memory-failure.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * There are several operations here with exponential complexity because
  25. * of unsuitable VM data structures. For example the operation to map back
  26. * from RMAP chains to processes has to walk the complete process list and
  27. * has non linear complexity with the number. But since memory corruptions
  28. * are rare we hope to get away with this. This avoids impacting the core
  29. * VM.
  30. */
  31. /*
  32. * Notebook:
  33. * - hugetlb needs more code
  34. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  35. * - pass bad pages to kdump next kernel
  36. */
  37. #include <linux/kernel.h>
  38. #include <linux/mm.h>
  39. #include <linux/page-flags.h>
  40. #include <linux/kernel-page-flags.h>
  41. #include <linux/sched.h>
  42. #include <linux/ksm.h>
  43. #include <linux/rmap.h>
  44. #include <linux/export.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/migrate.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/suspend.h>
  51. #include <linux/slab.h>
  52. #include <linux/swapops.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/memory_hotplug.h>
  55. #include <linux/mm_inline.h>
  56. #include <linux/kfifo.h>
  57. #include "internal.h"
  58. int sysctl_memory_failure_early_kill __read_mostly = 0;
  59. int sysctl_memory_failure_recovery __read_mostly = 1;
  60. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  61. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  62. u32 hwpoison_filter_enable = 0;
  63. u32 hwpoison_filter_dev_major = ~0U;
  64. u32 hwpoison_filter_dev_minor = ~0U;
  65. u64 hwpoison_filter_flags_mask;
  66. u64 hwpoison_filter_flags_value;
  67. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  68. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  69. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  70. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  72. static int hwpoison_filter_dev(struct page *p)
  73. {
  74. struct address_space *mapping;
  75. dev_t dev;
  76. if (hwpoison_filter_dev_major == ~0U &&
  77. hwpoison_filter_dev_minor == ~0U)
  78. return 0;
  79. /*
  80. * page_mapping() does not accept slab pages.
  81. */
  82. if (PageSlab(p))
  83. return -EINVAL;
  84. mapping = page_mapping(p);
  85. if (mapping == NULL || mapping->host == NULL)
  86. return -EINVAL;
  87. dev = mapping->host->i_sb->s_dev;
  88. if (hwpoison_filter_dev_major != ~0U &&
  89. hwpoison_filter_dev_major != MAJOR(dev))
  90. return -EINVAL;
  91. if (hwpoison_filter_dev_minor != ~0U &&
  92. hwpoison_filter_dev_minor != MINOR(dev))
  93. return -EINVAL;
  94. return 0;
  95. }
  96. static int hwpoison_filter_flags(struct page *p)
  97. {
  98. if (!hwpoison_filter_flags_mask)
  99. return 0;
  100. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  101. hwpoison_filter_flags_value)
  102. return 0;
  103. else
  104. return -EINVAL;
  105. }
  106. /*
  107. * This allows stress tests to limit test scope to a collection of tasks
  108. * by putting them under some memcg. This prevents killing unrelated/important
  109. * processes such as /sbin/init. Note that the target task may share clean
  110. * pages with init (eg. libc text), which is harmless. If the target task
  111. * share _dirty_ pages with another task B, the test scheme must make sure B
  112. * is also included in the memcg. At last, due to race conditions this filter
  113. * can only guarantee that the page either belongs to the memcg tasks, or is
  114. * a freed page.
  115. */
  116. #ifdef CONFIG_MEMCG_SWAP
  117. u64 hwpoison_filter_memcg;
  118. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  119. static int hwpoison_filter_task(struct page *p)
  120. {
  121. struct mem_cgroup *mem;
  122. struct cgroup_subsys_state *css;
  123. unsigned long ino;
  124. if (!hwpoison_filter_memcg)
  125. return 0;
  126. mem = try_get_mem_cgroup_from_page(p);
  127. if (!mem)
  128. return -EINVAL;
  129. css = mem_cgroup_css(mem);
  130. /* root_mem_cgroup has NULL dentries */
  131. if (!css->cgroup->dentry)
  132. return -EINVAL;
  133. ino = css->cgroup->dentry->d_inode->i_ino;
  134. css_put(css);
  135. if (ino != hwpoison_filter_memcg)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. #else
  140. static int hwpoison_filter_task(struct page *p) { return 0; }
  141. #endif
  142. int hwpoison_filter(struct page *p)
  143. {
  144. if (!hwpoison_filter_enable)
  145. return 0;
  146. if (hwpoison_filter_dev(p))
  147. return -EINVAL;
  148. if (hwpoison_filter_flags(p))
  149. return -EINVAL;
  150. if (hwpoison_filter_task(p))
  151. return -EINVAL;
  152. return 0;
  153. }
  154. #else
  155. int hwpoison_filter(struct page *p)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. EXPORT_SYMBOL_GPL(hwpoison_filter);
  161. /*
  162. * Send all the processes who have the page mapped a signal.
  163. * ``action optional'' if they are not immediately affected by the error
  164. * ``action required'' if error happened in current execution context
  165. */
  166. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  167. unsigned long pfn, struct page *page, int flags)
  168. {
  169. struct siginfo si;
  170. int ret;
  171. printk(KERN_ERR
  172. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  173. pfn, t->comm, t->pid);
  174. si.si_signo = SIGBUS;
  175. si.si_errno = 0;
  176. si.si_addr = (void *)addr;
  177. #ifdef __ARCH_SI_TRAPNO
  178. si.si_trapno = trapno;
  179. #endif
  180. si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
  181. if ((flags & MF_ACTION_REQUIRED) && t == current) {
  182. si.si_code = BUS_MCEERR_AR;
  183. ret = force_sig_info(SIGBUS, &si, t);
  184. } else {
  185. /*
  186. * Don't use force here, it's convenient if the signal
  187. * can be temporarily blocked.
  188. * This could cause a loop when the user sets SIGBUS
  189. * to SIG_IGN, but hopefully no one will do that?
  190. */
  191. si.si_code = BUS_MCEERR_AO;
  192. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  193. }
  194. if (ret < 0)
  195. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  196. t->comm, t->pid, ret);
  197. return ret;
  198. }
  199. /*
  200. * When a unknown page type is encountered drain as many buffers as possible
  201. * in the hope to turn the page into a LRU or free page, which we can handle.
