memory.c 114 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <asm/io.h>
  58. #include <asm/pgalloc.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/tlb.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/pgtable.h>
  63. #include "internal.h"
  64. #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
  65. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
  66. #endif
  67. #ifndef CONFIG_NEED_MULTIPLE_NODES
  68. /* use the per-pgdat data instead for discontigmem - mbligh */
  69. unsigned long max_mapnr;
  70. struct page *mem_map;
  71. EXPORT_SYMBOL(max_mapnr);
  72. EXPORT_SYMBOL(mem_map);
  73. #endif
  74. unsigned long num_physpages;
  75. /*
  76. * A number of key systems in x86 including ioremap() rely on the assumption
  77. * that high_memory defines the upper bound on direct map memory, then end
  78. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  79. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  80. * and ZONE_HIGHMEM.
  81. */
  82. void * high_memory;
  83. EXPORT_SYMBOL(num_physpages);
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. /*
  106. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  107. */
  108. static int __init init_zero_pfn(void)
  109. {
  110. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  111. return 0;
  112. }
  113. core_initcall(init_zero_pfn);
  114. #if defined(SPLIT_RSS_COUNTING)
  115. void sync_mm_rss(struct mm_struct *mm)
  116. {
  117. int i;
  118. for (i = 0; i < NR_MM_COUNTERS; i++) {
  119. if (current->rss_stat.count[i]) {
  120. add_mm_counter(mm, i, current->rss_stat.count[i]);
  121. current->rss_stat.count[i] = 0;
  122. }
  123. }
  124. current->rss_stat.events = 0;
  125. }
  126. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  127. {
  128. struct task_struct *task = current;
  129. if (likely(task->mm == mm))
  130. task->rss_stat.count[member] += val;
  131. else
  132. add_mm_counter(mm, member, val);
  133. }
  134. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  135. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  136. /* sync counter once per 64 page faults */
  137. #define TASK_RSS_EVENTS_THRESH (64)
  138. static void check_sync_rss_stat(struct task_struct *task)
  139. {
  140. if (unlikely(task != current))
  141. return;
  142. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  143. sync_mm_rss(task->mm);
  144. }
  145. #else /* SPLIT_RSS_COUNTING */
  146. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  147. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  148. static void check_sync_rss_stat(struct task_struct *task)
  149. {
  150. }
  151. #endif /* SPLIT_RSS_COUNTING */
  152. #ifdef HAVE_GENERIC_MMU_GATHER
  153. static int tlb_next_batch(struct mmu_gather *tlb)
  154. {
  155. struct mmu_gather_batch *batch;
  156. batch = tlb->active;
  157. if (batch->next) {
  158. tlb->active = batch->next;
  159. return 1;
  160. }
  161. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  162. return 0;
  163. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  164. if (!batch)
  165. return 0;
  166. tlb->batch_count++;
  167. batch->next = NULL;
  168. batch->nr = 0;
  169. batch->max = MAX_GATHER_BATCH;
  170. tlb->active->next = batch;
  171. tlb->active = batch;
  172. return 1;
  173. }
  174. /* tlb_gather_mmu
  175. * Called to initialize an (on-stack) mmu_gather structure for page-table
  176. * tear-down from @mm. The @fullmm argument is used when @mm is without
  177. * users and we're going to destroy the full address space (exit/execve).
  178. */
  179. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  180. {
  181. tlb->mm = mm;
  182. tlb->fullmm = fullmm;
  183. tlb->start = -1UL;
  184. tlb->end = 0;
  185. tlb->need_flush = 0;
  186. tlb->fast_mode = (num_possible_cpus() == 1);
  187. tlb->local.next = NULL;
  188. tlb->local.nr = 0;
  189. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  190. tlb->active = &tlb->local;
  191. tlb->batch_count = 0;
  192. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  193. tlb->batch = NULL;
  194. #endif
  195. }
  196. void tlb_flush_mmu(struct mmu_gather *tlb)
  197. {
  198. struct mmu_gather_batch *batch;
  199. if (!tlb->need_flush)
  200. return;
  201. tlb->need_flush = 0;
  202. tlb_flush(tlb);
  203. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  204. tlb_table_flush(tlb);
  205. #endif
  206. if (tlb_fast_mode(tlb))
  207. return;
  208. for (batch = &tlb->local; batch; batch = batch->next) {
  209. free_pages_and_swap_cache(batch->pages, batch->nr);
  210. batch->nr = 0;
  211. }
  212. tlb->active = &tlb->local;
  213. }
  214. /* tlb_finish_mmu
  215. * Called at the end of the shootdown operation to free up any resources
  216. * that were required.
  217. */
  218. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  219. {
  220. struct mmu_gather_batch *batch, *next;
  221. tlb->start = start;
  222. tlb->end = end;
  223. tlb_flush_mmu(tlb);
  224. /* keep the page table cache within bounds */
  225. check_pgt_cache();
  226. for (batch = tlb->local.next; batch; batch = next) {
  227. next = batch->next;
  228. free_pages((unsigned long)batch, 0);
  229. }
  230. tlb->local.next = NULL;
  231. }
  232. /* __tlb_remove_page
  233. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  234. * handling the additional races in SMP caused by other CPUs caching valid
  235. * mappings in their TLBs. Returns the number of free page slots left.
  236. * When out of page slots we must call tlb_flush_mmu().
  237. */
  238. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  239. {
  240. struct mmu_gather_batch *batch;
  241. VM_BUG_ON(!tlb->need_flush);
  242. if (tlb_fast_mode(tlb)) {
  243. free_page_and_swap_cache(page);
  244. return 1; /* avoid calling tlb_flush_mmu() */
  245. }
  246. batch = tlb->active;
  247. batch->pages[batch->nr++] = page;
  248. if (batch->nr == batch->max) {
  249. if (!tlb_next_batch(tlb))
  250. return 0;
  251. batch = tlb->active;
  252. }
  253. VM_BUG_ON(batch->nr > batch->max);
  254. return batch->max - batch->nr;
  255. }
  256. #endif /* HAVE_GENERIC_MMU_GATHER */
  257. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  258. /*
  259. * See the comment near struct mmu_table_batch.
  260. */
  261. static void tlb_remove_table_smp_sync(void *arg)
  262. {
  263. /* Simply deliver the interrupt */
  264. }
  265. static void tlb_remove_table_one(void *table)
  266. {
  267. /*
  268. * This isn't an RCU grace period and hence the page-tables cannot be
  269. * assumed to be actually RCU-freed.
  270. *
  271. * It is however sufficient for software page-table walkers that rely on
  272. * IRQ disabling. See the comment near struct mmu_table_batch.
  273. */
  274. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  275. __tlb_remove_table(table);
  276. }
  277. static void tlb_remove_table_rcu(struct rcu_head *head)
  278. {
  279. struct mmu_table_batch *batch;
  280. int i;
  281. batch = container_of(head, struct mmu_table_batch, rcu);
  282. for (i = 0; i < batch->nr; i++)
  283. __tlb_remove_table(batch->tables[i]);
  284. free_page((unsigned long)batch);
  285. }
  286. void tlb_table_flush(struct mmu_gather *tlb)
  287. {
  288. struct mmu_table_batch **batch = &tlb->batch;
  289. if (*batch) {
  290. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  291. *batch = NULL;
  292. }
  293. }
  294. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  295. {
  296. struct mmu_table_batch **batch = &tlb->batch;
  297. tlb->need_flush = 1;
  298. /*
  299. * When there's less then two users of this mm there cannot be a
  300. * concurrent page-table walk.
  301. */
  302. if (atomic_read(&tlb->mm->mm_users) < 2) {
  303. __tlb_remove_table(table);
  304. return;
  305. }
  306. if (*batch == NULL) {
  307. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  308. if (*batch == NULL) {
  309. tlb_remove_table_one(table);
  310. return;
  311. }
  312. (*batch)->nr = 0;
  313. }
  314. (*batch)->tables[(*batch)->nr++] = table;
  315. if ((*batch)->nr == MAX_TABLE_BATCH)
  316. tlb_table_flush(tlb);
  317. }
  318. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  319. /*
  320. * If a p?d_bad entry is found while walking page tables, report
  321. * the error, before resetting entry to p?d_none. Usually (but
  322. * very seldom) called out from the p?d_none_or_clear_bad macros.
  323. */
  324. void pgd_clear_bad(pgd_t *pgd)
  325. {
  326. pgd_ERROR(*pgd);
  327. pgd_clear(pgd);
  328. }
  329. void pud_clear_bad(pud_t *pud)
  330. {
  331. pud_ERROR(*pud);
  332. pud_clear(pud);
  333. }
  334. void pmd_clear_bad(pmd_t *pmd)
  335. {
  336. pmd_ERROR(*pmd);
  337. pmd_clear(pmd);
  338. }
  339. /*
  340. * Note: this doesn't free the actual pages themselves. That
  341. * has been handled earlier when unmapping all the memory regions.
  342. */
  343. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  344. unsigned long addr)
  345. {
  346. pgtable_t token = pmd_pgtable(*pmd);
  347. pmd_clear(pmd);
  348. pte_free_tlb(tlb, token, addr);
  349. tlb->mm->nr_ptes--;
  350. }
  351. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  352. unsigned long addr, unsigned long end,
  353. unsigned long floor, unsigned long ceiling)
  354. {
  355. pmd_t *pmd;
  356. unsigned long next;
  357. unsigned long start;
  358. start = addr;
  359. pmd = pmd_offset(pud, addr);
  360. do {
  361. next = pmd_addr_end(addr, end);
  362. if (pmd_none_or_clear_bad(pmd))
  363. continue;
  364. free_pte_range(tlb, pmd, addr);
  365. } while (pmd++, addr = next, addr != end);
  366. start &= PUD_MASK;
  367. if (start < floor)
  368. return;
  369. if (ceiling) {
  370. ceiling &= PUD_MASK;
  371. if (!ceiling)
  372. return;
  373. }
  374. if (end - 1 > ceiling - 1)
  375. return;
  376. pmd = pmd_offset(pud, start);
  377. pud_clear(pud);
  378. pmd_free_tlb(tlb, pmd, start);
  379. }
  380. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  381. unsigned long addr, unsigned long end,
  382. unsigned long floor, unsigned long ceiling)
  383. {
  384. pud_t *pud;
  385. unsigned long next;
  386. unsigned long start;
  387. start = addr;
  388. pud = pud_offset(pgd, addr);
  389. do {
  390. next = pud_addr_end(addr, end);
  391. if (pud_none_or_clear_bad(pud))
  392. continue;
  393. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  394. } while (pud++, addr = next, addr != end);
  395. start &= PGDIR_MASK;
  396. if (start < floor)
  397. return;
  398. if (ceiling) {
  399. ceiling &= PGDIR_MASK;
  400. if (!ceiling)
  401. return;
  402. }
  403. if (end - 1 > ceiling - 1)
  404. return;
  405. pud = pud_offset(pgd, start);
  406. pgd_clear(pgd);
  407. pud_free_tlb(tlb, pud, start);
  408. }
  409. /*
  410. * This function frees user-level page tables of a process.
  411. *
  412. * Must be called with pagetable lock held.
  413. */
  414. void free_pgd_range(struct mmu_gather *tlb,
  415. unsigned long addr, unsigned long end,
  416. unsigned long floor, unsigned long ceiling)
  417. {
  418. pgd_t *pgd;
  419. unsigned long next;
  420. /*
  421. * The next few lines have given us lots of grief...
  422. *
  423. * Why are we testing PMD* at this top level? Because often
  424. * there will be no work to do at all, and we'd prefer not to
  425. * go all the way down to the bottom just to discover that.
  426. *
  427. * Why all these "- 1"s? Because 0 represents both the bottom
  428. * of the address space and the top of it (using -1 for the
  429. * top wouldn't help much: the masks would do the wrong thing).
  430. * The rule is that addr 0 and floor 0 refer to the bottom of
  431. * the address space, but end 0 and ceiling 0 refer to the top
  432. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  433. * that end 0 case should be mythical).
  434. *
  435. * Wherever addr is brought up or ceiling brought down, we must
  436. * be careful to reject "the opposite 0" before it confuses the
  437. * subsequent tests. But what about where end is brought down
  438. * by PMD_SIZE below? no, end can't go down to 0 there.
  439. *
  440. * Whereas we round start (addr) and ceiling down, by different
  441. * masks at different levels, in order to test whether a table
  442. * now has no other vmas using it, so can be freed, we don't
  443. * bother to round floor or end up - the tests don't need that.
  444. */
  445. addr &= PMD_MASK;
  446. if (addr < floor) {
  447. addr += PMD_SIZE;
  448. if (!addr)
  449. return;
  450. }
  451. if (ceiling) {
  452. ceiling &= PMD_MASK;
  453. if (!ceiling)
  454. return;
  455. }
  456. if (end - 1 > ceiling - 1)
  457. end -= PMD_SIZE;
  458. if (addr > end - 1)
  459. return;
  460. pgd = pgd_offset(tlb->mm, addr);
  461. do {
  462. next = pgd_addr_end(addr, end);
  463. if (pgd_none_or_clear_bad(pgd))
  464. continue;
  465. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  466. } while (pgd++, addr = next, addr != end);
  467. }
  468. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  469. unsigned long floor, unsigned long ceiling)
  470. {
  471. while (vma) {
  472. struct vm_area_struct *next = vma->vm_next;
  473. unsigned long addr = vma->vm_start;
  474. /*
  475. * Hide vma from rmap and truncate_pagecache before freeing
  476. * pgtables
  477. */
  478. unlink_anon_vmas(vma);
  479. unlink_file_vma(vma);
  480. if (is_vm_hugetlb_page(vma)) {
  481. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  482. floor, next? next->vm_start: ceiling);
  483. } else {
  484. /*
  485. * Optimization: gather nearby vmas into one call down
  486. */
  487. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  488. && !is_vm_hugetlb_page(next)) {
  489. vma = next;
  490. next = vma->vm_next;
  491. unlink_anon_vmas(vma);
  492. unlink_file_vma(vma);
  493. }
  494. free_pgd_range(tlb, addr, vma->vm_end,
  495. floor, next? next->vm_start: ceiling);
  496. }
  497. vma = next;
  498. }
  499. }
  500. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  501. pmd_t *pmd, unsigned long address)
  502. {
  503. pgtable_t new = pte_alloc_one(mm, address);
  504. int wait_split_huge_page;
  505. if (!new)
  506. return -ENOMEM;
  507. /*
  508. * Ensure all pte setup (eg. pte page lock and page clearing) are
  509. * visible before the pte is made visible to other CPUs by being
  510. * put into page tables.
  511. *
  512. * The other side of the story is the pointer chasing in the page
  513. * table walking code (when walking the page table without locking;
  514. * ie. most of the time). Fortunately, these data accesses consist
  515. * of a chain of data-dependent loads, meaning most CPUs (alpha
  516. * being the notable exception) will already guarantee loads are
  517. * seen in-order. See the alpha page table accessors for the
  518. * smp_read_barrier_depends() barriers in page table walking code.
  519. */
  520. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  521. spin_lock(&mm->page_table_lock);
  522. wait_split_huge_page = 0;
  523. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  524. mm->nr_ptes++;
  525. pmd_populate(mm, pmd, new);
  526. new = NULL;
  527. } else if (unlikely(pmd_trans_splitting(*pmd)))
  528. wait_split_huge_page = 1;
  529. spin_unlock(&mm->page_table_lock);
  530. if (new)
  531. pte_free(mm, new);
  532. if (wait_split_huge_page)
  533. wait_split_huge_page(vma->anon_vma, pmd);
  534. return 0;
  535. }
  536. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  537. {
  538. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  539. if (!new)
  540. return -ENOMEM;
  541. smp_wmb(); /* See comment in __pte_alloc */
  542. spin_lock(&init_mm.page_table_lock);
  543. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  544. pmd_populate_kernel(&init_mm, pmd, new);
  545. new = NULL;
  546. } else
  547. VM_BUG_ON(pmd_trans_splitting(*pmd));
  548. spin_unlock(&init_mm.page_table_lock);
  549. if (new)
  550. pte_free_kernel(&init_mm, new);
  551. return 0;
  552. }
  553. static inline void init_rss_vec(int *rss)
  554. {
  555. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  556. }
  557. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  558. {
  559. int i;
  560. if (current->mm == mm)
  561. sync_mm_rss(mm);
  562. for (i = 0; i < NR_MM_COUNTERS; i++)
  563. if (rss[i])
  564. add_mm_counter(mm, i, rss[i]);
  565. }
  566. /*
  567. * This function is called to print an error when a bad pte
  568. * is found. For example, we might have a PFN-mapped pte in
  569. * a region that doesn't allow it.
