page-writeback.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <trace/events/writeback.h>
  39. /*
  40. * Sleep at most 200ms at a time in balance_dirty_pages().
  41. */
  42. #define MAX_PAUSE max(HZ/5, 1)
  43. /*
  44. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  45. * by raising pause time to max_pause when falls below it.
  46. */
  47. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  48. /*
  49. * Estimate write bandwidth at 200ms intervals.
  50. */
  51. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  52. #define RATELIMIT_CALC_SHIFT 10
  53. /*
  54. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  55. * will look to see if it needs to force writeback or throttling.
  56. */
  57. static long ratelimit_pages = 32;
  58. /* The following parameters are exported via /proc/sys/vm */
  59. /*
  60. * Start background writeback (via writeback threads) at this percentage
  61. */
  62. int dirty_background_ratio = 10;
  63. /*
  64. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  65. * dirty_background_ratio * the amount of dirtyable memory
  66. */
  67. unsigned long dirty_background_bytes;
  68. /*
  69. * free highmem will not be subtracted from the total free memory
  70. * for calculating free ratios if vm_highmem_is_dirtyable is true
  71. */
  72. int vm_highmem_is_dirtyable;
  73. /*
  74. * The generator of dirty data starts writeback at this percentage
  75. */
  76. int vm_dirty_ratio = 20;
  77. /*
  78. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  79. * vm_dirty_ratio * the amount of dirtyable memory
  80. */
  81. unsigned long vm_dirty_bytes;
  82. /*
  83. * The interval between `kupdate'-style writebacks
  84. */
  85. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  86. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  87. /*
  88. * The longest time for which data is allowed to remain dirty
  89. */
  90. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  91. /*
  92. * Flag that makes the machine dump writes/reads and block dirtyings.
  93. */
  94. int block_dump;
  95. /*
  96. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  97. * a full sync is triggered after this time elapses without any disk activity.
  98. */
  99. int laptop_mode;
  100. EXPORT_SYMBOL(laptop_mode);
  101. /* End of sysctl-exported parameters */
  102. unsigned long global_dirty_limit;
  103. /*
  104. * Scale the writeback cache size proportional to the relative writeout speeds.
  105. *
  106. * We do this by keeping a floating proportion between BDIs, based on page
  107. * writeback completions [end_page_writeback()]. Those devices that write out
  108. * pages fastest will get the larger share, while the slower will get a smaller
  109. * share.
  110. *
  111. * We use page writeout completions because we are interested in getting rid of
  112. * dirty pages. Having them written out is the primary goal.
  113. *
  114. * We introduce a concept of time, a period over which we measure these events,
  115. * because demand can/will vary over time. The length of this period itself is
  116. * measured in page writeback completions.
  117. *
  118. */
  119. static struct fprop_global writeout_completions;
  120. static void writeout_period(unsigned long t);
  121. /* Timer for aging of writeout_completions */
  122. static struct timer_list writeout_period_timer =
  123. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  124. static unsigned long writeout_period_time = 0;
  125. /*
  126. * Length of period for aging writeout fractions of bdis. This is an
  127. * arbitrarily chosen number. The longer the period, the slower fractions will
  128. * reflect changes in current writeout rate.
  129. */
  130. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  131. /*
  132. * Work out the current dirty-memory clamping and background writeout
  133. * thresholds.
  134. *
  135. * The main aim here is to lower them aggressively if there is a lot of mapped
  136. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  137. * pages. It is better to clamp down on writers than to start swapping, and
  138. * performing lots of scanning.
  139. *
  140. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  141. *
  142. * We don't permit the clamping level to fall below 5% - that is getting rather
  143. * excessive.
  144. *
  145. * We make sure that the background writeout level is below the adjusted
  146. * clamping level.
  147. */
  148. /*
  149. * In a memory zone, there is a certain amount of pages we consider
  150. * available for the page cache, which is essentially the number of
  151. * free and reclaimable pages, minus some zone reserves to protect
  152. * lowmem and the ability to uphold the zone's watermarks without
  153. * requiring writeback.
  154. *
  155. * This number of dirtyable pages is the base value of which the
  156. * user-configurable dirty ratio is the effictive number of pages that
  157. * are allowed to be actually dirtied. Per individual zone, or
  158. * globally by using the sum of dirtyable pages over all zones.
  159. *
  160. * Because the user is allowed to specify the dirty limit globally as
  161. * absolute number of bytes, calculating the per-zone dirty limit can
  162. * require translating the configured limit into a percentage of
  163. * global dirtyable memory first.
  164. */
  165. static unsigned long highmem_dirtyable_memory(unsigned long total)
  166. {
  167. #ifdef CONFIG_HIGHMEM
  168. int node;
  169. unsigned long x = 0;
  170. for_each_node_state(node, N_HIGH_MEMORY) {
  171. struct zone *z =
  172. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  173. x += zone_page_state(z, NR_FREE_PAGES) +
  174. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  175. }
  176. /*
  177. * Unreclaimable memory (kernel memory or anonymous memory
  178. * without swap) can bring down the dirtyable pages below
  179. * the zone's dirty balance reserve and the above calculation
  180. * will underflow. However we still want to add in nodes
  181. * which are below threshold (negative values) to get a more
  182. * accurate calculation but make sure that the total never
  183. * underflows.
  184. */
  185. if ((long)x < 0)
  186. x = 0;
  187. /*
  188. * Make sure that the number of highmem pages is never larger
  189. * than the number of the total dirtyable memory. This can only
  190. * occur in very strange VM situations but we want to make sure
  191. * that this does not occur.
  192. */
  193. return min(x, total);
  194. #else
  195. return 0;
  196. #endif
  197. }
  198. /**
  199. * global_dirtyable_memory - number of globally dirtyable pages
  200. *
  201. * Returns the global number of pages potentially available for dirty
  202. * page cache. This is the base value for the global dirty limits.
  203. */
  204. static unsigned long global_dirtyable_memory(void)
  205. {
  206. unsigned long x;
  207. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  208. x -= min(x, dirty_balance_reserve);
  209. if (!vm_highmem_is_dirtyable)
  210. x -= highmem_dirtyable_memory(x);
  211. /* Subtract min_free_kbytes */
  212. x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
  213. return x + 1; /* Ensure that we never return 0 */
  214. }
  215. /*
  216. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  217. *
  218. * Calculate the dirty thresholds based on sysctl parameters
  219. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  220. * - vm.dirty_ratio or vm.dirty_bytes
  221. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  222. * real-time tasks.
  223. */
  224. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  225. {
  226. unsigned long background;
  227. unsigned long dirty;
  228. unsigned long uninitialized_var(available_memory);
  229. struct task_struct *tsk;
  230. if (!vm_dirty_bytes || !dirty_background_bytes)
  231. available_memory = global_dirtyable_memory();
  232. if (vm_dirty_bytes)
  233. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  234. else
  235. dirty = (vm_dirty_ratio * available_memory) / 100;
  236. if (dirty_background_bytes)
  237. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  238. else
  239. background = (dirty_background_ratio * available_memory) / 100;
  240. if (background >= dirty)
  241. background = dirty / 2;
  242. tsk = current;
  243. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  244. background += background / 4;
  245. dirty += dirty / 4;
  246. }
  247. *pbackground = background;
  248. *pdirty = dirty;
  249. trace_global_dirty_state(background, dirty);
  250. }
  251. /**
  252. * zone_dirtyable_memory - number of dirtyable pages in a zone
  253. * @zone: the zone
  254. *
  255. * Returns the zone's number of pages potentially available for dirty
  256. * page cache. This is the base value for the per-zone dirty limits.
  257. */
  258. static unsigned long zone_dirtyable_memory(struct zone *zone)
  259. {
  260. /*
  261. * The effective global number of dirtyable pages may exclude
  262. * highmem as a big-picture measure to keep the ratio between
  263. * dirty memory and lowmem reasonable.
  264. *
  265. * But this function is purely about the individual zone and a
  266. * highmem zone can hold its share of dirty pages, so we don't
  267. * care about vm_highmem_is_dirtyable here.
  268. */
  269. unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
  270. zone_reclaimable_pages(zone);
  271. /* don't allow this to underflow */
  272. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  273. return nr_pages;
  274. }
  275. /**
  276. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  277. * @zone: the zone
  278. *
  279. * Returns the maximum number of dirty pages allowed in a zone, based
  280. * on the zone's dirtyable memory.
  281. */
  282. static unsigned long zone_dirty_limit(struct zone *zone)
  283. {
  284. unsigned long zone_memory = zone_dirtyable_memory(zone);
  285. struct task_struct *tsk = current;
  286. unsigned long dirty;
  287. if (vm_dirty_bytes)
  288. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  289. zone_memory / global_dirtyable_memory();
  290. else
  291. dirty = vm_dirty_ratio * zone_memory / 100;
  292. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  293. dirty += dirty / 4;
  294. return dirty;
  295. }
  296. /**
  297. * zone_dirty_ok - tells whether a zone is within its dirty limits
  298. * @zone: the zone to check
  299. *
  300. * Returns %true when the dirty pages in @zone are within the zone's
  301. * dirty limit, %false if the limit is exceeded.
