kmemleak.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866
  1. /*
  2. * mm/kmemleak.c
  3. *
  4. * Copyright (C) 2008 ARM Limited
  5. * Written by Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. *
  21. * For more information on the algorithm and kmemleak usage, please see
  22. * Documentation/kmemleak.txt.
  23. *
  24. * Notes on locking
  25. * ----------------
  26. *
  27. * The following locks and mutexes are used by kmemleak:
  28. *
  29. * - kmemleak_lock (rwlock): protects the object_list modifications and
  30. * accesses to the object_tree_root. The object_list is the main list
  31. * holding the metadata (struct kmemleak_object) for the allocated memory
  32. * blocks. The object_tree_root is a red black tree used to look-up
  33. * metadata based on a pointer to the corresponding memory block. The
  34. * kmemleak_object structures are added to the object_list and
  35. * object_tree_root in the create_object() function called from the
  36. * kmemleak_alloc() callback and removed in delete_object() called from the
  37. * kmemleak_free() callback
  38. * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39. * the metadata (e.g. count) are protected by this lock. Note that some
  40. * members of this structure may be protected by other means (atomic or
  41. * kmemleak_lock). This lock is also held when scanning the corresponding
  42. * memory block to avoid the kernel freeing it via the kmemleak_free()
  43. * callback. This is less heavyweight than holding a global lock like
  44. * kmemleak_lock during scanning
  45. * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46. * unreferenced objects at a time. The gray_list contains the objects which
  47. * are already referenced or marked as false positives and need to be
  48. * scanned. This list is only modified during a scanning episode when the
  49. * scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50. * Note that the kmemleak_object.use_count is incremented when an object is
  51. * added to the gray_list and therefore cannot be freed. This mutex also
  52. * prevents multiple users of the "kmemleak" debugfs file together with
  53. * modifications to the memory scanning parameters including the scan_thread
  54. * pointer
  55. *
  56. * The kmemleak_object structures have a use_count incremented or decremented
  57. * using the get_object()/put_object() functions. When the use_count becomes
  58. * 0, this count can no longer be incremented and put_object() schedules the
  59. * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60. * function must be protected by rcu_read_lock() to avoid accessing a freed
  61. * structure.
  62. */
  63. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  64. #include <linux/init.h>
  65. #include <linux/kernel.h>
  66. #include <linux/list.h>
  67. #include <linux/sched.h>
  68. #include <linux/jiffies.h>
  69. #include <linux/delay.h>
  70. #include <linux/export.h>
  71. #include <linux/kthread.h>
  72. #include <linux/rbtree.h>
  73. #include <linux/fs.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/seq_file.h>
  76. #include <linux/cpumask.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/mutex.h>
  79. #include <linux/rcupdate.h>
  80. #include <linux/stacktrace.h>
  81. #include <linux/cache.h>
  82. #include <linux/percpu.h>
  83. #include <linux/hardirq.h>
  84. #include <linux/mmzone.h>
  85. #include <linux/slab.h>
  86. #include <linux/thread_info.h>
  87. #include <linux/err.h>
  88. #include <linux/uaccess.h>
  89. #include <linux/string.h>
  90. #include <linux/nodemask.h>
  91. #include <linux/mm.h>
  92. #include <linux/workqueue.h>
  93. #include <linux/crc32.h>
  94. #include <asm/sections.h>
  95. #include <asm/processor.h>
  96. #include <linux/atomic.h>
  97. #include <linux/kmemcheck.h>
  98. #include <linux/kmemleak.h>
  99. #include <linux/memory_hotplug.h>
  100. /*
  101. * Kmemleak configuration and common defines.
  102. */
  103. #define MAX_TRACE 16 /* stack trace length */
  104. #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
  105. #define SECS_FIRST_SCAN 60 /* delay before the first scan */
  106. #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
  107. #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
  108. #define BYTES_PER_POINTER sizeof(void *)
  109. /* GFP bitmask for kmemleak internal allocations */
  110. #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
  111. __GFP_NORETRY | __GFP_NOMEMALLOC | \
  112. __GFP_NOWARN)
  113. /* scanning area inside a memory block */
  114. struct kmemleak_scan_area {
  115. struct hlist_node node;
  116. unsigned long start;
  117. size_t size;
  118. };
  119. #define KMEMLEAK_GREY 0
  120. #define KMEMLEAK_BLACK -1
  121. /*
  122. * Structure holding the metadata for each allocated memory block.
  123. * Modifications to such objects should be made while holding the
  124. * object->lock. Insertions or deletions from object_list, gray_list or
  125. * rb_node are already protected by the corresponding locks or mutex (see
  126. * the notes on locking above). These objects are reference-counted
  127. * (use_count) and freed using the RCU mechanism.