  570. *
  571. * The calling function must still handle the error.
  572. */
  573. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  574. pte_t pte, struct page *page)
  575. {
  576. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  577. pud_t *pud = pud_offset(pgd, addr);
  578. pmd_t *pmd = pmd_offset(pud, addr);
  579. struct address_space *mapping;
  580. pgoff_t index;
  581. static unsigned long resume;
  582. static unsigned long nr_shown;
  583. static unsigned long nr_unshown;
  584. /*
  585. * Allow a burst of 60 reports, then keep quiet for that minute;
  586. * or allow a steady drip of one report per second.
  587. */
  588. if (nr_shown == 60) {
  589. if (time_before(jiffies, resume)) {
  590. nr_unshown++;
  591. return;
  592. }
  593. if (nr_unshown) {
  594. printk(KERN_ALERT
  595. "BUG: Bad page map: %lu messages suppressed\n",
  596. nr_unshown);
  597. nr_unshown = 0;
  598. }
  599. nr_shown = 0;
  600. }
  601. if (nr_shown++ == 0)
  602. resume = jiffies + 60 * HZ;
  603. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  604. index = linear_page_index(vma, addr);
  605. printk(KERN_ALERT
  606. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  607. current->comm,
  608. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  609. if (page)
  610. dump_page(page);
  611. printk(KERN_ALERT
  612. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  613. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  614. /*
  615. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  616. */
  617. if (vma->vm_ops)
  618. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  619. (unsigned long)vma->vm_ops->fault);
  620. if (vma->vm_file && vma->vm_file->f_op)
  621. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  622. (unsigned long)vma->vm_file->f_op->mmap);
  623. dump_stack();
  624. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  625. }
  626. static inline bool is_cow_mapping(vm_flags_t flags)
  627. {
  628. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  629. }
  630. /*
  631. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  632. *
  633. * "Special" mappings do not wish to be associated with a "struct page" (either
  634. * it doesn't exist, or it exists but they don't want to touch it). In this
  635. * case, NULL is returned here. "Normal" mappings do have a struct page.
  636. *
  637. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  638. * pte bit, in which case this function is trivial. Secondly, an architecture
  639. * may not have a spare pte bit, which requires a more complicated scheme,
  640. * described below.
  641. *
  642. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  643. * special mapping (even if there are underlying and valid "struct pages").
  644. * COWed pages of a VM_PFNMAP are always normal.
  645. *
  646. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  647. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  648. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  649. * mapping will always honor the rule
  650. *
  651. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  652. *
  653. * And for normal mappings this is false.
  654. *
  655. * This restricts such mappings to be a linear translation from virtual address
  656. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  657. * as the vma is not a COW mapping; in that case, we know that all ptes are
  658. * special (because none can have been COWed).
  659. *
  660. *
  661. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  662. *
  663. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  664. * page" backing, however the difference is that _all_ pages with a struct
  665. * page (that is, those where pfn_valid is true) are refcounted and considered
  666. * normal pages by the VM. The disadvantage is that pages are refcounted
  667. * (which can be slower and simply not an option for some PFNMAP users). The
  668. * advantage is that we don't have to follow the strict linearity rule of
  669. * PFNMAP mappings in order to support COWable mappings.
  670. *
  671. */
  672. #ifdef __HAVE_ARCH_PTE_SPECIAL
  673. # define HAVE_PTE_SPECIAL 1
  674. #else
  675. # define HAVE_PTE_SPECIAL 0
  676. #endif
  677. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  678. pte_t pte)
  679. {
  680. unsigned long pfn = pte_pfn(pte);
  681. if (HAVE_PTE_SPECIAL) {
  682. if (likely(!pte_special(pte)))
  683. goto check_pfn;
  684. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  685. return NULL;
  686. if (!is_zero_pfn(pfn))
  687. print_bad_pte(vma, addr, pte, NULL);
  688. return NULL;
  689. }
  690. /* !HAVE_PTE_SPECIAL case follows: */
  691. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  692. if (vma->vm_flags & VM_MIXEDMAP) {
  693. if (!pfn_valid(pfn))
  694. return NULL;
  695. goto out;
  696. } else {
  697. unsigned long off;
  698. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  699. if (pfn == vma->vm_pgoff + off)
  700. return NULL;
  701. if (!is_cow_mapping(vma->vm_flags))
  702. return NULL;
  703. }
  704. }
  705. if (is_zero_pfn(pfn))
  706. return NULL;
  707. check_pfn:
  708. if (unlikely(pfn > highest_memmap_pfn)) {
  709. print_bad_pte(vma, addr, pte, NULL);
  710. return NULL;
  711. }
  712. /*
  713. * NOTE! We still have PageReserved() pages in the page tables.
  714. * eg. VDSO mappings can cause them to exist.
  715. */
  716. out:
  717. return pfn_to_page(pfn);
  718. }
  719. /*
  720. * copy one vm_area from one task to the other. Assumes the page tables
  721. * already present in the new task to be cleared in the whole range
  722. * covered by this vma.
  723. */
  724. static inline unsigned long
  725. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  726. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  727. unsigned long addr, int *rss)
  728. {
  729. unsigned long vm_flags = vma->vm_flags;
  730. pte_t pte = *src_pte;
  731. struct page *page;
  732. /* pte contains position in swap or file, so copy. */
  733. if (unlikely(!pte_present(pte))) {
  734. if (!pte_file(pte)) {
  735. swp_entry_t entry = pte_to_swp_entry(pte);
  736. if (swap_duplicate(entry) < 0)
  737. return entry.val;
  738. /* make sure dst_mm is on swapoff's mmlist. */
  739. if (unlikely(list_empty(&dst_mm->mmlist))) {
  740. spin_lock(&mmlist_lock);
  741. if (list_empty(&dst_mm->mmlist))
  742. list_add(&dst_mm->mmlist,
  743. &src_mm->mmlist);
  744. spin_unlock(&mmlist_lock);
  745. }
  746. if (likely(!non_swap_entry(entry)))
  747. rss[MM_SWAPENTS]++;
  748. else if (is_migration_entry(entry)) {
  749. page = migration_entry_to_page(entry);
  750. if (PageAnon(page))
  751. rss[MM_ANONPAGES]++;
  752. else
  753. rss[MM_FILEPAGES]++;
  754. if (is_write_migration_entry(entry) &&
  755. is_cow_mapping(vm_flags)) {
  756. /*
  757. * COW mappings require pages in both
  758. * parent and child to be set to read.
  759. */
  760. make_migration_entry_read(&entry);
  761. pte = swp_entry_to_pte(entry);
  762. set_pte_at(src_mm, addr, src_pte, pte);
  763. }
  764. }
  765. }
  766. goto out_set_pte;
  767. }
  768. /*
  769. * If it's a COW mapping, write protect it both
  770. * in the parent and the child
  771. */
  772. if (is_cow_mapping(vm_flags)) {
  773. ptep_set_wrprotect(src_mm, addr, src_pte);
  774. pte = pte_wrprotect(pte);
  775. }
  776. /*
  777. * If it's a shared mapping, mark it clean in
  778. * the child
  779. */
  780. if (vm_flags & VM_SHARED)
  781. pte = pte_mkclean(pte);
  782. pte = pte_mkold(pte);
  783. page = vm_normal_page(vma, addr, pte);
  784. if (page) {
  785. get_page(page);
  786. page_dup_rmap(page);
  787. if (PageAnon(page))
  788. rss[MM_ANONPAGES]++;
  789. else
  790. rss[MM_FILEPAGES]++;
  791. }
  792. out_set_pte:
  793. set_pte_at(dst_mm, addr, dst_pte, pte);
  794. return 0;
  795. }
  796. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  797. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  798. unsigned long addr, unsigned long end)
  799. {
  800. pte_t *orig_src_pte, *orig_dst_pte;
  801. pte_t *src_pte, *dst_pte;
  802. spinlock_t *src_ptl, *dst_ptl;
  803. int progress = 0;
  804. int rss[NR_MM_COUNTERS];
  805. swp_entry_t entry = (swp_entry_t){0};
  806. again:
  807. init_rss_vec(rss);
  808. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  809. if (!dst_pte)
  810. return -ENOMEM;
  811. src_pte = pte_offset_map(src_pmd, addr);
  812. src_ptl = pte_lockptr(src_mm, src_pmd);
  813. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  814. orig_src_pte = src_pte;
  815. orig_dst_pte = dst_pte;
  816. arch_enter_lazy_mmu_mode();
  817. do {
  818. /*
  819. * We are holding two locks at this point - either of them
  820. * could generate latencies in another task on another CPU.
  821. */
  822. if (progress >= 32) {
  823. progress = 0;
  824. if (need_resched() ||
  825. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  826. break;
  827. }
  828. if (pte_none(*src_pte)) {
  829. progress++;
  830. continue;
  831. }
  832. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  833. vma, addr, rss);
  834. if (entry.val)
  835. break;
  836. progress += 8;
  837. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  838. arch_leave_lazy_mmu_mode();
  839. spin_unlock(src_ptl);
  840. pte_unmap(orig_src_pte);
  841. add_mm_rss_vec(dst_mm, rss);
  842. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  843. cond_resched();
  844. if (entry.val) {
  845. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  846. return -ENOMEM;
  847. progress = 0;
  848. }
  849. if (addr != end)
  850. goto again;
  851. return 0;
  852. }
  853. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  854. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  855. unsigned long addr, unsigned long end)
  856. {
  857. pmd_t *src_pmd, *dst_pmd;
  858. unsigned long next;
  859. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  860. if (!dst_pmd)
  861. return -ENOMEM;
  862. src_pmd = pmd_offset(src_pud, addr);
  863. do {
  864. next = pmd_addr_end(addr, end);
  865. if (pmd_trans_huge(*src_pmd)) {
  866. int err;
  867. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  868. err = copy_huge_pmd(dst_mm, src_mm,
  869. dst_pmd, src_pmd, addr, vma);
  870. if (err == -ENOMEM)
  871. return -ENOMEM;
  872. if (!err)
  873. continue;
  874. /* fall through */
  875. }
  876. if (pmd_none_or_clear_bad(src_pmd))
  877. continue;
  878. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  879. vma, addr, next))
  880. return -ENOMEM;
  881. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  882. return 0;
  883. }
  884. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  885. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  886. unsigned long addr, unsigned long end)
  887. {
  888. pud_t *src_pud, *dst_pud;
  889. unsigned long next;
  890. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  891. if (!dst_pud)
  892. return -ENOMEM;
  893. src_pud = pud_offset(src_pgd, addr);
  894. do {
  895. next = pud_addr_end(addr, end);
  896. if (pud_none_or_clear_bad(src_pud))
  897. continue;
  898. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  899. vma, addr, next))
  900. return -ENOMEM;
  901. } while (dst_pud++, src_pud++, addr = next, addr != end);
  902. return 0;
  903. }
  904. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  905. struct vm_area_struct *vma)
  906. {
  907. pgd_t *src_pgd, *dst_pgd;
  908. unsigned long next;
  909. unsigned long addr = vma->vm_start;
  910. unsigned long end = vma->vm_end;
  911. unsigned long mmun_start; /* For mmu_notifiers */
  912. unsigned long mmun_end; /* For mmu_notifiers */
  913. bool is_cow;
  914. int ret;
  915. /*
  916. * Don't copy ptes where a page fault will fill them correctly.
  917. * Fork becomes much lighter when there are big shared or private
  918. * readonly mappings. The tradeoff is that copy_page_range is more
  919. * efficient than faulting.
  920. */
  921. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  922. VM_PFNMAP | VM_MIXEDMAP))) {
  923. if (!vma->anon_vma)
  924. return 0;
  925. }
  926. if (is_vm_hugetlb_page(vma))
  927. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  928. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  929. /*
  930. * We do not free on error cases below as remove_vma
  931. * gets called on error from higher level routine
  932. */
  933. ret = track_pfn_copy(vma);
  934. if (ret)
  935. return ret;
  936. }
  937. /*
  938. * We need to invalidate the secondary MMU mappings only when
  939. * there could be a permission downgrade on the ptes of the
  940. * parent mm. And a permission downgrade will only happen if
  941. * is_cow_mapping() returns true.
  942. */
  943. is_cow = is_cow_mapping(vma->vm_flags);
  944. mmun_start = addr;
  945. mmun_end = end;
  946. if (is_cow)
  947. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  948. mmun_end);
  949. ret = 0;
  950. dst_pgd = pgd_offset(dst_mm, addr);
  951. src_pgd = pgd_offset(src_mm, addr);
  952. do {
  953. next = pgd_addr_end(addr, end);
  954. if (pgd_none_or_clear_bad(src_pgd))
  955. continue;
  956. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  957. vma, addr, next))) {
  958. ret = -ENOMEM;
  959. break;
  960. }
  961. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  962. if (is_cow)
  963. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  964. return ret;
  965. }
  966. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  967. struct vm_area_struct *vma, pmd_t *pmd,
  968. unsigned long addr, unsigned long end,
  969. struct zap_details *details)
  970. {
  971. struct mm_struct *mm = tlb->mm;
  972. int force_flush = 0;
  973. int rss[NR_MM_COUNTERS];
  974. spinlock_t *ptl;
  975. pte_t *start_pte;
  976. pte_t *pte;
  977. again:
  978. init_rss_vec(rss);
  979. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  980. pte = start_pte;
  981. arch_enter_lazy_mmu_mode();
  982. do {
  983. pte_t ptent = *pte;
  984. if (pte_none(ptent)) {
  985. continue;
  986. }
  987. if (pte_present(ptent)) {
  988. struct page *page;
  989. page = vm_normal_page(vma, addr, ptent);
  990. if (unlikely(details) && page) {
  991. /*
  992. * unmap_shared_mapping_pages() wants to
  993. * invalidate cache without truncating:
  994. * unmap shared but keep private pages.
  995. */
  996. if (details->check_mapping &&
  997. details->check_mapping != page->mapping)
  998. continue;
  999. /*
  1000. * Each page->index must be checked when
  1001. * invalidating or truncating nonlinear.
  1002. */
  1003. if (details->nonlinear_vma &&
  1004. (page->index < details->first_index ||
  1005. page->index > details->last_index))
  1006. continue;
  1007. }
  1008. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1009. tlb->fullmm);
  1010. tlb_remove_tlb_entry(tlb, pte, addr);
  1011. if (unlikely(!page))
  1012. continue;
  1013. if (unlikely(details) && details->nonlinear_vma
  1014. && linear_page_index(details->nonlinear_vma,
  1015. addr) != page->index)
  1016. set_pte_at(mm, addr, pte,
  1017. pgoff_to_pte(page->index));
  1018. if (PageAnon(page))
  1019. rss[MM_ANONPAGES]--;
  1020. else {
  1021. if (pte_dirty(ptent))
  1022. set_page_dirty(page);
  1023. if (pte_young(ptent) &&
  1024. likely(!VM_SequentialReadHint(vma)))
  1025. mark_page_accessed(page);
  1026. rss[MM_FILEPAGES]--;
  1027. }
  1028. page_remove_rmap(page);
  1029. if (unlikely(page_mapcount(page) < 0))
  1030. print_bad_pte(vma, addr, ptent, page);
  1031. force_flush = !__tlb_remove_page(tlb, page);
  1032. if (force_flush)
  1033. break;
  1034. continue;
  1035. }
  1036. /*
  1037. * If details->check_mapping, we leave swap entries;
  1038. * if details->nonlinear_vma, we leave file entries.
  1039. */
  1040. if (unlikely(details))
  1041. continue;
  1042. if (pte_file(ptent)) {
  1043. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1044. print_bad_pte(vma, addr, ptent, NULL);
  1045. } else {
  1046. swp_entry_t entry = pte_to_swp_entry(ptent);
  1047. if (!non_swap_entry(entry))
  1048. rss[MM_SWAPENTS]--;
  1049. else if (is_migration_entry(entry)) {
  1050. struct page *page;
  1051. page = migration_entry_to_page(entry);
  1052. if (PageAnon(page))
  1053. rss[MM_ANONPAGES]--;
  1054. else
  1055. rss[MM_FILEPAGES]--;
  1056. }
  1057. if (unlikely(!free_swap_and_cache(entry)))
  1058. print_bad_pte(vma, addr, ptent, NULL);
  1059. }
  1060. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1061. } while (pte++, addr += PAGE_SIZE, addr != end);
  1062. add_mm_rss_vec(mm, rss);
  1063. arch_leave_lazy_mmu_mode();
  1064. pte_unmap_unlock(start_pte, ptl);
  1065. /*
  1066. * mmu_gather ran out of room to batch pages, we break out of
  1067. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1068. * and page-free while holding it.
