auth.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. /* SCTP kernel implementation
  2. * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3. *
  4. * This file is part of the SCTP kernel implementation
  5. *
  6. * This SCTP implementation is free software;
  7. * you can redistribute it and/or modify it under the terms of
  8. * the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This SCTP implementation is distributed in the hope that it
  13. * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14. * ************************
  15. * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16. * See the GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with GNU CC; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 59 Temple Place - Suite 330,
  21. * Boston, MA 02111-1307, USA.
  22. *
  23. * Please send any bug reports or fixes you make to the
  24. * email address(es):
  25. * lksctp developers <lksctp-developers@lists.sourceforge.net>
  26. *
  27. * Or submit a bug report through the following website:
  28. * http://www.sf.net/projects/lksctp
  29. *
  30. * Written or modified by:
  31. * Vlad Yasevich <vladislav.yasevich@hp.com>
  32. *
  33. * Any bugs reported given to us we will try to fix... any fixes shared will
  34. * be incorporated into the next SCTP release.
  35. */
  36. #include <linux/slab.h>
  37. #include <linux/types.h>
  38. #include <linux/crypto.h>
  39. #include <linux/scatterlist.h>
  40. #include <net/sctp/sctp.h>
  41. #include <net/sctp/auth.h>
  42. static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  43. {
  44. /* id 0 is reserved. as all 0 */
  45. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  46. },
  47. {
  48. .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  49. .hmac_name="hmac(sha1)",
  50. .hmac_len = SCTP_SHA1_SIG_SIZE,
  51. },
  52. {
  53. /* id 2 is reserved as well */
  54. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  55. },
  56. #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
  57. {
  58. .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  59. .hmac_name="hmac(sha256)",
  60. .hmac_len = SCTP_SHA256_SIG_SIZE,
  61. }
  62. #endif
  63. };
  64. void sctp_auth_key_put(struct sctp_auth_bytes *key)
  65. {
  66. if (!key)
  67. return;
  68. if (atomic_dec_and_test(&key->refcnt)) {
  69. kzfree(key);
  70. SCTP_DBG_OBJCNT_DEC(keys);
  71. }
  72. }
  73. /* Create a new key structure of a given length */
  74. static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  75. {
  76. struct sctp_auth_bytes *key;
  77. /* Verify that we are not going to overflow INT_MAX */
  78. if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  79. return NULL;
  80. /* Allocate the shared key */
  81. key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  82. if (!key)
  83. return NULL;
  84. key->len = key_len;
  85. atomic_set(&key->refcnt, 1);
  86. SCTP_DBG_OBJCNT_INC(keys);
  87. return key;
  88. }
  89. /* Create a new shared key container with a give key id */
  90. struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  91. {
  92. struct sctp_shared_key *new;
  93. /* Allocate the shared key container */
  94. new = kzalloc(sizeof(struct sctp_shared_key), gfp);
  95. if (!new)
  96. return NULL;
  97. INIT_LIST_HEAD(&new->key_list);
  98. new->key_id = key_id;
  99. return new;
  100. }
  101. /* Free the shared key structure */
  102. static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
  103. {
  104. BUG_ON(!list_empty(&sh_key->key_list));
  105. sctp_auth_key_put(sh_key->key);
  106. sh_key->key = NULL;
  107. kfree(sh_key);
  108. }
  109. /* Destroy the entire key list. This is done during the
  110. * associon and endpoint free process.
  111. */
  112. void sctp_auth_destroy_keys(struct list_head *keys)
  113. {
  114. struct sctp_shared_key *ep_key;
  115. struct sctp_shared_key *tmp;
  116. if (list_empty(keys))
  117. return;
  118. key_for_each_safe(ep_key, tmp, keys) {
  119. list_del_init(&ep_key->key_list);
  120. sctp_auth_shkey_free(ep_key);
  121. }
  122. }
  123. /* Compare two byte vectors as numbers. Return values
  124. * are:
  125. * 0 - vectors are equal
  126. * < 0 - vector 1 is smaller than vector2
  127. * > 0 - vector 1 is greater than vector2
  128. *
  129. * Algorithm is:
  130. * This is performed by selecting the numerically smaller key vector...
  131. * If the key vectors are equal as numbers but differ in length ...
  132. * the shorter vector is considered smaller
  133. *
  134. * Examples (with small values):
  135. * 000123456789 > 123456789 (first number is longer)
  136. * 000123456789 < 234567891 (second number is larger numerically)
  137. * 123456789 > 2345678 (first number is both larger & longer)
  138. */
  139. static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
  140. struct sctp_auth_bytes *vector2)
  141. {
  142. int diff;
  143. int i;
  144. const __u8 *longer;
  145. diff = vector1->len - vector2->len;
  146. if (diff) {
  147. longer = (diff > 0) ? vector1->data : vector2->data;
  148. /* Check to see if the longer number is
  149. * lead-zero padded. If it is not, it
  150. * is automatically larger numerically.
  151. */
  152. for (i = 0; i < abs(diff); i++ ) {
  153. if (longer[i] != 0)
  154. return diff;
  155. }
  156. }
  157. /* lengths are the same, compare numbers */
  158. return memcmp(vector1->data, vector2->data, vector1->len);
  159. }
  160. /*
  161. * Create a key vector as described in SCTP-AUTH, Section 6.1
  162. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  163. * parameter sent by each endpoint are concatenated as byte vectors.
  164. * These parameters include the parameter type, parameter length, and
  165. * the parameter value, but padding is omitted; all padding MUST be
  166. * removed from this concatenation before proceeding with further
  167. * computation of keys. Parameters which were not sent are simply
  168. * omitted from the concatenation process. The resulting two vectors
  169. * are called the two key vectors.
  170. */
  171. static struct sctp_auth_bytes *sctp_auth_make_key_vector(
  172. sctp_random_param_t *random,
  173. sctp_chunks_param_t *chunks,
  174. sctp_hmac_algo_param_t *hmacs,
  175. gfp_t gfp)
  176. {
  177. struct sctp_auth_bytes *new;
  178. __u32 len;
  179. __u32 offset = 0;
  180. __u16 random_len, hmacs_len, chunks_len = 0;
  181. random_len = ntohs(random->param_hdr.length);
  182. hmacs_len = ntohs(hmacs->param_hdr.length);
  183. if (chunks)
  184. chunks_len = ntohs(chunks->param_hdr.length);
  185. len = random_len + hmacs_len + chunks_len;
  186. new = sctp_auth_create_key(len, gfp);
  187. if (!new)
  188. return NULL;
  189. memcpy(new->data, random, random_len);
  190. offset += random_len;
  191. if (chunks) {
  192. memcpy(new->data + offset, chunks, chunks_len);
  193. offset += chunks_len;
  194. }
  195. memcpy(new->data + offset, hmacs, hmacs_len);
  196. return new;
  197. }
  198. /* Make a key vector based on our local parameters */
  199. static struct sctp_auth_bytes *sctp_auth_make_local_vector(
  200. const struct sctp_association *asoc,
  201. gfp_t gfp)
  202. {
  203. return sctp_auth_make_key_vector(
  204. (sctp_random_param_t*)asoc->c.auth_random,
  205. (sctp_chunks_param_t*)asoc->c.auth_chunks,
  206. (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
  207. gfp);
  208. }
  209. /* Make a key vector based on peer's parameters */
  210. static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
  211. const struct sctp_association *asoc,
  212. gfp_t gfp)
  213. {
  214. return sctp_auth_make_key_vector(asoc->peer.peer_random,
  215. asoc->peer.peer_chunks,
  216. asoc->peer.peer_hmacs,
  217. gfp);
  218. }
  219. /* Set the value of the association shared key base on the parameters
  220. * given. The algorithm is:
  221. * From the endpoint pair shared keys and the key vectors the
  222. * association shared keys are computed. This is performed by selecting
  223. * the numerically smaller key vector and concatenating it to the
  224. * endpoint pair shared key, and then concatenating the numerically
  225. * larger key vector to that. The result of the concatenation is the
  226. * association shared key.
  227. */
  228. static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
  229. struct sctp_shared_key *ep_key,
  230. struct sctp_auth_bytes *first_vector,
  231. struct sctp_auth_bytes *last_vector,
  232. gfp_t gfp)
  233. {
  234. struct sctp_auth_bytes *secret;
  235. __u32 offset = 0;
  236. __u32 auth_len;
  237. auth_len = first_vector->len + last_vector->len;
  238. if (ep_key->key)
  239. auth_len += ep_key->key->len;
  240. secret = sctp_auth_create_key(auth_len, gfp);
  241. if (!secret)
  242. return NULL;
  243. if (ep_key->key) {
  244. memcpy(secret->data, ep_key->key->data, ep_key->key->len);
  245. offset += ep_key->key->len;
  246. }
  247. memcpy(secret->data + offset, first_vector->data, first_vector->len);
  248. offset += first_vector->len;
  249. memcpy(secret->data + offset, last_vector->data, last_vector->len);
  250. return secret;
  251. }
  252. /* Create an association shared key. Follow the algorithm
  253. * described in SCTP-AUTH, Section 6.1
  254. */
  255. static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
  256. const struct sctp_association *asoc,
  257. struct sctp_shared_key *ep_key,
  258. gfp_t gfp)
  259. {
  260. struct sctp_auth_bytes *local_key_vector;
  261. struct sctp_auth_bytes *peer_key_vector;
  262. struct sctp_auth_bytes *first_vector,
  263. *last_vector;
  264. struct sctp_auth_bytes *secret = NULL;
  265. int cmp;
  266. /* Now we need to build the key vectors
  267. * SCTP-AUTH , Section 6.1
  268. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  269. * parameter sent by each endpoint are concatenated as byte vectors.
  270. * These parameters include the parameter type, parameter length, and
  271. * the parameter value, but padding is omitted; all padding MUST be
  272. * removed from this concatenation before proceeding with further
  273. * computation of keys. Parameters which were not sent are simply
  274. * omitted from the concatenation process. The resulting two vectors
  275. * are called the two key vectors.
  276. */
  277. local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
  278. peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
  279. if (!peer_key_vector || !local_key_vector)
  280. goto out;
  281. /* Figure out the order in which the key_vectors will be
  282. * added to the endpoint shared key.
  283. * SCTP-AUTH, Section 6.1:
  284. * This is performed by selecting the numerically smaller key
  285. * vector and concatenating it to the endpoint pair shared
  286. * key, and then concatenating the numerically larger key
  287. * vector to that. If the key vectors are equal as numbers
  288. * but differ in length, then the concatenation order is the
  289. * endpoint shared key, followed by the shorter key vector,
  290. * followed by the longer key vector. Otherwise, the key
  291. * vectors are identical, and may be concatenated to the
  292. * endpoint pair key in any order.
  293. */
  294. cmp = sctp_auth_compare_vectors(local_key_vector,
  295. peer_key_vector);
  296. if (cmp < 0) {
  297. first_vector = local_key_vector;
  298. last_vector = peer_key_vector;
  299. } else {
  300. first_vector = peer_key_vector;
  301. last_vector = local_key_vector;
  302. }
  303. secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
  304. gfp);
  305. out:
  306. sctp_auth_key_put(local_key_vector);
  307. sctp_auth_key_put(peer_key_vector);
  308. return secret;
  309. }
  310. /*
  311. * Populate the association overlay list with the list
  312. * from the endpoint.
  313. */
  314. int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
  315. struct sctp_association *asoc,
  316. gfp_t gfp)
  317. {
  318. struct sctp_shared_key *sh_key;
  319. struct sctp_shared_key *new;
  320. BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
  321. key_for_each(sh_key, &ep->endpoint_shared_keys) {
  322. new = sctp_auth_shkey_create(sh_key->key_id, gfp);
  323. if (!new)
  324. goto nomem;
  325. new->key = sh_key->key;
  326. sctp_auth_key_hold(new->key);
  327. list_add(&new->key_list, &asoc->endpoint_shared_keys);
  328. }
  329. return 0;
  330. nomem:
  331. sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
  332. return -ENOMEM;
  333. }
  334. /* Public interface to creat the association shared key.
  335. * See code above for the algorithm.
  336. */
  337. int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
  338. {
  339. struct net *net = sock_net(asoc->base.sk);
  340. struct sctp_auth_bytes *secret;
  341. struct sctp_shared_key *ep_key;
  342. /* If we don't support AUTH, or peer is not capable
  343. * we don't need to do anything.
  344. */
  345. if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
  346. return 0;
  347. /* If the key_id is non-zero and we couldn't find an
  348. * endpoint pair shared key, we can't compute the
  349. * secret.
  350. * For key_id 0, endpoint pair shared key is a NULL key.
  351. */
  352. ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
  353. BUG_ON(!ep_key);
  354. secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  355. if (!secret)
  356. return -ENOMEM;
  357. sctp_auth_key_put(asoc->asoc_shared_key);
  358. asoc->asoc_shared_key = secret;
  359. return 0;
  360. }
  361. /* Find the endpoint pair shared key based on the key_id */
  362. struct sctp_shared_key *sctp_auth_get_shkey(
  363. const struct sctp_association *asoc,
  364. __u16 key_id)
  365. {
  366. struct sctp_shared_key *key;
  367. /* First search associations set of endpoint pair shared keys */
  368. key_for_each(key, &asoc->endpoint_shared_keys) {
  369. if (key->key_id == key_id)
  370. return key;
  371. }
  372. return NULL;
  373. }
  374. /*
  375. * Initialize all the possible digest transforms that we can use. Right now
  376. * now, the supported digests are SHA1 and SHA256. We do this here once
  377. * because of the restrictiong that transforms may only be allocated in
  378. * user context. This forces us to pre-allocated all possible transforms
  379. * at the endpoint init time.
  380. */
  381. int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
  382. {
  383. struct net *net = sock_net(ep->base.sk);
  384. struct crypto_hash *tfm = NULL;
  385. __u16 id;
  386. /* if the transforms are already allocted, we are done */
  387. if (!net->sctp.auth_enable) {
  388. ep->auth_hmacs = NULL;
  389. return 0;
  390. }
  391. if (ep->auth_hmacs)
  392. return 0;
  393. /* Allocated the array of pointers to transorms */
  394. ep->auth_hmacs = kzalloc(
  395. sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
  396. gfp);
  397. if (!ep->auth_hmacs)
  398. return -ENOMEM;
  399. for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
  400. /* See is we support the id. Supported IDs have name and
  401. * length fields set, so that we can allocated and use
  402. * them. We can safely just check for name, for without the
  403. * name, we can't allocate the TFM.
  404. */
  405. if (!sctp_hmac_list[id].hmac_name)
  406. continue;
  407. /* If this TFM has been allocated, we are all set */
  408. if (ep->auth_hmacs[id])
  409. continue;
  410. /* Allocate the ID */
  411. tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
  412. CRYPTO_ALG_ASYNC);
  413. if (IS_ERR(tfm))
  414. goto out_err;
  415. ep->auth_hmacs[id] = tfm;
  416. }
  417. return 0;
  418. out_err:
  419. /* Clean up any successful allocations */
  420. sctp_auth_destroy_hmacs(ep->auth_hmacs);
  421. return -ENOMEM;
  422. }
  423. /* Destroy the hmac tfm array */
  424. void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
  425. {
  426. int i;
  427. if (!auth_hmacs)
  428. return;
  429. for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
  430. {
  431. if (auth_hmacs[i])
  432. crypto_free_hash(auth_hmacs[i]);
  433. }
  434. kfree(auth_hmacs);
  435. }
  436. struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
  437. {
  438. return &sctp_hmac_list[hmac_id];
  439. }
  440. /* Get an hmac description information that we can use to build
  441. * the AUTH chunk
  442. */
  443. struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
  444. {
  445. struct sctp_hmac_algo_param *hmacs;
  446. __u16 n_elt;
  447. __u16 id = 0;
  448. int i;
  449. /* If we have a default entry, use it */
  450. if (asoc->default_hmac_id)
  451. return &sctp_hmac_list[asoc->default_hmac_id];
  452. /* Since we do not have a default entry, find the first entry
  453. * we support and return that. Do not cache that id.
  454. */
  455. hmacs = asoc->peer.peer_hmacs;
  456. if (!hmacs)
  457. return NULL;
  458. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  459. for (i = 0; i < n_elt; i++) {
  460. id = ntohs(hmacs->hmac_ids[i]);
  461. /* Check the id is in the supported range */
  462. if (id > SCTP_AUTH_HMAC_ID_MAX) {
  463. id = 0;
  464. continue;
  465. }
  466. /* See is we support the id. Supported IDs have name and
  467. * length fields set, so that we can allocated and use
  468. * them. We can safely just check for name, for without the
  469. * name, we can't allocate the TFM.
  470. */
  471. if (!sctp_hmac_list[id].hmac_name) {
  472. id = 0;
  473. continue;
  474. }
  475. break;
  476. }
  477. if (id == 0)
  478. return NULL;
  479. return &sctp_hmac_list[id];
  480. }
  481. static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
  482. {
  483. int found = 0;
  484. int i;
  485. for (i = 0; i < n_elts; i++) {
  486. if (hmac_id == hmacs[i]) {
  487. found = 1;
  488. break;
  489. }
  490. }
  491. return found;
  492. }
  493. /* See if the HMAC_ID is one that we claim as supported */
  494. int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
  495. __be16 hmac_id)
  496. {
  497. struct sctp_hmac_algo_param *hmacs;
  498. __u16 n_elt;
  499. if (!asoc)
  500. return 0;
  501. hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
  502. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  503. return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
  504. }
  505. /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
  506. * Section 6.1:
  507. * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
  508. * algorithm it supports.
  509. */
  510. void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
  511. struct sctp_hmac_algo_param *hmacs)
  512. {
  513. struct sctp_endpoint *ep;
  514. __u16 id;
  515. int i;
  516. int n_params;
  517. /* if the default id is already set, use it */
  518. if (asoc->default_hmac_id)
  519. return;
  520. n_params = (ntohs(hmacs->param_hdr.length)
  521. - sizeof(sctp_paramhdr_t)) >> 1;
  522. ep = asoc->ep;
  523. for (i = 0; i < n_params; i++) {
  524. id = ntohs(hmacs->hmac_ids[i]);
  525. /* Check the id is in the supported range */
  526. if (id > SCTP_AUTH_HMAC_ID_MAX)
  527. continue;
  528. /* If this TFM has been allocated, use this id */
  529. if (ep->auth_hmacs[id]) {
  530. asoc->default_hmac_id = id;
  531. break;
  532. }
  533. }
  534. }
  535. /* Check to see if the given chunk is supposed to be authenticated */
  536. static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
  537. {
  538. unsigned short len;
  539. int found = 0;
  540. int i;
  541. if (!param || param->param_hdr.length == 0)
  542. return 0;
  543. len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
  544. /* SCTP-AUTH, Section 3.2
  545. * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
  546. * chunks MUST NOT be listed in the CHUNKS parameter. However, if
  547. * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
  548. * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
  549. */
  550. for (i = 0; !found && i < len; i++) {
  551. switch (param->chunks[i]) {
  552. case SCTP_CID_INIT:
  553. case SCTP_CID_INIT_ACK:
  554. case SCTP_CID_SHUTDOWN_COMPLETE:
  555. case SCTP_CID_AUTH:
  556. break;
  557. default:
  558. if (param->chunks[i] == chunk)
  559. found = 1;
  560. break;
  561. }
  562. }
  563. return found;
  564. }
  565. /* Check if peer requested that this chunk is authenticated */
  566. int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  567. {
  568. struct net *net;
  569. if (!asoc)
  570. return 0;
  571. net = sock_net(asoc->base.sk);
  572. if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
  573. return 0;
  574. return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
  575. }
  576. /* Check if we requested that peer authenticate this chunk. */
  577. int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  578. {
  579. struct net *net;
  580. if (!asoc)
  581. return 0;
  582. net = sock_net(asoc->base.sk);
  583. if (!net->sctp.auth_enable)
  584. return 0;
  585. return __sctp_auth_cid(chunk,
  586. (struct sctp_chunks_param *)asoc->c.auth_chunks);
  587. }
  588. /* SCTP-AUTH: Section 6.2:
  589. * The sender MUST calculate the MAC as described in RFC2104 [2] using
  590. * the hash function H as described by the MAC Identifier and the shared
  591. * association key K based on the endpoint pair shared key described by
  592. * the shared key identifier. The 'data' used for the computation of
  593. * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
  594. * zero (as shown in Figure 6) followed by all chunks that are placed
  595. * after the AUTH chunk in the SCTP packet.
  596. */
  597. void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
  598. struct sk_buff *skb,
  599. struct sctp_auth_chunk *auth,
  600. gfp_t gfp)
  601. {
  602. struct scatterlist sg;
  603. struct hash_desc desc;
  604. struct sctp_auth_bytes *asoc_key;
  605. __u16 key_id, hmac_id;
  606. __u8 *digest;
  607. unsigned char *end;
  608. int free_key = 0;
  609. /* Extract the info we need:
  610. * - hmac id
  611. * - key id
  612. */
  613. key_id = ntohs(auth->auth_hdr.shkey_id);
  614. hmac_id = ntohs(auth->auth_hdr.hmac_id);
  615. if (key_id == asoc->active_key_id)
  616. asoc_key = asoc->asoc_shared_key;
  617. else {
  618. struct sctp_shared_key *ep_key;
  619. ep_key = sctp_auth_get_shkey(asoc, key_id);
  620. if (!ep_key)
  621. return;
  622. asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  623. if (!asoc_key)
  624. return;
  625. free_key = 1;
  626. }
  627. /* set up scatter list */
  628. end = skb_tail_pointer(skb);
  629. sg_init_one(&sg, auth, end - (unsigned char *)auth);
  630. desc.tfm = asoc->ep->auth_hmacs[hmac_id];
  631. desc.flags = 0;
  632. digest = auth->auth_hdr.hmac;
  633. if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
  634. goto free;
  635. crypto_hash_digest(&desc, &sg, sg.length, digest);
  636. free:
  637. if (free_key)
  638. sctp_auth_key_put(asoc_key);
  639. }
  640. /* API Helpers */
  641. /* Add a chunk to the endpoint authenticated chunk list */
  642. int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
  643. {
  644. struct sctp_chunks_param *p = ep->auth_chunk_list;
  645. __u16 nchunks;
  646. __u16 param_len;
  647. /* If this chunk is already specified, we are done */
  648. if (__sctp_auth_cid(chunk_id, p))
  649. return 0;
  650. /* Check if we can add this chunk to the array */
  651. param_len = ntohs(p->param_hdr.length);
  652. nchunks = param_len - sizeof(sctp_paramhdr_t);
  653. if (nchunks == SCTP_NUM_CHUNK_TYPES)
  654. return -EINVAL;
  655. p->chunks[nchunks] = chunk_id;
  656. p->param_hdr.length = htons(param_len + 1);
  657. return 0;
  658. }
  659. /* Add hmac identifires to the endpoint list of supported hmac ids */
  660. int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
  661. struct sctp_hmacalgo *hmacs)
  662. {
  663. int has_sha1 = 0;
  664. __u16 id;
  665. int i;
  666. /* Scan the list looking for unsupported id. Also make sure that
  667. * SHA1 is specified.
  668. */
  669. for (i = 0; i < hmacs->shmac_num_idents; i++) {
  670. id = hmacs->shmac_idents[i];
  671. if (id > SCTP_AUTH_HMAC_ID_MAX)
  672. return -EOPNOTSUPP;
  673. if (SCTP_AUTH_HMAC_ID_SHA1 == id)
  674. has_sha1 = 1;
  675. if (!sctp_hmac_list[id].hmac_name)
  676. return -EOPNOTSUPP;
  677. }
  678. if (!has_sha1)
  679. return -EINVAL;
  680. memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
  681. hmacs->shmac_num_idents * sizeof(__u16));
  682. ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
  683. hmacs->shmac_num_idents * sizeof(__u16));
  684. return 0;
  685. }
  686. /* Set a new shared key on either endpoint or association. If the
  687. * the key with a same ID already exists, replace the key (remove the
  688. * old key and add a new one).