  302. */
  303. bool zone_dirty_ok(struct zone *zone)
  304. {
  305. unsigned long limit = zone_dirty_limit(zone);
  306. return zone_page_state(zone, NR_FILE_DIRTY) +
  307. zone_page_state(zone, NR_UNSTABLE_NFS) +
  308. zone_page_state(zone, NR_WRITEBACK) <= limit;
  309. }
  310. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  311. void __user *buffer, size_t *lenp,
  312. loff_t *ppos)
  313. {
  314. int ret;
  315. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  316. if (ret == 0 && write)
  317. dirty_background_bytes = 0;
  318. return ret;
  319. }
  320. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  321. void __user *buffer, size_t *lenp,
  322. loff_t *ppos)
  323. {
  324. int ret;
  325. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  326. if (ret == 0 && write)
  327. dirty_background_ratio = 0;
  328. return ret;
  329. }
  330. int dirty_ratio_handler(struct ctl_table *table, int write,
  331. void __user *buffer, size_t *lenp,
  332. loff_t *ppos)
  333. {
  334. int old_ratio = vm_dirty_ratio;
  335. int ret;
  336. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  337. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  338. writeback_set_ratelimit();
  339. vm_dirty_bytes = 0;
  340. }
  341. return ret;
  342. }
  343. int dirty_bytes_handler(struct ctl_table *table, int write,
  344. void __user *buffer, size_t *lenp,
  345. loff_t *ppos)
  346. {
  347. unsigned long old_bytes = vm_dirty_bytes;
  348. int ret;
  349. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  350. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  351. writeback_set_ratelimit();
  352. vm_dirty_ratio = 0;
  353. }
  354. return ret;
  355. }
  356. static unsigned long wp_next_time(unsigned long cur_time)
  357. {
  358. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  359. /* 0 has a special meaning... */
  360. if (!cur_time)
  361. return 1;
  362. return cur_time;
  363. }
  364. /*
  365. * Increment the BDI's writeout completion count and the global writeout
  366. * completion count. Called from test_clear_page_writeback().
  367. */
  368. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  369. {
  370. __inc_bdi_stat(bdi, BDI_WRITTEN);
  371. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  372. bdi->max_prop_frac);
  373. /* First event after period switching was turned off? */
  374. if (!unlikely(writeout_period_time)) {
  375. /*
  376. * We can race with other __bdi_writeout_inc calls here but
  377. * it does not cause any harm since the resulting time when
  378. * timer will fire and what is in writeout_period_time will be
  379. * roughly the same.
  380. */
  381. writeout_period_time = wp_next_time(jiffies);
  382. mod_timer(&writeout_period_timer, writeout_period_time);
  383. }
  384. }
  385. void bdi_writeout_inc(struct backing_dev_info *bdi)
  386. {
  387. unsigned long flags;
  388. local_irq_save(flags);
  389. __bdi_writeout_inc(bdi);
  390. local_irq_restore(flags);
  391. }
  392. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  393. /*
  394. * Obtain an accurate fraction of the BDI's portion.
  395. */
  396. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  397. long *numerator, long *denominator)
  398. {
  399. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  400. numerator, denominator);
  401. }
  402. /*
  403. * On idle system, we can be called long after we scheduled because we use
  404. * deferred timers so count with missed periods.
  405. */
  406. static void writeout_period(unsigned long t)
  407. {
  408. int miss_periods = (jiffies - writeout_period_time) /
  409. VM_COMPLETIONS_PERIOD_LEN;
  410. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  411. writeout_period_time = wp_next_time(writeout_period_time +
  412. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  413. mod_timer(&writeout_period_timer, writeout_period_time);
  414. } else {
  415. /*
  416. * Aging has zeroed all fractions. Stop wasting CPU on period
  417. * updates.
  418. */
  419. writeout_period_time = 0;
  420. }
  421. }
  422. /*
  423. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  424. * registered backing devices, which, for obvious reasons, can not
  425. * exceed 100%.
  426. */
  427. static unsigned int bdi_min_ratio;
  428. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  429. {
  430. int ret = 0;
  431. spin_lock_bh(&bdi_lock);
  432. if (min_ratio > bdi->max_ratio) {
  433. ret = -EINVAL;
  434. } else {
  435. min_ratio -= bdi->min_ratio;
  436. if (bdi_min_ratio + min_ratio < 100) {
  437. bdi_min_ratio += min_ratio;
  438. bdi->min_ratio += min_ratio;
  439. } else {
  440. ret = -EINVAL;
  441. }
  442. }
  443. spin_unlock_bh(&bdi_lock);
  444. return ret;
  445. }
  446. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  447. {
  448. int ret = 0;
  449. if (max_ratio > 100)
  450. return -EINVAL;
  451. spin_lock_bh(&bdi_lock);
  452. if (bdi->min_ratio > max_ratio) {
  453. ret = -EINVAL;
  454. } else {
  455. bdi->max_ratio = max_ratio;
  456. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  457. }
  458. spin_unlock_bh(&bdi_lock);
  459. return ret;
  460. }
  461. EXPORT_SYMBOL(bdi_set_max_ratio);
  462. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  463. unsigned long bg_thresh)
  464. {
  465. return (thresh + bg_thresh) / 2;
  466. }
  467. static unsigned long hard_dirty_limit(unsigned long thresh)
  468. {
  469. return max(thresh, global_dirty_limit);
  470. }
  471. /**
  472. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  473. * @bdi: the backing_dev_info to query
  474. * @dirty: global dirty limit in pages
  475. *
  476. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  477. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  478. *
  479. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  480. * when sleeping max_pause per page is not enough to keep the dirty pages under
  481. * control. For example, when the device is completely stalled due to some error
  482. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  483. * In the other normal situations, it acts more gently by throttling the tasks
  484. * more (rather than completely block them) when the bdi dirty pages go high.
  485. *
  486. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  487. * - starving fast devices
  488. * - piling up dirty pages (that will take long time to sync) on slow devices
  489. *
  490. * The bdi's share of dirty limit will be adapting to its throughput and
  491. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  492. */
  493. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  494. {
  495. u64 bdi_dirty;
  496. long numerator, denominator;
  497. /*
  498. * Calculate this BDI's share of the dirty ratio.
  499. */
  500. bdi_writeout_fraction(bdi, &numerator, &denominator);
  501. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  502. bdi_dirty *= numerator;
  503. do_div(bdi_dirty, denominator);
  504. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  505. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  506. bdi_dirty = dirty * bdi->max_ratio / 100;
  507. return bdi_dirty;
  508. }
  509. /*
  510. * Dirty position control.
  511. *
  512. * (o) global/bdi setpoints
  513. *
  514. * We want the dirty pages be balanced around the global/bdi setpoints.
  515. * When the number of dirty pages is higher/lower than the setpoint, the
  516. * dirty position control ratio (and hence task dirty ratelimit) will be
  517. * decreased/increased to bring the dirty pages back to the setpoint.
  518. *
  519. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  520. *
  521. * if (dirty < setpoint) scale up pos_ratio
  522. * if (dirty > setpoint) scale down pos_ratio
  523. *
  524. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  525. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  526. *
  527. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  528. *
  529. * (o) global control line
  530. *
  531. * ^ pos_ratio
  532. * |
  533. * | |<===== global dirty control scope ======>|
  534. * 2.0 .............*
  535. * | .*
  536. * | . *
  537. * | . *
  538. * | . *
  539. * | . *
  540. * | . *
  541. * 1.0 ................................*
  542. * | . . *
  543. * | . . *
  544. * | . . *
  545. * | . . *
  546. * | . . *
  547. * 0 +------------.------------------.----------------------*------------->
  548. * freerun^ setpoint^ limit^ dirty pages
  549. *
  550. * (o) bdi control line
  551. *
  552. * ^ pos_ratio
  553. * |
  554. * | *
  555. * | *
  556. * | *
  557. * | *
  558. * | * |<=========== span ============>|
  559. * 1.0 .......................*
  560. * | . *
  561. * | . *
  562. * | . *
  563. * | . *
  564. * | . *
  565. * | . *
  566. * | . *
  567. * | . *
  568. * | . *
  569. * | . *
  570. * | . *
  571. * 1/4 ...............................................* * * * * * * * * * * *
  572. * | . .
  573. * | . .
  574. * | . .