  1069. */
  1070. if (force_flush) {
  1071. force_flush = 0;
  1072. #ifdef HAVE_GENERIC_MMU_GATHER
  1073. tlb->start = addr;
  1074. tlb->end = end;
  1075. #endif
  1076. tlb_flush_mmu(tlb);
  1077. if (addr != end)
  1078. goto again;
  1079. }
  1080. return addr;
  1081. }
  1082. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1083. struct vm_area_struct *vma, pud_t *pud,
  1084. unsigned long addr, unsigned long end,
  1085. struct zap_details *details)
  1086. {
  1087. pmd_t *pmd;
  1088. unsigned long next;
  1089. pmd = pmd_offset(pud, addr);
  1090. do {
  1091. next = pmd_addr_end(addr, end);
  1092. if (pmd_trans_huge(*pmd)) {
  1093. if (next - addr != HPAGE_PMD_SIZE) {
  1094. #ifdef CONFIG_DEBUG_VM
  1095. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1096. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1097. __func__, addr, end,
  1098. vma->vm_start,
  1099. vma->vm_end);
  1100. BUG();
  1101. }
  1102. #endif
  1103. split_huge_page_pmd(vma, addr, pmd);
  1104. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1105. goto next;
  1106. /* fall through */
  1107. }
  1108. /*
  1109. * Here there can be other concurrent MADV_DONTNEED or
  1110. * trans huge page faults running, and if the pmd is
  1111. * none or trans huge it can change under us. This is
  1112. * because MADV_DONTNEED holds the mmap_sem in read
  1113. * mode.
  1114. */
  1115. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1116. goto next;
  1117. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1118. next:
  1119. cond_resched();
  1120. } while (pmd++, addr = next, addr != end);
  1121. return addr;
  1122. }
  1123. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1124. struct vm_area_struct *vma, pgd_t *pgd,
  1125. unsigned long addr, unsigned long end,
  1126. struct zap_details *details)
  1127. {
  1128. pud_t *pud;
  1129. unsigned long next;
  1130. pud = pud_offset(pgd, addr);
  1131. do {
  1132. next = pud_addr_end(addr, end);
  1133. if (pud_none_or_clear_bad(pud))
  1134. continue;
  1135. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1136. } while (pud++, addr = next, addr != end);
  1137. return addr;
  1138. }
  1139. static void unmap_page_range(struct mmu_gather *tlb,
  1140. struct vm_area_struct *vma,
  1141. unsigned long addr, unsigned long end,
  1142. struct zap_details *details)
  1143. {
  1144. pgd_t *pgd;
  1145. unsigned long next;
  1146. if (details && !details->check_mapping && !details->nonlinear_vma)
  1147. details = NULL;
  1148. BUG_ON(addr >= end);
  1149. mem_cgroup_uncharge_start();
  1150. tlb_start_vma(tlb, vma);
  1151. pgd = pgd_offset(vma->vm_mm, addr);
  1152. do {
  1153. next = pgd_addr_end(addr, end);
  1154. if (pgd_none_or_clear_bad(pgd))
  1155. continue;
  1156. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1157. } while (pgd++, addr = next, addr != end);
  1158. tlb_end_vma(tlb, vma);
  1159. mem_cgroup_uncharge_end();
  1160. }
  1161. static void unmap_single_vma(struct mmu_gather *tlb,
  1162. struct vm_area_struct *vma, unsigned long start_addr,
  1163. unsigned long end_addr,
  1164. struct zap_details *details)
  1165. {
  1166. unsigned long start = max(vma->vm_start, start_addr);
  1167. unsigned long end;
  1168. if (start >= vma->vm_end)
  1169. return;
  1170. end = min(vma->vm_end, end_addr);
  1171. if (end <= vma->vm_start)
  1172. return;
  1173. if (vma->vm_file)
  1174. uprobe_munmap(vma, start, end);
  1175. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1176. untrack_pfn(vma, 0, 0);
  1177. if (start != end) {
  1178. if (unlikely(is_vm_hugetlb_page(vma))) {
  1179. /*
  1180. * It is undesirable to test vma->vm_file as it
  1181. * should be non-null for valid hugetlb area.
  1182. * However, vm_file will be NULL in the error
  1183. * cleanup path of do_mmap_pgoff. When
  1184. * hugetlbfs ->mmap method fails,
  1185. * do_mmap_pgoff() nullifies vma->vm_file
  1186. * before calling this function to clean up.
  1187. * Since no pte has actually been setup, it is
  1188. * safe to do nothing in this case.
  1189. */
  1190. if (vma->vm_file) {
  1191. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1192. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1193. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1194. }
  1195. } else
  1196. unmap_page_range(tlb, vma, start, end, details);
  1197. }
  1198. }
  1199. /**
  1200. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1201. * @tlb: address of the caller's struct mmu_gather
  1202. * @vma: the starting vma
  1203. * @start_addr: virtual address at which to start unmapping
  1204. * @end_addr: virtual address at which to end unmapping
  1205. *
  1206. * Unmap all pages in the vma list.
  1207. *
  1208. * Only addresses between `start' and `end' will be unmapped.
  1209. *
  1210. * The VMA list must be sorted in ascending virtual address order.
  1211. *
  1212. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1213. * range after unmap_vmas() returns. So the only responsibility here is to
  1214. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1215. * drops the lock and schedules.
  1216. */
  1217. void unmap_vmas(struct mmu_gather *tlb,
  1218. struct vm_area_struct *vma, unsigned long start_addr,
  1219. unsigned long end_addr)
  1220. {
  1221. struct mm_struct *mm = vma->vm_mm;
  1222. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1223. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1224. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1225. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1226. }
  1227. /**
  1228. * zap_page_range - remove user pages in a given range
  1229. * @vma: vm_area_struct holding the applicable pages
  1230. * @start: starting address of pages to zap
  1231. * @size: number of bytes to zap
  1232. * @details: details of nonlinear truncation or shared cache invalidation
  1233. *
  1234. * Caller must protect the VMA list
  1235. */
  1236. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1237. unsigned long size, struct zap_details *details)
  1238. {
  1239. struct mm_struct *mm = vma->vm_mm;
  1240. struct mmu_gather tlb;
  1241. unsigned long end = start + size;
  1242. lru_add_drain();
  1243. tlb_gather_mmu(&tlb, mm, 0);
  1244. update_hiwater_rss(mm);
  1245. mmu_notifier_invalidate_range_start(mm, start, end);
  1246. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1247. unmap_single_vma(&tlb, vma, start, end, details);
  1248. mmu_notifier_invalidate_range_end(mm, start, end);
  1249. tlb_finish_mmu(&tlb, start, end);
  1250. }
  1251. /**
  1252. * zap_page_range_single - remove user pages in a given range
  1253. * @vma: vm_area_struct holding the applicable pages
  1254. * @address: starting address of pages to zap
  1255. * @size: number of bytes to zap
  1256. * @details: details of nonlinear truncation or shared cache invalidation
  1257. *
  1258. * The range must fit into one VMA.
  1259. */
  1260. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1261. unsigned long size, struct zap_details *details)
  1262. {
  1263. struct mm_struct *mm = vma->vm_mm;
  1264. struct mmu_gather tlb;
  1265. unsigned long end = address + size;
  1266. lru_add_drain();
  1267. tlb_gather_mmu(&tlb, mm, 0);
  1268. update_hiwater_rss(mm);
  1269. mmu_notifier_invalidate_range_start(mm, address, end);
  1270. unmap_single_vma(&tlb, vma, address, end, details);
  1271. mmu_notifier_invalidate_range_end(mm, address, end);
  1272. tlb_finish_mmu(&tlb, address, end);
  1273. }
  1274. /**
  1275. * zap_vma_ptes - remove ptes mapping the vma
  1276. * @vma: vm_area_struct holding ptes to be zapped
  1277. * @address: starting address of pages to zap
  1278. * @size: number of bytes to zap
  1279. *
  1280. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1281. *
  1282. * The entire address range must be fully contained within the vma.
  1283. *
  1284. * Returns 0 if successful.
  1285. */
  1286. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1287. unsigned long size)
  1288. {
  1289. if (address < vma->vm_start || address + size > vma->vm_end ||
  1290. !(vma->vm_flags & VM_PFNMAP))
  1291. return -1;
  1292. zap_page_range_single(vma, address, size, NULL);
  1293. return 0;
  1294. }
  1295. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1296. /**
  1297. * follow_page_mask - look up a page descriptor from a user-virtual address
  1298. * @vma: vm_area_struct mapping @address
  1299. * @address: virtual address to look up
  1300. * @flags: flags modifying lookup behaviour
  1301. * @page_mask: on output, *page_mask is set according to the size of the page
  1302. *
  1303. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1304. *
  1305. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1306. * an error pointer if there is a mapping to something not represented
  1307. * by a page descriptor (see also vm_normal_page()).
  1308. */
  1309. struct page *follow_page_mask(struct vm_area_struct *vma,
  1310. unsigned long address, unsigned int flags,
  1311. unsigned int *page_mask)
  1312. {
  1313. pgd_t *pgd;
  1314. pud_t *pud;
  1315. pmd_t *pmd;
  1316. pte_t *ptep, pte;
  1317. spinlock_t *ptl;
  1318. struct page *page;
  1319. struct mm_struct *mm = vma->vm_mm;
  1320. *page_mask = 0;
  1321. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1322. if (!IS_ERR(page)) {
  1323. BUG_ON(flags & FOLL_GET);
  1324. goto out;
  1325. }
  1326. page = NULL;
  1327. pgd = pgd_offset(mm, address);
  1328. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1329. goto no_page_table;
  1330. pud = pud_offset(pgd, address);
  1331. if (pud_none(*pud))
  1332. goto no_page_table;
  1333. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1334. BUG_ON(flags & FOLL_GET);
  1335. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1336. goto out;
  1337. }
  1338. if (unlikely(pud_bad(*pud)))
  1339. goto no_page_table;
  1340. pmd = pmd_offset(pud, address);
  1341. if (pmd_none(*pmd))
  1342. goto no_page_table;
  1343. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1344. BUG_ON(flags & FOLL_GET);
  1345. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1346. goto out;
  1347. }
  1348. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1349. goto no_page_table;
  1350. if (pmd_trans_huge(*pmd)) {
  1351. if (flags & FOLL_SPLIT) {
  1352. split_huge_page_pmd(vma, address, pmd);
  1353. goto split_fallthrough;
  1354. }
  1355. spin_lock(&mm->page_table_lock);
  1356. if (likely(pmd_trans_huge(*pmd))) {
  1357. if (unlikely(pmd_trans_splitting(*pmd))) {
  1358. spin_unlock(&mm->page_table_lock);
  1359. wait_split_huge_page(vma->anon_vma, pmd);
  1360. } else {
  1361. page = follow_trans_huge_pmd(vma, address,
  1362. pmd, flags);
  1363. spin_unlock(&mm->page_table_lock);
  1364. *page_mask = HPAGE_PMD_NR - 1;
  1365. goto out;
  1366. }
  1367. } else
  1368. spin_unlock(&mm->page_table_lock);
  1369. /* fall through */
  1370. }
  1371. split_fallthrough:
  1372. if (unlikely(pmd_bad(*pmd)))
  1373. goto no_page_table;
  1374. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1375. pte = *ptep;
  1376. if (!pte_present(pte)) {
  1377. swp_entry_t entry;
  1378. /*
  1379. * KSM's break_ksm() relies upon recognizing a ksm page
  1380. * even while it is being migrated, so for that case we
  1381. * need migration_entry_wait().
  1382. */
  1383. if (likely(!(flags & FOLL_MIGRATION)))
  1384. goto no_page;
  1385. if (pte_none(pte) || pte_file(pte))
  1386. goto no_page;
  1387. entry = pte_to_swp_entry(pte);
  1388. if (!is_migration_entry(entry))
  1389. goto no_page;
  1390. pte_unmap_unlock(ptep, ptl);
  1391. migration_entry_wait(mm, pmd, address);
  1392. goto split_fallthrough;
  1393. }
  1394. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1395. goto no_page;
  1396. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1397. goto unlock;
  1398. page = vm_normal_page(vma, address, pte);
  1399. if (unlikely(!page)) {
  1400. if ((flags & FOLL_DUMP) ||
  1401. !is_zero_pfn(pte_pfn(pte)))
  1402. goto bad_page;
  1403. page = pte_page(pte);
  1404. }
  1405. if (flags & FOLL_GET)
  1406. get_page_foll(page);
  1407. if (flags & FOLL_TOUCH) {
  1408. if ((flags & FOLL_WRITE) &&
  1409. !pte_dirty(pte) && !PageDirty(page))
  1410. set_page_dirty(page);
  1411. /*
  1412. * pte_mkyoung() would be more correct here, but atomic care
  1413. * is needed to avoid losing the dirty bit: it is easier to use
  1414. * mark_page_accessed().
  1415. */
  1416. mark_page_accessed(page);
  1417. }
  1418. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1419. /*
  1420. * The preliminary mapping check is mainly to avoid the
  1421. * pointless overhead of lock_page on the ZERO_PAGE
  1422. * which might bounce very badly if there is contention.
  1423. *
  1424. * If the page is already locked, we don't need to
  1425. * handle it now - vmscan will handle it later if and
  1426. * when it attempts to reclaim the page.
  1427. */
  1428. if (page->mapping && trylock_page(page)) {
  1429. lru_add_drain(); /* push cached pages to LRU */
  1430. /*
  1431. * Because we lock page here, and migration is
  1432. * blocked by the pte's page reference, and we
  1433. * know the page is still mapped, we don't even
  1434. * need to check for file-cache page truncation.
  1435. */
  1436. mlock_vma_page(page);
  1437. unlock_page(page);
  1438. }
  1439. }
  1440. unlock:
  1441. pte_unmap_unlock(ptep, ptl);
  1442. out:
  1443. return page;
  1444. bad_page:
  1445. pte_unmap_unlock(ptep, ptl);
  1446. return ERR_PTR(-EFAULT);
  1447. no_page:
  1448. pte_unmap_unlock(ptep, ptl);
  1449. if (!pte_none(pte))
  1450. return page;
  1451. no_page_table:
  1452. /*
  1453. * When core dumping an enormous anonymous area that nobody
  1454. * has touched so far, we don't want to allocate unnecessary pages or
  1455. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1456. * then get_dump_page() will return NULL to leave a hole in the dump.
  1457. * But we can only make this optimization where a hole would surely
  1458. * be zero-filled if handle_mm_fault() actually did handle it.
  1459. */
  1460. if ((flags & FOLL_DUMP) &&
  1461. (!vma->vm_ops || !vma->vm_ops->fault))
  1462. return ERR_PTR(-EFAULT);
  1463. return page;
  1464. }
  1465. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1466. {
  1467. return stack_guard_page_start(vma, addr) ||
  1468. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1469. }
  1470. /**
  1471. * __get_user_pages() - pin user pages in memory
  1472. * @tsk: task_struct of target task
  1473. * @mm: mm_struct of target mm
  1474. * @start: starting user address
  1475. * @nr_pages: number of pages from start to pin
  1476. * @gup_flags: flags modifying pin behaviour
  1477. * @pages: array that receives pointers to the pages pinned.
  1478. * Should be at least nr_pages long. Or NULL, if caller
  1479. * only intends to ensure the pages are faulted in.
  1480. * @vmas: array of pointers to vmas corresponding to each page.
  1481. * Or NULL if the caller does not require them.
  1482. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1483. *
  1484. * Returns number of pages pinned. This may be fewer than the number
  1485. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1486. * were pinned, returns -errno. Each page returned must be released
  1487. * with a put_page() call when it is finished with. vmas will only
  1488. * remain valid while mmap_sem is held.
  1489. *
  1490. * Must be called with mmap_sem held for read or write.
  1491. *
  1492. * __get_user_pages walks a process's page tables and takes a reference to
  1493. * each struct page that each user address corresponds to at a given
  1494. * instant. That is, it takes the page that would be accessed if a user
  1495. * thread accesses the given user virtual address at that instant.
