encrypted.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/crypto.h>
  31. #include <linux/ctype.h>
  32. #include <crypto/hash.h>
  33. #include <crypto/sha.h>
  34. #include <crypto/aes.h>
  35. #include "encrypted.h"
  36. #include "ecryptfs_format.h"
  37. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  38. static const char KEY_USER_PREFIX[] = "user:";
  39. static const char hash_alg[] = "sha256";
  40. static const char hmac_alg[] = "hmac(sha256)";
  41. static const char blkcipher_alg[] = "cbc(aes)";
  42. static const char key_format_default[] = "default";
  43. static const char key_format_ecryptfs[] = "ecryptfs";
  44. static unsigned int ivsize;
  45. static int blksize;
  46. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  47. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  48. #define KEY_ECRYPTFS_DESC_LEN 16
  49. #define HASH_SIZE SHA256_DIGEST_SIZE
  50. #define MAX_DATA_SIZE 4096
  51. #define MIN_DATA_SIZE 20
  52. struct sdesc {
  53. struct shash_desc shash;
  54. char ctx[];
  55. };
  56. static struct crypto_shash *hashalg;
  57. static struct crypto_shash *hmacalg;
  58. enum {
  59. Opt_err = -1, Opt_new, Opt_load, Opt_update
  60. };
  61. enum {
  62. Opt_error = -1, Opt_default, Opt_ecryptfs
  63. };
  64. static const match_table_t key_format_tokens = {
  65. {Opt_default, "default"},
  66. {Opt_ecryptfs, "ecryptfs"},
  67. {Opt_error, NULL}
  68. };
  69. static const match_table_t key_tokens = {
  70. {Opt_new, "new"},
  71. {Opt_load, "load"},
  72. {Opt_update, "update"},
  73. {Opt_err, NULL}
  74. };
  75. static int aes_get_sizes(void)
  76. {
  77. struct crypto_blkcipher *tfm;
  78. tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  79. if (IS_ERR(tfm)) {
  80. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  81. PTR_ERR(tfm));
  82. return PTR_ERR(tfm);
  83. }
  84. ivsize = crypto_blkcipher_ivsize(tfm);
  85. blksize = crypto_blkcipher_blocksize(tfm);
  86. crypto_free_blkcipher(tfm);
  87. return 0;
  88. }
  89. /*
  90. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  91. *
  92. * The description of a encrypted key with format 'ecryptfs' must contain
  93. * exactly 16 hexadecimal characters.
  94. *
  95. */
  96. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  97. {
  98. int i;
  99. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  100. pr_err("encrypted_key: key description must be %d hexadecimal "
  101. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  102. return -EINVAL;
  103. }
  104. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  105. if (!isxdigit(ecryptfs_desc[i])) {
  106. pr_err("encrypted_key: key description must contain "
  107. "only hexadecimal characters\n");
  108. return -EINVAL;
  109. }
  110. }
  111. return 0;
  112. }
  113. /*
  114. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  115. *
  116. * key-type:= "trusted:" | "user:"
  117. * desc:= master-key description
  118. *
  119. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  120. * only the master key description is permitted to change, not the key-type.
  121. * The key-type remains constant.
  122. *
  123. * On success returns 0, otherwise -EINVAL.
  124. */
  125. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  126. {
  127. if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
  128. if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
  129. goto out;
  130. if (orig_desc)
  131. if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
  132. goto out;
  133. } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
  134. if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
  135. goto out;
  136. if (orig_desc)
  137. if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
  138. goto out;
  139. } else
  140. goto out;
  141. return 0;
  142. out:
  143. return -EINVAL;
  144. }
  145. /*
  146. * datablob_parse - parse the keyctl data
  147. *
  148. * datablob format:
  149. * new [<format>] <master-key name> <decrypted data length>
  150. * load [<format>] <master-key name> <decrypted data length>
  151. * <encrypted iv + data>
  152. * update <new-master-key name>
  153. *
  154. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  155. * which is null terminated.
  156. *
  157. * On success returns 0, otherwise -EINVAL.