  575. * 0 +----------------------.-------------------------------.------------->
  576. * bdi_setpoint^ x_intercept^
  577. *
  578. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  579. * be smoothly throttled down to normal if it starts high in situations like
  580. * - start writing to a slow SD card and a fast disk at the same time. The SD
  581. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  582. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  583. */
  584. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  585. unsigned long thresh,
  586. unsigned long bg_thresh,
  587. unsigned long dirty,
  588. unsigned long bdi_thresh,
  589. unsigned long bdi_dirty)
  590. {
  591. unsigned long write_bw = bdi->avg_write_bandwidth;
  592. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  593. unsigned long limit = hard_dirty_limit(thresh);
  594. unsigned long x_intercept;
  595. unsigned long setpoint; /* dirty pages' target balance point */
  596. unsigned long bdi_setpoint;
  597. unsigned long span;
  598. long long pos_ratio; /* for scaling up/down the rate limit */
  599. long x;
  600. if (unlikely(dirty >= limit))
  601. return 0;
  602. /*
  603. * global setpoint
  604. *
  605. * setpoint - dirty 3
  606. * f(dirty) := 1.0 + (----------------)
  607. * limit - setpoint
  608. *
  609. * it's a 3rd order polynomial that subjects to
  610. *
  611. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  612. * (2) f(setpoint) = 1.0 => the balance point
  613. * (3) f(limit) = 0 => the hard limit
  614. * (4) df/dx <= 0 => negative feedback control
  615. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  616. * => fast response on large errors; small oscillation near setpoint
  617. */
  618. setpoint = (freerun + limit) / 2;
  619. x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  620. limit - setpoint + 1);
  621. pos_ratio = x;
  622. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  623. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  624. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  625. /*
  626. * We have computed basic pos_ratio above based on global situation. If
  627. * the bdi is over/under its share of dirty pages, we want to scale
  628. * pos_ratio further down/up. That is done by the following mechanism.
  629. */
  630. /*
  631. * bdi setpoint
  632. *
  633. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  634. *
  635. * x_intercept - bdi_dirty
  636. * := --------------------------
  637. * x_intercept - bdi_setpoint
  638. *
  639. * The main bdi control line is a linear function that subjects to
  640. *
  641. * (1) f(bdi_setpoint) = 1.0
  642. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  643. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  644. *
  645. * For single bdi case, the dirty pages are observed to fluctuate
  646. * regularly within range
  647. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  648. * for various filesystems, where (2) can yield in a reasonable 12.5%
  649. * fluctuation range for pos_ratio.
  650. *
  651. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  652. * own size, so move the slope over accordingly and choose a slope that
  653. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  654. */
  655. if (unlikely(bdi_thresh > thresh))
  656. bdi_thresh = thresh;
  657. /*
  658. * It's very possible that bdi_thresh is close to 0 not because the
  659. * device is slow, but that it has remained inactive for long time.
  660. * Honour such devices a reasonable good (hopefully IO efficient)
  661. * threshold, so that the occasional writes won't be blocked and active
  662. * writes can rampup the threshold quickly.
  663. */
  664. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  665. /*
  666. * scale global setpoint to bdi's:
  667. * bdi_setpoint = setpoint * bdi_thresh / thresh
  668. */
  669. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  670. bdi_setpoint = setpoint * (u64)x >> 16;
  671. /*
  672. * Use span=(8*write_bw) in single bdi case as indicated by
  673. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  674. *
  675. * bdi_thresh thresh - bdi_thresh
  676. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  677. * thresh thresh
  678. */
  679. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  680. x_intercept = bdi_setpoint + span;
  681. if (bdi_dirty < x_intercept - span / 4) {
  682. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  683. x_intercept - bdi_setpoint + 1);
  684. } else
  685. pos_ratio /= 4;
  686. /*
  687. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  688. * It may push the desired control point of global dirty pages higher
  689. * than setpoint.
  690. */
  691. x_intercept = bdi_thresh / 2;
  692. if (bdi_dirty < x_intercept) {
  693. if (bdi_dirty > x_intercept / 8)
  694. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  695. else
  696. pos_ratio *= 8;
  697. }
  698. return pos_ratio;
  699. }
  700. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  701. unsigned long elapsed,
  702. unsigned long written)
  703. {
  704. const unsigned long period = roundup_pow_of_two(3 * HZ);
  705. unsigned long avg = bdi->avg_write_bandwidth;
  706. unsigned long old = bdi->write_bandwidth;
  707. u64 bw;
  708. /*
  709. * bw = written * HZ / elapsed
  710. *
  711. * bw * elapsed + write_bandwidth * (period - elapsed)
  712. * write_bandwidth = ---------------------------------------------------
  713. * period
  714. */
  715. bw = written - bdi->written_stamp;
  716. bw *= HZ;
  717. if (unlikely(elapsed > period)) {
  718. do_div(bw, elapsed);
  719. avg = bw;
  720. goto out;
  721. }
  722. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  723. bw >>= ilog2(period);
  724. /*
  725. * one more level of smoothing, for filtering out sudden spikes
  726. */
  727. if (avg > old && old >= (unsigned long)bw)
  728. avg -= (avg - old) >> 3;
  729. if (avg < old && old <= (unsigned long)bw)
  730. avg += (old - avg) >> 3;
  731. out:
  732. bdi->write_bandwidth = bw;
  733. bdi->avg_write_bandwidth = avg;
  734. }
  735. /*
  736. * The global dirtyable memory and dirty threshold could be suddenly knocked
  737. * down by a large amount (eg. on the startup of KVM in a swapless system).
  738. * This may throw the system into deep dirty exceeded state and throttle
  739. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  740. * global_dirty_limit for tracking slowly down to the knocked down dirty
  741. * threshold.
  742. */
  743. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  744. {
  745. unsigned long limit = global_dirty_limit;
  746. /*
  747. * Follow up in one step.
  748. */
  749. if (limit < thresh) {
  750. limit = thresh;
  751. goto update;
  752. }
  753. /*
  754. * Follow down slowly. Use the higher one as the target, because thresh
  755. * may drop below dirty. This is exactly the reason to introduce
  756. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  757. */
  758. thresh = max(thresh, dirty);
  759. if (limit > thresh) {
  760. limit -= (limit - thresh) >> 5;
  761. goto update;
  762. }
  763. return;
  764. update:
  765. global_dirty_limit = limit;
  766. }
  767. static void global_update_bandwidth(unsigned long thresh,
  768. unsigned long dirty,
  769. unsigned long now)
  770. {
  771. static DEFINE_SPINLOCK(dirty_lock);
  772. static unsigned long update_time;
  773. /*
  774. * check locklessly first to optimize away locking for the most time
  775. */
  776. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  777. return;
  778. spin_lock(&dirty_lock);
  779. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  780. update_dirty_limit(thresh, dirty);
  781. update_time = now;
  782. }
  783. spin_unlock(&dirty_lock);
  784. }
  785. /*
  786. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  787. *
  788. * Normal bdi tasks will be curbed at or below it in long term.
  789. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  790. */
  791. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  792. unsigned long thresh,
  793. unsigned long bg_thresh,
  794. unsigned long dirty,
  795. unsigned long bdi_thresh,
  796. unsigned long bdi_dirty,
  797. unsigned long dirtied,
  798. unsigned long elapsed)
  799. {
  800. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  801. unsigned long limit = hard_dirty_limit(thresh);
  802. unsigned long setpoint = (freerun + limit) / 2;
  803. unsigned long write_bw = bdi->avg_write_bandwidth;
  804. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  805. unsigned long dirty_rate;
  806. unsigned long task_ratelimit;
  807. unsigned long balanced_dirty_ratelimit;
  808. unsigned long pos_ratio;
  809. unsigned long step;
  810. unsigned long x;
  811. /*
  812. * The dirty rate will match the writeout rate in long term, except
  813. * when dirty pages are truncated by userspace or re-dirtied by FS.
  814. */
  815. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  816. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  817. bdi_thresh, bdi_dirty);
  818. /*
  819. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  820. */
  821. task_ratelimit = (u64)dirty_ratelimit *
  822. pos_ratio >> RATELIMIT_CALC_SHIFT;
  823. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  824. /*
  825. * A linear estimation of the "balanced" throttle rate. The theory is,
  826. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  827. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  828. * formula will yield the balanced rate limit (write_bw / N).
  829. *
  830. * Note that the expanded form is not a pure rate feedback:
  831. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  832. * but also takes pos_ratio into account:
  833. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  834. *
  835. * (1) is not realistic because pos_ratio also takes part in balancing
  836. * the dirty rate. Consider the state
  837. * pos_ratio = 0.5 (3)
  838. * rate = 2 * (write_bw / N) (4)
  839. * If (1) is used, it will stuck in that state! Because each dd will
  840. * be throttled at
  841. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  842. * yielding
  843. * dirty_rate = N * task_ratelimit = write_bw (6)
  844. * put (6) into (1) we get
  845. * rate_(i+1) = rate_(i) (7)
  846. *
  847. * So we end up using (2) to always keep
  848. * rate_(i+1) ~= (write_bw / N) (8)
  849. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  850. * pos_ratio is able to drive itself to 1.0, which is not only where
  851. * the dirty count meet the setpoint, but also where the slope of
  852. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  853. */
  854. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  855. dirty_rate | 1);
  856. /*
  857. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  858. */
  859. if (unlikely(balanced_dirty_ratelimit > write_bw))
  860. balanced_dirty_ratelimit = write_bw;
  861. /*
  862. * We could safely do this and return immediately:
  863. *
  864. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  865. *
  866. * However to get a more stable dirty_ratelimit, the below elaborated
  867. * code makes use of task_ratelimit to filter out singular points and
  868. * limit the step size.