  1496. *
  1497. * This does not guarantee that the page exists in the user mappings when
  1498. * __get_user_pages returns, and there may even be a completely different
  1499. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1500. * and subsequently re faulted). However it does guarantee that the page
  1501. * won't be freed completely. And mostly callers simply care that the page
  1502. * contains data that was valid *at some point in time*. Typically, an IO
  1503. * or similar operation cannot guarantee anything stronger anyway because
  1504. * locks can't be held over the syscall boundary.
  1505. *
  1506. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1507. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1508. * appropriate) must be called after the page is finished with, and
  1509. * before put_page is called.
  1510. *
  1511. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1512. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1513. * *@nonblocking will be set to 0.
  1514. *
  1515. * In most cases, get_user_pages or get_user_pages_fast should be used
  1516. * instead of __get_user_pages. __get_user_pages should be used only if
  1517. * you need some special @gup_flags.
  1518. */
  1519. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1520. unsigned long start, unsigned long nr_pages,
  1521. unsigned int gup_flags, struct page **pages,
  1522. struct vm_area_struct **vmas, int *nonblocking)
  1523. {
  1524. long i;
  1525. unsigned long vm_flags;
  1526. unsigned int page_mask;
  1527. if (!nr_pages)
  1528. return 0;
  1529. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1530. /*
  1531. * Require read or write permissions.
  1532. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1533. */
  1534. vm_flags = (gup_flags & FOLL_WRITE) ?
  1535. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1536. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1537. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1538. /*
  1539. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1540. * would be called on PROT_NONE ranges. We must never invoke
  1541. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1542. * page faults would unprotect the PROT_NONE ranges if
  1543. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1544. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1545. * FOLL_FORCE is set.
  1546. */
  1547. if (!(gup_flags & FOLL_FORCE))
  1548. gup_flags |= FOLL_NUMA;
  1549. i = 0;
  1550. do {
  1551. struct vm_area_struct *vma;
  1552. vma = find_extend_vma(mm, start);
  1553. if (!vma && in_gate_area(mm, start)) {
  1554. unsigned long pg = start & PAGE_MASK;
  1555. pgd_t *pgd;
  1556. pud_t *pud;
  1557. pmd_t *pmd;
  1558. pte_t *pte;
  1559. /* user gate pages are read-only */
  1560. if (gup_flags & FOLL_WRITE)
  1561. return i ? : -EFAULT;
  1562. if (pg > TASK_SIZE)
  1563. pgd = pgd_offset_k(pg);
  1564. else
  1565. pgd = pgd_offset_gate(mm, pg);
  1566. BUG_ON(pgd_none(*pgd));
  1567. pud = pud_offset(pgd, pg);
  1568. BUG_ON(pud_none(*pud));
  1569. pmd = pmd_offset(pud, pg);
  1570. if (pmd_none(*pmd))
  1571. return i ? : -EFAULT;
  1572. VM_BUG_ON(pmd_trans_huge(*pmd));
  1573. pte = pte_offset_map(pmd, pg);
  1574. if (pte_none(*pte)) {
  1575. pte_unmap(pte);
  1576. return i ? : -EFAULT;
  1577. }
  1578. vma = get_gate_vma(mm);
  1579. if (pages) {
  1580. struct page *page;
  1581. page = vm_normal_page(vma, start, *pte);
  1582. if (!page) {
  1583. if (!(gup_flags & FOLL_DUMP) &&
  1584. is_zero_pfn(pte_pfn(*pte)))
  1585. page = pte_page(*pte);
  1586. else {
  1587. pte_unmap(pte);
  1588. return i ? : -EFAULT;
  1589. }
  1590. }
  1591. pages[i] = page;
  1592. get_page(page);
  1593. }
  1594. pte_unmap(pte);
  1595. page_mask = 0;
  1596. goto next_page;
  1597. }
  1598. if (!vma ||
  1599. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1600. !(vm_flags & vma->vm_flags))
  1601. return i ? : -EFAULT;
  1602. if (is_vm_hugetlb_page(vma)) {
  1603. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1604. &start, &nr_pages, i, gup_flags);
  1605. continue;
  1606. }
  1607. do {
  1608. struct page *page;
  1609. unsigned int foll_flags = gup_flags;
  1610. unsigned int page_increm;
  1611. /*
  1612. * If we have a pending SIGKILL, don't keep faulting
  1613. * pages and potentially allocating memory.
  1614. */
  1615. if (unlikely(fatal_signal_pending(current)))
  1616. return i ? i : -ERESTARTSYS;
  1617. cond_resched();
  1618. while (!(page = follow_page_mask(vma, start,
  1619. foll_flags, &page_mask))) {
  1620. int ret;
  1621. unsigned int fault_flags = 0;
  1622. /* For mlock, just skip the stack guard page. */
  1623. if (foll_flags & FOLL_MLOCK) {
  1624. if (stack_guard_page(vma, start))
  1625. goto next_page;
  1626. }
  1627. if (foll_flags & FOLL_WRITE)
  1628. fault_flags |= FAULT_FLAG_WRITE;
  1629. if (nonblocking)
  1630. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1631. if (foll_flags & FOLL_NOWAIT)
  1632. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1633. ret = handle_mm_fault(mm, vma, start,
  1634. fault_flags);
  1635. if (ret & VM_FAULT_ERROR) {
  1636. if (ret & VM_FAULT_OOM)
  1637. return i ? i : -ENOMEM;
  1638. if (ret & (VM_FAULT_HWPOISON |
  1639. VM_FAULT_HWPOISON_LARGE)) {
  1640. if (i)
  1641. return i;
  1642. else if (gup_flags & FOLL_HWPOISON)
  1643. return -EHWPOISON;
  1644. else
  1645. return -EFAULT;
  1646. }
  1647. if (ret & VM_FAULT_SIGBUS)
  1648. return i ? i : -EFAULT;
  1649. BUG();
  1650. }
  1651. if (tsk) {
  1652. if (ret & VM_FAULT_MAJOR)
  1653. tsk->maj_flt++;
  1654. else
  1655. tsk->min_flt++;
  1656. }
  1657. if (ret & VM_FAULT_RETRY) {
  1658. if (nonblocking)
  1659. *nonblocking = 0;
  1660. return i;
  1661. }
  1662. /*
  1663. * The VM_FAULT_WRITE bit tells us that
  1664. * do_wp_page has broken COW when necessary,
  1665. * even if maybe_mkwrite decided not to set
  1666. * pte_write. We can thus safely do subsequent
  1667. * page lookups as if they were reads. But only
  1668. * do so when looping for pte_write is futile:
  1669. * in some cases userspace may also be wanting
  1670. * to write to the gotten user page, which a
  1671. * read fault here might prevent (a readonly
  1672. * page might get reCOWed by userspace write).
  1673. */
  1674. if ((ret & VM_FAULT_WRITE) &&
  1675. !(vma->vm_flags & VM_WRITE))
  1676. foll_flags &= ~FOLL_WRITE;
  1677. cond_resched();
  1678. }
  1679. if (IS_ERR(page))
  1680. return i ? i : PTR_ERR(page);
  1681. if (pages) {
  1682. pages[i] = page;
  1683. flush_anon_page(vma, page, start);
  1684. flush_dcache_page(page);
  1685. page_mask = 0;
  1686. }
  1687. next_page:
  1688. if (vmas) {
  1689. vmas[i] = vma;
  1690. page_mask = 0;
  1691. }
  1692. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1693. if (page_increm > nr_pages)
  1694. page_increm = nr_pages;
  1695. i += page_increm;
  1696. start += page_increm * PAGE_SIZE;
  1697. nr_pages -= page_increm;
  1698. } while (nr_pages && start < vma->vm_end);
  1699. } while (nr_pages);
  1700. return i;
  1701. }
  1702. EXPORT_SYMBOL(__get_user_pages);
  1703. /*
  1704. * fixup_user_fault() - manually resolve a user page fault
  1705. * @tsk: the task_struct to use for page fault accounting, or
  1706. * NULL if faults are not to be recorded.
  1707. * @mm: mm_struct of target mm
  1708. * @address: user address
  1709. * @fault_flags:flags to pass down to handle_mm_fault()
  1710. *
  1711. * This is meant to be called in the specific scenario where for locking reasons
  1712. * we try to access user memory in atomic context (within a pagefault_disable()
  1713. * section), this returns -EFAULT, and we want to resolve the user fault before
  1714. * trying again.
  1715. *
  1716. * Typically this is meant to be used by the futex code.
  1717. *
  1718. * The main difference with get_user_pages() is that this function will
  1719. * unconditionally call handle_mm_fault() which will in turn perform all the
  1720. * necessary SW fixup of the dirty and young bits in the PTE, while
  1721. * handle_mm_fault() only guarantees to update these in the struct page.
  1722. *
  1723. * This is important for some architectures where those bits also gate the
  1724. * access permission to the page because they are maintained in software. On
  1725. * such architectures, gup() will not be enough to make a subsequent access
  1726. * succeed.
  1727. *
  1728. * This should be called with the mm_sem held for read.
  1729. */
  1730. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1731. unsigned long address, unsigned int fault_flags)
  1732. {
  1733. struct vm_area_struct *vma;
  1734. int ret;
  1735. vma = find_extend_vma(mm, address);
  1736. if (!vma || address < vma->vm_start)
  1737. return -EFAULT;
  1738. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1739. if (ret & VM_FAULT_ERROR) {
  1740. if (ret & VM_FAULT_OOM)
  1741. return -ENOMEM;
  1742. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1743. return -EHWPOISON;
  1744. if (ret & VM_FAULT_SIGBUS)
  1745. return -EFAULT;
  1746. BUG();
  1747. }
  1748. if (tsk) {
  1749. if (ret & VM_FAULT_MAJOR)
  1750. tsk->maj_flt++;
  1751. else
  1752. tsk->min_flt++;
  1753. }
  1754. return 0;
  1755. }
  1756. /*
  1757. * get_user_pages() - pin user pages in memory
  1758. * @tsk: the task_struct to use for page fault accounting, or
  1759. * NULL if faults are not to be recorded.
  1760. * @mm: mm_struct of target mm
  1761. * @start: starting user address
  1762. * @nr_pages: number of pages from start to pin
  1763. * @write: whether pages will be written to by the caller
  1764. * @force: whether to force write access even if user mapping is
  1765. * readonly. This will result in the page being COWed even
  1766. * in MAP_SHARED mappings. You do not want this.
  1767. * @pages: array that receives pointers to the pages pinned.
  1768. * Should be at least nr_pages long. Or NULL, if caller
  1769. * only intends to ensure the pages are faulted in.
  1770. * @vmas: array of pointers to vmas corresponding to each page.
  1771. * Or NULL if the caller does not require them.
  1772. *
  1773. * Returns number of pages pinned. This may be fewer than the number
  1774. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1775. * were pinned, returns -errno. Each page returned must be released
  1776. * with a put_page() call when it is finished with. vmas will only
  1777. * remain valid while mmap_sem is held.
  1778. *
  1779. * Must be called with mmap_sem held for read or write.
  1780. *
  1781. * get_user_pages walks a process's page tables and takes a reference to
  1782. * each struct page that each user address corresponds to at a given
  1783. * instant. That is, it takes the page that would be accessed if a user
  1784. * thread accesses the given user virtual address at that instant.
  1785. *
  1786. * This does not guarantee that the page exists in the user mappings when
  1787. * get_user_pages returns, and there may even be a completely different
  1788. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1789. * and subsequently re faulted). However it does guarantee that the page
  1790. * won't be freed completely. And mostly callers simply care that the page
  1791. * contains data that was valid *at some point in time*. Typically, an IO
  1792. * or similar operation cannot guarantee anything stronger anyway because
  1793. * locks can't be held over the syscall boundary.
  1794. *
  1795. * If write=0, the page must not be written to. If the page is written to,
  1796. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1797. * after the page is finished with, and before put_page is called.
  1798. *
  1799. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1800. * handle on the memory by some means other than accesses via the user virtual
  1801. * addresses. The pages may be submitted for DMA to devices or accessed via
  1802. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1803. * use the correct cache flushing APIs.
  1804. *
  1805. * See also get_user_pages_fast, for performance critical applications.
  1806. */
  1807. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1808. unsigned long start, unsigned long nr_pages, int write,
  1809. int force, struct page **pages, struct vm_area_struct **vmas)
  1810. {
  1811. int flags = FOLL_TOUCH;
  1812. if (pages)
  1813. flags |= FOLL_GET;
  1814. if (write)
  1815. flags |= FOLL_WRITE;
  1816. if (force)
  1817. flags |= FOLL_FORCE;
  1818. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1819. NULL);
  1820. }
  1821. EXPORT_SYMBOL(get_user_pages);
  1822. /**
  1823. * get_dump_page() - pin user page in memory while writing it to core dump
  1824. * @addr: user address
  1825. *
  1826. * Returns struct page pointer of user page pinned for dump,
  1827. * to be freed afterwards by page_cache_release() or put_page().
  1828. *
  1829. * Returns NULL on any kind of failure - a hole must then be inserted into
  1830. * the corefile, to preserve alignment with its headers; and also returns
  1831. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1832. * allowing a hole to be left in the corefile to save diskspace.
  1833. *
  1834. * Called without mmap_sem, but after all other threads have been killed.
  1835. */
  1836. #ifdef CONFIG_ELF_CORE
  1837. struct page *get_dump_page(unsigned long addr)
  1838. {
  1839. struct vm_area_struct *vma;
  1840. struct page *page;
  1841. if (__get_user_pages(current, current->mm, addr, 1,
  1842. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1843. NULL) < 1)
  1844. return NULL;
  1845. flush_cache_page(vma, addr, page_to_pfn(page));
  1846. return page;
  1847. }
  1848. #endif /* CONFIG_ELF_CORE */
  1849. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1850. spinlock_t **ptl)
  1851. {
  1852. pgd_t * pgd = pgd_offset(mm, addr);
  1853. pud_t * pud = pud_alloc(mm, pgd, addr);
  1854. if (pud) {
  1855. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1856. if (pmd) {
  1857. VM_BUG_ON(pmd_trans_huge(*pmd));
  1858. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1859. }
  1860. }
  1861. return NULL;
  1862. }
  1863. /*
  1864. * This is the old fallback for page remapping.
  1865. *
  1866. * For historical reasons, it only allows reserved pages. Only
  1867. * old drivers should use this, and they needed to mark their
  1868. * pages reserved for the old functions anyway.
  1869. */
  1870. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1871. struct page *page, pgprot_t prot)
  1872. {
  1873. struct mm_struct *mm = vma->vm_mm;
  1874. int retval;
  1875. pte_t *pte;
  1876. spinlock_t *ptl;
  1877. retval = -EINVAL;
  1878. if (PageAnon(page))
  1879. goto out;
  1880. retval = -ENOMEM;
  1881. flush_dcache_page(page);
  1882. pte = get_locked_pte(mm, addr, &ptl);
  1883. if (!pte)
  1884. goto out;
  1885. retval = -EBUSY;
  1886. if (!pte_none(*pte))
  1887. goto out_unlock;
  1888. /* Ok, finally just insert the thing.. */
  1889. get_page(page);
  1890. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1891. page_add_file_rmap(page);
  1892. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1893. retval = 0;
  1894. pte_unmap_unlock(pte, ptl);
  1895. return retval;
  1896. out_unlock:
  1897. pte_unmap_unlock(pte, ptl);
  1898. out:
  1899. return retval;
  1900. }
  1901. /**
  1902. * vm_insert_page - insert single page into user vma
  1903. * @vma: user vma to map to
  1904. * @addr: target user address of this page
  1905. * @page: source kernel page
  1906. *
  1907. * This allows drivers to insert individual pages they've allocated
  1908. * into a user vma.
  1909. *
  1910. * The page has to be a nice clean _individual_ kernel allocation.
  1911. * If you allocate a compound page, you need to have marked it as
  1912. * such (__GFP_COMP), or manually just split the page up yourself
  1913. * (see split_page()).
  1914. *
  1915. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1916. * took an arbitrary page protection parameter. This doesn't allow
  1917. * that. Your vma protection will have to be set up correctly, which
  1918. * means that if you want a shared writable mapping, you'd better
  1919. * ask for a shared writable mapping!
  1920. *
  1921. * The page does not need to be reserved.
  1922. *
  1923. * Usually this function is called from f_op->mmap() handler
  1924. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1925. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1926. * function from other places, for example from page-fault handler.