  202. */
  203. void shake_page(struct page *p, int access)
  204. {
  205. if (!PageSlab(p)) {
  206. lru_add_drain_all();
  207. if (PageLRU(p))
  208. return;
  209. drain_all_pages();
  210. if (PageLRU(p) || is_free_buddy_page(p))
  211. return;
  212. }
  213. /*
  214. * Only call shrink_slab here (which would also shrink other caches) if
  215. * access is not potentially fatal.
  216. */
  217. if (access) {
  218. int nr;
  219. do {
  220. struct shrink_control shrink = {
  221. .gfp_mask = GFP_KERNEL,
  222. };
  223. nr = shrink_slab(&shrink, 1000, 1000);
  224. if (page_count(p) == 1)
  225. break;
  226. } while (nr > 10);
  227. }
  228. }
  229. EXPORT_SYMBOL_GPL(shake_page);
  230. /*
  231. * Kill all processes that have a poisoned page mapped and then isolate
  232. * the page.
  233. *
  234. * General strategy:
  235. * Find all processes having the page mapped and kill them.
  236. * But we keep a page reference around so that the page is not
  237. * actually freed yet.
  238. * Then stash the page away
  239. *
  240. * There's no convenient way to get back to mapped processes
  241. * from the VMAs. So do a brute-force search over all
  242. * running processes.
  243. *
  244. * Remember that machine checks are not common (or rather
  245. * if they are common you have other problems), so this shouldn't
  246. * be a performance issue.
  247. *
  248. * Also there are some races possible while we get from the
  249. * error detection to actually handle it.
  250. */
  251. struct to_kill {
  252. struct list_head nd;
  253. struct task_struct *tsk;
  254. unsigned long addr;
  255. char addr_valid;
  256. };
  257. /*
  258. * Failure handling: if we can't find or can't kill a process there's
  259. * not much we can do. We just print a message and ignore otherwise.
  260. */
  261. /*
  262. * Schedule a process for later kill.
  263. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  264. * TBD would GFP_NOIO be enough?
  265. */
  266. static void add_to_kill(struct task_struct *tsk, struct page *p,
  267. struct vm_area_struct *vma,
  268. struct list_head *to_kill,
  269. struct to_kill **tkc)
  270. {
  271. struct to_kill *tk;
  272. if (*tkc) {
  273. tk = *tkc;
  274. *tkc = NULL;
  275. } else {
  276. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  277. if (!tk) {
  278. printk(KERN_ERR
  279. "MCE: Out of memory while machine check handling\n");
  280. return;
  281. }
  282. }
  283. tk->addr = page_address_in_vma(p, vma);
  284. tk->addr_valid = 1;
  285. /*
  286. * In theory we don't have to kill when the page was
  287. * munmaped. But it could be also a mremap. Since that's
  288. * likely very rare kill anyways just out of paranoia, but use
  289. * a SIGKILL because the error is not contained anymore.
  290. */
  291. if (tk->addr == -EFAULT) {
  292. pr_info("MCE: Unable to find user space address %lx in %s\n",
  293. page_to_pfn(p), tsk->comm);
  294. tk->addr_valid = 0;
  295. }
  296. get_task_struct(tsk);
  297. tk->tsk = tsk;
  298. list_add_tail(&tk->nd, to_kill);
  299. }
  300. /*
  301. * Kill the processes that have been collected earlier.
  302. *
  303. * Only do anything when DOIT is set, otherwise just free the list
  304. * (this is used for clean pages which do not need killing)
  305. * Also when FAIL is set do a force kill because something went
  306. * wrong earlier.
  307. */
  308. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  309. int fail, struct page *page, unsigned long pfn,
  310. int flags)
  311. {
  312. struct to_kill *tk, *next;
  313. list_for_each_entry_safe (tk, next, to_kill, nd) {
  314. if (forcekill) {
  315. /*
  316. * In case something went wrong with munmapping
  317. * make sure the process doesn't catch the
  318. * signal and then access the memory. Just kill it.
  319. */
  320. if (fail || tk->addr_valid == 0) {
  321. printk(KERN_ERR
  322. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  323. pfn, tk->tsk->comm, tk->tsk->pid);
  324. force_sig(SIGKILL, tk->tsk);
  325. }
  326. /*
  327. * In theory the process could have mapped
  328. * something else on the address in-between. We could
  329. * check for that, but we need to tell the
  330. * process anyways.
  331. */
  332. else if (kill_proc(tk->tsk, tk->addr, trapno,
  333. pfn, page, flags) < 0)
  334. printk(KERN_ERR
  335. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  336. pfn, tk->tsk->comm, tk->tsk->pid);
  337. }
  338. put_task_struct(tk->tsk);
  339. kfree(tk);
  340. }
  341. }
  342. static int task_early_kill(struct task_struct *tsk)
  343. {
  344. if (!tsk->mm)
  345. return 0;
  346. if (tsk->flags & PF_MCE_PROCESS)
  347. return !!(tsk->flags & PF_MCE_EARLY);
  348. return sysctl_memory_failure_early_kill;
  349. }
  350. /*
  351. * Collect processes when the error hit an anonymous page.
  352. */
  353. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  354. struct to_kill **tkc)
  355. {
  356. struct vm_area_struct *vma;
  357. struct task_struct *tsk;
  358. struct anon_vma *av;
  359. pgoff_t pgoff;
  360. av = page_lock_anon_vma_read(page);
  361. if (av == NULL) /* Not actually mapped anymore */
  362. return;
  363. pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  364. read_lock(&tasklist_lock);
  365. for_each_process (tsk) {
  366. struct anon_vma_chain *vmac;
  367. if (!task_early_kill(tsk))
  368. continue;
  369. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  370. pgoff, pgoff) {
  371. vma = vmac->vma;
  372. if (!page_mapped_in_vma(page, vma))
  373. continue;
  374. if (vma->vm_mm == tsk->mm)
  375. add_to_kill(tsk, page, vma, to_kill, tkc);
  376. }
  377. }
  378. read_unlock(&tasklist_lock);
  379. page_unlock_anon_vma_read(av);
  380. }
  381. /*
  382. * Collect processes when the error hit a file mapped page.
  383. */
  384. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  385. struct to_kill **tkc)
  386. {
  387. struct vm_area_struct *vma;
  388. struct task_struct *tsk;
  389. struct address_space *mapping = page->mapping;
  390. mutex_lock(&mapping->i_mmap_mutex);
  391. read_lock(&tasklist_lock);
  392. for_each_process(tsk) {
  393. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  394. if (!task_early_kill(tsk))
  395. continue;
  396. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  397. pgoff) {
  398. /*
  399. * Send early kill signal to tasks where a vma covers
  400. * the page but the corrupted page is not necessarily
  401. * mapped it in its pte.
  402. * Assume applications who requested early kill want
  403. * to be informed of all such data corruptions.
  404. */
  405. if (vma->vm_mm == tsk->mm)
  406. add_to_kill(tsk, page, vma, to_kill, tkc);
  407. }
  408. }
  409. read_unlock(&tasklist_lock);
  410. mutex_unlock(&mapping->i_mmap_mutex);
  411. }
  412. /*
  413. * Collect the processes who have the corrupted page mapped to kill.
  414. * This is done in two steps for locking reasons.
  415. * First preallocate one tokill structure outside the spin locks,
  416. * so that we can kill at least one process reasonably reliable.
  417. */
  418. static void collect_procs(struct page *page, struct list_head *tokill)
  419. {
  420. struct to_kill *tk;
  421. if (!page->mapping)
  422. return;
  423. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  424. if (!tk)
  425. return;
  426. if (PageAnon(page))
  427. collect_procs_anon(page, tokill, &tk);
  428. else
  429. collect_procs_file(page, tokill, &tk);
  430. kfree(tk);
  431. }
  432. /*
  433. * Error handlers for various types of pages.
  434. */
  435. enum outcome {
  436. IGNORED, /* Error: cannot be handled */
  437. FAILED, /* Error: handling failed */
  438. DELAYED, /* Will be handled later */
  439. RECOVERED, /* Successfully recovered */
  440. };
  441. static const char *action_name[] = {
  442. [IGNORED] = "Ignored",
  443. [FAILED] = "Failed",
  444. [DELAYED] = "Delayed",
  445. [RECOVERED] = "Recovered",
  446. };
  447. /*
  448. * XXX: It is possible that a page is isolated from LRU cache,
  449. * and then kept in swap cache or failed to remove from page cache.
  450. * The page count will stop it from being freed by unpoison.
  451. * Stress tests should be aware of this memory leak problem.
  452. */
  453. static int delete_from_lru_cache(struct page *p)
  454. {
  455. if (!isolate_lru_page(p)) {
  456. /*
  457. * Clear sensible page flags, so that the buddy system won't
  458. * complain when the page is unpoison-and-freed.
  459. */
  460. ClearPageActive(p);
  461. ClearPageUnevictable(p);
  462. /*
  463. * drop the page count elevated by isolate_lru_page()
  464. */
  465. page_cache_release(p);
  466. return 0;
  467. }
  468. return -EIO;
  469. }
  470. /*
  471. * Error hit kernel page.
  472. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  473. * could be more sophisticated.
  474. */
  475. static int me_kernel(struct page *p, unsigned long pfn)
  476. {
  477. return IGNORED;
  478. }
  479. /*
  480. * Page in unknown state. Do nothing.
  481. */
  482. static int me_unknown(struct page *p, unsigned long pfn)
  483. {
  484. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  485. return FAILED;
  486. }
  487. /*
  488. * Clean (or cleaned) page cache page.
  489. */
  490. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  491. {
  492. int err;
  493. int ret = FAILED;
  494. struct address_space *mapping;
  495. delete_from_lru_cache(p);
  496. /*
  497. * For anonymous pages we're done the only reference left
  498. * should be the one m_f() holds.
  499. */
  500. if (PageAnon(p))
  501. return RECOVERED;
  502. /*
  503. * Now truncate the page in the page cache. This is really
  504. * more like a "temporary hole punch"
  505. * Don't do this for block devices when someone else
  506. * has a reference, because it could be file system metadata
  507. * and that's not safe to truncate.
  508. */
  509. mapping = page_mapping(p);
  510. if (!mapping) {
  511. /*
  512. * Page has been teared down in the meanwhile
  513. */
  514. return FAILED;
  515. }
  516. /*
  517. * Truncation is a bit tricky. Enable it per file system for now.
  518. *
  519. * Open: to take i_mutex or not for this? Right now we don't.
  520. */
  521. if (mapping->a_ops->error_remove_page) {
  522. err = mapping->a_ops->error_remove_page(mapping, p);
  523. if (err != 0) {
  524. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  525. pfn, err);
  526. } else if (page_has_private(p) &&
  527. !try_to_release_page(p, GFP_NOIO)) {
  528. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  529. } else {
  530. ret = RECOVERED;
  531. }
  532. } else {
  533. /*
  534. * If the file system doesn't support it just invalidate
  535. * This fails on dirty or anything with private pages
  536. */
  537. if (invalidate_inode_page(p))
  538. ret = RECOVERED;
  539. else
  540. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  541. pfn);
  542. }
  543. return ret;
  544. }
  545. /*
  546. * Dirty cache page page
  547. * Issues: when the error hit a hole page the error is not properly
  548. * propagated.
  549. */
  550. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  551. {
  552. struct address_space *mapping = page_mapping(p);
  553. SetPageError(p);
  554. /* TBD: print more information about the file. */
  555. if (mapping) {
  556. /*
  557. * IO error will be reported by write(), fsync(), etc.
  558. * who check the mapping.
  559. * This way the application knows that something went
  560. * wrong with its dirty file data.
  561. *
  562. * There's one open issue:
  563. *
  564. * The EIO will be only reported on the next IO
  565. * operation and then cleared through the IO map.
  566. * Normally Linux has two mechanisms to pass IO error
  567. * first through the AS_EIO flag in the address space
  568. * and then through the PageError flag in the page.
  569. * Since we drop pages on memory failure handling the
  570. * only mechanism open to use is through AS_AIO.
  571. *
  572. * This has the disadvantage that it gets cleared on
  573. * the first operation that returns an error, while
  574. * the PageError bit is more sticky and only cleared
  575. * when the page is reread or dropped. If an
  576. * application assumes it will always get error on
  577. * fsync, but does other operations on the fd before
  578. * and the page is dropped between then the error
  579. * will not be properly reported.
  580. *
  581. * This can already happen even without hwpoisoned
  582. * pages: first on metadata IO errors (which only
  583. * report through AS_EIO) or when the page is dropped
  584. * at the wrong time.
  585. *
  586. * So right now we assume that the application DTRT on
  587. * the first EIO, but we're not worse than other parts
  588. * of the kernel.
  589. */
  590. mapping_set_error(mapping, EIO);
  591. }
  592. return me_pagecache_clean(p, pfn);
  593. }
  594. /*
  595. * Clean and dirty swap cache.
  596. *
  597. * Dirty swap cache page is tricky to handle. The page could live both in page
  598. * cache and swap cache(ie. page is freshly swapped in). So it could be
  599. * referenced concurrently by 2 types of PTEs:
  600. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  601. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  602. * and then
  603. * - clear dirty bit to prevent IO
  604. * - remove from LRU
  605. * - but keep in the swap cache, so that when we return to it on
  606. * a later page fault, we know the application is accessing
  607. * corrupted data and shall be killed (we installed simple
  608. * interception code in do_swap_page to catch it).
  609. *
  610. * Clean swap cache pages can be directly isolated. A later page fault will
  611. * bring in the known good data from disk.
  612. */
  613. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  614. {
  615. ClearPageDirty(p);
  616. /* Trigger EIO in shmem: */
  617. ClearPageUptodate(p);
  618. if (!delete_from_lru_cache(p))
  619. return DELAYED;
  620. else
  621. return FAILED;
  622. }
  623. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  624. {
  625. delete_from_swap_cache(p);
  626. if (!delete_from_lru_cache(p))
  627. return RECOVERED;
  628. else
  629. return FAILED;
  630. }
  631. /*
  632. * Huge pages. Needs work.
  633. * Issues:
  634. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  635. * To narrow down kill region to one page, we need to break up pmd.
  636. */
  637. static int me_huge_page(struct page *p, unsigned long pfn)
  638. {
  639. int res = 0;
  640. struct page *hpage = compound_head(p);
  641. /*
  642. * We can safely recover from error on free or reserved (i.e.
  643. * not in-use) hugepage by dequeuing it from freelist.
  644. * To check whether a hugepage is in-use or not, we can't use
  645. * page->lru because it can be used in other hugepage operations,
  646. * such as __unmap_hugepage_range() and gather_surplus_pages().
  647. * So instead we use page_mapping() and PageAnon().
  648. * We assume that this function is called with page lock held,
  649. * so there is no race between isolation and mapping/unmapping.
  650. */
  651. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  652. res = dequeue_hwpoisoned_huge_page(hpage);
  653. if (!res)
  654. return RECOVERED;
  655. }
  656. return DELAYED;
  657. }
  658. /*
  659. * Various page states we can handle.
  660. *
  661. * A page state is defined by its current page->flags bits.
  662. * The table matches them in order and calls the right handler.
  663. *
  664. * This is quite tricky because we can access page at any time
  665. * in its live cycle, so all accesses have to be extremely careful.
  666. *
  667. * This is not complete. More states could be added.
  668. * For any missing state don't attempt recovery.
  669. */
  670. #define dirty (1UL << PG_dirty)
  671. #define sc (1UL << PG_swapcache)
  672. #define unevict (1UL << PG_unevictable)
  673. #define mlock (1UL << PG_mlocked)
  674. #define writeback (1UL << PG_writeback)
  675. #define lru (1UL << PG_lru)
  676. #define swapbacked (1UL << PG_swapbacked)
  677. #define head (1UL << PG_head)
  678. #define tail (1UL << PG_tail)
  679. #define compound (1UL << PG_compound)
  680. #define slab (1UL << PG_slab)
  681. #define reserved (1UL << PG_reserved)
  682. static struct page_state {
  683. unsigned long mask;
  684. unsigned long res;
  685. char *msg;
  686. int (*action)(struct page *p, unsigned long pfn);
  687. } error_states[] = {
  688. { reserved, reserved, "reserved kernel", me_kernel },
  689. /*
  690. * free pages are specially detected outside this table:
  691. * PG_buddy pages only make a small fraction of all free pages.
  692. */
  693. /*
  694. * Could in theory check if slab page is free or if we can drop
  695. * currently unused objects without touching them. But just
  696. * treat it as standard kernel for now.
  697. */
  698. { slab, slab, "kernel slab", me_kernel },
  699. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  700. { head, head, "huge", me_huge_page },
  701. { tail, tail, "huge", me_huge_page },
  702. #else
  703. { compound, compound, "huge", me_huge_page },
  704. #endif
  705. { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
  706. { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
  707. { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
  708. { mlock, mlock, "clean mlocked LRU", me_pagecache_clean },
  709. { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
  710. { unevict, unevict, "clean unevictable LRU", me_pagecache_clean },
  711. { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
  712. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  713. /*
  714. * Catchall entry: must be at end.
  715. */
  716. { 0, 0, "unknown page state", me_unknown },
  717. };
  718. #undef dirty
  719. #undef sc
  720. #undef unevict
  721. #undef mlock
  722. #undef writeback
  723. #undef lru
  724. #undef swapbacked
  725. #undef head
  726. #undef tail
  727. #undef compound
  728. #undef slab
  729. #undef reserved
  730. /*
  731. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  732. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  733. */
  734. static void action_result(unsigned long pfn, char *msg, int result)
  735. {
  736. pr_err("MCE %#lx: %s page recovery: %s\n",
  737. pfn, msg, action_name[result]);
  738. }
  739. static int page_action(struct page_state *ps, struct page *p,
  740. unsigned long pfn)
  741. {
  742. int result;
  743. int count;
  744. result = ps->action(p, pfn);
  745. action_result(pfn, ps->msg, result);
  746. count = page_count(p) - 1;
  747. if (ps->action == me_swapcache_dirty && result == DELAYED)
  748. count--;
  749. if (count != 0) {
  750. printk(KERN_ERR
  751. "MCE %#lx: %s page still referenced by %d users\n",
  752. pfn, ps->msg, count);
  753. result = FAILED;
  754. }
  755. /* Could do more checks here if page looks ok */
  756. /*
  757. * Could adjust zone counters here to correct for the missing page.
  758. */
  759. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  760. }
  761. /*
  762. * Do all that is necessary to remove user space mappings. Unmap
  763. * the pages and send SIGBUS to the processes if the data was dirty.
  764. */
  765. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  766. int trapno, int flags)
  767. {
  768. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  769. struct address_space *mapping;
  770. LIST_HEAD(tokill);
  771. int ret;
  772. int kill = 1, forcekill;
  773. struct page *hpage = compound_head(p);
  774. struct page *ppage;
  775. if (PageReserved(p) || PageSlab(p))
  776. return SWAP_SUCCESS;
  777. /*
  778. * This check implies we don't kill processes if their pages
  779. * are in the swap cache early. Those are always late kills.
  780. */
  781. if (!page_mapped(hpage))
  782. return SWAP_SUCCESS;
  783. if (PageKsm(p))
  784. return SWAP_FAIL;
  785. if (PageSwapCache(p)) {
  786. printk(KERN_ERR
  787. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  788. ttu |= TTU_IGNORE_HWPOISON;
  789. }
  790. /*
  791. * Propagate the dirty bit from PTEs to struct page first, because we
  792. * need this to decide if we should kill or just drop the page.
  793. * XXX: the dirty test could be racy: set_page_dirty() may not always
  794. * be called inside page lock (it's recommended but not enforced).
  795. */
  796. mapping = page_mapping(hpage);
  797. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  798. mapping_cap_writeback_dirty(mapping)) {
  799. if (page_mkclean(hpage)) {
  800. SetPageDirty(hpage);
  801. } else {
  802. kill = 0;
  803. ttu |= TTU_IGNORE_HWPOISON;
  804. printk(KERN_INFO
  805. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  806. pfn);
  807. }
  808. }
  809. /*
  810. * ppage: poisoned page
  811. * if p is regular page(4k page)
  812. * ppage == real poisoned page;
  813. * else p is hugetlb or THP, ppage == head page.
  814. */
  815. ppage = hpage;
  816. if (PageTransHuge(hpage)) {
  817. /*
  818. * Verify that this isn't a hugetlbfs head page, the check for
  819. * PageAnon is just for avoid tripping a split_huge_page
  820. * internal debug check, as split_huge_page refuses to deal with
  821. * anything that isn't an anon page. PageAnon can't go away fro
  822. * under us because we hold a refcount on the hpage, without a
  823. * refcount on the hpage. split_huge_page can't be safely called
  824. * in the first place, having a refcount on the tail isn't
  825. * enough * to be safe.
  826. */
  827. if (!PageHuge(hpage) && PageAnon(hpage)) {
  828. if (unlikely(split_huge_page(hpage))) {
  829. /*
  830. * FIXME: if splitting THP is failed, it is
  831. * better to stop the following operation rather
  832. * than causing panic by unmapping. System might
  833. * survive if the page is freed later.
  834. */
  835. printk(KERN_INFO
  836. "MCE %#lx: failed to split THP\n", pfn);
  837. BUG_ON(!PageHWPoison(p));
  838. return SWAP_FAIL;
  839. }
  840. /* THP is split, so ppage should be the real poisoned page. */
  841. ppage = p;
  842. }
  843. }
  844. /*
  845. * First collect all the processes that have the page
  846. * mapped in dirty form. This has to be done before try_to_unmap,
  847. * because ttu takes the rmap data structures down.
  848. *
  849. * Error handling: We ignore errors here because
  850. * there's nothing that can be done.
  851. */
  852. if (kill)
  853. collect_procs(ppage, &tokill);
  854. if (hpage != ppage)
  855. lock_page(ppage);
  856. ret = try_to_unmap(ppage, ttu);
  857. if (ret != SWAP_SUCCESS)
  858. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  859. pfn, page_mapcount(ppage));
  860. if (hpage != ppage)
  861. unlock_page(ppage);
  862. /*
  863. * Now that the dirty bit has been propagated to the
  864. * struct page and all unmaps done we can decide if
  865. * killing is needed or not. Only kill when the page
  866. * was dirty or the process is not restartable,
  867. * otherwise the tokill list is merely
  868. * freed. When there was a problem unmapping earlier
  869. * use a more force-full uncatchable kill to prevent
  870. * any accesses to the poisoned memory.
  871. */
  872. forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
  873. kill_procs(&tokill, forcekill, trapno,
  874. ret != SWAP_SUCCESS, p, pfn, flags);
  875. return ret;
  876. }
  877. static void set_page_hwpoison_huge_page(struct page *hpage)
  878. {
  879. int i;
  880. int nr_pages = 1 << compound_trans_order(hpage);
  881. for (i = 0; i < nr_pages; i++)
  882. SetPageHWPoison(hpage + i);
  883. }
  884. static void clear_page_hwpoison_huge_page(struct page *hpage)
  885. {
  886. int i;
  887. int nr_pages = 1 << compound_trans_order(hpage);
  888. for (i = 0; i < nr_pages; i++)
  889. ClearPageHWPoison(hpage + i);
  890. }
  891. /**
  892. * memory_failure - Handle memory failure of a page.
  893. * @pfn: Page Number of the corrupted page
  894. * @trapno: Trap number reported in the signal to user space.
  895. * @flags: fine tune action taken
  896. *
  897. * This function is called by the low level machine check code
  898. * of an architecture when it detects hardware memory corruption
  899. * of a page. It tries its best to recover, which includes
  900. * dropping pages, killing processes etc.
  901. *
  902. * The function is primarily of use for corruptions that
  903. * happen outside the current execution context (e.g. when
  904. * detected by a background scrubber)
  905. *
  906. * Must run in process context (e.g. a work queue) with interrupts
  907. * enabled and no spinlocks hold.
  908. */
  909. int memory_failure(unsigned long pfn, int trapno, int flags)
  910. {
  911. struct page_state *ps;
  912. struct page *p;
  913. struct page *hpage;
  914. int res;
  915. unsigned int nr_pages;
  916. unsigned long page_flags;
  917. if (!sysctl_memory_failure_recovery)
  918. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  919. if (!pfn_valid(pfn)) {
  920. printk(KERN_ERR
  921. "MCE %#lx: memory outside kernel control\n",
  922. pfn);
  923. return -ENXIO;
  924. }
  925. p = pfn_to_page(pfn);
  926. hpage = compound_head(p);
  927. if (TestSetPageHWPoison(p)) {
  928. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  929. return 0;
  930. }
  931. /*
  932. * Currently errors on hugetlbfs pages are measured in hugepage units,
  933. * so nr_pages should be 1 << compound_order. OTOH when errors are on
  934. * transparent hugepages, they are supposed to be split and error
  935. * measurement is done in normal page units. So nr_pages should be one
  936. * in this case.