  869. *
  870. * The below code essentially only uses the relative value of
  871. *
  872. * task_ratelimit - dirty_ratelimit
  873. * = (pos_ratio - 1) * dirty_ratelimit
  874. *
  875. * which reflects the direction and size of dirty position error.
  876. */
  877. /*
  878. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  879. * task_ratelimit is on the same side of dirty_ratelimit, too.
  880. * For example, when
  881. * - dirty_ratelimit > balanced_dirty_ratelimit
  882. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  883. * lowering dirty_ratelimit will help meet both the position and rate
  884. * control targets. Otherwise, don't update dirty_ratelimit if it will
  885. * only help meet the rate target. After all, what the users ultimately
  886. * feel and care are stable dirty rate and small position error.
  887. *
  888. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  889. * and filter out the singular points of balanced_dirty_ratelimit. Which
  890. * keeps jumping around randomly and can even leap far away at times
  891. * due to the small 200ms estimation period of dirty_rate (we want to
  892. * keep that period small to reduce time lags).
  893. */
  894. step = 0;
  895. if (dirty < setpoint) {
  896. x = min(bdi->balanced_dirty_ratelimit,
  897. min(balanced_dirty_ratelimit, task_ratelimit));
  898. if (dirty_ratelimit < x)
  899. step = x - dirty_ratelimit;
  900. } else {
  901. x = max(bdi->balanced_dirty_ratelimit,
  902. max(balanced_dirty_ratelimit, task_ratelimit));
  903. if (dirty_ratelimit > x)
  904. step = dirty_ratelimit - x;
  905. }
  906. /*
  907. * Don't pursue 100% rate matching. It's impossible since the balanced
  908. * rate itself is constantly fluctuating. So decrease the track speed
  909. * when it gets close to the target. Helps eliminate pointless tremors.
  910. */
  911. step >>= dirty_ratelimit / (2 * step + 1);
  912. /*
  913. * Limit the tracking speed to avoid overshooting.
  914. */
  915. step = (step + 7) / 8;
  916. if (dirty_ratelimit < balanced_dirty_ratelimit)
  917. dirty_ratelimit += step;
  918. else
  919. dirty_ratelimit -= step;
  920. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  921. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  922. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  923. }
  924. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  925. unsigned long thresh,
  926. unsigned long bg_thresh,
  927. unsigned long dirty,
  928. unsigned long bdi_thresh,
  929. unsigned long bdi_dirty,
  930. unsigned long start_time)
  931. {
  932. unsigned long now = jiffies;
  933. unsigned long elapsed = now - bdi->bw_time_stamp;
  934. unsigned long dirtied;
  935. unsigned long written;
  936. /*
  937. * rate-limit, only update once every 200ms.
  938. */
  939. if (elapsed < BANDWIDTH_INTERVAL)
  940. return;
  941. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  942. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  943. /*
  944. * Skip quiet periods when disk bandwidth is under-utilized.
  945. * (at least 1s idle time between two flusher runs)
  946. */
  947. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  948. goto snapshot;
  949. if (thresh) {
  950. global_update_bandwidth(thresh, dirty, now);
  951. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  952. bdi_thresh, bdi_dirty,
  953. dirtied, elapsed);
  954. }
  955. bdi_update_write_bandwidth(bdi, elapsed, written);
  956. snapshot:
  957. bdi->dirtied_stamp = dirtied;
  958. bdi->written_stamp = written;
  959. bdi->bw_time_stamp = now;
  960. }
  961. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  962. unsigned long thresh,
  963. unsigned long bg_thresh,
  964. unsigned long dirty,
  965. unsigned long bdi_thresh,
  966. unsigned long bdi_dirty,
  967. unsigned long start_time)
  968. {
  969. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  970. return;
  971. spin_lock(&bdi->wb.list_lock);
  972. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  973. bdi_thresh, bdi_dirty, start_time);
  974. spin_unlock(&bdi->wb.list_lock);
  975. }
  976. /*
  977. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  978. * will look to see if it needs to start dirty throttling.
  979. *
  980. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  981. * global_page_state() too often. So scale it near-sqrt to the safety margin
  982. * (the number of pages we may dirty without exceeding the dirty limits).
  983. */
  984. static unsigned long dirty_poll_interval(unsigned long dirty,
  985. unsigned long thresh)
  986. {
  987. if (thresh > dirty)
  988. return 1UL << (ilog2(thresh - dirty) >> 1);
  989. return 1;
  990. }
  991. static long bdi_max_pause(struct backing_dev_info *bdi,
  992. unsigned long bdi_dirty)
  993. {
  994. long bw = bdi->avg_write_bandwidth;
  995. long t;
  996. /*
  997. * Limit pause time for small memory systems. If sleeping for too long
  998. * time, a small pool of dirty/writeback pages may go empty and disk go
  999. * idle.
  1000. *
  1001. * 8 serves as the safety ratio.
  1002. */
  1003. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1004. t++;
  1005. return min_t(long, t, MAX_PAUSE);
  1006. }
  1007. static long bdi_min_pause(struct backing_dev_info *bdi,
  1008. long max_pause,
  1009. unsigned long task_ratelimit,
  1010. unsigned long dirty_ratelimit,
  1011. int *nr_dirtied_pause)
  1012. {
  1013. long hi = ilog2(bdi->avg_write_bandwidth);
  1014. long lo = ilog2(bdi->dirty_ratelimit);
  1015. long t; /* target pause */
  1016. long pause; /* estimated next pause */
  1017. int pages; /* target nr_dirtied_pause */
  1018. /* target for 10ms pause on 1-dd case */
  1019. t = max(1, HZ / 100);
  1020. /*
  1021. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1022. * overheads.
  1023. *
  1024. * (N * 10ms) on 2^N concurrent tasks.
  1025. */
  1026. if (hi > lo)
  1027. t += (hi - lo) * (10 * HZ) / 1024;
  1028. /*
  1029. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1030. * on the much more stable dirty_ratelimit. However the next pause time
  1031. * will be computed based on task_ratelimit and the two rate limits may
  1032. * depart considerably at some time. Especially if task_ratelimit goes
  1033. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1034. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1035. * result task_ratelimit won't be executed faithfully, which could
  1036. * eventually bring down dirty_ratelimit.
  1037. *
  1038. * We apply two rules to fix it up:
  1039. * 1) try to estimate the next pause time and if necessary, use a lower
  1040. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1041. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1042. * 2) limit the target pause time to max_pause/2, so that the normal
  1043. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1044. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1045. */
  1046. t = min(t, 1 + max_pause / 2);
  1047. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1048. /*
  1049. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1050. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1051. * When the 16 consecutive reads are often interrupted by some dirty
  1052. * throttling pause during the async writes, cfq will go into idles
  1053. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1054. * until reaches DIRTY_POLL_THRESH=32 pages.
  1055. */
  1056. if (pages < DIRTY_POLL_THRESH) {
  1057. t = max_pause;
  1058. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1059. if (pages > DIRTY_POLL_THRESH) {
  1060. pages = DIRTY_POLL_THRESH;
  1061. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1062. }
  1063. }
  1064. pause = HZ * pages / (task_ratelimit + 1);
  1065. if (pause > max_pause) {
  1066. t = max_pause;
  1067. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1068. }
  1069. *nr_dirtied_pause = pages;
  1070. /*
  1071. * The minimal pause time will normally be half the target pause time.
  1072. */
  1073. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1074. }
  1075. /*
  1076. * balance_dirty_pages() must be called by processes which are generating dirty
  1077. * data. It looks at the number of dirty pages in the machine and will force
  1078. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1079. * If we're over `background_thresh' then the writeback threads are woken to
  1080. * perform some writeout.
  1081. */
  1082. static void balance_dirty_pages(struct address_space *mapping,
  1083. unsigned long pages_dirtied)
  1084. {
  1085. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1086. unsigned long bdi_reclaimable;
  1087. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1088. unsigned long bdi_dirty;
  1089. unsigned long freerun;
  1090. unsigned long background_thresh;
  1091. unsigned long dirty_thresh;
  1092. unsigned long bdi_thresh;
  1093. long period;
  1094. long pause;
  1095. long max_pause;
  1096. long min_pause;
  1097. int nr_dirtied_pause;
  1098. bool dirty_exceeded = false;
  1099. unsigned long task_ratelimit;
  1100. unsigned long dirty_ratelimit;
  1101. unsigned long pos_ratio;
  1102. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1103. unsigned long start_time = jiffies;
  1104. for (;;) {
  1105. unsigned long now = jiffies;
  1106. /*
  1107. * Unstable writes are a feature of certain networked
  1108. * filesystems (i.e. NFS) in which data may have been
  1109. * written to the server's write cache, but has not yet
  1110. * been flushed to permanent storage.