  1927. */
  1928. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1929. struct page *page)
  1930. {
  1931. if (addr < vma->vm_start || addr >= vma->vm_end)
  1932. return -EFAULT;
  1933. if (!page_count(page))
  1934. return -EINVAL;
  1935. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1936. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1937. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1938. vma->vm_flags |= VM_MIXEDMAP;
  1939. }
  1940. return insert_page(vma, addr, page, vma->vm_page_prot);
  1941. }
  1942. EXPORT_SYMBOL(vm_insert_page);
  1943. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1944. unsigned long pfn, pgprot_t prot)
  1945. {
  1946. struct mm_struct *mm = vma->vm_mm;
  1947. int retval;
  1948. pte_t *pte, entry;
  1949. spinlock_t *ptl;
  1950. retval = -ENOMEM;
  1951. pte = get_locked_pte(mm, addr, &ptl);
  1952. if (!pte)
  1953. goto out;
  1954. retval = -EBUSY;
  1955. if (!pte_none(*pte))
  1956. goto out_unlock;
  1957. /* Ok, finally just insert the thing.. */
  1958. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1959. set_pte_at(mm, addr, pte, entry);
  1960. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1961. retval = 0;
  1962. out_unlock:
  1963. pte_unmap_unlock(pte, ptl);
  1964. out:
  1965. return retval;
  1966. }
  1967. /**
  1968. * vm_insert_pfn - insert single pfn into user vma
  1969. * @vma: user vma to map to
  1970. * @addr: target user address of this page
  1971. * @pfn: source kernel pfn
  1972. *
  1973. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1974. * they've allocated into a user vma. Same comments apply.
  1975. *
  1976. * This function should only be called from a vm_ops->fault handler, and
  1977. * in that case the handler should return NULL.
  1978. *
  1979. * vma cannot be a COW mapping.
  1980. *
  1981. * As this is called only for pages that do not currently exist, we
  1982. * do not need to flush old virtual caches or the TLB.
  1983. */
  1984. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1985. unsigned long pfn)
  1986. {
  1987. int ret;
  1988. pgprot_t pgprot = vma->vm_page_prot;
  1989. /*
  1990. * Technically, architectures with pte_special can avoid all these
  1991. * restrictions (same for remap_pfn_range). However we would like
  1992. * consistency in testing and feature parity among all, so we should
  1993. * try to keep these invariants in place for everybody.
  1994. */
  1995. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1996. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1997. (VM_PFNMAP|VM_MIXEDMAP));
  1998. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1999. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  2000. if (addr < vma->vm_start || addr >= vma->vm_end)
  2001. return -EFAULT;
  2002. if (track_pfn_insert(vma, &pgprot, pfn))
  2003. return -EINVAL;
  2004. ret = insert_pfn(vma, addr, pfn, pgprot);
  2005. return ret;
  2006. }
  2007. EXPORT_SYMBOL(vm_insert_pfn);
  2008. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2009. unsigned long pfn)
  2010. {
  2011. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  2012. if (addr < vma->vm_start || addr >= vma->vm_end)
  2013. return -EFAULT;
  2014. /*
  2015. * If we don't have pte special, then we have to use the pfn_valid()
  2016. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  2017. * refcount the page if pfn_valid is true (hence insert_page rather
  2018. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  2019. * without pte special, it would there be refcounted as a normal page.
  2020. */
  2021. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2022. struct page *page;
  2023. page = pfn_to_page(pfn);
  2024. return insert_page(vma, addr, page, vma->vm_page_prot);
  2025. }
  2026. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2027. }
  2028. EXPORT_SYMBOL(vm_insert_mixed);
  2029. /*
  2030. * maps a range of physical memory into the requested pages. the old
  2031. * mappings are removed. any references to nonexistent pages results
  2032. * in null mappings (currently treated as "copy-on-access")
  2033. */
  2034. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2035. unsigned long addr, unsigned long end,
  2036. unsigned long pfn, pgprot_t prot)
  2037. {
  2038. pte_t *pte;
  2039. spinlock_t *ptl;
  2040. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2041. if (!pte)
  2042. return -ENOMEM;
  2043. arch_enter_lazy_mmu_mode();
  2044. do {
  2045. BUG_ON(!pte_none(*pte));
  2046. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2047. pfn++;
  2048. } while (pte++, addr += PAGE_SIZE, addr != end);
  2049. arch_leave_lazy_mmu_mode();
  2050. pte_unmap_unlock(pte - 1, ptl);
  2051. return 0;
  2052. }
  2053. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2054. unsigned long addr, unsigned long end,
  2055. unsigned long pfn, pgprot_t prot)
  2056. {
  2057. pmd_t *pmd;
  2058. unsigned long next;
  2059. pfn -= addr >> PAGE_SHIFT;
  2060. pmd = pmd_alloc(mm, pud, addr);
  2061. if (!pmd)
  2062. return -ENOMEM;
  2063. VM_BUG_ON(pmd_trans_huge(*pmd));
  2064. do {
  2065. next = pmd_addr_end(addr, end);
  2066. if (remap_pte_range(mm, pmd, addr, next,
  2067. pfn + (addr >> PAGE_SHIFT), prot))
  2068. return -ENOMEM;
  2069. } while (pmd++, addr = next, addr != end);
  2070. return 0;
  2071. }
  2072. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2073. unsigned long addr, unsigned long end,
  2074. unsigned long pfn, pgprot_t prot)
  2075. {
  2076. pud_t *pud;
  2077. unsigned long next;
  2078. pfn -= addr >> PAGE_SHIFT;
  2079. pud = pud_alloc(mm, pgd, addr);
  2080. if (!pud)
  2081. return -ENOMEM;
  2082. do {
  2083. next = pud_addr_end(addr, end);
  2084. if (remap_pmd_range(mm, pud, addr, next,
  2085. pfn + (addr >> PAGE_SHIFT), prot))
  2086. return -ENOMEM;
  2087. } while (pud++, addr = next, addr != end);
  2088. return 0;
  2089. }
  2090. /**
  2091. * remap_pfn_range - remap kernel memory to userspace
  2092. * @vma: user vma to map to
  2093. * @addr: target user address to start at
  2094. * @pfn: physical address of kernel memory
  2095. * @size: size of map area
  2096. * @prot: page protection flags for this mapping
  2097. *
  2098. * Note: this is only safe if the mm semaphore is held when called.
  2099. */
  2100. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2101. unsigned long pfn, unsigned long size, pgprot_t prot)
  2102. {
  2103. pgd_t *pgd;
  2104. unsigned long next;
  2105. unsigned long end = addr + PAGE_ALIGN(size);
  2106. struct mm_struct *mm = vma->vm_mm;
  2107. int err;
  2108. /*
  2109. * Physically remapped pages are special. Tell the
  2110. * rest of the world about it:
  2111. * VM_IO tells people not to look at these pages
  2112. * (accesses can have side effects).
  2113. * VM_PFNMAP tells the core MM that the base pages are just
  2114. * raw PFN mappings, and do not have a "struct page" associated
  2115. * with them.
  2116. * VM_DONTEXPAND
  2117. * Disable vma merging and expanding with mremap().
  2118. * VM_DONTDUMP
  2119. * Omit vma from core dump, even when VM_IO turned off.
  2120. *
  2121. * There's a horrible special case to handle copy-on-write
  2122. * behaviour that some programs depend on. We mark the "original"
  2123. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2124. * See vm_normal_page() for details.
  2125. */
  2126. if (is_cow_mapping(vma->vm_flags)) {
  2127. if (addr != vma->vm_start || end != vma->vm_end)
  2128. return -EINVAL;
  2129. vma->vm_pgoff = pfn;
  2130. }
  2131. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2132. if (err)
  2133. return -EINVAL;
  2134. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2135. BUG_ON(addr >= end);
  2136. pfn -= addr >> PAGE_SHIFT;
  2137. pgd = pgd_offset(mm, addr);
  2138. flush_cache_range(vma, addr, end);
  2139. do {
  2140. next = pgd_addr_end(addr, end);
  2141. err = remap_pud_range(mm, pgd, addr, next,
  2142. pfn + (addr >> PAGE_SHIFT), prot);
  2143. if (err)
  2144. break;
  2145. } while (pgd++, addr = next, addr != end);
  2146. if (err)
  2147. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2148. return err;
  2149. }
  2150. EXPORT_SYMBOL(remap_pfn_range);
  2151. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2152. unsigned long addr, unsigned long end,
  2153. pte_fn_t fn, void *data)
  2154. {
  2155. pte_t *pte;
  2156. int err;
  2157. pgtable_t token;
  2158. spinlock_t *uninitialized_var(ptl);
  2159. pte = (mm == &init_mm) ?
  2160. pte_alloc_kernel(pmd, addr) :
  2161. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2162. if (!pte)
  2163. return -ENOMEM;
  2164. BUG_ON(pmd_huge(*pmd));
  2165. arch_enter_lazy_mmu_mode();
  2166. token = pmd_pgtable(*pmd);
  2167. do {
  2168. err = fn(pte++, token, addr, data);
  2169. if (err)
  2170. break;
  2171. } while (addr += PAGE_SIZE, addr != end);
  2172. arch_leave_lazy_mmu_mode();
  2173. if (mm != &init_mm)
  2174. pte_unmap_unlock(pte-1, ptl);
  2175. return err;
  2176. }
  2177. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2178. unsigned long addr, unsigned long end,
  2179. pte_fn_t fn, void *data)
  2180. {
  2181. pmd_t *pmd;
  2182. unsigned long next;
  2183. int err;
  2184. BUG_ON(pud_huge(*pud));
  2185. pmd = pmd_alloc(mm, pud, addr);
  2186. if (!pmd)
  2187. return -ENOMEM;
  2188. do {
  2189. next = pmd_addr_end(addr, end);
  2190. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2191. if (err)
  2192. break;
  2193. } while (pmd++, addr = next, addr != end);
  2194. return err;
  2195. }
  2196. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2197. unsigned long addr, unsigned long end,
  2198. pte_fn_t fn, void *data)
  2199. {
  2200. pud_t *pud;
  2201. unsigned long next;
  2202. int err;
  2203. pud = pud_alloc(mm, pgd, addr);
  2204. if (!pud)
  2205. return -ENOMEM;
  2206. do {
  2207. next = pud_addr_end(addr, end);
  2208. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2209. if (err)
  2210. break;
  2211. } while (pud++, addr = next, addr != end);
  2212. return err;
  2213. }
  2214. /*
  2215. * Scan a region of virtual memory, filling in page tables as necessary
  2216. * and calling a provided function on each leaf page table.
  2217. */
  2218. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2219. unsigned long size, pte_fn_t fn, void *data)
  2220. {
  2221. pgd_t *pgd;
  2222. unsigned long next;
  2223. unsigned long end = addr + size;
  2224. int err;
  2225. BUG_ON(addr >= end);
  2226. pgd = pgd_offset(mm, addr);
  2227. do {
  2228. next = pgd_addr_end(addr, end);
  2229. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2230. if (err)
  2231. break;
  2232. } while (pgd++, addr = next, addr != end);
  2233. return err;
  2234. }
  2235. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2236. /*
  2237. * handle_pte_fault chooses page fault handler according to an entry
  2238. * which was read non-atomically. Before making any commitment, on
  2239. * those architectures or configurations (e.g. i386 with PAE) which
  2240. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2241. * must check under lock before unmapping the pte and proceeding
  2242. * (but do_wp_page is only called after already making such a check;
  2243. * and do_anonymous_page can safely check later on).
  2244. */
  2245. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2246. pte_t *page_table, pte_t orig_pte)
  2247. {
  2248. int same = 1;
  2249. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2250. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2251. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2252. spin_lock(ptl);
  2253. same = pte_same(*page_table, orig_pte);
  2254. spin_unlock(ptl);
  2255. }
  2256. #endif
  2257. pte_unmap(page_table);
  2258. return same;
  2259. }
  2260. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2261. {
  2262. /*
  2263. * If the source page was a PFN mapping, we don't have
  2264. * a "struct page" for it. We do a best-effort copy by
  2265. * just copying from the original user address. If that
  2266. * fails, we just zero-fill it. Live with it.
  2267. */
  2268. if (unlikely(!src)) {
  2269. void *kaddr = kmap_atomic(dst);
  2270. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2271. /*
  2272. * This really shouldn't fail, because the page is there
  2273. * in the page tables. But it might just be unreadable,
  2274. * in which case we just give up and fill the result with
  2275. * zeroes.
  2276. */
  2277. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2278. clear_page(kaddr);
  2279. kunmap_atomic(kaddr);
  2280. flush_dcache_page(dst);
  2281. } else
  2282. copy_user_highpage(dst, src, va, vma);
  2283. }
  2284. /*
  2285. * This routine handles present pages, when users try to write
  2286. * to a shared page. It is done by copying the page to a new address
  2287. * and decrementing the shared-page counter for the old page.
  2288. *
  2289. * Note that this routine assumes that the protection checks have been
  2290. * done by the caller (the low-level page fault routine in most cases).
  2291. * Thus we can safely just mark it writable once we've done any necessary
  2292. * COW.
  2293. *
  2294. * We also mark the page dirty at this point even though the page will
  2295. * change only once the write actually happens. This avoids a few races,
  2296. * and potentially makes it more efficient.
  2297. *
  2298. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2299. * but allow concurrent faults), with pte both mapped and locked.
  2300. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2301. */
  2302. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2303. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2304. spinlock_t *ptl, pte_t orig_pte)
  2305. __releases(ptl)
  2306. {
  2307. struct page *old_page, *new_page = NULL;
  2308. pte_t entry;
  2309. int ret = 0;
  2310. int page_mkwrite = 0;
  2311. struct page *dirty_page = NULL;
  2312. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2313. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2314. old_page = vm_normal_page(vma, address, orig_pte);
  2315. if (!old_page) {
  2316. /*
  2317. * VM_MIXEDMAP !pfn_valid() case
  2318. *
  2319. * We should not cow pages in a shared writeable mapping.
  2320. * Just mark the pages writable as we can't do any dirty
  2321. * accounting on raw pfn maps.
  2322. */
  2323. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2324. (VM_WRITE|VM_SHARED))
  2325. goto reuse;
  2326. goto gotten;
  2327. }
  2328. /*
  2329. * Take out anonymous pages first, anonymous shared vmas are
  2330. * not dirty accountable.
  2331. */
  2332. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2333. if (!trylock_page(old_page)) {
  2334. page_cache_get(old_page);
  2335. pte_unmap_unlock(page_table, ptl);
  2336. lock_page(old_page);
  2337. page_table = pte_offset_map_lock(mm, pmd, address,
  2338. &ptl);
  2339. if (!pte_same(*page_table, orig_pte)) {
  2340. unlock_page(old_page);
  2341. goto unlock;
  2342. }
  2343. page_cache_release(old_page);
  2344. }
  2345. if (reuse_swap_page(old_page)) {
  2346. /*
  2347. * The page is all ours. Move it to our anon_vma so
  2348. * the rmap code will not search our parent or siblings.
  2349. * Protected against the rmap code by the page lock.
  2350. */
  2351. page_move_anon_rmap(old_page, vma, address);
  2352. unlock_page(old_page);
  2353. goto reuse;
  2354. }
  2355. unlock_page(old_page);
  2356. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2357. (VM_WRITE|VM_SHARED))) {
  2358. /*
  2359. * Only catch write-faults on shared writable pages,
  2360. * read-only shared pages can get COWed by
  2361. * get_user_pages(.write=1, .force=1).
  2362. */
  2363. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2364. struct vm_fault vmf;
  2365. int tmp;
  2366. vmf.virtual_address = (void __user *)(address &
  2367. PAGE_MASK);
  2368. vmf.pgoff = old_page->index;
  2369. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2370. vmf.page = old_page;
  2371. /*
  2372. * Notify the address space that the page is about to
  2373. * become writable so that it can prohibit this or wait
  2374. * for the page to get into an appropriate state.
  2375. *
  2376. * We do this without the lock held, so that it can
  2377. * sleep if it needs to.
  2378. */
  2379. page_cache_get(old_page);
  2380. pte_unmap_unlock(page_table, ptl);
  2381. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2382. if (unlikely(tmp &
  2383. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2384. ret = tmp;
  2385. goto unwritable_page;
  2386. }
  2387. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2388. lock_page(old_page);
  2389. if (!old_page->mapping) {
  2390. ret = 0; /* retry the fault */
  2391. unlock_page(old_page);
  2392. goto unwritable_page;
  2393. }
  2394. } else
  2395. VM_BUG_ON(!PageLocked(old_page));
  2396. /*
  2397. * Since we dropped the lock we need to revalidate
  2398. * the PTE as someone else may have changed it. If
  2399. * they did, we just return, as we can count on the
  2400. * MMU to tell us if they didn't also make it writable.