  128. */
  129. struct kmemleak_object {
  130. spinlock_t lock;
  131. unsigned long flags; /* object status flags */
  132. struct list_head object_list;
  133. struct list_head gray_list;
  134. struct rb_node rb_node;
  135. struct rcu_head rcu; /* object_list lockless traversal */
  136. /* object usage count; object freed when use_count == 0 */
  137. atomic_t use_count;
  138. unsigned long pointer;
  139. size_t size;
  140. /* minimum number of a pointers found before it is considered leak */
  141. int min_count;
  142. /* the total number of pointers found pointing to this object */
  143. int count;
  144. /* checksum for detecting modified objects */
  145. u32 checksum;
  146. /* memory ranges to be scanned inside an object (empty for all) */
  147. struct hlist_head area_list;
  148. unsigned long trace[MAX_TRACE];
  149. unsigned int trace_len;
  150. unsigned long jiffies; /* creation timestamp */
  151. pid_t pid; /* pid of the current task */
  152. char comm[TASK_COMM_LEN]; /* executable name */
  153. };
  154. /* flag representing the memory block allocation status */
  155. #define OBJECT_ALLOCATED (1 << 0)
  156. /* flag set after the first reporting of an unreference object */
  157. #define OBJECT_REPORTED (1 << 1)
  158. /* flag set to not scan the object */
  159. #define OBJECT_NO_SCAN (1 << 2)
  160. /* number of bytes to print per line; must be 16 or 32 */
  161. #define HEX_ROW_SIZE 16
  162. /* number of bytes to print at a time (1, 2, 4, 8) */
  163. #define HEX_GROUP_SIZE 1
  164. /* include ASCII after the hex output */
  165. #define HEX_ASCII 1
  166. /* max number of lines to be printed */
  167. #define HEX_MAX_LINES 2
  168. /* the list of all allocated objects */
  169. static LIST_HEAD(object_list);
  170. /* the list of gray-colored objects (see color_gray comment below) */
  171. static LIST_HEAD(gray_list);
  172. /* search tree for object boundaries */
  173. static struct rb_root object_tree_root = RB_ROOT;
  174. /* rw_lock protecting the access to object_list and object_tree_root */
  175. static DEFINE_RWLOCK(kmemleak_lock);
  176. /* allocation caches for kmemleak internal data */
  177. static struct kmem_cache *object_cache;
  178. static struct kmem_cache *scan_area_cache;
  179. /* set if tracing memory operations is enabled */
  180. static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
  181. /* set in the late_initcall if there were no errors */
  182. static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
  183. /* enables or disables early logging of the memory operations */
  184. static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
  185. /* set if a kmemleak warning was issued */
  186. static atomic_t kmemleak_warning = ATOMIC_INIT(0);
  187. /* set if a fatal kmemleak error has occurred */
  188. static atomic_t kmemleak_error = ATOMIC_INIT(0);
  189. /* minimum and maximum address that may be valid pointers */
  190. static unsigned long min_addr = ULONG_MAX;
  191. static unsigned long max_addr;
  192. static struct task_struct *scan_thread;
  193. /* used to avoid reporting of recently allocated objects */
  194. static unsigned long jiffies_min_age;
  195. static unsigned long jiffies_last_scan;
  196. /* delay between automatic memory scannings */
  197. static signed long jiffies_scan_wait;
  198. /* enables or disables the task stacks scanning */
  199. static int kmemleak_stack_scan = 1;
  200. /* protects the memory scanning, parameters and debug/kmemleak file access */
  201. static DEFINE_MUTEX(scan_mutex);
  202. /* setting kmemleak=on, will set this var, skipping the disable */
  203. static int kmemleak_skip_disable;
  204. /*
  205. * Early object allocation/freeing logging. Kmemleak is initialized after the
  206. * kernel allocator. However, both the kernel allocator and kmemleak may
  207. * allocate memory blocks which need to be tracked. Kmemleak defines an
  208. * arbitrary buffer to hold the allocation/freeing information before it is
  209. * fully initialized.
  210. */
  211. /* kmemleak operation type for early logging */
  212. enum {
  213. KMEMLEAK_ALLOC,
  214. KMEMLEAK_ALLOC_PERCPU,
  215. KMEMLEAK_FREE,
  216. KMEMLEAK_FREE_PART,
  217. KMEMLEAK_FREE_PERCPU,
  218. KMEMLEAK_NOT_LEAK,
  219. KMEMLEAK_IGNORE,
  220. KMEMLEAK_SCAN_AREA,
  221. KMEMLEAK_NO_SCAN
  222. };
  223. /*
  224. * Structure holding the information passed to kmemleak callbacks during the
  225. * early logging.
  226. */
  227. struct early_log {
  228. int op_type; /* kmemleak operation type */
  229. const void *ptr; /* allocated/freed memory block */
  230. size_t size; /* memory block size */
  231. int min_count; /* minimum reference count */
  232. unsigned long trace[MAX_TRACE]; /* stack trace */
  233. unsigned int trace_len; /* stack trace length */
  234. };
  235. /* early logging buffer and current position */
  236. static struct early_log
  237. early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
  238. static int crt_early_log __initdata;
  239. static void kmemleak_disable(void);
  240. /*
  241. * Print a warning and dump the stack trace.
  242. */
  243. #define kmemleak_warn(x...) do { \
  244. pr_warning(x); \
  245. dump_stack(); \
  246. atomic_set(&kmemleak_warning, 1); \
  247. } while (0)
  248. /*
  249. * Macro invoked when a serious kmemleak condition occurred and cannot be
  250. * recovered from. Kmemleak will be disabled and further allocation/freeing
  251. * tracing no longer available.
  252. */
  253. #define kmemleak_stop(x...) do { \
  254. kmemleak_warn(x); \
  255. kmemleak_disable(); \
  256. } while (0)
  257. /*
  258. * Printing of the objects hex dump to the seq file. The number of lines to be
  259. * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
  260. * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
  261. * with the object->lock held.
