swap_state.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list.
  25. */
  26. static const struct address_space_operations swap_aops = {
  27. .writepage = swap_writepage,
  28. .set_page_dirty = swap_set_page_dirty,
  29. .migratepage = migrate_page,
  30. };
  31. static struct backing_dev_info swap_backing_dev_info = {
  32. .name = "swap",
  33. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  34. };
  35. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  36. [0 ... MAX_SWAPFILES - 1] = {
  37. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  38. .a_ops = &swap_aops,
  39. .backing_dev_info = &swap_backing_dev_info,
  40. }
  41. };
  42. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  43. static struct {
  44. unsigned long add_total;
  45. unsigned long del_total;
  46. unsigned long find_success;
  47. unsigned long find_total;
  48. } swap_cache_info;
  49. unsigned long total_swapcache_pages(void)
  50. {
  51. int i;
  52. unsigned long ret = 0;
  53. for (i = 0; i < MAX_SWAPFILES; i++)
  54. ret += swapper_spaces[i].nrpages;
  55. return ret;
  56. }
  57. void show_swap_cache_info(void)
  58. {
  59. printk("%lu pages in swap cache\n", total_swapcache_pages());
  60. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  61. swap_cache_info.add_total, swap_cache_info.del_total,
  62. swap_cache_info.find_success, swap_cache_info.find_total);
  63. printk("Free swap = %ldkB\n",
  64. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  65. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  66. }
  67. /*
  68. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  69. * but sets SwapCache flag and private instead of mapping and index.
  70. */
  71. static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  72. {
  73. int error;
  74. struct address_space *address_space;
  75. VM_BUG_ON(!PageLocked(page));
  76. VM_BUG_ON(PageSwapCache(page));
  77. VM_BUG_ON(!PageSwapBacked(page));
  78. page_cache_get(page);
  79. SetPageSwapCache(page);
  80. set_page_private(page, entry.val);
  81. address_space = swap_address_space(entry);
  82. spin_lock_irq(&address_space->tree_lock);
  83. error = radix_tree_insert(&address_space->page_tree,
  84. entry.val, page);
  85. if (likely(!error)) {
  86. address_space->nrpages++;
  87. __inc_zone_page_state(page, NR_FILE_PAGES);
  88. INC_CACHE_INFO(add_total);
  89. }
  90. spin_unlock_irq(&address_space->tree_lock);
  91. if (unlikely(error)) {
  92. /*
  93. * Only the context which have set SWAP_HAS_CACHE flag
  94. * would call add_to_swap_cache().
  95. * So add_to_swap_cache() doesn't returns -EEXIST.
  96. */
  97. VM_BUG_ON(error == -EEXIST);
  98. set_page_private(page, 0UL);
  99. ClearPageSwapCache(page);
  100. page_cache_release(page);
  101. }
  102. return error;
  103. }
  104. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  105. {
  106. int error;
  107. error = radix_tree_preload(gfp_mask);
  108. if (!error) {
  109. error = __add_to_swap_cache(page, entry);
  110. radix_tree_preload_end();
  111. }
  112. return error;
  113. }
  114. /*
  115. * This must be called only on pages that have
  116. * been verified to be in the swap cache.
  117. */
  118. void __delete_from_swap_cache(struct page *page)
  119. {
  120. swp_entry_t entry;
  121. struct address_space *address_space;
  122. VM_BUG_ON(!PageLocked(page));
  123. VM_BUG_ON(!PageSwapCache(page));
  124. VM_BUG_ON(PageWriteback(page));
  125. entry.val = page_private(page);
  126. address_space = swap_address_space(entry);
  127. radix_tree_delete(&address_space->page_tree, page_private(page));
  128. set_page_private(page, 0);
  129. ClearPageSwapCache(page);
  130. address_space->nrpages--;
  131. __dec_zone_page_state(page, NR_FILE_PAGES);
  132. INC_CACHE_INFO(del_total);
  133. }
  134. /**
  135. * add_to_swap - allocate swap space for a page
  136. * @page: page we want to move to swap
  137. *
  138. * Allocate swap space for the page and add the page to the
  139. * swap cache. Caller needs to hold the page lock.