  2401. */
  2402. page_table = pte_offset_map_lock(mm, pmd, address,
  2403. &ptl);
  2404. if (!pte_same(*page_table, orig_pte)) {
  2405. unlock_page(old_page);
  2406. goto unlock;
  2407. }
  2408. page_mkwrite = 1;
  2409. }
  2410. dirty_page = old_page;
  2411. get_page(dirty_page);
  2412. reuse:
  2413. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2414. entry = pte_mkyoung(orig_pte);
  2415. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2416. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2417. update_mmu_cache(vma, address, page_table);
  2418. pte_unmap_unlock(page_table, ptl);
  2419. ret |= VM_FAULT_WRITE;
  2420. if (!dirty_page)
  2421. return ret;
  2422. /*
  2423. * Yes, Virginia, this is actually required to prevent a race
  2424. * with clear_page_dirty_for_io() from clearing the page dirty
  2425. * bit after it clear all dirty ptes, but before a racing
  2426. * do_wp_page installs a dirty pte.
  2427. *
  2428. * __do_fault is protected similarly.
  2429. */
  2430. if (!page_mkwrite) {
  2431. wait_on_page_locked(dirty_page);
  2432. set_page_dirty_balance(dirty_page, page_mkwrite);
  2433. /* file_update_time outside page_lock */
  2434. if (vma->vm_file)
  2435. file_update_time(vma->vm_file);
  2436. }
  2437. put_page(dirty_page);
  2438. if (page_mkwrite) {
  2439. struct address_space *mapping = dirty_page->mapping;
  2440. set_page_dirty(dirty_page);
  2441. unlock_page(dirty_page);
  2442. page_cache_release(dirty_page);
  2443. if (mapping) {
  2444. /*
  2445. * Some device drivers do not set page.mapping
  2446. * but still dirty their pages
  2447. */
  2448. balance_dirty_pages_ratelimited(mapping);
  2449. }
  2450. }
  2451. return ret;
  2452. }
  2453. /*
  2454. * Ok, we need to copy. Oh, well..
  2455. */
  2456. page_cache_get(old_page);
  2457. gotten:
  2458. pte_unmap_unlock(page_table, ptl);
  2459. if (unlikely(anon_vma_prepare(vma)))
  2460. goto oom;
  2461. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2462. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2463. if (!new_page)
  2464. goto oom;
  2465. } else {
  2466. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2467. if (!new_page)
  2468. goto oom;
  2469. cow_user_page(new_page, old_page, address, vma);
  2470. }
  2471. __SetPageUptodate(new_page);
  2472. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2473. goto oom_free_new;
  2474. mmun_start = address & PAGE_MASK;
  2475. mmun_end = mmun_start + PAGE_SIZE;
  2476. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2477. /*
  2478. * Re-check the pte - we dropped the lock
  2479. */
  2480. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2481. if (likely(pte_same(*page_table, orig_pte))) {
  2482. if (old_page) {
  2483. if (!PageAnon(old_page)) {
  2484. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2485. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2486. }
  2487. } else
  2488. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2489. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2490. entry = mk_pte(new_page, vma->vm_page_prot);
  2491. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2492. /*
  2493. * Clear the pte entry and flush it first, before updating the
  2494. * pte with the new entry. This will avoid a race condition
  2495. * seen in the presence of one thread doing SMC and another
  2496. * thread doing COW.
  2497. */
  2498. ptep_clear_flush(vma, address, page_table);
  2499. page_add_new_anon_rmap(new_page, vma, address);
  2500. /*
  2501. * We call the notify macro here because, when using secondary
  2502. * mmu page tables (such as kvm shadow page tables), we want the
  2503. * new page to be mapped directly into the secondary page table.
  2504. */
  2505. set_pte_at_notify(mm, address, page_table, entry);
  2506. update_mmu_cache(vma, address, page_table);
  2507. if (old_page) {
  2508. /*
  2509. * Only after switching the pte to the new page may
  2510. * we remove the mapcount here. Otherwise another
  2511. * process may come and find the rmap count decremented
  2512. * before the pte is switched to the new page, and
  2513. * "reuse" the old page writing into it while our pte
  2514. * here still points into it and can be read by other
  2515. * threads.
  2516. *
  2517. * The critical issue is to order this
  2518. * page_remove_rmap with the ptp_clear_flush above.
  2519. * Those stores are ordered by (if nothing else,)
  2520. * the barrier present in the atomic_add_negative
  2521. * in page_remove_rmap.
  2522. *
  2523. * Then the TLB flush in ptep_clear_flush ensures that
  2524. * no process can access the old page before the
  2525. * decremented mapcount is visible. And the old page
  2526. * cannot be reused until after the decremented
  2527. * mapcount is visible. So transitively, TLBs to
  2528. * old page will be flushed before it can be reused.
  2529. */
  2530. page_remove_rmap(old_page);
  2531. }
  2532. /* Free the old page.. */
  2533. new_page = old_page;
  2534. ret |= VM_FAULT_WRITE;
  2535. } else
  2536. mem_cgroup_uncharge_page(new_page);
  2537. if (new_page)
  2538. page_cache_release(new_page);
  2539. unlock:
  2540. pte_unmap_unlock(page_table, ptl);
  2541. if (mmun_end > mmun_start)
  2542. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2543. if (old_page) {
  2544. /*
  2545. * Don't let another task, with possibly unlocked vma,
  2546. * keep the mlocked page.
  2547. */
  2548. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2549. lock_page(old_page); /* LRU manipulation */
  2550. munlock_vma_page(old_page);
  2551. unlock_page(old_page);
  2552. }
  2553. page_cache_release(old_page);
  2554. }
  2555. return ret;
  2556. oom_free_new:
  2557. page_cache_release(new_page);
  2558. oom:
  2559. if (old_page)
  2560. page_cache_release(old_page);
  2561. return VM_FAULT_OOM;
  2562. unwritable_page:
  2563. page_cache_release(old_page);
  2564. return ret;
  2565. }
  2566. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2567. unsigned long start_addr, unsigned long end_addr,
  2568. struct zap_details *details)
  2569. {
  2570. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2571. }
  2572. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2573. struct zap_details *details)
  2574. {
  2575. struct vm_area_struct *vma;
  2576. pgoff_t vba, vea, zba, zea;
  2577. vma_interval_tree_foreach(vma, root,
  2578. details->first_index, details->last_index) {
  2579. vba = vma->vm_pgoff;
  2580. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2581. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2582. zba = details->first_index;
  2583. if (zba < vba)
  2584. zba = vba;
  2585. zea = details->last_index;
  2586. if (zea > vea)
  2587. zea = vea;
  2588. unmap_mapping_range_vma(vma,
  2589. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2590. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2591. details);
  2592. }
  2593. }
  2594. static inline void unmap_mapping_range_list(struct list_head *head,
  2595. struct zap_details *details)
  2596. {
  2597. struct vm_area_struct *vma;
  2598. /*
  2599. * In nonlinear VMAs there is no correspondence between virtual address
  2600. * offset and file offset. So we must perform an exhaustive search
  2601. * across *all* the pages in each nonlinear VMA, not just the pages
  2602. * whose virtual address lies outside the file truncation point.
  2603. */
  2604. list_for_each_entry(vma, head, shared.nonlinear) {
  2605. details->nonlinear_vma = vma;
  2606. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2607. }
  2608. }
  2609. /**
  2610. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2611. * @mapping: the address space containing mmaps to be unmapped.
  2612. * @holebegin: byte in first page to unmap, relative to the start of
  2613. * the underlying file. This will be rounded down to a PAGE_SIZE
  2614. * boundary. Note that this is different from truncate_pagecache(), which
  2615. * must keep the partial page. In contrast, we must get rid of
  2616. * partial pages.
  2617. * @holelen: size of prospective hole in bytes. This will be rounded
  2618. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2619. * end of the file.
  2620. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2621. * but 0 when invalidating pagecache, don't throw away private data.
  2622. */
  2623. void unmap_mapping_range(struct address_space *mapping,
  2624. loff_t const holebegin, loff_t const holelen, int even_cows)
  2625. {
  2626. struct zap_details details;
  2627. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2628. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2629. /* Check for overflow. */
  2630. if (sizeof(holelen) > sizeof(hlen)) {
  2631. long long holeend =
  2632. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2633. if (holeend & ~(long long)ULONG_MAX)
  2634. hlen = ULONG_MAX - hba + 1;
  2635. }
  2636. details.check_mapping = even_cows? NULL: mapping;
  2637. details.nonlinear_vma = NULL;
  2638. details.first_index = hba;
  2639. details.last_index = hba + hlen - 1;
  2640. if (details.last_index < details.first_index)
  2641. details.last_index = ULONG_MAX;
  2642. mutex_lock(&mapping->i_mmap_mutex);
  2643. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2644. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2645. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2646. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2647. mutex_unlock(&mapping->i_mmap_mutex);
  2648. }
  2649. EXPORT_SYMBOL(unmap_mapping_range);
  2650. /*
  2651. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2652. * but allow concurrent faults), and pte mapped but not yet locked.
  2653. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2654. */
  2655. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2656. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2657. unsigned int flags, pte_t orig_pte)
  2658. {
  2659. spinlock_t *ptl;
  2660. struct page *page, *swapcache;
  2661. swp_entry_t entry;
  2662. pte_t pte;
  2663. int locked;
  2664. struct mem_cgroup *ptr;
  2665. int exclusive = 0;
  2666. int ret = 0;
  2667. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2668. goto out;
  2669. entry = pte_to_swp_entry(orig_pte);
  2670. if (unlikely(non_swap_entry(entry))) {
  2671. if (is_migration_entry(entry)) {
  2672. migration_entry_wait(mm, pmd, address);
  2673. } else if (is_hwpoison_entry(entry)) {
  2674. ret = VM_FAULT_HWPOISON;
  2675. } else {
  2676. print_bad_pte(vma, address, orig_pte, NULL);
  2677. ret = VM_FAULT_SIGBUS;
  2678. }
  2679. goto out;
  2680. }
  2681. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2682. page = lookup_swap_cache(entry);
  2683. if (!page) {
  2684. page = swapin_readahead(entry,
  2685. GFP_HIGHUSER_MOVABLE, vma, address);
  2686. if (!page) {
  2687. /*
  2688. * Back out if somebody else faulted in this pte
  2689. * while we released the pte lock.
  2690. */
  2691. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2692. if (likely(pte_same(*page_table, orig_pte)))
  2693. ret = VM_FAULT_OOM;
  2694. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2695. goto unlock;
  2696. }
  2697. /* Had to read the page from swap area: Major fault */
  2698. ret = VM_FAULT_MAJOR;
  2699. count_vm_event(PGMAJFAULT);
  2700. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2701. } else if (PageHWPoison(page)) {
  2702. /*
  2703. * hwpoisoned dirty swapcache pages are kept for killing
  2704. * owner processes (which may be unknown at hwpoison time)
  2705. */
  2706. ret = VM_FAULT_HWPOISON;
  2707. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2708. swapcache = page;
  2709. goto out_release;
  2710. }
  2711. swapcache = page;
  2712. locked = lock_page_or_retry(page, mm, flags);
  2713. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2714. if (!locked) {
  2715. ret |= VM_FAULT_RETRY;
  2716. goto out_release;
  2717. }
  2718. /*
  2719. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2720. * release the swapcache from under us. The page pin, and pte_same
  2721. * test below, are not enough to exclude that. Even if it is still
  2722. * swapcache, we need to check that the page's swap has not changed.
  2723. */
  2724. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2725. goto out_page;
  2726. page = ksm_might_need_to_copy(page, vma, address);
  2727. if (unlikely(!page)) {
  2728. ret = VM_FAULT_OOM;
  2729. page = swapcache;
  2730. goto out_page;
  2731. }
  2732. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2733. ret = VM_FAULT_OOM;
  2734. goto out_page;
  2735. }
  2736. /*
  2737. * Back out if somebody else already faulted in this pte.
  2738. */
  2739. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2740. if (unlikely(!pte_same(*page_table, orig_pte)))
  2741. goto out_nomap;
  2742. if (unlikely(!PageUptodate(page))) {
  2743. ret = VM_FAULT_SIGBUS;
  2744. goto out_nomap;
  2745. }
  2746. /*
  2747. * The page isn't present yet, go ahead with the fault.
  2748. *
  2749. * Be careful about the sequence of operations here.
  2750. * To get its accounting right, reuse_swap_page() must be called
  2751. * while the page is counted on swap but not yet in mapcount i.e.
  2752. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2753. * must be called after the swap_free(), or it will never succeed.
  2754. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2755. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2756. * in page->private. In this case, a record in swap_cgroup is silently
  2757. * discarded at swap_free().
  2758. */
  2759. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2760. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2761. pte = mk_pte(page, vma->vm_page_prot);
  2762. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2763. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2764. flags &= ~FAULT_FLAG_WRITE;
  2765. ret |= VM_FAULT_WRITE;
  2766. exclusive = 1;
  2767. }
  2768. flush_icache_page(vma, page);
  2769. set_pte_at(mm, address, page_table, pte);
  2770. if (page == swapcache)
  2771. do_page_add_anon_rmap(page, vma, address, exclusive);
  2772. else /* ksm created a completely new copy */
  2773. page_add_new_anon_rmap(page, vma, address);
  2774. /* It's better to call commit-charge after rmap is established */
  2775. mem_cgroup_commit_charge_swapin(page, ptr);
  2776. swap_free(entry);
  2777. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2778. try_to_free_swap(page);
  2779. unlock_page(page);
  2780. if (page != swapcache) {
  2781. /*
  2782. * Hold the lock to avoid the swap entry to be reused
  2783. * until we take the PT lock for the pte_same() check
  2784. * (to avoid false positives from pte_same). For
  2785. * further safety release the lock after the swap_free
  2786. * so that the swap count won't change under a
  2787. * parallel locked swapcache.
  2788. */
  2789. unlock_page(swapcache);
  2790. page_cache_release(swapcache);
  2791. }
  2792. if (flags & FAULT_FLAG_WRITE) {
  2793. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2794. if (ret & VM_FAULT_ERROR)
  2795. ret &= VM_FAULT_ERROR;
  2796. goto out;
  2797. }
  2798. /* No need to invalidate - it was non-present before */
  2799. update_mmu_cache(vma, address, page_table);
  2800. unlock:
  2801. pte_unmap_unlock(page_table, ptl);
  2802. out:
  2803. return ret;
  2804. out_nomap:
  2805. mem_cgroup_cancel_charge_swapin(ptr);
  2806. pte_unmap_unlock(page_table, ptl);
  2807. out_page:
  2808. unlock_page(page);
  2809. out_release:
  2810. page_cache_release(page);
  2811. if (page != swapcache) {
  2812. unlock_page(swapcache);
  2813. page_cache_release(swapcache);
  2814. }
  2815. return ret;
  2816. }
  2817. /*
  2818. * This is like a special single-page "expand_{down|up}wards()",
  2819. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2820. * doesn't hit another vma.
  2821. */
  2822. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2823. {
  2824. address &= PAGE_MASK;
  2825. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2826. struct vm_area_struct *prev = vma->vm_prev;
  2827. /*
  2828. * Is there a mapping abutting this one below?
  2829. *
  2830. * That's only ok if it's the same stack mapping
  2831. * that has gotten split..
  2832. */
  2833. if (prev && prev->vm_end == address)
  2834. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2835. expand_downwards(vma, address - PAGE_SIZE);
  2836. }
  2837. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2838. struct vm_area_struct *next = vma->vm_next;
  2839. /* As VM_GROWSDOWN but s/below/above/ */
  2840. if (next && next->vm_start == address + PAGE_SIZE)
  2841. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2842. expand_upwards(vma, address + PAGE_SIZE);
  2843. }
  2844. return 0;
  2845. }
  2846. /*
  2847. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2848. * but allow concurrent faults), and pte mapped but not yet locked.