  1111. */
  1112. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1113. global_page_state(NR_UNSTABLE_NFS);
  1114. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1115. global_dirty_limits(&background_thresh, &dirty_thresh);
  1116. /*
  1117. * Throttle it only when the background writeback cannot
  1118. * catch-up. This avoids (excessively) small writeouts
  1119. * when the bdi limits are ramping up.
  1120. */
  1121. freerun = dirty_freerun_ceiling(dirty_thresh,
  1122. background_thresh);
  1123. if (nr_dirty <= freerun) {
  1124. current->dirty_paused_when = now;
  1125. current->nr_dirtied = 0;
  1126. current->nr_dirtied_pause =
  1127. dirty_poll_interval(nr_dirty, dirty_thresh);
  1128. break;
  1129. }
  1130. if (unlikely(!writeback_in_progress(bdi)))
  1131. bdi_start_background_writeback(bdi);
  1132. /*
  1133. * bdi_thresh is not treated as some limiting factor as
  1134. * dirty_thresh, due to reasons
  1135. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1136. * - in a system with HDD and USB key, the USB key may somehow
  1137. * go into state (bdi_dirty >> bdi_thresh) either because
  1138. * bdi_dirty starts high, or because bdi_thresh drops low.
  1139. * In this case we don't want to hard throttle the USB key
  1140. * dirtiers for 100 seconds until bdi_dirty drops under
  1141. * bdi_thresh. Instead the auxiliary bdi control line in
  1142. * bdi_position_ratio() will let the dirtier task progress
  1143. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1144. */
  1145. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1146. /*
  1147. * In order to avoid the stacked BDI deadlock we need
  1148. * to ensure we accurately count the 'dirty' pages when
  1149. * the threshold is low.
  1150. *
  1151. * Otherwise it would be possible to get thresh+n pages
  1152. * reported dirty, even though there are thresh-m pages
  1153. * actually dirty; with m+n sitting in the percpu
  1154. * deltas.
  1155. */
  1156. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1157. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1158. bdi_dirty = bdi_reclaimable +
  1159. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1160. } else {
  1161. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1162. bdi_dirty = bdi_reclaimable +
  1163. bdi_stat(bdi, BDI_WRITEBACK);
  1164. }
  1165. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1166. (nr_dirty > dirty_thresh);
  1167. if (dirty_exceeded && !bdi->dirty_exceeded)
  1168. bdi->dirty_exceeded = 1;
  1169. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1170. nr_dirty, bdi_thresh, bdi_dirty,
  1171. start_time);
  1172. dirty_ratelimit = bdi->dirty_ratelimit;
  1173. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1174. background_thresh, nr_dirty,
  1175. bdi_thresh, bdi_dirty);
  1176. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1177. RATELIMIT_CALC_SHIFT;
  1178. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1179. min_pause = bdi_min_pause(bdi, max_pause,
  1180. task_ratelimit, dirty_ratelimit,
  1181. &nr_dirtied_pause);
  1182. if (unlikely(task_ratelimit == 0)) {
  1183. period = max_pause;
  1184. pause = max_pause;
  1185. goto pause;
  1186. }
  1187. period = HZ * pages_dirtied / task_ratelimit;
  1188. pause = period;
  1189. if (current->dirty_paused_when)
  1190. pause -= now - current->dirty_paused_when;
  1191. /*
  1192. * For less than 1s think time (ext3/4 may block the dirtier
  1193. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1194. * however at much less frequency), try to compensate it in
  1195. * future periods by updating the virtual time; otherwise just
  1196. * do a reset, as it may be a light dirtier.
  1197. */
  1198. if (pause < min_pause) {
  1199. trace_balance_dirty_pages(bdi,
  1200. dirty_thresh,
  1201. background_thresh,
  1202. nr_dirty,
  1203. bdi_thresh,
  1204. bdi_dirty,
  1205. dirty_ratelimit,
  1206. task_ratelimit,
  1207. pages_dirtied,
  1208. period,
  1209. min(pause, 0L),
  1210. start_time);
  1211. if (pause < -HZ) {
  1212. current->dirty_paused_when = now;
  1213. current->nr_dirtied = 0;
  1214. } else if (period) {
  1215. current->dirty_paused_when += period;
  1216. current->nr_dirtied = 0;
  1217. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1218. current->nr_dirtied_pause += pages_dirtied;
  1219. break;
  1220. }
  1221. if (unlikely(pause > max_pause)) {
  1222. /* for occasional dropped task_ratelimit */
  1223. now += min(pause - max_pause, max_pause);
  1224. pause = max_pause;
  1225. }
  1226. pause:
  1227. trace_balance_dirty_pages(bdi,
  1228. dirty_thresh,
  1229. background_thresh,
  1230. nr_dirty,
  1231. bdi_thresh,
  1232. bdi_dirty,
  1233. dirty_ratelimit,
  1234. task_ratelimit,
  1235. pages_dirtied,
  1236. period,
  1237. pause,
  1238. start_time);
  1239. __set_current_state(TASK_KILLABLE);
  1240. io_schedule_timeout(pause);
  1241. current->dirty_paused_when = now + pause;
  1242. current->nr_dirtied = 0;
  1243. current->nr_dirtied_pause = nr_dirtied_pause;
  1244. /*
  1245. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1246. * also keep "1000+ dd on a slow USB stick" under control.
  1247. */
  1248. if (task_ratelimit)
  1249. break;
  1250. /*
  1251. * In the case of an unresponding NFS server and the NFS dirty
  1252. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1253. * to go through, so that tasks on them still remain responsive.
  1254. *
  1255. * In theory 1 page is enough to keep the comsumer-producer
  1256. * pipe going: the flusher cleans 1 page => the task dirties 1
  1257. * more page. However bdi_dirty has accounting errors. So use
  1258. * the larger and more IO friendly bdi_stat_error.
  1259. */
  1260. if (bdi_dirty <= bdi_stat_error(bdi))
  1261. break;
  1262. if (fatal_signal_pending(current))
  1263. break;
  1264. }
  1265. if (!dirty_exceeded && bdi->dirty_exceeded)
  1266. bdi->dirty_exceeded = 0;
  1267. if (writeback_in_progress(bdi))
  1268. return;
  1269. /*
  1270. * In laptop mode, we wait until hitting the higher threshold before
  1271. * starting background writeout, and then write out all the way down
  1272. * to the lower threshold. So slow writers cause minimal disk activity.
  1273. *
  1274. * In normal mode, we start background writeout at the lower
  1275. * background_thresh, to keep the amount of dirty memory low.
  1276. */
  1277. if (laptop_mode)
  1278. return;
  1279. if (nr_reclaimable > background_thresh)
  1280. bdi_start_background_writeback(bdi);
  1281. }
  1282. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1283. {
  1284. if (set_page_dirty(page) || page_mkwrite) {
  1285. struct address_space *mapping = page_mapping(page);
  1286. if (mapping)
  1287. balance_dirty_pages_ratelimited(mapping);
  1288. }
  1289. }
  1290. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1291. /*
  1292. * Normal tasks are throttled by
  1293. * loop {
  1294. * dirty tsk->nr_dirtied_pause pages;
  1295. * take a snap in balance_dirty_pages();
  1296. * }
  1297. * However there is a worst case. If every task exit immediately when dirtied
  1298. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1299. * called to throttle the page dirties. The solution is to save the not yet
  1300. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1301. * randomly into the running tasks. This works well for the above worst case,
  1302. * as the new task will pick up and accumulate the old task's leaked dirty
  1303. * count and eventually get throttled.
  1304. */
  1305. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1306. /**
  1307. * balance_dirty_pages_ratelimited - balance dirty memory state
  1308. * @mapping: address_space which was dirtied
  1309. *
  1310. * Processes which are dirtying memory should call in here once for each page
  1311. * which was newly dirtied. The function will periodically check the system's
  1312. * dirty state and will initiate writeback if needed.
  1313. *
  1314. * On really big machines, get_writeback_state is expensive, so try to avoid
  1315. * calling it too often (ratelimiting). But once we're over the dirty memory
  1316. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1317. * from overshooting the limit by (ratelimit_pages) each.
  1318. */
  1319. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1320. {
  1321. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1322. int ratelimit;
  1323. int *p;
  1324. if (!bdi_cap_account_dirty(bdi))
  1325. return;
  1326. ratelimit = current->nr_dirtied_pause;
  1327. if (bdi->dirty_exceeded)
  1328. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1329. preempt_disable();
  1330. /*
  1331. * This prevents one CPU to accumulate too many dirtied pages without
  1332. * calling into balance_dirty_pages(), which can happen when there are
  1333. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1334. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1335. */
  1336. p = &__get_cpu_var(bdp_ratelimits);
  1337. if (unlikely(current->nr_dirtied >= ratelimit))
  1338. *p = 0;
  1339. else if (unlikely(*p >= ratelimit_pages)) {
  1340. *p = 0;
  1341. ratelimit = 0;
  1342. }
  1343. /*
  1344. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1345. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1346. * the dirty throttling and livelock other long-run dirtiers.