  689. */
  690. int sctp_auth_set_key(struct sctp_endpoint *ep,
  691. struct sctp_association *asoc,
  692. struct sctp_authkey *auth_key)
  693. {
  694. struct sctp_shared_key *cur_key = NULL;
  695. struct sctp_auth_bytes *key;
  696. struct list_head *sh_keys;
  697. int replace = 0;
  698. /* Try to find the given key id to see if
  699. * we are doing a replace, or adding a new key
  700. */
  701. if (asoc)
  702. sh_keys = &asoc->endpoint_shared_keys;
  703. else
  704. sh_keys = &ep->endpoint_shared_keys;
  705. key_for_each(cur_key, sh_keys) {
  706. if (cur_key->key_id == auth_key->sca_keynumber) {
  707. replace = 1;
  708. break;
  709. }
  710. }
  711. /* If we are not replacing a key id, we need to allocate
  712. * a shared key.
  713. */
  714. if (!replace) {
  715. cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
  716. GFP_KERNEL);
  717. if (!cur_key)
  718. return -ENOMEM;
  719. }
  720. /* Create a new key data based on the info passed in */
  721. key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
  722. if (!key)
  723. goto nomem;
  724. memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
  725. /* If we are replacing, remove the old keys data from the
  726. * key id. If we are adding new key id, add it to the
  727. * list.
  728. */
  729. if (replace)
  730. sctp_auth_key_put(cur_key->key);
  731. else
  732. list_add(&cur_key->key_list, sh_keys);
  733. cur_key->key = key;
  734. sctp_auth_key_hold(key);
  735. return 0;
  736. nomem:
  737. if (!replace)
  738. sctp_auth_shkey_free(cur_key);
  739. return -ENOMEM;
  740. }
  741. int sctp_auth_set_active_key(struct sctp_endpoint *ep,
  742. struct sctp_association *asoc,
  743. __u16 key_id)
  744. {
  745. struct sctp_shared_key *key;
  746. struct list_head *sh_keys;
  747. int found = 0;
  748. /* The key identifier MUST correst to an existing key */
  749. if (asoc)
  750. sh_keys = &asoc->endpoint_shared_keys;
  751. else
  752. sh_keys = &ep->endpoint_shared_keys;
  753. key_for_each(key, sh_keys) {
  754. if (key->key_id == key_id) {
  755. found = 1;
  756. break;
  757. }
  758. }
  759. if (!found)
  760. return -EINVAL;
  761. if (asoc) {
  762. asoc->active_key_id = key_id;
  763. sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
  764. } else
  765. ep->active_key_id = key_id;
  766. return 0;
  767. }
  768. int sctp_auth_del_key_id(struct sctp_endpoint *ep,
  769. struct sctp_association *asoc,
  770. __u16 key_id)
  771. {
  772. struct sctp_shared_key *key;
  773. struct list_head *sh_keys;
  774. int found = 0;
  775. /* The key identifier MUST NOT be the current active key
  776. * The key identifier MUST correst to an existing key
  777. */
  778. if (asoc) {
  779. if (asoc->active_key_id == key_id)
  780. return -EINVAL;
  781. sh_keys = &asoc->endpoint_shared_keys;
  782. } else {
  783. if (ep->active_key_id == key_id)
  784. return -EINVAL;
  785. sh_keys = &ep->endpoint_shared_keys;
  786. }
  787. key_for_each(key, sh_keys) {
  788. if (key->key_id == key_id) {
  789. found = 1;
  790. break;
  791. }
  792. }
  793. if (!found)
  794. return -EINVAL;
  795. /* Delete the shared key */
  796. list_del_init(&key->key_list);
  797. sctp_auth_shkey_free(key);
  798. return 0;
  799. }