  2849. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2850. */
  2851. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2852. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2853. unsigned int flags)
  2854. {
  2855. struct page *page;
  2856. spinlock_t *ptl;
  2857. pte_t entry;
  2858. pte_unmap(page_table);
  2859. /* Check if we need to add a guard page to the stack */
  2860. if (check_stack_guard_page(vma, address) < 0)
  2861. return VM_FAULT_SIGBUS;
  2862. /* Use the zero-page for reads */
  2863. if (!(flags & FAULT_FLAG_WRITE)) {
  2864. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2865. vma->vm_page_prot));
  2866. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2867. if (!pte_none(*page_table))
  2868. goto unlock;
  2869. goto setpte;
  2870. }
  2871. /* Allocate our own private page. */
  2872. if (unlikely(anon_vma_prepare(vma)))
  2873. goto oom;
  2874. page = alloc_zeroed_user_highpage_movable(vma, address);
  2875. if (!page)
  2876. goto oom;
  2877. __SetPageUptodate(page);
  2878. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2879. goto oom_free_page;
  2880. entry = mk_pte(page, vma->vm_page_prot);
  2881. if (vma->vm_flags & VM_WRITE)
  2882. entry = pte_mkwrite(pte_mkdirty(entry));
  2883. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2884. if (!pte_none(*page_table))
  2885. goto release;
  2886. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2887. page_add_new_anon_rmap(page, vma, address);
  2888. setpte:
  2889. set_pte_at(mm, address, page_table, entry);
  2890. /* No need to invalidate - it was non-present before */
  2891. update_mmu_cache(vma, address, page_table);
  2892. unlock:
  2893. pte_unmap_unlock(page_table, ptl);
  2894. return 0;
  2895. release:
  2896. mem_cgroup_uncharge_page(page);
  2897. page_cache_release(page);
  2898. goto unlock;
  2899. oom_free_page:
  2900. page_cache_release(page);
  2901. oom:
  2902. return VM_FAULT_OOM;
  2903. }
  2904. /*
  2905. * __do_fault() tries to create a new page mapping. It aggressively
  2906. * tries to share with existing pages, but makes a separate copy if
  2907. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2908. * the next page fault.
  2909. *
  2910. * As this is called only for pages that do not currently exist, we
  2911. * do not need to flush old virtual caches or the TLB.
  2912. *
  2913. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2914. * but allow concurrent faults), and pte neither mapped nor locked.
  2915. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2916. */
  2917. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2918. unsigned long address, pmd_t *pmd,
  2919. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2920. {
  2921. pte_t *page_table;
  2922. spinlock_t *ptl;
  2923. struct page *page;
  2924. struct page *cow_page;
  2925. pte_t entry;
  2926. int anon = 0;
  2927. struct page *dirty_page = NULL;
  2928. struct vm_fault vmf;
  2929. int ret;
  2930. int page_mkwrite = 0;
  2931. /*
  2932. * If we do COW later, allocate page befor taking lock_page()
  2933. * on the file cache page. This will reduce lock holding time.
  2934. */
  2935. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2936. if (unlikely(anon_vma_prepare(vma)))
  2937. return VM_FAULT_OOM;
  2938. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2939. if (!cow_page)
  2940. return VM_FAULT_OOM;
  2941. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2942. page_cache_release(cow_page);
  2943. return VM_FAULT_OOM;
  2944. }
  2945. } else
  2946. cow_page = NULL;
  2947. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2948. vmf.pgoff = pgoff;
  2949. vmf.flags = flags;
  2950. vmf.page = NULL;
  2951. ret = vma->vm_ops->fault(vma, &vmf);
  2952. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2953. VM_FAULT_RETRY)))
  2954. goto uncharge_out;
  2955. if (unlikely(PageHWPoison(vmf.page))) {
  2956. if (ret & VM_FAULT_LOCKED)
  2957. unlock_page(vmf.page);
  2958. ret = VM_FAULT_HWPOISON;
  2959. goto uncharge_out;
  2960. }
  2961. /*
  2962. * For consistency in subsequent calls, make the faulted page always
  2963. * locked.
  2964. */
  2965. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2966. lock_page(vmf.page);
  2967. else
  2968. VM_BUG_ON(!PageLocked(vmf.page));
  2969. /*
  2970. * Should we do an early C-O-W break?
  2971. */
  2972. page = vmf.page;
  2973. if (flags & FAULT_FLAG_WRITE) {
  2974. if (!(vma->vm_flags & VM_SHARED)) {
  2975. page = cow_page;
  2976. anon = 1;
  2977. copy_user_highpage(page, vmf.page, address, vma);
  2978. __SetPageUptodate(page);
  2979. } else {
  2980. /*
  2981. * If the page will be shareable, see if the backing
  2982. * address space wants to know that the page is about
  2983. * to become writable
  2984. */
  2985. if (vma->vm_ops->page_mkwrite) {
  2986. int tmp;
  2987. unlock_page(page);
  2988. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2989. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2990. if (unlikely(tmp &
  2991. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2992. ret = tmp;
  2993. goto unwritable_page;
  2994. }
  2995. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2996. lock_page(page);
  2997. if (!page->mapping) {
  2998. ret = 0; /* retry the fault */
  2999. unlock_page(page);
  3000. goto unwritable_page;
  3001. }
  3002. } else
  3003. VM_BUG_ON(!PageLocked(page));
  3004. page_mkwrite = 1;
  3005. }
  3006. }
  3007. }
  3008. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3009. /*
  3010. * This silly early PAGE_DIRTY setting removes a race
  3011. * due to the bad i386 page protection. But it's valid
  3012. * for other architectures too.
  3013. *
  3014. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3015. * an exclusive copy of the page, or this is a shared mapping,
  3016. * so we can make it writable and dirty to avoid having to
  3017. * handle that later.
  3018. */
  3019. /* Only go through if we didn't race with anybody else... */
  3020. if (likely(pte_same(*page_table, orig_pte))) {
  3021. flush_icache_page(vma, page);
  3022. entry = mk_pte(page, vma->vm_page_prot);
  3023. if (flags & FAULT_FLAG_WRITE)
  3024. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3025. if (anon) {
  3026. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3027. page_add_new_anon_rmap(page, vma, address);
  3028. } else {
  3029. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3030. page_add_file_rmap(page);
  3031. if (flags & FAULT_FLAG_WRITE) {
  3032. dirty_page = page;
  3033. get_page(dirty_page);
  3034. }
  3035. }
  3036. set_pte_at(mm, address, page_table, entry);
  3037. /* no need to invalidate: a not-present page won't be cached */
  3038. update_mmu_cache(vma, address, page_table);
  3039. } else {
  3040. if (cow_page)
  3041. mem_cgroup_uncharge_page(cow_page);
  3042. if (anon)
  3043. page_cache_release(page);
  3044. else
  3045. anon = 1; /* no anon but release faulted_page */
  3046. }
  3047. pte_unmap_unlock(page_table, ptl);
  3048. if (dirty_page) {
  3049. struct address_space *mapping = page->mapping;
  3050. int dirtied = 0;
  3051. if (set_page_dirty(dirty_page))
  3052. dirtied = 1;
  3053. unlock_page(dirty_page);
  3054. put_page(dirty_page);
  3055. if ((dirtied || page_mkwrite) && mapping) {
  3056. /*
  3057. * Some device drivers do not set page.mapping but still
  3058. * dirty their pages
  3059. */
  3060. balance_dirty_pages_ratelimited(mapping);
  3061. }
  3062. /* file_update_time outside page_lock */
  3063. if (vma->vm_file && !page_mkwrite)
  3064. file_update_time(vma->vm_file);
  3065. } else {
  3066. unlock_page(vmf.page);
  3067. if (anon)
  3068. page_cache_release(vmf.page);
  3069. }
  3070. return ret;
  3071. unwritable_page:
  3072. page_cache_release(page);
  3073. return ret;
  3074. uncharge_out:
  3075. /* fs's fault handler get error */
  3076. if (cow_page) {
  3077. mem_cgroup_uncharge_page(cow_page);
  3078. page_cache_release(cow_page);
  3079. }
  3080. return ret;
  3081. }
  3082. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3083. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3084. unsigned int flags, pte_t orig_pte)
  3085. {
  3086. pgoff_t pgoff = (((address & PAGE_MASK)
  3087. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3088. pte_unmap(page_table);
  3089. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3090. }
  3091. /*
  3092. * Fault of a previously existing named mapping. Repopulate the pte
  3093. * from the encoded file_pte if possible. This enables swappable
  3094. * nonlinear vmas.
  3095. *
  3096. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3097. * but allow concurrent faults), and pte mapped but not yet locked.
  3098. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3099. */
  3100. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3101. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3102. unsigned int flags, pte_t orig_pte)
  3103. {
  3104. pgoff_t pgoff;
  3105. flags |= FAULT_FLAG_NONLINEAR;
  3106. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3107. return 0;
  3108. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3109. /*
  3110. * Page table corrupted: show pte and kill process.
  3111. */
  3112. print_bad_pte(vma, address, orig_pte, NULL);
  3113. return VM_FAULT_SIGBUS;
  3114. }
  3115. pgoff = pte_to_pgoff(orig_pte);
  3116. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3117. }
  3118. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3119. unsigned long addr, int current_nid)
  3120. {
  3121. get_page(page);
  3122. count_vm_numa_event(NUMA_HINT_FAULTS);
  3123. if (current_nid == numa_node_id())
  3124. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3125. return mpol_misplaced(page, vma, addr);
  3126. }
  3127. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3128. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3129. {
  3130. struct page *page = NULL;
  3131. spinlock_t *ptl;
  3132. int current_nid = -1;
  3133. int target_nid;
  3134. bool migrated = false;
  3135. /*
  3136. * The "pte" at this point cannot be used safely without
  3137. * validation through pte_unmap_same(). It's of NUMA type but
  3138. * the pfn may be screwed if the read is non atomic.
  3139. *
  3140. * ptep_modify_prot_start is not called as this is clearing
  3141. * the _PAGE_NUMA bit and it is not really expected that there
  3142. * would be concurrent hardware modifications to the PTE.
  3143. */
  3144. ptl = pte_lockptr(mm, pmd);
  3145. spin_lock(ptl);
  3146. if (unlikely(!pte_same(*ptep, pte))) {
  3147. pte_unmap_unlock(ptep, ptl);
  3148. goto out;
  3149. }
  3150. pte = pte_mknonnuma(pte);
  3151. set_pte_at(mm, addr, ptep, pte);
  3152. update_mmu_cache(vma, addr, ptep);
  3153. page = vm_normal_page(vma, addr, pte);
  3154. if (!page) {
  3155. pte_unmap_unlock(ptep, ptl);
  3156. return 0;
  3157. }
  3158. current_nid = page_to_nid(page);
  3159. target_nid = numa_migrate_prep(page, vma, addr, current_nid);
  3160. pte_unmap_unlock(ptep, ptl);
  3161. if (target_nid == -1) {
  3162. /*
  3163. * Account for the fault against the current node if it not
  3164. * being replaced regardless of where the page is located.
  3165. */
  3166. current_nid = numa_node_id();
  3167. put_page(page);
  3168. goto out;
  3169. }
  3170. /* Migrate to the requested node */
  3171. migrated = migrate_misplaced_page(page, target_nid);
  3172. if (migrated)
  3173. current_nid = target_nid;
  3174. out:
  3175. if (current_nid != -1)
  3176. task_numa_fault(current_nid, 1, migrated);
  3177. return 0;
  3178. }
  3179. /* NUMA hinting page fault entry point for regular pmds */
  3180. #ifdef CONFIG_NUMA_BALANCING
  3181. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3182. unsigned long addr, pmd_t *pmdp)
  3183. {
  3184. pmd_t pmd;
  3185. pte_t *pte, *orig_pte;
  3186. unsigned long _addr = addr & PMD_MASK;
  3187. unsigned long offset;
  3188. spinlock_t *ptl;
  3189. bool numa = false;
  3190. int local_nid = numa_node_id();
  3191. spin_lock(&mm->page_table_lock);
  3192. pmd = *pmdp;
  3193. if (pmd_numa(pmd)) {
  3194. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3195. numa = true;
  3196. }
  3197. spin_unlock(&mm->page_table_lock);
  3198. if (!numa)
  3199. return 0;
  3200. /* we're in a page fault so some vma must be in the range */
  3201. BUG_ON(!vma);
  3202. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3203. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3204. VM_BUG_ON(offset >= PMD_SIZE);
  3205. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3206. pte += offset >> PAGE_SHIFT;
  3207. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3208. pte_t pteval = *pte;
  3209. struct page *page;
  3210. int curr_nid = local_nid;
  3211. int target_nid;
  3212. bool migrated;
  3213. if (!pte_present(pteval))
  3214. continue;
  3215. if (!pte_numa(pteval))
  3216. continue;
  3217. if (addr >= vma->vm_end) {
  3218. vma = find_vma(mm, addr);
  3219. /* there's a pte present so there must be a vma */
  3220. BUG_ON(!vma);
  3221. BUG_ON(addr < vma->vm_start);
  3222. }
  3223. if (pte_numa(pteval)) {
  3224. pteval = pte_mknonnuma(pteval);
  3225. set_pte_at(mm, addr, pte, pteval);
  3226. }
  3227. page = vm_normal_page(vma, addr, pteval);
  3228. if (unlikely(!page))
  3229. continue;
  3230. /* only check non-shared pages */
  3231. if (unlikely(page_mapcount(page) != 1))
  3232. continue;
  3233. /*
  3234. * Note that the NUMA fault is later accounted to either
  3235. * the node that is currently running or where the page is
  3236. * migrated to.
  3237. */
  3238. curr_nid = local_nid;
  3239. target_nid = numa_migrate_prep(page, vma, addr,
  3240. page_to_nid(page));
  3241. if (target_nid == -1) {
  3242. put_page(page);
  3243. continue;
  3244. }
  3245. /* Migrate to the requested node */
  3246. pte_unmap_unlock(pte, ptl);
  3247. migrated = migrate_misplaced_page(page, target_nid);
  3248. if (migrated)
  3249. curr_nid = target_nid;
  3250. task_numa_fault(curr_nid, 1, migrated);
  3251. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3252. }
  3253. pte_unmap_unlock(orig_pte, ptl);
  3254. return 0;
  3255. }
  3256. #else
  3257. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3258. unsigned long addr, pmd_t *pmdp)
  3259. {
  3260. BUG();
  3261. return 0;
  3262. }
  3263. #endif /* CONFIG_NUMA_BALANCING */
  3264. /*
  3265. * These routines also need to handle stuff like marking pages dirty
  3266. * and/or accessed for architectures that don't do it in hardware (most
  3267. * RISC architectures). The early dirtying is also good on the i386.
  3268. *
  3269. * There is also a hook called "update_mmu_cache()" that architectures
  3270. * with external mmu caches can use to update those (ie the Sparc or
  3271. * PowerPC hashed page tables that act as extended TLBs).
  3272. *
  3273. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3274. * but allow concurrent faults), and pte mapped but not yet locked.
  3275. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3276. */
  3277. int handle_pte_fault(struct mm_struct *mm,
  3278. struct vm_area_struct *vma, unsigned long address,
  3279. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3280. {
  3281. pte_t entry;
  3282. spinlock_t *ptl;
  3283. entry = *pte;
  3284. if (!pte_present(entry)) {
  3285. if (pte_none(entry)) {
  3286. if (vma->vm_ops) {
  3287. if (likely(vma->vm_ops->fault))
  3288. return do_linear_fault(mm, vma, address,
  3289. pte, pmd, flags, entry);
  3290. }
  3291. return do_anonymous_page(mm, vma, address,
  3292. pte, pmd, flags);
  3293. }
  3294. if (pte_file(entry))
  3295. return do_nonlinear_fault(mm, vma, address,
  3296. pte, pmd, flags, entry);
  3297. return do_swap_page(mm, vma, address,
  3298. pte, pmd, flags, entry);
  3299. }
  3300. if (pte_numa(entry))
  3301. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3302. ptl = pte_lockptr(mm, pmd);
  3303. spin_lock(ptl);
  3304. if (unlikely(!pte_same(*pte, entry)))
  3305. goto unlock;
  3306. if (flags & FAULT_FLAG_WRITE) {
  3307. if (!pte_write(entry))
  3308. return do_wp_page(mm, vma, address,
  3309. pte, pmd, ptl, entry);
  3310. entry = pte_mkdirty(entry);
  3311. }
  3312. entry = pte_mkyoung(entry);
  3313. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3314. update_mmu_cache(vma, address, pte);
  3315. } else {
  3316. /*
  3317. * This is needed only for protection faults but the arch code
  3318. * is not yet telling us if this is a protection fault or not.