  1347. */
  1348. p = &__get_cpu_var(dirty_throttle_leaks);
  1349. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1350. unsigned long nr_pages_dirtied;
  1351. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1352. *p -= nr_pages_dirtied;
  1353. current->nr_dirtied += nr_pages_dirtied;
  1354. }
  1355. preempt_enable();
  1356. if (unlikely(current->nr_dirtied >= ratelimit))
  1357. balance_dirty_pages(mapping, current->nr_dirtied);
  1358. }
  1359. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1360. void throttle_vm_writeout(gfp_t gfp_mask)
  1361. {
  1362. unsigned long background_thresh;
  1363. unsigned long dirty_thresh;
  1364. for ( ; ; ) {
  1365. global_dirty_limits(&background_thresh, &dirty_thresh);
  1366. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1367. /*
  1368. * Boost the allowable dirty threshold a bit for page
  1369. * allocators so they don't get DoS'ed by heavy writers
  1370. */
  1371. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1372. if (global_page_state(NR_UNSTABLE_NFS) +
  1373. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1374. break;
  1375. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1376. /*
  1377. * The caller might hold locks which can prevent IO completion
  1378. * or progress in the filesystem. So we cannot just sit here
  1379. * waiting for IO to complete.
  1380. */
  1381. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1382. break;
  1383. }
  1384. }
  1385. /*
  1386. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1387. */
  1388. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1389. void __user *buffer, size_t *length, loff_t *ppos)
  1390. {
  1391. proc_dointvec(table, write, buffer, length, ppos);
  1392. return 0;
  1393. }
  1394. #ifdef CONFIG_BLOCK
  1395. void laptop_mode_timer_fn(unsigned long data)
  1396. {
  1397. struct request_queue *q = (struct request_queue *)data;
  1398. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1399. global_page_state(NR_UNSTABLE_NFS);
  1400. /*
  1401. * We want to write everything out, not just down to the dirty
  1402. * threshold
  1403. */
  1404. if (bdi_has_dirty_io(&q->backing_dev_info))
  1405. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1406. WB_REASON_LAPTOP_TIMER);
  1407. }
  1408. /*
  1409. * We've spun up the disk and we're in laptop mode: schedule writeback
  1410. * of all dirty data a few seconds from now. If the flush is already scheduled
  1411. * then push it back - the user is still using the disk.
  1412. */
  1413. void laptop_io_completion(struct backing_dev_info *info)
  1414. {
  1415. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1416. }
  1417. /*
  1418. * We're in laptop mode and we've just synced. The sync's writes will have
  1419. * caused another writeback to be scheduled by laptop_io_completion.
  1420. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1421. */
  1422. void laptop_sync_completion(void)
  1423. {
  1424. struct backing_dev_info *bdi;
  1425. rcu_read_lock();
  1426. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1427. del_timer(&bdi->laptop_mode_wb_timer);
  1428. rcu_read_unlock();
  1429. }
  1430. #endif
  1431. /*
  1432. * If ratelimit_pages is too high then we can get into dirty-data overload
  1433. * if a large number of processes all perform writes at the same time.
  1434. * If it is too low then SMP machines will call the (expensive)
  1435. * get_writeback_state too often.
  1436. *
  1437. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1438. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1439. * thresholds.
  1440. */
  1441. void writeback_set_ratelimit(void)
  1442. {
  1443. unsigned long background_thresh;
  1444. unsigned long dirty_thresh;
  1445. global_dirty_limits(&background_thresh, &dirty_thresh);
  1446. global_dirty_limit = dirty_thresh;
  1447. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1448. if (ratelimit_pages < 16)
  1449. ratelimit_pages = 16;
  1450. }
  1451. static int __cpuinit
  1452. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1453. void *hcpu)
  1454. {
  1455. switch (action & ~CPU_TASKS_FROZEN) {
  1456. case CPU_ONLINE:
  1457. case CPU_DEAD:
  1458. writeback_set_ratelimit();
  1459. return NOTIFY_OK;
  1460. default:
  1461. return NOTIFY_DONE;
  1462. }
  1463. }
  1464. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1465. .notifier_call = ratelimit_handler,
  1466. .next = NULL,
  1467. };
  1468. /*
  1469. * Called early on to tune the page writeback dirty limits.
  1470. *
  1471. * We used to scale dirty pages according to how total memory
  1472. * related to pages that could be allocated for buffers (by
  1473. * comparing nr_free_buffer_pages() to vm_total_pages.
  1474. *
  1475. * However, that was when we used "dirty_ratio" to scale with
  1476. * all memory, and we don't do that any more. "dirty_ratio"
  1477. * is now applied to total non-HIGHPAGE memory (by subtracting
  1478. * totalhigh_pages from vm_total_pages), and as such we can't
  1479. * get into the old insane situation any more where we had
  1480. * large amounts of dirty pages compared to a small amount of
  1481. * non-HIGHMEM memory.
  1482. *
  1483. * But we might still want to scale the dirty_ratio by how
  1484. * much memory the box has..
  1485. */
  1486. void __init page_writeback_init(void)
  1487. {
  1488. writeback_set_ratelimit();
  1489. register_cpu_notifier(&ratelimit_nb);
  1490. fprop_global_init(&writeout_completions);
  1491. }
  1492. /**
  1493. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1494. * @mapping: address space structure to write
  1495. * @start: starting page index
  1496. * @end: ending page index (inclusive)
  1497. *
  1498. * This function scans the page range from @start to @end (inclusive) and tags
  1499. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1500. * that write_cache_pages (or whoever calls this function) will then use
  1501. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1502. * used to avoid livelocking of writeback by a process steadily creating new
  1503. * dirty pages in the file (thus it is important for this function to be quick
  1504. * so that it can tag pages faster than a dirtying process can create them).
  1505. */
  1506. /*
  1507. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1508. */
  1509. void tag_pages_for_writeback(struct address_space *mapping,
  1510. pgoff_t start, pgoff_t end)
  1511. {
  1512. #define WRITEBACK_TAG_BATCH 4096
  1513. unsigned long tagged;
  1514. do {
  1515. spin_lock_irq(&mapping->tree_lock);
  1516. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1517. &start, end, WRITEBACK_TAG_BATCH,
  1518. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1519. spin_unlock_irq(&mapping->tree_lock);
  1520. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1521. cond_resched();
  1522. /* We check 'start' to handle wrapping when end == ~0UL */
  1523. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1524. }
  1525. EXPORT_SYMBOL(tag_pages_for_writeback);
  1526. /**
  1527. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1528. * @mapping: address space structure to write
  1529. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1530. * @writepage: function called for each page
  1531. * @data: data passed to writepage function
  1532. *
  1533. * If a page is already under I/O, write_cache_pages() skips it, even
  1534. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1535. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1536. * and msync() need to guarantee that all the data which was dirty at the time
  1537. * the call was made get new I/O started against them. If wbc->sync_mode is
  1538. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1539. * existing IO to complete.
  1540. *
  1541. * To avoid livelocks (when other process dirties new pages), we first tag
  1542. * pages which should be written back with TOWRITE tag and only then start
  1543. * writing them. For data-integrity sync we have to be careful so that we do
  1544. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1545. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1546. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1547. */
  1548. int write_cache_pages(struct address_space *mapping,
  1549. struct writeback_control *wbc, writepage_t writepage,
  1550. void *data)
  1551. {
  1552. int ret = 0;
  1553. int done = 0;
  1554. struct pagevec pvec;
  1555. int nr_pages;
  1556. pgoff_t uninitialized_var(writeback_index);
  1557. pgoff_t index;
  1558. pgoff_t end; /* Inclusive */
  1559. pgoff_t done_index;
  1560. int cycled;
  1561. int range_whole = 0;
  1562. int tag;
  1563. pagevec_init(&pvec, 0);
  1564. if (wbc->range_cyclic) {
  1565. writeback_index = mapping->writeback_index; /* prev offset */
  1566. index = writeback_index;
  1567. if (index == 0)
  1568. cycled = 1;
  1569. else
  1570. cycled = 0;
  1571. end = -1;
  1572. } else {
  1573. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1574. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1575. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1576. range_whole = 1;
  1577. cycled = 1; /* ignore range_cyclic tests */
  1578. }
  1579. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1580. tag = PAGECACHE_TAG_TOWRITE;
  1581. else
  1582. tag = PAGECACHE_TAG_DIRTY;
  1583. retry:
  1584. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1585. tag_pages_for_writeback(mapping, index, end);
  1586. done_index = index;
  1587. while (!done && (index <= end)) {
  1588. int i;
  1589. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1590. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1591. if (nr_pages == 0)
  1592. break;
  1593. for (i = 0; i < nr_pages; i++) {
  1594. struct page *page = pvec.pages[i];
  1595. /*
  1596. * At this point, the page may be truncated or
  1597. * invalidated (changing page->mapping to NULL), or
  1598. * even swizzled back from swapper_space to tmpfs file
  1599. * mapping. However, page->index will not change
  1600. * because we have a reference on the page.
  1601. */
  1602. if (page->index > end) {
  1603. /*
  1604. * can't be range_cyclic (1st pass) because
  1605. * end == -1 in that case.
  1606. */
  1607. done = 1;
  1608. break;
  1609. }
  1610. done_index = page->index;
  1611. lock_page(page);
  1612. /*
  1613. * Page truncated or invalidated. We can freely skip it
  1614. * then, even for data integrity operations: the page
  1615. * has disappeared concurrently, so there could be no
  1616. * real expectation of this data interity operation
  1617. * even if there is now a new, dirty page at the same
  1618. * pagecache address.
  1619. */
  1620. if (unlikely(page->mapping != mapping)) {
  1621. continue_unlock:
  1622. unlock_page(page);
  1623. continue;
  1624. }
  1625. if (!PageDirty(page)) {
  1626. /* someone wrote it for us */
  1627. goto continue_unlock;
  1628. }
  1629. if (PageWriteback(page)) {
  1630. if (wbc->sync_mode != WB_SYNC_NONE)
  1631. wait_on_page_writeback(page);
  1632. else
  1633. goto continue_unlock;
  1634. }
  1635. BUG_ON(PageWriteback(page));
  1636. if (!clear_page_dirty_for_io(page))
  1637. goto continue_unlock;
  1638. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1639. ret = (*writepage)(page, wbc, data);
  1640. if (unlikely(ret)) {
  1641. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1642. unlock_page(page);
  1643. ret = 0;
  1644. } else {
  1645. /*
  1646. * done_index is set past this page,
  1647. * so media errors will not choke
  1648. * background writeout for the entire
  1649. * file. This has consequences for
  1650. * range_cyclic semantics (ie. it may
  1651. * not be suitable for data integrity
  1652. * writeout).
  1653. */
  1654. done_index = page->index + 1;
  1655. done = 1;
  1656. break;
  1657. }
  1658. }
  1659. /*
  1660. * We stop writing back only if we are not doing
  1661. * integrity sync. In case of integrity sync we have to
  1662. * keep going until we have written all the pages
  1663. * we tagged for writeback prior to entering this loop.
  1664. */
  1665. if (--wbc->nr_to_write <= 0 &&
  1666. wbc->sync_mode == WB_SYNC_NONE) {
  1667. done = 1;
  1668. break;
  1669. }
  1670. }
  1671. pagevec_release(&pvec);
  1672. cond_resched();
  1673. }
  1674. if (!cycled && !done) {
  1675. /*
  1676. * range_cyclic:
  1677. * We hit the last page and there is more work to be done: wrap
  1678. * back to the start of the file
  1679. */
  1680. cycled = 1;
  1681. index = 0;
  1682. end = writeback_index - 1;
  1683. goto retry;
  1684. }
  1685. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1686. mapping->writeback_index = done_index;
  1687. return ret;
  1688. }
  1689. EXPORT_SYMBOL(write_cache_pages);
  1690. /*
  1691. * Function used by generic_writepages to call the real writepage
  1692. * function and set the mapping flags on error
  1693. */
  1694. static int __writepage(struct page *page, struct writeback_control *wbc,
  1695. void *data)
  1696. {
  1697. struct address_space *mapping = data;
  1698. int ret = mapping->a_ops->writepage(page, wbc);
  1699. mapping_set_error(mapping, ret);
  1700. return ret;
  1701. }
  1702. /**
  1703. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1704. * @mapping: address space structure to write
  1705. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1706. *
  1707. * This is a library function, which implements the writepages()
  1708. * address_space_operation.
  1709. */
  1710. int generic_writepages(struct address_space *mapping,
  1711. struct writeback_control *wbc)
  1712. {
  1713. struct blk_plug plug;
  1714. int ret;
  1715. /* deal with chardevs and other special file */
  1716. if (!mapping->a_ops->writepage)
  1717. return 0;
  1718. blk_start_plug(&plug);
  1719. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1720. blk_finish_plug(&plug);
  1721. return ret;
  1722. }
  1723. EXPORT_SYMBOL(generic_writepages);
  1724. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1725. {
  1726. int ret;
  1727. if (wbc->nr_to_write <= 0)
  1728. return 0;
  1729. if (mapping->a_ops->writepages)
  1730. ret = mapping->a_ops->writepages(mapping, wbc);
  1731. else
  1732. ret = generic_writepages(mapping, wbc);
  1733. return ret;
  1734. }
  1735. /**
  1736. * write_one_page - write out a single page and optionally wait on I/O
  1737. * @page: the page to write
  1738. * @wait: if true, wait on writeout
  1739. *
  1740. * The page must be locked by the caller and will be unlocked upon return.
  1741. *
  1742. * write_one_page() returns a negative error code if I/O failed.
  1743. */
  1744. int write_one_page(struct page *page, int wait)
  1745. {
  1746. struct address_space *mapping = page->mapping;
  1747. int ret = 0;
  1748. struct writeback_control wbc = {
  1749. .sync_mode = WB_SYNC_ALL,
  1750. .nr_to_write = 1,
  1751. };
  1752. BUG_ON(!PageLocked(page));
  1753. if (wait)
  1754. wait_on_page_writeback(page);
  1755. if (clear_page_dirty_for_io(page)) {
  1756. page_cache_get(page);
  1757. ret = mapping->a_ops->writepage(page, &wbc);
  1758. if (ret == 0 && wait) {
  1759. wait_on_page_writeback(page);
  1760. if (PageError(page))
  1761. ret = -EIO;
  1762. }
  1763. page_cache_release(page);
  1764. } else {
  1765. unlock_page(page);
  1766. }
  1767. return ret;
  1768. }
  1769. EXPORT_SYMBOL(write_one_page);
  1770. /*
  1771. * For address_spaces which do not use buffers nor write back.
  1772. */
  1773. int __set_page_dirty_no_writeback(struct page *page)
  1774. {
  1775. if (!PageDirty(page))
  1776. return !TestSetPageDirty(page);
  1777. return 0;
  1778. }
  1779. /*
  1780. * Helper function for set_page_dirty family.
  1781. * NOTE: This relies on being atomic wrt interrupts.
  1782. */
  1783. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1784. {
  1785. trace_writeback_dirty_page(page, mapping);
  1786. if (mapping_cap_account_dirty(mapping)) {
  1787. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1788. __inc_zone_page_state(page, NR_DIRTIED);
  1789. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1790. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1791. task_io_account_write(PAGE_CACHE_SIZE);
  1792. current->nr_dirtied++;
  1793. this_cpu_inc(bdp_ratelimits);
  1794. }
  1795. }
  1796. EXPORT_SYMBOL(account_page_dirtied);
  1797. /*
  1798. * Helper function for set_page_writeback family.
  1799. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1800. * wrt interrupts.
  1801. */
  1802. void account_page_writeback(struct page *page)
  1803. {
  1804. inc_zone_page_state(page, NR_WRITEBACK);
  1805. }
  1806. EXPORT_SYMBOL(account_page_writeback);
  1807. /*
  1808. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1809. * its radix tree.
  1810. *
  1811. * This is also used when a single buffer is being dirtied: we want to set the
  1812. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1813. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1814. *
  1815. * Most callers have locked the page, which pins the address_space in memory.
  1816. * But zap_pte_range() does not lock the page, however in that case the
  1817. * mapping is pinned by the vma's ->vm_file reference.
  1818. *
  1819. * We take care to handle the case where the page was truncated from the
  1820. * mapping by re-checking page_mapping() inside tree_lock.
  1821. */
  1822. int __set_page_dirty_nobuffers(struct page *page)
  1823. {
  1824. if (!TestSetPageDirty(page)) {
  1825. struct address_space *mapping = page_mapping(page);
  1826. struct address_space *mapping2;
  1827. if (!mapping)
  1828. return 1;
  1829. spin_lock_irq(&mapping->tree_lock);
  1830. mapping2 = page_mapping(page);
  1831. if (mapping2) { /* Race with truncate? */
  1832. BUG_ON(mapping2 != mapping);
  1833. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1834. account_page_dirtied(page, mapping);
  1835. radix_tree_tag_set(&mapping->page_tree,
  1836. page_index(page), PAGECACHE_TAG_DIRTY);
  1837. }
  1838. spin_unlock_irq(&mapping->tree_lock);
  1839. if (mapping->host) {
  1840. /* !PageAnon && !swapper_space */
  1841. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1842. }
  1843. return 1;
  1844. }
  1845. return 0;
  1846. }
  1847. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1848. /*
  1849. * Call this whenever redirtying a page, to de-account the dirty counters
  1850. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1851. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1852. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1853. * control.
  1854. */
  1855. void account_page_redirty(struct page *page)
  1856. {
  1857. struct address_space *mapping = page->mapping;
  1858. if (mapping && mapping_cap_account_dirty(mapping)) {
  1859. current->nr_dirtied--;
  1860. dec_zone_page_state(page, NR_DIRTIED);
  1861. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1862. }
  1863. }
  1864. EXPORT_SYMBOL(account_page_redirty);
  1865. /*
  1866. * When a writepage implementation decides that it doesn't want to write this
  1867. * page for some reason, it should redirty the locked page via
  1868. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1869. */
  1870. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1871. {
  1872. wbc->pages_skipped++;
  1873. account_page_redirty(page);
  1874. return __set_page_dirty_nobuffers(page);
  1875. }
  1876. EXPORT_SYMBOL(redirty_page_for_writepage);
  1877. /*
  1878. * Dirty a page.
  1879. *
  1880. * For pages with a mapping this should be done under the page lock
  1881. * for the benefit of asynchronous memory errors who prefer a consistent
  1882. * dirty state. This rule can be broken in some special cases,
  1883. * but should be better not to.
  1884. *
  1885. * If the mapping doesn't provide a set_page_dirty a_op, then
  1886. * just fall through and assume that it wants buffer_heads.
  1887. */
  1888. int set_page_dirty(struct page *page)
  1889. {
  1890. struct address_space *mapping = page_mapping(page);
  1891. if (likely(mapping)) {
  1892. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1893. /*
  1894. * readahead/lru_deactivate_page could remain
  1895. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1896. * About readahead, if the page is written, the flags would be
  1897. * reset. So no problem.
  1898. * About lru_deactivate_page, if the page is redirty, the flag
  1899. * will be reset. So no problem. but if the page is used by readahead
  1900. * it will confuse readahead and make it restart the size rampup
  1901. * process. But it's a trivial problem.
  1902. */
  1903. ClearPageReclaim(page);
  1904. #ifdef CONFIG_BLOCK
  1905. if (!spd)
  1906. spd = __set_page_dirty_buffers;
  1907. #endif
  1908. return (*spd)(page);
  1909. }
  1910. if (!PageDirty(page)) {
  1911. if (!TestSetPageDirty(page))
  1912. return 1;
  1913. }
  1914. return 0;
  1915. }
  1916. EXPORT_SYMBOL(set_page_dirty);
  1917. /*
  1918. * set_page_dirty() is racy if the caller has no reference against
  1919. * page->mapping->host, and if the page is unlocked. This is because another
  1920. * CPU could truncate the page off the mapping and then free the mapping.
  1921. *
  1922. * Usually, the page _is_ locked, or the caller is a user-space process which
  1923. * holds a reference on the inode by having an open file.
  1924. *
  1925. * In other cases, the page should be locked before running set_page_dirty().
  1926. */
  1927. int set_page_dirty_lock(struct page *page)
  1928. {
  1929. int ret;
  1930. lock_page(page);
  1931. ret = set_page_dirty(page);
  1932. unlock_page(page);
  1933. return ret;
  1934. }
  1935. EXPORT_SYMBOL(set_page_dirty_lock);
  1936. /*
  1937. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1938. * Returns true if the page was previously dirty.
  1939. *
  1940. * This is for preparing to put the page under writeout. We leave the page
  1941. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1942. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1943. * implementation will run either set_page_writeback() or set_page_dirty(),
  1944. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1945. * back into sync.
  1946. *
  1947. * This incoherency between the page's dirty flag and radix-tree tag is
  1948. * unfortunate, but it only exists while the page is locked.
  1949. */
  1950. int clear_page_dirty_for_io(struct page *page)
  1951. {
  1952. struct address_space *mapping = page_mapping(page);
  1953. BUG_ON(!PageLocked(page));
  1954. if (mapping && mapping_cap_account_dirty(mapping)) {
  1955. /*
  1956. * Yes, Virginia, this is indeed insane.
  1957. *
  1958. * We use this sequence to make sure that
  1959. * (a) we account for dirty stats properly
  1960. * (b) we tell the low-level filesystem to
  1961. * mark the whole page dirty if it was
  1962. * dirty in a pagetable. Only to then
  1963. * (c) clean the page again and return 1 to
  1964. * cause the writeback.
  1965. *
  1966. * This way we avoid all nasty races with the
  1967. * dirty bit in multiple places and clearing
  1968. * them concurrently from different threads.
  1969. *
  1970. * Note! Normally the "set_page_dirty(page)"
  1971. * has no effect on the actual dirty bit - since
  1972. * that will already usually be set. But we
  1973. * need the side effects, and it can help us
  1974. * avoid races.
  1975. *
  1976. * We basically use the page "master dirty bit"
  1977. * as a serialization point for all the different
  1978. * threads doing their things.
  1979. */
  1980. if (page_mkclean(page))
  1981. set_page_dirty(page);
  1982. /*
  1983. * We carefully synchronise fault handlers against
  1984. * installing a dirty pte and marking the page dirty
  1985. * at this point. We do this by having them hold the
  1986. * page lock at some point after installing their
  1987. * pte, but before marking the page dirty.
  1988. * Pages are always locked coming in here, so we get
  1989. * the desired exclusion. See mm/memory.c:do_wp_page()
  1990. * for more comments.
  1991. */
  1992. if (TestClearPageDirty(page)) {
  1993. dec_zone_page_state(page, NR_FILE_DIRTY);
  1994. dec_bdi_stat(mapping->backing_dev_info,
  1995. BDI_RECLAIMABLE);
  1996. return 1;
  1997. }
  1998. return 0;
  1999. }
  2000. return TestClearPageDirty(page);
  2001. }
  2002. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2003. int test_clear_page_writeback(struct page *page)
  2004. {
  2005. struct address_space *mapping = page_mapping(page);
  2006. int ret;
  2007. if (mapping) {
  2008. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2009. unsigned long flags;
  2010. spin_lock_irqsave(&mapping->tree_lock, flags);
  2011. ret = TestClearPageWriteback(page);
  2012. if (ret) {
  2013. radix_tree_tag_clear(&mapping->page_tree,
  2014. page_index(page),
  2015. PAGECACHE_TAG_WRITEBACK);
  2016. if (bdi_cap_account_writeback(bdi)) {
  2017. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2018. __bdi_writeout_inc(bdi);
  2019. }
  2020. }
  2021. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2022. } else {
  2023. ret = TestClearPageWriteback(page);
  2024. }
  2025. if (ret) {
  2026. dec_zone_page_state(page, NR_WRITEBACK);
  2027. inc_zone_page_state(page, NR_WRITTEN);
  2028. }
  2029. return ret;
  2030. }
  2031. int test_set_page_writeback(struct page *page)
  2032. {
  2033. struct address_space *mapping = page_mapping(page);
  2034. int ret;
  2035. if (mapping) {
  2036. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2037. unsigned long flags;
  2038. spin_lock_irqsave(&mapping->tree_lock, flags);
  2039. ret = TestSetPageWriteback(page);
  2040. if (!ret) {
  2041. radix_tree_tag_set(&mapping->page_tree,
  2042. page_index(page),
  2043. PAGECACHE_TAG_WRITEBACK);
  2044. if (bdi_cap_account_writeback(bdi))
  2045. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2046. }
  2047. if (!PageDirty(page))
  2048. radix_tree_tag_clear(&mapping->page_tree,
  2049. page_index(page),
  2050. PAGECACHE_TAG_DIRTY);
  2051. radix_tree_tag_clear(&mapping->page_tree,
  2052. page_index(page),
  2053. PAGECACHE_TAG_TOWRITE);
  2054. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2055. } else {
  2056. ret = TestSetPageWriteback(page);
  2057. }
  2058. if (!ret)
  2059. account_page_writeback(page);
  2060. return ret;
  2061. }
  2062. EXPORT_SYMBOL(test_set_page_writeback);
  2063. /*
  2064. * Return true if any of the pages in the mapping are marked with the
  2065. * passed tag.
  2066. */
  2067. int mapping_tagged(struct address_space *mapping, int tag)
  2068. {
  2069. return radix_tree_tagged(&mapping->page_tree, tag);
  2070. }
  2071. EXPORT_SYMBOL(mapping_tagged);
  2072. /**
  2073. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2074. * @page: The page to wait on.
  2075. *
  2076. * This function determines if the given page is related to a backing device
  2077. * that requires page contents to be held stable during writeback. If so, then
  2078. * it will wait for any pending writeback to complete.
  2079. */
  2080. void wait_for_stable_page(struct page *page)
  2081. {
  2082. struct address_space *mapping = page_mapping(page);
  2083. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2084. if (!bdi_cap_stable_pages_required(bdi))
  2085. return;
  2086. #ifdef CONFIG_NEED_BOUNCE_POOL
  2087. if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE)
  2088. return;
  2089. #endif /* CONFIG_NEED_BOUNCE_POOL */
  2090. wait_on_page_writeback(page);
  2091. }
  2092. EXPORT_SYMBOL_GPL(wait_for_stable_page);