  262. */
  263. static void hex_dump_object(struct seq_file *seq,
  264. struct kmemleak_object *object)
  265. {
  266. const u8 *ptr = (const u8 *)object->pointer;
  267. int i, len, remaining;
  268. unsigned char linebuf[HEX_ROW_SIZE * 5];
  269. /* limit the number of lines to HEX_MAX_LINES */
  270. remaining = len =
  271. min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
  272. seq_printf(seq, " hex dump (first %d bytes):\n", len);
  273. for (i = 0; i < len; i += HEX_ROW_SIZE) {
  274. int linelen = min(remaining, HEX_ROW_SIZE);
  275. remaining -= HEX_ROW_SIZE;
  276. hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
  277. HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
  278. HEX_ASCII);
  279. seq_printf(seq, " %s\n", linebuf);
  280. }
  281. }
  282. /*
  283. * Object colors, encoded with count and min_count:
  284. * - white - orphan object, not enough references to it (count < min_count)
  285. * - gray - not orphan, not marked as false positive (min_count == 0) or
  286. * sufficient references to it (count >= min_count)
  287. * - black - ignore, it doesn't contain references (e.g. text section)
  288. * (min_count == -1). No function defined for this color.
  289. * Newly created objects don't have any color assigned (object->count == -1)
  290. * before the next memory scan when they become white.
  291. */
  292. static bool color_white(const struct kmemleak_object *object)
  293. {
  294. return object->count != KMEMLEAK_BLACK &&
  295. object->count < object->min_count;
  296. }
  297. static bool color_gray(const struct kmemleak_object *object)
  298. {
  299. return object->min_count != KMEMLEAK_BLACK &&
  300. object->count >= object->min_count;
  301. }
  302. /*
  303. * Objects are considered unreferenced only if their color is white, they have
  304. * not be deleted and have a minimum age to avoid false positives caused by
  305. * pointers temporarily stored in CPU registers.
  306. */
  307. static bool unreferenced_object(struct kmemleak_object *object)
  308. {
  309. return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
  310. time_before_eq(object->jiffies + jiffies_min_age,
  311. jiffies_last_scan);
  312. }
  313. /*
  314. * Printing of the unreferenced objects information to the seq file. The
  315. * print_unreferenced function must be called with the object->lock held.
  316. */
  317. static void print_unreferenced(struct seq_file *seq,
  318. struct kmemleak_object *object)
  319. {
  320. int i;
  321. unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
  322. seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
  323. object->pointer, object->size);
  324. seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
  325. object->comm, object->pid, object->jiffies,
  326. msecs_age / 1000, msecs_age % 1000);
  327. hex_dump_object(seq, object);
  328. seq_printf(seq, " backtrace:\n");
  329. for (i = 0; i < object->trace_len; i++) {
  330. void *ptr = (void *)object->trace[i];
  331. seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
  332. }
  333. }
  334. /*
  335. * Print the kmemleak_object information. This function is used mainly for
  336. * debugging special cases when kmemleak operations. It must be called with
  337. * the object->lock held.
  338. */
  339. static void dump_object_info(struct kmemleak_object *object)
  340. {
  341. struct stack_trace trace;
  342. trace.nr_entries = object->trace_len;
  343. trace.entries = object->trace;
  344. pr_notice("Object 0x%08lx (size %zu):\n",
  345. object->pointer, object->size);
  346. pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
  347. object->comm, object->pid, object->jiffies);
  348. pr_notice(" min_count = %d\n", object->min_count);
  349. pr_notice(" count = %d\n", object->count);
  350. pr_notice(" flags = 0x%lx\n", object->flags);
  351. pr_notice(" checksum = %d\n", object->checksum);
  352. pr_notice(" backtrace:\n");
  353. print_stack_trace(&trace, 4);
  354. }
  355. /*
  356. * Look-up a memory block metadata (kmemleak_object) in the object search
  357. * tree based on a pointer value. If alias is 0, only values pointing to the
  358. * beginning of the memory block are allowed. The kmemleak_lock must be held
  359. * when calling this function.
  360. */
  361. static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
  362. {
  363. struct rb_node *rb = object_tree_root.rb_node;
  364. while (rb) {
  365. struct kmemleak_object *object =
  366. rb_entry(rb, struct kmemleak_object, rb_node);
  367. if (ptr < object->pointer)
  368. rb = object->rb_node.rb_left;
  369. else if (object->pointer + object->size <= ptr)
  370. rb = object->rb_node.rb_right;
  371. else if (object->pointer == ptr || alias)
  372. return object;
  373. else {
  374. kmemleak_warn("Found object by alias at 0x%08lx\n",
  375. ptr);
  376. dump_object_info(object);
  377. break;
  378. }
  379. }
  380. return NULL;
  381. }
  382. /*
  383. * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
  384. * that once an object's use_count reached 0, the RCU freeing was already
  385. * registered and the object should no longer be used. This function must be
  386. * called under the protection of rcu_read_lock().
  387. */
  388. static int get_object(struct kmemleak_object *object)
  389. {
  390. return atomic_inc_not_zero(&object->use_count);
  391. }
  392. /*
  393. * RCU callback to free a kmemleak_object.
  394. */
  395. static void free_object_rcu(struct rcu_head *rcu)
  396. {
  397. struct hlist_node *tmp;
  398. struct kmemleak_scan_area *area;
  399. struct kmemleak_object *object =
  400. container_of(rcu, struct kmemleak_object, rcu);
  401. /*
  402. * Once use_count is 0 (guaranteed by put_object), there is no other
  403. * code accessing this object, hence no need for locking.
  404. */
  405. hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
  406. hlist_del(&area->node);
  407. kmem_cache_free(scan_area_cache, area);
  408. }
  409. kmem_cache_free(object_cache, object);
  410. }
  411. /*
  412. * Decrement the object use_count. Once the count is 0, free the object using
  413. * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
  414. * delete_object() path, the delayed RCU freeing ensures that there is no
  415. * recursive call to the kernel allocator. Lock-less RCU object_list traversal
  416. * is also possible.