  3319. * This still avoids useless tlb flushes for .text page faults
  3320. * with threads.
  3321. */
  3322. if (flags & FAULT_FLAG_WRITE)
  3323. flush_tlb_fix_spurious_fault(vma, address);
  3324. }
  3325. unlock:
  3326. pte_unmap_unlock(pte, ptl);
  3327. return 0;
  3328. }
  3329. /*
  3330. * By the time we get here, we already hold the mm semaphore
  3331. */
  3332. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3333. unsigned long address, unsigned int flags)
  3334. {
  3335. pgd_t *pgd;
  3336. pud_t *pud;
  3337. pmd_t *pmd;
  3338. pte_t *pte;
  3339. __set_current_state(TASK_RUNNING);
  3340. count_vm_event(PGFAULT);
  3341. mem_cgroup_count_vm_event(mm, PGFAULT);
  3342. /* do counter updates before entering really critical section. */
  3343. check_sync_rss_stat(current);
  3344. if (unlikely(is_vm_hugetlb_page(vma)))
  3345. return hugetlb_fault(mm, vma, address, flags);
  3346. retry:
  3347. pgd = pgd_offset(mm, address);
  3348. pud = pud_alloc(mm, pgd, address);
  3349. if (!pud)
  3350. return VM_FAULT_OOM;
  3351. pmd = pmd_alloc(mm, pud, address);
  3352. if (!pmd)
  3353. return VM_FAULT_OOM;
  3354. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3355. if (!vma->vm_ops)
  3356. return do_huge_pmd_anonymous_page(mm, vma, address,
  3357. pmd, flags);
  3358. } else {
  3359. pmd_t orig_pmd = *pmd;
  3360. int ret;
  3361. barrier();
  3362. if (pmd_trans_huge(orig_pmd)) {
  3363. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3364. /*
  3365. * If the pmd is splitting, return and retry the
  3366. * the fault. Alternative: wait until the split
  3367. * is done, and goto retry.
  3368. */
  3369. if (pmd_trans_splitting(orig_pmd))
  3370. return 0;
  3371. if (pmd_numa(orig_pmd))
  3372. return do_huge_pmd_numa_page(mm, vma, address,
  3373. orig_pmd, pmd);
  3374. if (dirty && !pmd_write(orig_pmd)) {
  3375. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3376. orig_pmd);
  3377. /*
  3378. * If COW results in an oom, the huge pmd will
  3379. * have been split, so retry the fault on the
  3380. * pte for a smaller charge.
  3381. */
  3382. if (unlikely(ret & VM_FAULT_OOM))
  3383. goto retry;
  3384. return ret;
  3385. } else {
  3386. huge_pmd_set_accessed(mm, vma, address, pmd,
  3387. orig_pmd, dirty);
  3388. }
  3389. return 0;
  3390. }
  3391. }
  3392. if (pmd_numa(*pmd))
  3393. return do_pmd_numa_page(mm, vma, address, pmd);
  3394. /*
  3395. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3396. * run pte_offset_map on the pmd, if an huge pmd could
  3397. * materialize from under us from a different thread.
  3398. */
  3399. if (unlikely(pmd_none(*pmd)) &&
  3400. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3401. return VM_FAULT_OOM;
  3402. /* if an huge pmd materialized from under us just retry later */
  3403. if (unlikely(pmd_trans_huge(*pmd)))
  3404. return 0;
  3405. /*
  3406. * A regular pmd is established and it can't morph into a huge pmd
  3407. * from under us anymore at this point because we hold the mmap_sem
  3408. * read mode and khugepaged takes it in write mode. So now it's
  3409. * safe to run pte_offset_map().
  3410. */
  3411. pte = pte_offset_map(pmd, address);
  3412. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3413. }
  3414. #ifndef __PAGETABLE_PUD_FOLDED
  3415. /*
  3416. * Allocate page upper directory.
  3417. * We've already handled the fast-path in-line.
  3418. */
  3419. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3420. {
  3421. pud_t *new = pud_alloc_one(mm, address);
  3422. if (!new)
  3423. return -ENOMEM;
  3424. smp_wmb(); /* See comment in __pte_alloc */
  3425. spin_lock(&mm->page_table_lock);
  3426. if (pgd_present(*pgd)) /* Another has populated it */
  3427. pud_free(mm, new);
  3428. else
  3429. pgd_populate(mm, pgd, new);
  3430. spin_unlock(&mm->page_table_lock);
  3431. return 0;
  3432. }
  3433. #endif /* __PAGETABLE_PUD_FOLDED */
  3434. #ifndef __PAGETABLE_PMD_FOLDED
  3435. /*
  3436. * Allocate page middle directory.
  3437. * We've already handled the fast-path in-line.
  3438. */
  3439. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3440. {
  3441. pmd_t *new = pmd_alloc_one(mm, address);
  3442. if (!new)
  3443. return -ENOMEM;
  3444. smp_wmb(); /* See comment in __pte_alloc */
  3445. spin_lock(&mm->page_table_lock);
  3446. #ifndef __ARCH_HAS_4LEVEL_HACK
  3447. if (pud_present(*pud)) /* Another has populated it */
  3448. pmd_free(mm, new);
  3449. else
  3450. pud_populate(mm, pud, new);
  3451. #else
  3452. if (pgd_present(*pud)) /* Another has populated it */
  3453. pmd_free(mm, new);
  3454. else
  3455. pgd_populate(mm, pud, new);
  3456. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3457. spin_unlock(&mm->page_table_lock);
  3458. return 0;
  3459. }
  3460. #endif /* __PAGETABLE_PMD_FOLDED */
  3461. #if !defined(__HAVE_ARCH_GATE_AREA)
  3462. #if defined(AT_SYSINFO_EHDR)
  3463. static struct vm_area_struct gate_vma;
  3464. static int __init gate_vma_init(void)
  3465. {
  3466. gate_vma.vm_mm = NULL;
  3467. gate_vma.vm_start = FIXADDR_USER_START;
  3468. gate_vma.vm_end = FIXADDR_USER_END;
  3469. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3470. gate_vma.vm_page_prot = __P101;
  3471. return 0;
  3472. }
  3473. __initcall(gate_vma_init);
  3474. #endif
  3475. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3476. {
  3477. #ifdef AT_SYSINFO_EHDR
  3478. return &gate_vma;
  3479. #else
  3480. return NULL;
  3481. #endif
  3482. }
  3483. int in_gate_area_no_mm(unsigned long addr)
  3484. {
  3485. #ifdef AT_SYSINFO_EHDR
  3486. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3487. return 1;
  3488. #endif
  3489. return 0;
  3490. }
  3491. #endif /* __HAVE_ARCH_GATE_AREA */
  3492. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3493. pte_t **ptepp, spinlock_t **ptlp)
  3494. {
  3495. pgd_t *pgd;
  3496. pud_t *pud;
  3497. pmd_t *pmd;
  3498. pte_t *ptep;
  3499. pgd = pgd_offset(mm, address);
  3500. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3501. goto out;
  3502. pud = pud_offset(pgd, address);
  3503. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3504. goto out;
  3505. pmd = pmd_offset(pud, address);
  3506. VM_BUG_ON(pmd_trans_huge(*pmd));
  3507. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3508. goto out;
  3509. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3510. if (pmd_huge(*pmd))
  3511. goto out;
  3512. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3513. if (!ptep)
  3514. goto out;
  3515. if (!pte_present(*ptep))
  3516. goto unlock;
  3517. *ptepp = ptep;
  3518. return 0;
  3519. unlock:
  3520. pte_unmap_unlock(ptep, *ptlp);
  3521. out:
  3522. return -EINVAL;
  3523. }
  3524. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3525. pte_t **ptepp, spinlock_t **ptlp)
  3526. {
  3527. int res;
  3528. /* (void) is needed to make gcc happy */
  3529. (void) __cond_lock(*ptlp,
  3530. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3531. return res;
  3532. }
  3533. /**
  3534. * follow_pfn - look up PFN at a user virtual address
  3535. * @vma: memory mapping
  3536. * @address: user virtual address
  3537. * @pfn: location to store found PFN
  3538. *
  3539. * Only IO mappings and raw PFN mappings are allowed.
  3540. *
  3541. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3542. */
  3543. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3544. unsigned long *pfn)
  3545. {
  3546. int ret = -EINVAL;
  3547. spinlock_t *ptl;
  3548. pte_t *ptep;
  3549. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3550. return ret;
  3551. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3552. if (ret)
  3553. return ret;
  3554. *pfn = pte_pfn(*ptep);
  3555. pte_unmap_unlock(ptep, ptl);
  3556. return 0;
  3557. }
  3558. EXPORT_SYMBOL(follow_pfn);
  3559. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3560. int follow_phys(struct vm_area_struct *vma,
  3561. unsigned long address, unsigned int flags,
  3562. unsigned long *prot, resource_size_t *phys)
  3563. {
  3564. int ret = -EINVAL;
  3565. pte_t *ptep, pte;
  3566. spinlock_t *ptl;
  3567. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3568. goto out;
  3569. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3570. goto out;
  3571. pte = *ptep;
  3572. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3573. goto unlock;
  3574. *prot = pgprot_val(pte_pgprot(pte));
  3575. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3576. ret = 0;
  3577. unlock:
  3578. pte_unmap_unlock(ptep, ptl);
  3579. out:
  3580. return ret;
  3581. }
  3582. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3583. void *buf, int len, int write)
  3584. {
  3585. resource_size_t phys_addr;
  3586. unsigned long prot = 0;
  3587. void __iomem *maddr;
  3588. int offset = addr & (PAGE_SIZE-1);
  3589. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3590. return -EINVAL;
  3591. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3592. if (write)
  3593. memcpy_toio(maddr + offset, buf, len);
  3594. else
  3595. memcpy_fromio(buf, maddr + offset, len);
  3596. iounmap(maddr);
  3597. return len;
  3598. }
  3599. #endif
  3600. /*
  3601. * Access another process' address space as given in mm. If non-NULL, use the
  3602. * given task for page fault accounting.
  3603. */
  3604. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3605. unsigned long addr, void *buf, int len, int write)
  3606. {
  3607. struct vm_area_struct *vma;
  3608. void *old_buf = buf;
  3609. down_read(&mm->mmap_sem);
  3610. /* ignore errors, just check how much was successfully transferred */
  3611. while (len) {
  3612. int bytes, ret, offset;
  3613. void *maddr;
  3614. struct page *page = NULL;
  3615. ret = get_user_pages(tsk, mm, addr, 1,
  3616. write, 1, &page, &vma);
  3617. if (ret <= 0) {
  3618. /*
  3619. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3620. * we can access using slightly different code.
  3621. */
  3622. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3623. vma = find_vma(mm, addr);
  3624. if (!vma || vma->vm_start > addr)
  3625. break;
  3626. if (vma->vm_ops && vma->vm_ops->access)
  3627. ret = vma->vm_ops->access(vma, addr, buf,
  3628. len, write);
  3629. if (ret <= 0)
  3630. #endif
  3631. break;
  3632. bytes = ret;
  3633. } else {
  3634. bytes = len;
  3635. offset = addr & (PAGE_SIZE-1);
  3636. if (bytes > PAGE_SIZE-offset)
  3637. bytes = PAGE_SIZE-offset;
  3638. maddr = kmap(page);
  3639. if (write) {
  3640. copy_to_user_page(vma, page, addr,
  3641. maddr + offset, buf, bytes);
  3642. set_page_dirty_lock(page);
  3643. } else {
  3644. copy_from_user_page(vma, page, addr,
  3645. buf, maddr + offset, bytes);
  3646. }
  3647. kunmap(page);
  3648. page_cache_release(page);
  3649. }
  3650. len -= bytes;
  3651. buf += bytes;
  3652. addr += bytes;
  3653. }
  3654. up_read(&mm->mmap_sem);
  3655. return buf - old_buf;
  3656. }
  3657. /**
  3658. * access_remote_vm - access another process' address space
  3659. * @mm: the mm_struct of the target address space
  3660. * @addr: start address to access
  3661. * @buf: source or destination buffer
  3662. * @len: number of bytes to transfer
  3663. * @write: whether the access is a write
  3664. *
  3665. * The caller must hold a reference on @mm.
  3666. */
  3667. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3668. void *buf, int len, int write)
  3669. {
  3670. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3671. }
  3672. /*
  3673. * Access another process' address space.
  3674. * Source/target buffer must be kernel space,
  3675. * Do not walk the page table directly, use get_user_pages
  3676. */
  3677. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3678. void *buf, int len, int write)
  3679. {
  3680. struct mm_struct *mm;
  3681. int ret;
  3682. mm = get_task_mm(tsk);
  3683. if (!mm)
  3684. return 0;
  3685. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3686. mmput(mm);
  3687. return ret;
  3688. }
  3689. /*
  3690. * Print the name of a VMA.
  3691. */
  3692. void print_vma_addr(char *prefix, unsigned long ip)
  3693. {
  3694. struct mm_struct *mm = current->mm;
  3695. struct vm_area_struct *vma;
  3696. /*
  3697. * Do not print if we are in atomic
  3698. * contexts (in exception stacks, etc.):
  3699. */
  3700. if (preempt_count())
  3701. return;
  3702. down_read(&mm->mmap_sem);
  3703. vma = find_vma(mm, ip);
  3704. if (vma && vma->vm_file) {
  3705. struct file *f = vma->vm_file;
  3706. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3707. if (buf) {
  3708. char *p;
  3709. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3710. if (IS_ERR(p))
  3711. p = "?";
  3712. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3713. vma->vm_start,
  3714. vma->vm_end - vma->vm_start);
  3715. free_page((unsigned long)buf);
  3716. }
  3717. }
  3718. up_read(&mm->mmap_sem);
  3719. }
  3720. #ifdef CONFIG_PROVE_LOCKING
  3721. void might_fault(void)
  3722. {
  3723. /*
  3724. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3725. * holding the mmap_sem, this is safe because kernel memory doesn't
  3726. * get paged out, therefore we'll never actually fault, and the
  3727. * below annotations will generate false positives.
  3728. */
  3729. if (segment_eq(get_fs(), KERNEL_DS))
  3730. return;
  3731. might_sleep();
  3732. /*
  3733. * it would be nicer only to annotate paths which are not under
  3734. * pagefault_disable, however that requires a larger audit and
  3735. * providing helpers like get_user_atomic.
  3736. */
  3737. if (!in_atomic() && current->mm)
  3738. might_lock_read(&current->mm->mmap_sem);
  3739. }
  3740. EXPORT_SYMBOL(might_fault);
  3741. #endif
  3742. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3743. static void clear_gigantic_page(struct page *page,
  3744. unsigned long addr,
  3745. unsigned int pages_per_huge_page)
  3746. {
  3747. int i;
  3748. struct page *p = page;
  3749. might_sleep();
  3750. for (i = 0; i < pages_per_huge_page;
  3751. i++, p = mem_map_next(p, page, i)) {
  3752. cond_resched();
  3753. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3754. }
  3755. }
  3756. void clear_huge_page(struct page *page,
  3757. unsigned long addr, unsigned int pages_per_huge_page)
  3758. {
  3759. int i;
  3760. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3761. clear_gigantic_page(page, addr, pages_per_huge_page);
  3762. return;
  3763. }
  3764. might_sleep();
  3765. for (i = 0; i < pages_per_huge_page; i++) {
  3766. cond_resched();
  3767. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3768. }
  3769. }
  3770. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3771. unsigned long addr,
  3772. struct vm_area_struct *vma,
  3773. unsigned int pages_per_huge_page)
  3774. {
  3775. int i;
  3776. struct page *dst_base = dst;
  3777. struct page *src_base = src;
  3778. for (i = 0; i < pages_per_huge_page; ) {
  3779. cond_resched();
  3780. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3781. i++;
  3782. dst = mem_map_next(dst, dst_base, i);
  3783. src = mem_map_next(src, src_base, i);
  3784. }
  3785. }
  3786. void copy_user_huge_page(struct page *dst, struct page *src,
  3787. unsigned long addr, struct vm_area_struct *vma,
  3788. unsigned int pages_per_huge_page)
  3789. {
  3790. int i;
  3791. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3792. copy_user_gigantic_page(dst, src, addr, vma,
  3793. pages_per_huge_page);
  3794. return;
  3795. }
  3796. might_sleep();
  3797. for (i = 0; i < pages_per_huge_page; i++) {
  3798. cond_resched();
  3799. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3800. }
  3801. }
  3802. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */