ops->socket_connect(sock, address, addrlen);
  946. }
  947. int security_socket_listen(struct socket *sock, int backlog)
  948. {
  949. return security_ops->socket_listen(sock, backlog);
  950. }
  951. int security_socket_accept(struct socket *sock, struct socket *newsock)
  952. {
  953. return security_ops->socket_accept(sock, newsock);
  954. }
  955. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  956. {
  957. return security_ops->socket_sendmsg(sock, msg, size);
  958. }
  959. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  960. int size, int flags)
  961. {
  962. return security_ops->socket_recvmsg(sock, msg, size, flags);
  963. }
  964. int security_socket_getsockname(struct socket *sock)
  965. {
  966. return security_ops->socket_getsockname(sock);
  967. }
  968. int security_socket_getpeername(struct socket *sock)
  969. {
  970. return security_ops->socket_getpeername(sock);
  971. }
  972. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  973. {
  974. return security_ops->socket_getsockopt(sock, level, optname);
  975. }
  976. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  977. {
  978. return security_ops->socket_setsockopt(sock, level, optname);
  979. }
  980. int security_socket_shutdown(struct socket *sock, int how)
  981. {
  982. return security_ops->socket_shutdown(sock, how);
  983. }
  984. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  985. {
  986. return security_ops->socket_sock_rcv_skb(sk, skb);
  987. }
  988. EXPORT_SYMBOL(security_sock_rcv_skb);
  989. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  990. int __user *optlen, unsigned len)
  991. {
  992. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  993. }
  994. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  995. {
  996. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  997. }
  998. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  999. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1000. {
  1001. return security_ops->sk_alloc_security(sk, family, priority);
  1002. }
  1003. void security_sk_free(struct sock *sk)
  1004. {
  1005. security_ops->sk_free_security(sk);
  1006. }
  1007. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1008. {
  1009. security_ops->sk_clone_security(sk, newsk);
  1010. }
  1011. EXPORT_SYMBOL(security_sk_clone);
  1012. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1013. {
  1014. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1015. }
  1016. EXPORT_SYMBOL(security_sk_classify_flow);
  1017. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1018. {
  1019. security_ops->req_classify_flow(req, fl);
  1020. }
  1021. EXPORT_SYMBOL(security_req_classify_flow);
  1022. void security_sock_graft(struct sock *sk, struct socket *parent)
  1023. {
  1024. security_ops->sock_graft(sk, parent);
  1025. }
  1026. EXPORT_SYMBOL(security_sock_graft);
  1027. int security_inet_conn_request(struct sock *sk,
  1028. struct sk_buff *skb, struct request_sock *req)
  1029. {
  1030. return security_ops->inet_conn_request(sk, skb, req);
  1031. }
  1032. EXPORT_SYMBOL(security_inet_conn_request);
  1033. void security_inet_csk_clone(struct sock *newsk,
  1034. const struct request_sock *req)
  1035. {
  1036. security_ops->inet_csk_clone(newsk, req);
  1037. }
  1038. void security_inet_conn_established(struct sock *sk,
  1039. struct sk_buff *skb)
  1040. {
  1041. security_ops->inet_conn_established(sk, skb);
  1042. }
  1043. int security_secmark_relabel_packet(u32 secid)
  1044. {
  1045. return security_ops->secmark_relabel_packet(secid);
  1046. }
  1047. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1048. void security_secmark_refcount_inc(void)
  1049. {
  1050. security_ops->secmark_refcount_inc();
  1051. }
  1052. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1053. void security_secmark_refcount_dec(void)
  1054. {
  1055. security_ops->secmark_refcount_dec();
  1056. }
  1057. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1058. int security_tun_dev_alloc_security(void **security)
  1059. {
  1060. return security_ops->tun_dev_alloc_security(security);
  1061. }
  1062. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1063. void security_tun_dev_free_security(void *security)
  1064. {
  1065. security_ops->tun_dev_free_security(security);
  1066. }
  1067. EXPORT_SYMBOL(security_tun_dev_free_security);
  1068. int security_tun_dev_create(void)
  1069. {
  1070. return security_ops->tun_dev_create();
  1071. }
  1072. EXPORT_SYMBOL(security_tun_dev_create);
  1073. int security_tun_dev_attach_queue(void *security)
  1074. {
  1075. return security_ops->tun_dev_attach_queue(security);
  1076. }
  1077. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1078. int security_tun_dev_attach(struct sock *sk, void *security)
  1079. {
  1080. return security_ops->tun_dev_attach(sk, security);
  1081. }
  1082. EXPORT_SYMBOL(security_tun_dev_attach);
  1083. int security_tun_dev_open(void *security)
  1084. {
  1085. return security_ops->tun_dev_open(security);
  1086. }
  1087. EXPORT_SYMBOL(security_tun_dev_open);
  1088. #endif /* CONFIG_SECURITY_NETWORK */
  1089. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1090. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1091. {
  1092. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1093. }
  1094. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1095. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1096. struct xfrm_sec_ctx **new_ctxp)
  1097. {
  1098. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1099. }
  1100. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1101. {
  1102. security_ops->xfrm_policy_free_security(ctx);
  1103. }
  1104. EXPORT_SYMBOL(security_xfrm_policy_free);
  1105. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1106. {
  1107. return security_ops->xfrm_policy_delete_security(ctx);
  1108. }
  1109. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1110. {
  1111. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1112. }
  1113. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1114. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1115. struct xfrm_sec_ctx *polsec, u32 secid)
  1116. {
  1117. if (!polsec)
  1118. return 0;
  1119. /*
  1120. * We want the context to be taken from secid which is usually
  1121. * from the sock.
  1122. */
  1123. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1124. }
  1125. int security_xfrm_state_delete(struct xfrm_state *x)
  1126. {
  1127. return security_ops->xfrm_state_delete_security(x);
  1128. }
  1129. EXPORT_SYMBOL(security_xfrm_state_delete);
  1130. void security_xfrm_state_free(struct xfrm_state *x)
  1131. {
  1132. security_ops->xfrm_state_free_security(x);
  1133. }
  1134. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1135. {
  1136. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1137. }
  1138. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1139. struct xfrm_policy *xp,
  1140. const struct flowi *fl)
  1141. {
  1142. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1143. }
  1144. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1145. {
  1146. return security_ops->xfrm_decode_session(skb, secid, 1);
  1147. }
  1148. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1149. {
  1150. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1151. BUG_ON(rc);
  1152. }
  1153. EXPORT_SYMBOL(security_skb_classify_flow);
  1154. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1155. #ifdef CONFIG_KEYS
  1156. int security_key_alloc(struct key *key, const struct cred *cred,
  1157. unsigned long flags)
  1158. {
  1159. return security_ops->key_alloc(key, cred, flags);
  1160. }
  1161. void security_key_free(struct key *key)
  1162. {
  1163. security_ops->key_free(key);
  1164. }
  1165. int security_key_permission(key_ref_t key_ref,
  1166. const struct cred *cred, key_perm_t perm)
  1167. {
  1168. return security_ops->key_permission(key_ref, cred, perm);
  1169. }
  1170. int security_key_getsecurity(struct key *key, char **_buffer)
  1171. {
  1172. return security_ops->key_getsecurity(key, _buffer);
  1173. }
  1174. #endif /* CONFIG_KEYS */
  1175. #ifdef CONFIG_AUDIT
  1176. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1177. {
  1178. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1179. }
  1180. int security_audit_rule_known(struct audit_krule *krule)
  1181. {
  1182. return security_ops->audit_rule_known(krule);
  1183. }
  1184. void security_audit_rule_free(void *lsmrule)
  1185. {
  1186. security_ops->audit_rule_free(lsmrule);
  1187. }
  1188. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1189. struct audit_context *actx)
  1190. {
  1191. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1192. }
  1193. #endif /* CONFIG_AUDIT */