  937. */
  938. if (PageHuge(p))
  939. nr_pages = 1 << compound_order(hpage);
  940. else /* normal page or thp */
  941. nr_pages = 1;
  942. atomic_long_add(nr_pages, &num_poisoned_pages);
  943. /*
  944. * We need/can do nothing about count=0 pages.
  945. * 1) it's a free page, and therefore in safe hand:
  946. * prep_new_page() will be the gate keeper.
  947. * 2) it's a free hugepage, which is also safe:
  948. * an affected hugepage will be dequeued from hugepage freelist,
  949. * so there's no concern about reusing it ever after.
  950. * 3) it's part of a non-compound high order page.
  951. * Implies some kernel user: cannot stop them from
  952. * R/W the page; let's pray that the page has been
  953. * used and will be freed some time later.
  954. * In fact it's dangerous to directly bump up page count from 0,
  955. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  956. */
  957. if (!(flags & MF_COUNT_INCREASED) &&
  958. !get_page_unless_zero(hpage)) {
  959. if (is_free_buddy_page(p)) {
  960. action_result(pfn, "free buddy", DELAYED);
  961. return 0;
  962. } else if (PageHuge(hpage)) {
  963. /*
  964. * Check "just unpoisoned", "filter hit", and
  965. * "race with other subpage."
  966. */
  967. lock_page(hpage);
  968. if (!PageHWPoison(hpage)
  969. || (hwpoison_filter(p) && TestClearPageHWPoison(p))
  970. || (p != hpage && TestSetPageHWPoison(hpage))) {
  971. atomic_long_sub(nr_pages, &num_poisoned_pages);
  972. return 0;
  973. }
  974. set_page_hwpoison_huge_page(hpage);
  975. res = dequeue_hwpoisoned_huge_page(hpage);
  976. action_result(pfn, "free huge",
  977. res ? IGNORED : DELAYED);
  978. unlock_page(hpage);
  979. return res;
  980. } else {
  981. action_result(pfn, "high order kernel", IGNORED);
  982. return -EBUSY;
  983. }
  984. }
  985. /*
  986. * We ignore non-LRU pages for good reasons.
  987. * - PG_locked is only well defined for LRU pages and a few others
  988. * - to avoid races with __set_page_locked()
  989. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  990. * The check (unnecessarily) ignores LRU pages being isolated and
  991. * walked by the page reclaim code, however that's not a big loss.
  992. */
  993. if (!PageHuge(p) && !PageTransTail(p)) {
  994. if (!PageLRU(p))
  995. shake_page(p, 0);
  996. if (!PageLRU(p)) {
  997. /*
  998. * shake_page could have turned it free.
  999. */
  1000. if (is_free_buddy_page(p)) {
  1001. action_result(pfn, "free buddy, 2nd try",
  1002. DELAYED);
  1003. return 0;
  1004. }
  1005. action_result(pfn, "non LRU", IGNORED);
  1006. put_page(p);
  1007. return -EBUSY;
  1008. }
  1009. }
  1010. /*
  1011. * Lock the page and wait for writeback to finish.
  1012. * It's very difficult to mess with pages currently under IO
  1013. * and in many cases impossible, so we just avoid it here.
  1014. */
  1015. lock_page(hpage);
  1016. /*
  1017. * We use page flags to determine what action should be taken, but
  1018. * the flags can be modified by the error containment action. One
  1019. * example is an mlocked page, where PG_mlocked is cleared by
  1020. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1021. * correctly, we save a copy of the page flags at this time.
  1022. */
  1023. page_flags = p->flags;
  1024. /*
  1025. * unpoison always clear PG_hwpoison inside page lock
  1026. */
  1027. if (!PageHWPoison(p)) {
  1028. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1029. res = 0;
  1030. goto out;
  1031. }
  1032. if (hwpoison_filter(p)) {
  1033. if (TestClearPageHWPoison(p))
  1034. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1035. unlock_page(hpage);
  1036. put_page(hpage);
  1037. return 0;
  1038. }
  1039. /*
  1040. * For error on the tail page, we should set PG_hwpoison
  1041. * on the head page to show that the hugepage is hwpoisoned
  1042. */
  1043. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1044. action_result(pfn, "hugepage already hardware poisoned",
  1045. IGNORED);
  1046. unlock_page(hpage);
  1047. put_page(hpage);
  1048. return 0;
  1049. }
  1050. /*
  1051. * Set PG_hwpoison on all pages in an error hugepage,
  1052. * because containment is done in hugepage unit for now.
  1053. * Since we have done TestSetPageHWPoison() for the head page with
  1054. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1055. */
  1056. if (PageHuge(p))
  1057. set_page_hwpoison_huge_page(hpage);
  1058. wait_on_page_writeback(p);
  1059. /*
  1060. * Now take care of user space mappings.
  1061. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1062. */
  1063. if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
  1064. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  1065. res = -EBUSY;
  1066. goto out;
  1067. }
  1068. /*
  1069. * Torn down by someone else?
  1070. */
  1071. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1072. action_result(pfn, "already truncated LRU", IGNORED);
  1073. res = -EBUSY;
  1074. goto out;
  1075. }
  1076. res = -EBUSY;
  1077. /*
  1078. * The first check uses the current page flags which may not have any
  1079. * relevant information. The second check with the saved page flagss is
  1080. * carried out only if the first check can't determine the page status.
  1081. */
  1082. for (ps = error_states;; ps++)
  1083. if ((p->flags & ps->mask) == ps->res)
  1084. break;
  1085. if (!ps->mask)
  1086. for (ps = error_states;; ps++)
  1087. if ((page_flags & ps->mask) == ps->res)
  1088. break;
  1089. res = page_action(ps, p, pfn);
  1090. out:
  1091. unlock_page(hpage);
  1092. return res;
  1093. }
  1094. EXPORT_SYMBOL_GPL(memory_failure);
  1095. #define MEMORY_FAILURE_FIFO_ORDER 4
  1096. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1097. struct memory_failure_entry {
  1098. unsigned long pfn;
  1099. int trapno;
  1100. int flags;
  1101. };
  1102. struct memory_failure_cpu {
  1103. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1104. MEMORY_FAILURE_FIFO_SIZE);
  1105. spinlock_t lock;
  1106. struct work_struct work;
  1107. };
  1108. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1109. /**
  1110. * memory_failure_queue - Schedule handling memory failure of a page.
  1111. * @pfn: Page Number of the corrupted page
  1112. * @trapno: Trap number reported in the signal to user space.
  1113. * @flags: Flags for memory failure handling
  1114. *
  1115. * This function is called by the low level hardware error handler
  1116. * when it detects hardware memory corruption of a page. It schedules
  1117. * the recovering of error page, including dropping pages, killing
  1118. * processes etc.
  1119. *
  1120. * The function is primarily of use for corruptions that
  1121. * happen outside the current execution context (e.g. when
  1122. * detected by a background scrubber)
  1123. *
  1124. * Can run in IRQ context.
  1125. */
  1126. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1127. {
  1128. struct memory_failure_cpu *mf_cpu;
  1129. unsigned long proc_flags;
  1130. struct memory_failure_entry entry = {
  1131. .pfn = pfn,
  1132. .trapno = trapno,
  1133. .flags = flags,
  1134. };
  1135. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1136. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1137. if (kfifo_put(&mf_cpu->fifo, &entry))
  1138. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1139. else
  1140. pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
  1141. pfn);
  1142. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1143. put_cpu_var(memory_failure_cpu);
  1144. }
  1145. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1146. static void memory_failure_work_func(struct work_struct *work)
  1147. {
  1148. struct memory_failure_cpu *mf_cpu;
  1149. struct memory_failure_entry entry = { 0, };
  1150. unsigned long proc_flags;
  1151. int gotten;
  1152. mf_cpu = &__get_cpu_var(memory_failure_cpu);
  1153. for (;;) {
  1154. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1155. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1156. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1157. if (!gotten)
  1158. break;
  1159. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1160. }
  1161. }
  1162. static int __init memory_failure_init(void)
  1163. {
  1164. struct memory_failure_cpu *mf_cpu;
  1165. int cpu;
  1166. for_each_possible_cpu(cpu) {
  1167. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1168. spin_lock_init(&mf_cpu->lock);
  1169. INIT_KFIFO(mf_cpu->fifo);
  1170. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1171. }
  1172. return 0;
  1173. }
  1174. core_initcall(memory_failure_init);
  1175. /**
  1176. * unpoison_memory - Unpoison a previously poisoned page
  1177. * @pfn: Page number of the to be unpoisoned page
  1178. *
  1179. * Software-unpoison a page that has been poisoned by
  1180. * memory_failure() earlier.
  1181. *
  1182. * This is only done on the software-level, so it only works
  1183. * for linux injected failures, not real hardware failures
  1184. *
  1185. * Returns 0 for success, otherwise -errno.
  1186. */
  1187. int unpoison_memory(unsigned long pfn)
  1188. {
  1189. struct page *page;
  1190. struct page *p;
  1191. int freeit = 0;
  1192. unsigned int nr_pages;
  1193. if (!pfn_valid(pfn))
  1194. return -ENXIO;
  1195. p = pfn_to_page(pfn);
  1196. page = compound_head(p);
  1197. if (!PageHWPoison(p)) {
  1198. pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
  1199. return 0;
  1200. }
  1201. nr_pages = 1 << compound_trans_order(page);
  1202. if (!get_page_unless_zero(page)) {
  1203. /*
  1204. * Since HWPoisoned hugepage should have non-zero refcount,
  1205. * race between memory failure and unpoison seems to happen.
  1206. * In such case unpoison fails and memory failure runs
  1207. * to the end.
  1208. */
  1209. if (PageHuge(page)) {
  1210. pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
  1211. return 0;
  1212. }
  1213. if (TestClearPageHWPoison(p))
  1214. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1215. pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1216. return 0;
  1217. }
  1218. lock_page(page);
  1219. /*
  1220. * This test is racy because PG_hwpoison is set outside of page lock.
  1221. * That's acceptable because that won't trigger kernel panic. Instead,
  1222. * the PG_hwpoison page will be caught and isolated on the entrance to
  1223. * the free buddy page pool.
  1224. */
  1225. if (TestClearPageHWPoison(page)) {
  1226. pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
  1227. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1228. freeit = 1;
  1229. if (PageHuge(page))
  1230. clear_page_hwpoison_huge_page(page);
  1231. }
  1232. unlock_page(page);
  1233. put_page(page);
  1234. if (freeit)
  1235. put_page(page);
  1236. return 0;
  1237. }
  1238. EXPORT_SYMBOL(unpoison_memory);
  1239. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1240. {
  1241. int nid = page_to_nid(p);
  1242. if (PageHuge(p))
  1243. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1244. nid);
  1245. else
  1246. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1247. }
  1248. /*
  1249. * Safely get reference count of an arbitrary page.
  1250. * Returns 0 for a free page, -EIO for a zero refcount page
  1251. * that is not free, and 1 for any other page type.
  1252. * For 1 the page is returned with increased page count, otherwise not.
  1253. */
  1254. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1255. {
  1256. int ret;
  1257. if (flags & MF_COUNT_INCREASED)
  1258. return 1;
  1259. /*
  1260. * The lock_memory_hotplug prevents a race with memory hotplug.
  1261. * This is a big hammer, a better would be nicer.
  1262. */
  1263. lock_memory_hotplug();
  1264. /*
  1265. * Isolate the page, so that it doesn't get reallocated if it
  1266. * was free.
  1267. */
  1268. set_migratetype_isolate(p, true);
  1269. /*
  1270. * When the target page is a free hugepage, just remove it
  1271. * from free hugepage list.
  1272. */
  1273. if (!get_page_unless_zero(compound_head(p))) {
  1274. if (PageHuge(p)) {
  1275. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1276. ret = 0;
  1277. } else if (is_free_buddy_page(p)) {
  1278. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1279. ret = 0;
  1280. } else {
  1281. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1282. __func__, pfn, p->flags);
  1283. ret = -EIO;
  1284. }
  1285. } else {
  1286. /* Not a free page */
  1287. ret = 1;
  1288. }
  1289. unset_migratetype_isolate(p, MIGRATE_MOVABLE);
  1290. unlock_memory_hotplug();
  1291. return ret;
  1292. }
  1293. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1294. {
  1295. int ret = __get_any_page(page, pfn, flags);
  1296. if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
  1297. /*
  1298. * Try to free it.
  1299. */
  1300. put_page(page);
  1301. shake_page(page, 1);
  1302. /*
  1303. * Did it turn free?
  1304. */
  1305. ret = __get_any_page(page, pfn, 0);
  1306. if (!PageLRU(page)) {
  1307. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1308. pfn, page->flags);
  1309. return -EIO;
  1310. }
  1311. }
  1312. return ret;
  1313. }
  1314. static int soft_offline_huge_page(struct page *page, int flags)
  1315. {
  1316. int ret;
  1317. unsigned long pfn = page_to_pfn(page);
  1318. struct page *hpage = compound_head(page);
  1319. /*
  1320. * This double-check of PageHWPoison is to avoid the race with
  1321. * memory_failure(). See also comment in __soft_offline_page().
  1322. */
  1323. lock_page(hpage);
  1324. if (PageHWPoison(hpage)) {
  1325. unlock_page(hpage);
  1326. put_page(hpage);
  1327. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1328. return -EBUSY;
  1329. }
  1330. unlock_page(hpage);
  1331. /* Keep page count to indicate a given hugepage is isolated. */
  1332. ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
  1333. MIGRATE_SYNC);
  1334. put_page(hpage);
  1335. if (ret) {
  1336. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1337. pfn, ret, page->flags);
  1338. } else {
  1339. set_page_hwpoison_huge_page(hpage);
  1340. dequeue_hwpoisoned_huge_page(hpage);
  1341. atomic_long_add(1 << compound_trans_order(hpage),
  1342. &num_poisoned_pages);
  1343. }
  1344. /* keep elevated page count for bad page */
  1345. return ret;
  1346. }
  1347. static int __soft_offline_page(struct page *page, int flags);
  1348. /**
  1349. * soft_offline_page - Soft offline a page.
  1350. * @page: page to offline
  1351. * @flags: flags. Same as memory_failure().
  1352. *
  1353. * Returns 0 on success, otherwise negated errno.
  1354. *
  1355. * Soft offline a page, by migration or invalidation,
  1356. * without killing anything. This is for the case when
  1357. * a page is not corrupted yet (so it's still valid to access),
  1358. * but has had a number of corrected errors and is better taken
  1359. * out.
  1360. *
  1361. * The actual policy on when to do that is maintained by
  1362. * user space.
  1363. *
  1364. * This should never impact any application or cause data loss,
  1365. * however it might take some time.
  1366. *
  1367. * This is not a 100% solution for all memory, but tries to be
  1368. * ``good enough'' for the majority of memory.
  1369. */
  1370. int soft_offline_page(struct page *page, int flags)
  1371. {
  1372. int ret;
  1373. unsigned long pfn = page_to_pfn(page);
  1374. struct page *hpage = compound_trans_head(page);
  1375. if (PageHWPoison(page)) {
  1376. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1377. return -EBUSY;
  1378. }
  1379. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1380. if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
  1381. pr_info("soft offline: %#lx: failed to split THP\n",
  1382. pfn);
  1383. return -EBUSY;
  1384. }
  1385. }
  1386. ret = get_any_page(page, pfn, flags);
  1387. if (ret < 0)
  1388. return ret;
  1389. if (ret) { /* for in-use pages */
  1390. if (PageHuge(page))
  1391. ret = soft_offline_huge_page(page, flags);
  1392. else
  1393. ret = __soft_offline_page(page, flags);
  1394. } else { /* for free pages */
  1395. if (PageHuge(page)) {
  1396. set_page_hwpoison_huge_page(hpage);
  1397. dequeue_hwpoisoned_huge_page(hpage);
  1398. atomic_long_add(1 << compound_trans_order(hpage),
  1399. &num_poisoned_pages);
  1400. } else {
  1401. SetPageHWPoison(page);
  1402. atomic_long_inc(&num_poisoned_pages);
  1403. }
  1404. }
  1405. /* keep elevated page count for bad page */
  1406. return ret;
  1407. }
  1408. static int __soft_offline_page(struct page *page, int flags)
  1409. {
  1410. int ret;
  1411. unsigned long pfn = page_to_pfn(page);
  1412. /*
  1413. * Check PageHWPoison again inside page lock because PageHWPoison
  1414. * is set by memory_failure() outside page lock. Note that
  1415. * memory_failure() also double-checks PageHWPoison inside page lock,
  1416. * so there's no race between soft_offline_page() and memory_failure().
  1417. */
  1418. lock_page(page);
  1419. wait_on_page_writeback(page);
  1420. if (PageHWPoison(page)) {
  1421. unlock_page(page);
  1422. put_page(page);
  1423. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1424. return -EBUSY;
  1425. }
  1426. /*
  1427. * Try to invalidate first. This should work for
  1428. * non dirty unmapped page cache pages.
  1429. */
  1430. ret = invalidate_inode_page(page);
  1431. unlock_page(page);
  1432. /*
  1433. * RED-PEN would be better to keep it isolated here, but we
  1434. * would need to fix isolation locking first.
  1435. */
  1436. if (ret == 1) {
  1437. put_page(page);
  1438. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1439. SetPageHWPoison(page);
  1440. atomic_long_inc(&num_poisoned_pages);
  1441. return 0;
  1442. }
  1443. /*
  1444. * Simple invalidation didn't work.
  1445. * Try to migrate to a new page instead. migrate.c
  1446. * handles a large number of cases for us.
  1447. */
  1448. ret = isolate_lru_page(page);
  1449. /*
  1450. * Drop page reference which is came from get_any_page()
  1451. * successful isolate_lru_page() already took another one.
  1452. */
  1453. put_page(page);
  1454. if (!ret) {
  1455. LIST_HEAD(pagelist);
  1456. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1457. page_is_file_cache(page));
  1458. list_add(&page->lru, &pagelist);
  1459. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
  1460. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1461. if (ret) {
  1462. putback_lru_pages(&pagelist);
  1463. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1464. pfn, ret, page->flags);
  1465. if (ret > 0)
  1466. ret = -EIO;
  1467. } else {
  1468. SetPageHWPoison(page);
  1469. atomic_long_inc(&num_poisoned_pages);
  1470. }
  1471. } else {
  1472. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1473. pfn, ret, page_count(page), page->flags);
  1474. }
  1475. return ret;
  1476. }