  140. */
  141. int add_to_swap(struct page *page)
  142. {
  143. swp_entry_t entry;
  144. int err;
  145. VM_BUG_ON(!PageLocked(page));
  146. VM_BUG_ON(!PageUptodate(page));
  147. entry = get_swap_page();
  148. if (!entry.val)
  149. return 0;
  150. if (unlikely(PageTransHuge(page)))
  151. if (unlikely(split_huge_page(page))) {
  152. swapcache_free(entry, NULL);
  153. return 0;
  154. }
  155. /*
  156. * Radix-tree node allocations from PF_MEMALLOC contexts could
  157. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  158. * stops emergency reserves from being allocated.
  159. *
  160. * TODO: this could cause a theoretical memory reclaim
  161. * deadlock in the swap out path.
  162. */
  163. /*
  164. * Add it to the swap cache and mark it dirty
  165. */
  166. err = add_to_swap_cache(page, entry,
  167. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  168. if (!err) { /* Success */
  169. SetPageDirty(page);
  170. return 1;
  171. } else { /* -ENOMEM radix-tree allocation failure */
  172. /*
  173. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  174. * clear SWAP_HAS_CACHE flag.
  175. */
  176. swapcache_free(entry, NULL);
  177. return 0;
  178. }
  179. }
  180. /*
  181. * This must be called only on pages that have
  182. * been verified to be in the swap cache and locked.
  183. * It will never put the page into the free list,
  184. * the caller has a reference on the page.
  185. */
  186. void delete_from_swap_cache(struct page *page)
  187. {
  188. swp_entry_t entry;
  189. struct address_space *address_space;
  190. entry.val = page_private(page);
  191. address_space = swap_address_space(entry);
  192. spin_lock_irq(&address_space->tree_lock);
  193. __delete_from_swap_cache(page);
  194. spin_unlock_irq(&address_space->tree_lock);
  195. swapcache_free(entry, page);
  196. page_cache_release(page);
  197. }
  198. /*
  199. * If we are the only user, then try to free up the swap cache.
  200. *
  201. * Its ok to check for PageSwapCache without the page lock
  202. * here because we are going to recheck again inside
  203. * try_to_free_swap() _with_ the lock.
  204. * - Marcelo
  205. */
  206. static inline void free_swap_cache(struct page *page)
  207. {
  208. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  209. try_to_free_swap(page);
  210. unlock_page(page);
  211. }
  212. }
  213. /*
  214. * Perform a free_page(), also freeing any swap cache associated with
  215. * this page if it is the last user of the page.
  216. */
  217. void free_page_and_swap_cache(struct page *page)
  218. {
  219. free_swap_cache(page);
  220. page_cache_release(page);
  221. }
  222. /*
  223. * Passed an array of pages, drop them all from swapcache and then release
  224. * them. They are removed from the LRU and freed if this is their last use.
  225. */
  226. void free_pages_and_swap_cache(struct page **pages, int nr)
  227. {
  228. struct page **pagep = pages;
  229. lru_add_drain();
  230. while (nr) {
  231. int todo = min(nr, PAGEVEC_SIZE);
  232. int i;
  233. for (i = 0; i < todo; i++)
  234. free_swap_cache(pagep[i]);
  235. release_pages(pagep, todo, 0);
  236. pagep += todo;
  237. nr -= todo;
  238. }
  239. }
  240. /*
  241. * Lookup a swap entry in the swap cache. A found page will be returned
  242. * unlocked and with its refcount incremented - we rely on the kernel
  243. * lock getting page table operations atomic even if we drop the page
  244. * lock before returning.
  245. */
  246. struct page * lookup_swap_cache(swp_entry_t entry)
  247. {
  248. struct page *page;
  249. page = find_get_page(swap_address_space(entry), entry.val);
  250. if (page)
  251. INC_CACHE_INFO(find_success);
  252. INC_CACHE_INFO(find_total);
  253. return page;
  254. }
  255. /*
  256. * Locate a page of swap in physical memory, reserving swap cache space
  257. * and reading the disk if it is not already cached.
  258. * A failure return means that either the page allocation failed or that
  259. * the swap entry is no longer in use.
  260. */
  261. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  262. struct vm_area_struct *vma, unsigned long addr)
  263. {
  264. struct page *found_page, *new_page = NULL;
  265. int err;
  266. do {
  267. /*
  268. * First check the swap cache. Since this is normally
  269. * called after lookup_swap_cache() failed, re-calling
  270. * that would confuse statistics.
  271. */
  272. found_page = find_get_page(swap_address_space(entry),
  273. entry.val);
  274. if (found_page)
  275. break;
  276. /*
  277. * Get a new page to read into from swap.
  278. */
  279. if (!new_page) {
  280. new_page = alloc_page_vma(gfp_mask, vma, addr);
  281. if (!new_page)
  282. break; /* Out of memory */
  283. }
  284. /*
  285. * call radix_tree_preload() while we can wait.
  286. */
  287. err = radix_tree_preload(gfp_mask & GFP_KERNEL);
  288. if (err)
  289. break;
  290. /*
  291. * Swap entry may have been freed since our caller observed it.
  292. */
  293. err = swapcache_prepare(entry);
  294. if (err == -EEXIST) { /* seems racy */
  295. radix_tree_preload_end();
  296. continue;
  297. }
  298. if (err) { /* swp entry is obsolete ? */
  299. radix_tree_preload_end();
  300. break;
  301. }
  302. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  303. __set_page_locked(new_page);
  304. SetPageSwapBacked(new_page);
  305. err = __add_to_swap_cache(new_page, entry);
  306. if (likely(!err)) {
  307. radix_tree_preload_end();
  308. /*
  309. * Initiate read into locked page and return.
  310. */
  311. lru_cache_add_anon(new_page);
  312. swap_readpage(new_page);
  313. return new_page;
  314. }
  315. radix_tree_preload_end();
  316. ClearPageSwapBacked(new_page);
  317. __clear_page_locked(new_page);
  318. /*
  319. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  320. * clear SWAP_HAS_CACHE flag.
  321. */
  322. swapcache_free(entry, NULL);
  323. } while (err != -ENOMEM);
  324. if (new_page)
  325. page_cache_release(new_page);
  326. return found_page;
  327. }
  328. /**
  329. * swapin_readahead - swap in pages in hope we need them soon
  330. * @entry: swap entry of this memory
  331. * @gfp_mask: memory allocation flags
  332. * @vma: user vma this address belongs to
  333. * @addr: target address for mempolicy
  334. *
  335. * Returns the struct page for entry and addr, after queueing swapin.
  336. *
  337. * Primitive swap readahead code. We simply read an aligned block of
  338. * (1 << page_cluster) entries in the swap area. This method is chosen
  339. * because it doesn't cost us any seek time. We also make sure to queue
  340. * the 'original' request together with the readahead ones...
  341. *
  342. * This has been extended to use the NUMA policies from the mm triggering
  343. * the readahead.
  344. *
  345. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  346. */
  347. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  348. struct vm_area_struct *vma, unsigned long addr)
  349. {
  350. struct page *page;
  351. unsigned long offset = swp_offset(entry);
  352. unsigned long start_offset, end_offset;
  353. unsigned long mask = (1UL << page_cluster) - 1;
  354. struct blk_plug plug;
  355. /* Read a page_cluster sized and aligned cluster around offset. */
  356. start_offset = offset & ~mask;
  357. end_offset = offset | mask;
  358. if (!start_offset) /* First page is swap header. */
  359. start_offset++;
  360. blk_start_plug(&plug);
  361. for (offset = start_offset; offset <= end_offset ; offset++) {
  362. /* Ok, do the async read-ahead now */
  363. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  364. gfp_mask, vma, addr);
  365. if (!page)
  366. continue;
  367. page_cache_release(page);
  368. }
  369. blk_finish_plug(&plug);
  370. lru_add_drain(); /* Push any new pages onto the LRU now */
  371. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  372. }