  158. */
  159. static int datablob_parse(char *datablob, const char **format,
  160. char **master_desc, char **decrypted_datalen,
  161. char **hex_encoded_iv)
  162. {
  163. substring_t args[MAX_OPT_ARGS];
  164. int ret = -EINVAL;
  165. int key_cmd;
  166. int key_format;
  167. char *p, *keyword;
  168. keyword = strsep(&datablob, " \t");
  169. if (!keyword) {
  170. pr_info("encrypted_key: insufficient parameters specified\n");
  171. return ret;
  172. }
  173. key_cmd = match_token(keyword, key_tokens, args);
  174. /* Get optional format: default | ecryptfs */
  175. p = strsep(&datablob, " \t");
  176. if (!p) {
  177. pr_err("encrypted_key: insufficient parameters specified\n");
  178. return ret;
  179. }
  180. key_format = match_token(p, key_format_tokens, args);
  181. switch (key_format) {
  182. case Opt_ecryptfs:
  183. case Opt_default:
  184. *format = p;
  185. *master_desc = strsep(&datablob, " \t");
  186. break;
  187. case Opt_error:
  188. *master_desc = p;
  189. break;
  190. }
  191. if (!*master_desc) {
  192. pr_info("encrypted_key: master key parameter is missing\n");
  193. goto out;
  194. }
  195. if (valid_master_desc(*master_desc, NULL) < 0) {
  196. pr_info("encrypted_key: master key parameter \'%s\' "
  197. "is invalid\n", *master_desc);
  198. goto out;
  199. }
  200. if (decrypted_datalen) {
  201. *decrypted_datalen = strsep(&datablob, " \t");
  202. if (!*decrypted_datalen) {
  203. pr_info("encrypted_key: keylen parameter is missing\n");
  204. goto out;
  205. }
  206. }
  207. switch (key_cmd) {
  208. case Opt_new:
  209. if (!decrypted_datalen) {
  210. pr_info("encrypted_key: keyword \'%s\' not allowed "
  211. "when called from .update method\n", keyword);
  212. break;
  213. }
  214. ret = 0;
  215. break;
  216. case Opt_load:
  217. if (!decrypted_datalen) {
  218. pr_info("encrypted_key: keyword \'%s\' not allowed "
  219. "when called from .update method\n", keyword);
  220. break;
  221. }
  222. *hex_encoded_iv = strsep(&datablob, " \t");
  223. if (!*hex_encoded_iv) {
  224. pr_info("encrypted_key: hex blob is missing\n");
  225. break;
  226. }
  227. ret = 0;
  228. break;
  229. case Opt_update:
  230. if (decrypted_datalen) {
  231. pr_info("encrypted_key: keyword \'%s\' not allowed "
  232. "when called from .instantiate method\n",
  233. keyword);
  234. break;
  235. }
  236. ret = 0;
  237. break;
  238. case Opt_err:
  239. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  240. keyword);
  241. break;
  242. }
  243. out:
  244. return ret;
  245. }
  246. /*
  247. * datablob_format - format as an ascii string, before copying to userspace
  248. */
  249. static char *datablob_format(struct encrypted_key_payload *epayload,
  250. size_t asciiblob_len)
  251. {
  252. char *ascii_buf, *bufp;
  253. u8 *iv = epayload->iv;
  254. int len;
  255. int i;
  256. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  257. if (!ascii_buf)
  258. goto out;
  259. ascii_buf[asciiblob_len] = '\0';
  260. /* copy datablob master_desc and datalen strings */
  261. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  262. epayload->master_desc, epayload->datalen);
  263. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  264. bufp = &ascii_buf[len];
  265. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  266. bufp = hex_byte_pack(bufp, iv[i]);
  267. out:
  268. return ascii_buf;
  269. }
  270. /*
  271. * request_user_key - request the user key
  272. *
  273. * Use a user provided key to encrypt/decrypt an encrypted-key.
  274. */
  275. static struct key *request_user_key(const char *master_desc, u8 **master_key,
  276. size_t *master_keylen)
  277. {
  278. struct user_key_payload *upayload;
  279. struct key *ukey;
  280. ukey = request_key(&key_type_user, master_desc, NULL);
  281. if (IS_ERR(ukey))
  282. goto error;
  283. down_read(&ukey->sem);
  284. upayload = ukey->payload.data;
  285. *master_key = upayload->data;
  286. *master_keylen = upayload->datalen;
  287. error:
  288. return ukey;
  289. }
  290. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  291. {
  292. struct sdesc *sdesc;
  293. int size;
  294. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  295. sdesc = kmalloc(size, GFP_KERNEL);
  296. if (!sdesc)
  297. return ERR_PTR(-ENOMEM);
  298. sdesc->shash.tfm = alg;
  299. sdesc->shash.flags = 0x0;
  300. return sdesc;
  301. }
  302. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  303. const u8 *buf, unsigned int buflen)
  304. {
  305. struct sdesc *sdesc;
  306. int ret;
  307. sdesc = alloc_sdesc(hmacalg);
  308. if (IS_ERR(sdesc)) {
  309. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  310. return PTR_ERR(sdesc);
  311. }
  312. ret = crypto_shash_setkey(hmacalg, key, keylen);
  313. if (!ret)
  314. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  315. kfree(sdesc);
  316. return ret;
  317. }
  318. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  319. {
  320. struct sdesc *sdesc;
  321. int ret;
  322. sdesc = alloc_sdesc(hashalg);
  323. if (IS_ERR(sdesc)) {
  324. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  325. return PTR_ERR(sdesc);
  326. }
  327. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  328. kfree(sdesc);
  329. return ret;
  330. }
  331. enum derived_key_type { ENC_KEY, AUTH_KEY };
  332. /* Derive authentication/encryption key from trusted key */
  333. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  334. const u8 *master_key, size_t master_keylen)
  335. {
  336. u8 *derived_buf;
  337. unsigned int derived_buf_len;
  338. int ret;
  339. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  340. if (derived_buf_len < HASH_SIZE)
  341. derived_buf_len = HASH_SIZE;
  342. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  343. if (!derived_buf) {
  344. pr_err("encrypted_key: out of memory\n");
  345. return -ENOMEM;
  346. }
  347. if (key_type)
  348. strcpy(derived_buf, "AUTH_KEY");
  349. else
  350. strcpy(derived_buf, "ENC_KEY");
  351. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  352. master_keylen);
  353. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  354. kfree(derived_buf);
  355. return ret;
  356. }
  357. static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
  358. unsigned int key_len, const u8 *iv,
  359. unsigned int ivsize)
  360. {
  361. int ret;
  362. desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  363. if (IS_ERR(desc->tfm)) {
  364. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  365. blkcipher_alg, PTR_ERR(desc->tfm));
  366. return PTR_ERR(desc->tfm);
  367. }
  368. desc->flags = 0;
  369. ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
  370. if (ret < 0) {
  371. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  372. crypto_free_blkcipher(desc->tfm);
  373. return ret;
  374. }
  375. crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
  376. return 0;
  377. }
  378. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  379. u8 **master_key, size_t *master_keylen)
  380. {
  381. struct key *mkey = NULL;
  382. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  383. KEY_TRUSTED_PREFIX_LEN)) {
  384. mkey = request_trusted_key(epayload->master_desc +
  385. KEY_TRUSTED_PREFIX_LEN,
  386. master_key, master_keylen);
  387. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  388. KEY_USER_PREFIX_LEN)) {
  389. mkey = request_user_key(epayload->master_desc +
  390. KEY_USER_PREFIX_LEN,
  391. master_key, master_keylen);
  392. } else
  393. goto out;
  394. if (IS_ERR(mkey)) {
  395. int ret = PTR_ERR(mkey);
  396. if (ret == -ENOTSUPP)
  397. pr_info("encrypted_key: key %s not supported",
  398. epayload->master_desc);
  399. else
  400. pr_info("encrypted_key: key %s not found",
  401. epayload->master_desc);
  402. goto out;
  403. }
  404. dump_master_key(*master_key, *master_keylen);
  405. out:
  406. return mkey;
  407. }
  408. /* Before returning data to userspace, encrypt decrypted data. */
  409. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  410. const u8 *derived_key,
  411. unsigned int derived_keylen)
  412. {
  413. struct scatterlist sg_in[2];
  414. struct scatterlist sg_out[1];
  415. struct blkcipher_desc desc;
  416. unsigned int encrypted_datalen;
  417. unsigned int padlen;
  418. char pad[16];
  419. int ret;
  420. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  421. padlen = encrypted_datalen - epayload->decrypted_datalen;
  422. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  423. epayload->iv, ivsize);
  424. if (ret < 0)
  425. goto out;
  426. dump_decrypted_data(epayload);
  427. memset(pad, 0, sizeof pad);
  428. sg_init_table(sg_in, 2);
  429. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  430. epayload->decrypted_datalen);
  431. sg_set_buf(&sg_in[1], pad, padlen);
  432. sg_init_table(sg_out, 1);
  433. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  434. ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
  435. crypto_free_blkcipher(desc.tfm);
  436. if (ret < 0)
  437. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  438. else
  439. dump_encrypted_data(epayload, encrypted_datalen);
  440. out:
  441. return ret;
  442. }
  443. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  444. const u8 *master_key, size_t master_keylen)
  445. {
  446. u8 derived_key[HASH_SIZE];
  447. u8 *digest;
  448. int ret;
  449. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  450. if (ret < 0)
  451. goto out;
  452. digest = epayload->format + epayload->datablob_len;
  453. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  454. epayload->format, epayload->datablob_len);
  455. if (!ret)
  456. dump_hmac(NULL, digest, HASH_SIZE);
  457. out:
  458. return ret;
  459. }
  460. /* verify HMAC before decrypting encrypted key */
  461. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  462. const u8 *format, const u8 *master_key,
  463. size_t master_keylen)
  464. {
  465. u8 derived_key[HASH_SIZE];
  466. u8 digest[HASH_SIZE];
  467. int ret;
  468. char *p;
  469. unsigned short len;
  470. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  471. if (ret < 0)
  472. goto out;
  473. len = epayload->datablob_len;
  474. if (!format) {
  475. p = epayload->master_desc;
  476. len -= strlen(epayload->format) + 1;
  477. } else
  478. p = epayload->format;
  479. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  480. if (ret < 0)
  481. goto out;
  482. ret = memcmp(digest, epayload->format + epayload->datablob_len,
  483. sizeof digest);
  484. if (ret) {
  485. ret = -EINVAL;
  486. dump_hmac("datablob",
  487. epayload->format + epayload->datablob_len,
  488. HASH_SIZE);
  489. dump_hmac("calc", digest, HASH_SIZE);
  490. }
  491. out:
  492. return ret;
  493. }
  494. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  495. const u8 *derived_key,
  496. unsigned int derived_keylen)
  497. {
  498. struct scatterlist sg_in[1];
  499. struct scatterlist sg_out[2];
  500. struct blkcipher_desc desc;
  501. unsigned int encrypted_datalen;
  502. char pad[16];
  503. int ret;
  504. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  505. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  506. epayload->iv, ivsize);
  507. if (ret < 0)
  508. goto out;
  509. dump_encrypted_data(epayload, encrypted_datalen);
  510. memset(pad, 0, sizeof pad);
  511. sg_init_table(sg_in, 1);
  512. sg_init_table(sg_out, 2);
  513. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  514. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  515. epayload->decrypted_datalen);
  516. sg_set_buf(&sg_out[1], pad, sizeof pad);
  517. ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
  518. crypto_free_blkcipher(desc.tfm);
  519. if (ret < 0)
  520. goto out;
  521. dump_decrypted_data(epayload);
  522. out:
  523. return ret;
  524. }
  525. /* Allocate memory for decrypted key and datablob. */
  526. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  527. const char *format,
  528. const char *master_desc,
  529. const char *datalen)
  530. {
  531. struct encrypted_key_payload *epayload = NULL;
  532. unsigned short datablob_len;
  533. unsigned short decrypted_datalen;
  534. unsigned short payload_datalen;
  535. unsigned int encrypted_datalen;
  536. unsigned int format_len;
  537. long dlen;
  538. int ret;
  539. ret = strict_strtol(datalen, 10, &dlen);
  540. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  541. return ERR_PTR(-EINVAL);
  542. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  543. decrypted_datalen = dlen;
  544. payload_datalen = decrypted_datalen;
  545. if (format && !strcmp(format, key_format_ecryptfs)) {
  546. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  547. pr_err("encrypted_key: keylen for the ecryptfs format "
  548. "must be equal to %d bytes\n",
  549. ECRYPTFS_MAX_KEY_BYTES);
  550. return ERR_PTR(-EINVAL);
  551. }
  552. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  553. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  554. }
  555. encrypted_datalen = roundup(decrypted_datalen, blksize);
  556. datablob_len = format_len + 1 + strlen(master_desc) + 1
  557. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  558. ret = key_payload_reserve(key, payload_datalen + datablob_len
  559. + HASH_SIZE + 1);
  560. if (ret < 0)
  561. return ERR_PTR(ret);
  562. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  563. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  564. if (!epayload)
  565. return ERR_PTR(-ENOMEM);
  566. epayload->payload_datalen = payload_datalen;
  567. epayload->decrypted_datalen = decrypted_datalen;
  568. epayload->datablob_len = datablob_len;
  569. return epayload;
  570. }
  571. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  572. const char *format, const char *hex_encoded_iv)
  573. {
  574. struct key *mkey;
  575. u8 derived_key[HASH_SIZE];
  576. u8 *master_key;
  577. u8 *hmac;
  578. const char *hex_encoded_data;
  579. unsigned int encrypted_datalen;
  580. size_t master_keylen;
  581. size_t asciilen;
  582. int ret;
  583. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  584. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  585. if (strlen(hex_encoded_iv) != asciilen)
  586. return -EINVAL;
  587. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  588. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  589. if (ret < 0)
  590. return -EINVAL;
  591. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  592. encrypted_datalen);
  593. if (ret < 0)
  594. return -EINVAL;
  595. hmac = epayload->format + epayload->datablob_len;
  596. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  597. HASH_SIZE);
  598. if (ret < 0)
  599. return -EINVAL;
  600. mkey = request_master_key(epayload, &master_key, &master_keylen);
  601. if (IS_ERR(mkey))
  602. return PTR_ERR(mkey);
  603. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  604. if (ret < 0) {
  605. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  606. goto out;
  607. }
  608. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  609. if (ret < 0)
  610. goto out;
  611. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  612. if (ret < 0)
  613. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  614. out:
  615. up_read(&mkey->sem);
  616. key_put(mkey);
  617. return ret;
  618. }
  619. static void __ekey_init(struct encrypted_key_payload *epayload,
  620. const char *format, const char *master_desc,
  621. const char *datalen)
  622. {
  623. unsigned int format_len;
  624. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  625. epayload->format = epayload->payload_data + epayload->payload_datalen;
  626. epayload->master_desc = epayload->format + format_len + 1;
  627. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  628. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  629. epayload->encrypted_data = epayload->iv + ivsize + 1;
  630. epayload->decrypted_data = epayload->payload_data;
  631. if (!format)
  632. memcpy(epayload->format, key_format_default, format_len);
  633. else {
  634. if (!strcmp(format, key_format_ecryptfs))
  635. epayload->decrypted_data =
  636. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  637. memcpy(epayload->format, format, format_len);
  638. }
  639. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  640. memcpy(epayload->datalen, datalen, strlen(datalen));
  641. }
  642. /*
  643. * encrypted_init - initialize an encrypted key
  644. *
  645. * For a new key, use a random number for both the iv and data
  646. * itself. For an old key, decrypt the hex encoded data.
  647. */
  648. static int encrypted_init(struct encrypted_key_payload *epayload,
  649. const char *key_desc, const char *format,
  650. const char *master_desc, const char *datalen,
  651. const char *hex_encoded_iv)
  652. {
  653. int ret = 0;
  654. if (format && !strcmp(format, key_format_ecryptfs)) {
  655. ret = valid_ecryptfs_desc(key_desc);
  656. if (ret < 0)
  657. return ret;
  658. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  659. key_desc);
  660. }
  661. __ekey_init(epayload, format, master_desc, datalen);
  662. if (!hex_encoded_iv) {
  663. get_random_bytes(epayload->iv, ivsize);
  664. get_random_bytes(epayload->decrypted_data,
  665. epayload->decrypted_datalen);
  666. } else
  667. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  668. return ret;
  669. }
  670. /*
  671. * encrypted_instantiate - instantiate an encrypted key
  672. *
  673. * Decrypt an existing encrypted datablob or create a new encrypted key
  674. * based on a kernel random number.
  675. *
  676. * On success, return 0. Otherwise return errno.
  677. */
  678. static int encrypted_instantiate(struct key *key,
  679. struct key_preparsed_payload *prep)
  680. {
  681. struct encrypted_key_payload *epayload = NULL;
  682. char *datablob = NULL;
  683. const char *format = NULL;
  684. char *master_desc = NULL;
  685. char *decrypted_datalen = NULL;
  686. char *hex_encoded_iv = NULL;
  687. size_t datalen = prep->datalen;
  688. int ret;
  689. if (datalen <= 0 || datalen > 32767 || !prep->data)
  690. return -EINVAL;
  691. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  692. if (!datablob)
  693. return -ENOMEM;
  694. datablob[datalen] = 0;
  695. memcpy(datablob, prep->data, datalen);
  696. ret = datablob_parse(datablob, &format, &master_desc,
  697. &decrypted_datalen, &hex_encoded_iv);
  698. if (ret < 0)
  699. goto out;
  700. epayload = encrypted_key_alloc(key, format, master_desc,
  701. decrypted_datalen);
  702. if (IS_ERR(epayload)) {
  703. ret = PTR_ERR(epayload);
  704. goto out;
  705. }
  706. ret = encrypted_init(epayload, key->description, format, master_desc,
  707. decrypted_datalen, hex_encoded_iv);
  708. if (ret < 0) {
  709. kfree(epayload);
  710. goto out;
  711. }
  712. rcu_assign_keypointer(key, epayload);
  713. out:
  714. kfree(datablob);
  715. return ret;
  716. }
  717. static void encrypted_rcu_free(struct rcu_head *rcu)
  718. {
  719. struct encrypted_key_payload *epayload;
  720. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  721. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  722. kfree(epayload);
  723. }
  724. /*
  725. * encrypted_update - update the master key description
  726. *
  727. * Change the master key description for an existing encrypted key.
  728. * The next read will return an encrypted datablob using the new
  729. * master key description.
  730. *
  731. * On success, return 0. Otherwise return errno.
  732. */
  733. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  734. {
  735. struct encrypted_key_payload *epayload = key->payload.data;
  736. struct encrypted_key_payload *new_epayload;
  737. char *buf;
  738. char *new_master_desc = NULL;
  739. const char *format = NULL;
  740. size_t datalen = prep->datalen;
  741. int ret = 0;
  742. if (datalen <= 0 || datalen > 32767 || !prep->data)
  743. return -EINVAL;
  744. buf = kmalloc(datalen + 1, GFP_KERNEL);
  745. if (!buf)
  746. return -ENOMEM;
  747. buf[datalen] = 0;
  748. memcpy(buf, prep->data, datalen);
  749. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  750. if (ret < 0)
  751. goto out;
  752. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  753. if (ret < 0)
  754. goto out;
  755. new_epayload = encrypted_key_alloc(key, epayload->format,
  756. new_master_desc, epayload->datalen);
  757. if (IS_ERR(new_epayload)) {
  758. ret = PTR_ERR(new_epayload);
  759. goto out;
  760. }
  761. __ekey_init(new_epayload, epayload->format, new_master_desc,
  762. epayload->datalen);
  763. memcpy(new_epayload->iv, epayload->iv, ivsize);
  764. memcpy(new_epayload->payload_data, epayload->payload_data,
  765. epayload->payload_datalen);
  766. rcu_assign_keypointer(key, new_epayload);
  767. call_rcu(&epayload->rcu, encrypted_rcu_free);
  768. out:
  769. kfree(buf);
  770. return ret;
  771. }
  772. /*
  773. * encrypted_read - format and copy the encrypted data to userspace
  774. *
  775. * The resulting datablob format is:
  776. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  777. *
  778. * On success, return to userspace the encrypted key datablob size.
  779. */
  780. static long encrypted_read(const struct key *key, char __user *buffer,
  781. size_t buflen)
  782. {
  783. struct encrypted_key_payload *epayload;
  784. struct key *mkey;
  785. u8 *master_key;
  786. size_t master_keylen;
  787. char derived_key[HASH_SIZE];
  788. char *ascii_buf;
  789. size_t asciiblob_len;
  790. int ret;
  791. epayload = rcu_dereference_key(key);
  792. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  793. asciiblob_len = epayload->datablob_len + ivsize + 1
  794. + roundup(epayload->decrypted_datalen, blksize)
  795. + (HASH_SIZE * 2);
  796. if (!buffer || buflen < asciiblob_len)
  797. return asciiblob_len;
  798. mkey = request_master_key(epayload, &master_key, &master_keylen);
  799. if (IS_ERR(mkey))
  800. return PTR_ERR(mkey);
  801. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  802. if (ret < 0)
  803. goto out;
  804. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  805. if (ret < 0)
  806. goto out;
  807. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  808. if (ret < 0)
  809. goto out;
  810. ascii_buf = datablob_format(epayload, asciiblob_len);
  811. if (!ascii_buf) {
  812. ret = -ENOMEM;
  813. goto out;
  814. }
  815. up_read(&mkey->sem);
  816. key_put(mkey);
  817. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  818. ret = -EFAULT;
  819. kfree(ascii_buf);
  820. return asciiblob_len;
  821. out:
  822. up_read(&mkey->sem);
  823. key_put(mkey);
  824. return ret;
  825. }
  826. /*
  827. * encrypted_destroy - before freeing the key, clear the decrypted data
  828. *
  829. * Before freeing the key, clear the memory containing the decrypted
  830. * key data.
  831. */
  832. static void encrypted_destroy(struct key *key)
  833. {
  834. struct encrypted_key_payload *epayload = key->payload.data;
  835. if (!epayload)
  836. return;
  837. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  838. kfree(key->payload.data);
  839. }
  840. struct key_type key_type_encrypted = {
  841. .name = "encrypted",
  842. .instantiate = encrypted_instantiate,
  843. .update = encrypted_update,
  844. .match = user_match,
  845. .destroy = encrypted_destroy,
  846. .describe = user_describe,
  847. .read = encrypted_read,
  848. };
  849. EXPORT_SYMBOL_GPL(key_type_encrypted);
  850. static void encrypted_shash_release(void)
  851. {
  852. if (hashalg)
  853. crypto_free_shash(hashalg);
  854. if (hmacalg)
  855. crypto_free_shash(hmacalg);
  856. }
  857. static int __init encrypted_shash_alloc(void)
  858. {
  859. int ret;
  860. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  861. if (IS_ERR(hmacalg)) {
  862. pr_info("encrypted_key: could not allocate crypto %s\n",
  863. hmac_alg);
  864. return PTR_ERR(hmacalg);
  865. }
  866. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  867. if (IS_ERR(hashalg)) {
  868. pr_info("encrypted_key: could not allocate crypto %s\n",
  869. hash_alg);
  870. ret = PTR_ERR(hashalg);
  871. goto hashalg_fail;
  872. }
  873. return 0;
  874. hashalg_fail:
  875. crypto_free_shash(hmacalg);
  876. return ret;
  877. }
  878. static int __init init_encrypted(void)
  879. {
  880. int ret;
  881. ret = encrypted_shash_alloc();
  882. if (ret < 0)
  883. return ret;
  884. ret = register_key_type(&key_type_encrypted);
  885. if (ret < 0)
  886. goto out;
  887. return aes_get_sizes();
  888. out:
  889. encrypted_shash_release();
  890. return ret;
  891. }
  892. static void __exit cleanup_encrypted(void)
  893. {
  894. encrypted_shash_release();
  895. unregister_key_type(&key_type_encrypted);
  896. }
  897. late_initcall(init_encrypted);
  898. module_exit(cleanup_encrypted);
  899. MODULE_LICENSE("GPL");