  417. */
  418. static void put_object(struct kmemleak_object *object)
  419. {
  420. if (!atomic_dec_and_test(&object->use_count))
  421. return;
  422. /* should only get here after delete_object was called */
  423. WARN_ON(object->flags & OBJECT_ALLOCATED);
  424. call_rcu(&object->rcu, free_object_rcu);
  425. }
  426. /*
  427. * Look up an object in the object search tree and increase its use_count.
  428. */
  429. static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
  430. {
  431. unsigned long flags;
  432. struct kmemleak_object *object = NULL;
  433. rcu_read_lock();
  434. read_lock_irqsave(&kmemleak_lock, flags);
  435. if (ptr >= min_addr && ptr < max_addr)
  436. object = lookup_object(ptr, alias);
  437. read_unlock_irqrestore(&kmemleak_lock, flags);
  438. /* check whether the object is still available */
  439. if (object && !get_object(object))
  440. object = NULL;
  441. rcu_read_unlock();
  442. return object;
  443. }
  444. /*
  445. * Save stack trace to the given array of MAX_TRACE size.
  446. */
  447. static int __save_stack_trace(unsigned long *trace)
  448. {
  449. struct stack_trace stack_trace;
  450. stack_trace.max_entries = MAX_TRACE;
  451. stack_trace.nr_entries = 0;
  452. stack_trace.entries = trace;
  453. stack_trace.skip = 2;
  454. save_stack_trace(&stack_trace);
  455. return stack_trace.nr_entries;
  456. }
  457. /*
  458. * Create the metadata (struct kmemleak_object) corresponding to an allocated
  459. * memory block and add it to the object_list and object_tree_root.
  460. */
  461. static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
  462. int min_count, gfp_t gfp)
  463. {
  464. unsigned long flags;
  465. struct kmemleak_object *object, *parent;
  466. struct rb_node **link, *rb_parent;
  467. object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
  468. if (!object) {
  469. pr_warning("Cannot allocate a kmemleak_object structure\n");
  470. kmemleak_disable();
  471. return NULL;
  472. }
  473. INIT_LIST_HEAD(&object->object_list);
  474. INIT_LIST_HEAD(&object->gray_list);
  475. INIT_HLIST_HEAD(&object->area_list);
  476. spin_lock_init(&object->lock);
  477. atomic_set(&object->use_count, 1);
  478. object->flags = OBJECT_ALLOCATED;
  479. object->pointer = ptr;
  480. object->size = size;
  481. object->min_count = min_count;
  482. object->count = 0; /* white color initially */
  483. object->jiffies = jiffies;
  484. object->checksum = 0;
  485. /* task information */
  486. if (in_irq()) {
  487. object->pid = 0;
  488. strncpy(object->comm, "hardirq", sizeof(object->comm));
  489. } else if (in_softirq()) {
  490. object->pid = 0;
  491. strncpy(object->comm, "softirq", sizeof(object->comm));
  492. } else {
  493. object->pid = current->pid;
  494. /*
  495. * There is a small chance of a race with set_task_comm(),
  496. * however using get_task_comm() here may cause locking
  497. * dependency issues with current->alloc_lock. In the worst
  498. * case, the command line is not correct.
  499. */
  500. strncpy(object->comm, current->comm, sizeof(object->comm));
  501. }
  502. /* kernel backtrace */
  503. object->trace_len = __save_stack_trace(object->trace);
  504. write_lock_irqsave(&kmemleak_lock, flags);
  505. min_addr = min(min_addr, ptr);
  506. max_addr = max(max_addr, ptr + size);
  507. link = &object_tree_root.rb_node;
  508. rb_parent = NULL;
  509. while (*link) {
  510. rb_parent = *link;
  511. parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
  512. if (ptr + size <= parent->pointer)
  513. link = &parent->rb_node.rb_left;
  514. else if (parent->pointer + parent->size <= ptr)
  515. link = &parent->rb_node.rb_right;
  516. else {
  517. kmemleak_stop("Cannot insert 0x%lx into the object "
  518. "search tree (overlaps existing)\n",
  519. ptr);
  520. kmem_cache_free(object_cache, object);
  521. object = parent;
  522. spin_lock(&object->lock);
  523. dump_object_info(object);
  524. spin_unlock(&object->lock);
  525. goto out;
  526. }
  527. }
  528. rb_link_node(&object->rb_node, rb_parent, link);
  529. rb_insert_color(&object->rb_node, &object_tree_root);
  530. list_add_tail_rcu(&object->object_list, &object_list);
  531. out:
  532. write_unlock_irqrestore(&kmemleak_lock, flags);
  533. return object;
  534. }
  535. /*
  536. * Remove the metadata (struct kmemleak_object) for a memory block from the
  537. * object_list and object_tree_root and decrement its use_count.
  538. */
  539. static void __delete_object(struct kmemleak_object *object)
  540. {
  541. unsigned long flags;
  542. write_lock_irqsave(&kmemleak_lock, flags);
  543. rb_erase(&object->rb_node, &object_tree_root);
  544. list_del_rcu(&object->object_list);
  545. write_unlock_irqrestore(&kmemleak_lock, flags);
  546. WARN_ON(!(object->flags & OBJECT_ALLOCATED));
  547. WARN_ON(atomic_read(&object->use_count) < 2);
  548. /*
  549. * Locking here also ensures that the corresponding memory block
  550. * cannot be freed when it is being scanned.
  551. */
  552. spin_lock_irqsave(&object->lock, flags);
  553. object->flags &= ~OBJECT_ALLOCATED;
  554. spin_unlock_irqrestore(&object->lock, flags);
  555. put_object(object);
  556. }
  557. /*
  558. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  559. * delete it.
  560. */
  561. static void delete_object_full(unsigned long ptr)
  562. {
  563. struct kmemleak_object *object;
  564. object = find_and_get_object(ptr, 0);
  565. if (!object) {
  566. #ifdef DEBUG
  567. kmemleak_warn("Freeing unknown object at 0x%08lx\n",
  568. ptr);
  569. #endif
  570. return;
  571. }
  572. __delete_object(object);
  573. put_object(object);
  574. }
  575. /*
  576. * Look up the metadata (struct kmemleak_object) corresponding to ptr and
  577. * delete it. If the memory block is partially freed, the function may create
  578. * additional metadata for the remaining parts of the block.
  579. */
  580. static void delete_object_part(unsigned long ptr, size_t size)
  581. {
  582. struct kmemleak_object *object;
  583. unsigned long start, end;
  584. object = find_and_get_object(ptr, 1);
  585. if (!object) {
  586. #ifdef DEBUG
  587. kmemleak_warn("Partially freeing unknown object at 0x%08lx "
  588. "(size %zu)\n", ptr, size);
  589. #endif
  590. return;
  591. }
  592. __delete_object(object);
  593. /*
  594. * Create one or two objects that may result from the memory block
  595. * split. Note that partial freeing is only done by free_bootmem() and
  596. * this happens before kmemleak_init() is called. The path below is
  597. * only executed during early log recording in kmemleak_init(), so
  598. * GFP_KERNEL is enough.
  599. */
  600. start = object->pointer;
  601. end = object->pointer + object->size;
  602. if (ptr > start)
  603. create_object(start, ptr - start, object->min_count,
  604. GFP_KERNEL);
  605. if (ptr + size < end)
  606. create_object(ptr + size, end - ptr - size, object->min_count,
  607. GFP_KERNEL);
  608. put_object(object);
  609. }
  610. static void __paint_it(struct kmemleak_object *object, int color)
  611. {
  612. object->min_count = color;
  613. if (color == KMEMLEAK_BLACK)
  614. object->flags |= OBJECT_NO_SCAN;
  615. }
  616. static void paint_it(struct kmemleak_object *object, int color)
  617. {
  618. unsigned long flags;
  619. spin_lock_irqsave(&object->lock, flags);
  620. __paint_it(object, color);
  621. spin_unlock_irqrestore(&object->lock, flags);
  622. }
  623. static void paint_ptr(unsigned long ptr, int color)
  624. {
  625. struct kmemleak_object *object;
  626. object = find_and_get_object(ptr, 0);
  627. if (!object) {
  628. kmemleak_warn("Trying to color unknown object "
  629. "at 0x%08lx as %s\n", ptr,
  630. (color == KMEMLEAK_GREY) ? "Grey" :
  631. (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
  632. return;
  633. }
  634. paint_it(object, color);
  635. put_object(object);
  636. }
  637. /*
  638. * Mark an object permanently as gray-colored so that it can no longer be
  639. * reported as a leak. This is used in general to mark a false positive.
  640. */
  641. static void make_gray_object(unsigned long ptr)
  642. {
  643. paint_ptr(ptr, KMEMLEAK_GREY);
  644. }
  645. /*
  646. * Mark the object as black-colored so that it is ignored from scans and
  647. * reporting.
  648. */
  649. static void make_black_object(unsigned long ptr)
  650. {
  651. paint_ptr(ptr, KMEMLEAK_BLACK);
  652. }
  653. /*
  654. * Add a scanning area to the object. If at least one such area is added,
  655. * kmemleak will only scan these ranges rather than the whole memory block.
  656. */
  657. static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
  658. {
  659. unsigned long flags;
  660. struct kmemleak_object *object;
  661. struct kmemleak_scan_area *area;
  662. object = find_and_get_object(ptr, 1);
  663. if (!object) {
  664. kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
  665. ptr);
  666. return;
  667. }
  668. area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
  669. if (!area) {
  670. pr_warning("Cannot allocate a scan area\n");
  671. goto out;
  672. }
  673. spin_lock_irqsave(&object->lock, flags);
  674. if (ptr + size > object->pointer + object->size) {
  675. kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
  676. dump_object_info(object);
  677. kmem_cache_free(scan_area_cache, area);
  678. goto out_unlock;
  679. }
  680. INIT_HLIST_NODE(&area->node);
  681. area->start = ptr;
  682. area->size = size;
  683. hlist_add_head(&area->node, &object->area_list);
  684. out_unlock:
  685. spin_unlock_irqrestore(&object->lock, flags);
  686. out:
  687. put_object(object);
  688. }
  689. /*
  690. * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
  691. * pointer. Such object will not be scanned by kmemleak but references to it
  692. * are searched.
  693. */
  694. static void object_no_scan(unsigned long ptr)
  695. {
  696. unsigned long flags;
  697. struct kmemleak_object *object;
  698. object = find_and_get_object(ptr, 0);
  699. if (!object) {
  700. kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
  701. return;
  702. }
  703. spin_lock_irqsave(&object->lock, flags);
  704. object->flags |= OBJECT_NO_SCAN;
  705. spin_unlock_irqrestore(&object->lock, flags);
  706. put_object(object);
  707. }
  708. /*
  709. * Log an early kmemleak_* call to the early_log buffer. These calls will be
  710. * processed later once kmemleak is fully initialized.
  711. */
  712. static void __init log_early(int op_type, const void *ptr, size_t size,
  713. int min_count)
  714. {
  715. unsigned long flags;
  716. struct early_log *log;
  717. if (atomic_read(&kmemleak_error)) {
  718. /* kmemleak stopped recording, just count the requests */
  719. crt_early_log++;
  720. return;
  721. }
  722. if (crt_early_log >= ARRAY_SIZE(early_log)) {
  723. kmemleak_disable();
  724. return;
  725. }
  726. /*
  727. * There is no need for locking since the kernel is still in UP mode
  728. * at this stage. Disabling the IRQs is enough.
  729. */
  730. local_irq_save(flags);
  731. log = &early_log[crt_early_log];
  732. log->op_type = op_type;
  733. log->ptr = ptr;
  734. log->size = size;
  735. log->min_count = min_count;
  736. log->trace_len = __save_stack_trace(log->trace);
  737. crt_early_log++;
  738. local_irq_restore(flags);
  739. }
  740. /*
  741. * Log an early allocated block and populate the stack trace.
  742. */
  743. static void early_alloc(struct early_log *log)
  744. {
  745. struct kmemleak_object *object;
  746. unsigned long flags;
  747. int i;
  748. if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
  749. return;
  750. /*
  751. * RCU locking needed to ensure object is not freed via put_object().
  752. */
  753. rcu_read_lock();
  754. object = create_object((unsigned long)log->ptr, log->size,
  755. log->min_count, GFP_ATOMIC);
  756. if (!object)
  757. goto out;
  758. spin_lock_irqsave(&object->lock, flags);
  759. for (i = 0; i < log->trace_len; i++)
  760. object->trace[i] = log->trace[i];
  761. object->trace_len = log->trace_len;
  762. spin_unlock_irqrestore(&object->lock, flags);
  763. out:
  764. rcu_read_unlock();
  765. }
  766. /*
  767. * Log an early allocated block and populate the stack trace.
  768. */
  769. static void early_alloc_percpu(struct early_log *log)
  770. {
  771. unsigned int cpu;
  772. const void __percpu *ptr = log->ptr;
  773. for_each_possible_cpu(cpu) {
  774. log->ptr = per_cpu_ptr(ptr, cpu);
  775. early_alloc(log);
  776. }
  777. }
  778. /**
  779. * kmemleak_alloc - register a newly allocated object
  780. * @ptr: pointer to beginning of the object
  781. * @size: size of the object
  782. * @min_count: minimum number of references to this object. If during memory
  783. * scanning a number of references less than @min_count is found,
  784. * the object is reported as a memory leak. If @min_count is 0,
  785. * the object is never reported as a leak. If @min_count is -1,
  786. * the object is ignored (not scanned and not reported as a leak)
  787. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  788. *
  789. * This function is called from the kernel allocators when a new object
  790. * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
  791. */
  792. void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
  793. gfp_t gfp)
  794. {
  795. pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
  796. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  797. create_object((unsigned long)ptr, size, min_count, gfp);
  798. else if (atomic_read(&kmemleak_early_log))
  799. log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
  800. }
  801. EXPORT_SYMBOL_GPL(kmemleak_alloc);
  802. /**
  803. * kmemleak_alloc_percpu - register a newly allocated __percpu object
  804. * @ptr: __percpu pointer to beginning of the object
  805. * @size: size of the object
  806. *
  807. * This function is called from the kernel percpu allocator when a new object
  808. * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
  809. * allocation.
  810. */
  811. void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
  812. {
  813. unsigned int cpu;
  814. pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
  815. /*
  816. * Percpu allocations are only scanned and not reported as leaks
  817. * (min_count is set to 0).
  818. */
  819. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  820. for_each_possible_cpu(cpu)
  821. create_object((unsigned long)per_cpu_ptr(ptr, cpu),
  822. size, 0, GFP_KERNEL);
  823. else if (atomic_read(&kmemleak_early_log))
  824. log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
  825. }
  826. EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
  827. /**
  828. * kmemleak_free - unregister a previously registered object
  829. * @ptr: pointer to beginning of the object
  830. *
  831. * This function is called from the kernel allocators when an object (memory
  832. * block) is freed (kmem_cache_free, kfree, vfree etc.).
  833. */
  834. void __ref kmemleak_free(const void *ptr)
  835. {
  836. pr_debug("%s(0x%p)\n", __func__, ptr);
  837. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  838. delete_object_full((unsigned long)ptr);
  839. else if (atomic_read(&kmemleak_early_log))
  840. log_early(KMEMLEAK_FREE, ptr, 0, 0);
  841. }
  842. EXPORT_SYMBOL_GPL(kmemleak_free);
  843. /**
  844. * kmemleak_free_part - partially unregister a previously registered object
  845. * @ptr: pointer to the beginning or inside the object. This also
  846. * represents the start of the range to be freed
  847. * @size: size to be unregistered
  848. *
  849. * This function is called when only a part of a memory block is freed
  850. * (usually from the bootmem allocator).
  851. */
  852. void __ref kmemleak_free_part(const void *ptr, size_t size)
  853. {
  854. pr_debug("%s(0x%p)\n", __func__, ptr);
  855. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  856. delete_object_part((unsigned long)ptr, size);
  857. else if (atomic_read(&kmemleak_early_log))
  858. log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
  859. }
  860. EXPORT_SYMBOL_GPL(kmemleak_free_part);
  861. /**
  862. * kmemleak_free_percpu - unregister a previously registered __percpu object
  863. * @ptr: __percpu pointer to beginning of the object
  864. *
  865. * This function is called from the kernel percpu allocator when an object
  866. * (memory block) is freed (free_percpu).
  867. */
  868. void __ref kmemleak_free_percpu(const void __percpu *ptr)
  869. {
  870. unsigned int cpu;
  871. pr_debug("%s(0x%p)\n", __func__, ptr);
  872. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  873. for_each_possible_cpu(cpu)
  874. delete_object_full((unsigned long)per_cpu_ptr(ptr,
  875. cpu));
  876. else if (atomic_read(&kmemleak_early_log))
  877. log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
  878. }
  879. EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
  880. /**
  881. * kmemleak_not_leak - mark an allocated object as false positive
  882. * @ptr: pointer to beginning of the object
  883. *
  884. * Calling this function on an object will cause the memory block to no longer
  885. * be reported as leak and always be scanned.
  886. */
  887. void __ref kmemleak_not_leak(const void *ptr)
  888. {
  889. pr_debug("%s(0x%p)\n", __func__, ptr);
  890. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  891. make_gray_object((unsigned long)ptr);
  892. else if (atomic_read(&kmemleak_early_log))
  893. log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
  894. }
  895. EXPORT_SYMBOL(kmemleak_not_leak);
  896. /**
  897. * kmemleak_ignore - ignore an allocated object
  898. * @ptr: pointer to beginning of the object
  899. *
  900. * Calling this function on an object will cause the memory block to be
  901. * ignored (not scanned and not reported as a leak). This is usually done when
  902. * it is known that the corresponding block is not a leak and does not contain
  903. * any references to other allocated memory blocks.
  904. */
  905. void __ref kmemleak_ignore(const void *ptr)
  906. {
  907. pr_debug("%s(0x%p)\n", __func__, ptr);
  908. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  909. make_black_object((unsigned long)ptr);
  910. else if (atomic_read(&kmemleak_early_log))
  911. log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
  912. }
  913. EXPORT_SYMBOL(kmemleak_ignore);
  914. /**
  915. * kmemleak_scan_area - limit the range to be scanned in an allocated object
  916. * @ptr: pointer to beginning or inside the object. This also
  917. * represents the start of the scan area
  918. * @size: size of the scan area
  919. * @gfp: kmalloc() flags used for kmemleak internal memory allocations
  920. *
  921. * This function is used when it is known that only certain parts of an object
  922. * contain references to other objects. Kmemleak will only scan these areas
  923. * reducing the number false negatives.
  924. */
  925. void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
  926. {
  927. pr_debug("%s(0x%p)\n", __func__, ptr);
  928. if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
  929. add_scan_area((unsigned long)ptr, size, gfp);
  930. else if (atomic_read(&kmemleak_early_log))
  931. log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
  932. }
  933. EXPORT_SYMBOL(kmemleak_scan_area);
  934. /**
  935. * kmemleak_no_scan - do not scan an allocated object
  936. * @ptr: pointer to beginning of the object
  937. *
  938. * This function notifies kmemleak not to scan the given memory block. Useful
  939. * in situations where it is known that the given object does not contain any
  940. * references to other objects. Kmemleak will not scan such objects reducing
  941. * the number of false negatives.
  942. */
  943. void __ref kmemleak_no_scan(const void *ptr)
  944. {
  945. pr_debug("%s(0x%p)\n", __func__, ptr);
  946. if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
  947. object_no_scan((unsigned long)ptr);
  948. else if (atomic_read(&kmemleak_early_log))
  949. log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
  950. }
  951. EXPORT_SYMBOL(kmemleak_no_scan);
  952. /*
  953. * Update an object's checksum and return true if it was modified.
  954. */
  955. static bool update_checksum(struct kmemleak_object *object)
  956. {
  957. u32 old_csum = object->checksum;
  958. if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
  959. return false;
  960. object->checksum = crc32(0, (void *)object->pointer, object->size);
  961. return object->checksum != old_csum;
  962. }
  963. /*
  964. * Memory scanning is a long process and it needs to be interruptable. This
  965. * function checks whether such interrupt condition occurred.
  966. */
  967. static int scan_should_stop(void)
  968. {
  969. if (!atomic_read(&kmemleak_enabled))
  970. return 1;
  971. /*
  972. * This function may be called from either process or kthread context,
  973. * hence the need to check for both stop conditions.
  974. */
  975. if (current->mm)
  976. return signal_pending(current);
  977. else
  978. return kthread_should_stop();
  979. return 0;
  980. }
  981. /*
  982. * Scan a memory block (exclusive range) for valid pointers and add those
  983. * found to the gray list.
  984. */
  985. static void scan_block(void *_start, void *_end,
  986. struct kmemleak_object *scanned, int allow_resched)
  987. {
  988. unsigned long *ptr;
  989. unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
  990. unsigned long *end = _end - (BYTES_PER_POINTER - 1);
  991. for (ptr = start; ptr < end; ptr++) {
  992. struct kmemleak_object *object;
  993. unsigned long flags;
  994. unsigned long pointer;
  995. if (allow_resched)
  996. cond_resched();
  997. if (scan_should_stop())
  998. break;
  999. /* don't scan uninitialized memory */
  1000. if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
  1001. BYTES_PER_POINTER))
  1002. continue;
  1003. pointer = *ptr;
  1004. object = find_and_get_object(pointer, 1);
  1005. if (!object)
  1006. continue;
  1007. if (object == scanned) {
  1008. /* self referenced, ignore */
  1009. put_object(object);
  1010. continue;
  1011. }
  1012. /*
  1013. * Avoid the lockdep recursive warning on object->lock being
  1014. * previously acquired in scan_object(). These locks are
  1015. * enclosed by scan_mutex.
  1016. */
  1017. spin_lock_irqsave_nested(&object->lock, flags,
  1018. SINGLE_DEPTH_NESTING);
  1019. if (!color_white(object)) {
  1020. /* non-orphan, ignored or new */
  1021. spin_unlock_irqrestore(&object->lock, flags);
  1022. put_object(object);
  1023. continue;
  1024. }
  1025. /*
  1026. * Increase the object's reference count (number of pointers
  1027. * to the memory block). If this count reaches the required
  1028. * minimum, the object's color will become gray and it will be
  1029. * added to the gray_list.
  1030. */
  1031. object->count++;
  1032. if (color_gray(object)) {
  1033. list_add_tail(&object->gray_list, &gray_list);
  1034. spin_unlock_irqrestore(&object->lock, flags);
  1035. continue;
  1036. }
  1037. spin_unlock_irqrestore(&object->lock, flags);
  1038. put_object(object);
  1039. }
  1040. }
  1041. /*
  1042. * Scan a memory block corresponding to a kmemleak_object. A condition is
  1043. * that object->use_count >= 1.
  1044. */
  1045. static void scan_object(struct kmemleak_object *object)
  1046. {
  1047. struct kmemleak_scan_area *area;
  1048. unsigned long flags;
  1049. /*
  1050. * Once the object->lock is acquired, the corresponding memory block
  1051. * cannot be freed (the same lock is acquired in delete_object).
  1052. */
  1053. spin_lock_irqsave(&object->lock, flags);
  1054. if (object->flags & OBJECT_NO_SCAN)
  1055. goto out;
  1056. if (!(object->flags & OBJECT_ALLOCATED))
  1057. /* already freed object */
  1058. goto out;
  1059. if (hlist_empty(&object->area_list)) {
  1060. void *start = (void *)object->pointer;
  1061. void *end = (void *)(object->pointer + object->size);
  1062. while (start < end && (object->flags & OBJECT_ALLOCATED) &&
  1063. !(object->flags & OBJECT_NO_SCAN)) {
  1064. scan_block(start, min(start + MAX_SCAN_SIZE, end),
  1065. object, 0);
  1066. start += MAX_SCAN_SIZE;
  1067. spin_unlock_irqrestore(&object->lock, flags);
  1068. cond_resched();
  1069. spin_lock_irqsave(&object->lock, flags);
  1070. }
  1071. } else
  1072. hlist_for_each_entry(area, &object->area_list, node)
  1073. scan_block((void *)area->start,
  1074. (void *)(area->start + area->size),
  1075. object, 0);
  1076. out:
  1077. spin_unlock_irqrestore(&object->lock, flags);
  1078. }
  1079. /*
  1080. * Scan the objects already referenced (gray objects). More objects will be
  1081. * referenced and, if there are no memory leaks, all the objects are scanned.
  1082. */
  1083. static void scan_gray_list(void)
  1084. {
  1085. struct kmemleak_object *object, *tmp;
  1086. /*
  1087. * The list traversal is safe for both tail additions and removals
  1088. * from inside the loop. The kmemleak objects cannot be freed from
  1089. * outside the loop because their use_count was incremented.
  1090. */
  1091. object = list_entry(gray_list.next, typeof(*object), gray_list);
  1092. while (&object->gray_list != &gray_list) {
  1093. cond_resched();
  1094. /* may add new objects to the list */
  1095. if (!scan_should_stop())
  1096. scan_object(object);
  1097. tmp = list_entry(object->gray_list.next, typeof(*object),
  1098. gray_list);
  1099. /* remove the object from the list and release it */
  1100. list_del(&object->gray_list);
  1101. put_object(object);
  1102. object = tmp;
  1103. }
  1104. WARN_ON(!list_empty(&gray_list));
  1105. }
  1106. /*
  1107. * Scan data sections and all the referenced memory blocks allocated via the
  1108. * kernel's standard allocators. This function must be called with the
  1109. * scan_mutex held.
  1110. */
  1111. static void kmemleak_scan(void)
  1112. {
  1113. unsigned long flags;
  1114. struct kmemleak_object *object;
  1115. int i;
  1116. int new_leaks = 0;
  1117. jiffies_last_scan = jiffies;
  1118. /* prepare the kmemleak_object's */
  1119. rcu_read_lock();
  1120. list_for_each_entry_rcu(object, &object_list, object_list) {
  1121. spin_lock_irqsave(&object->lock, flags);
  1122. #ifdef DEBUG
  1123. /*
  1124. * With a few exceptions there should be a maximum of
  1125. * 1 reference to any object at this point.
  1126. */
  1127. if (atomic_read(&object->use_count) > 1) {
  1128. pr_debug("object->use_count = %d\n",
  1129. atomic_read(&object->use_count));
  1130. dump_object_info(object);
  1131. }
  1132. #endif
  1133. /* reset the reference count (whiten the object) */
  1134. object->count = 0;
  1135. if (color_gray(object) && get_object(object))
  1136. list_add_tail(&object->gray_list, &gray_list);
  1137. spin_unlock_irqrestore(&object->lock, flags);
  1138. }
  1139. rcu_read_unlock();
  1140. /* data/bss scanning */
  1141. scan_block(_sdata, _edata, NULL, 1);
  1142. scan_block(__bss_start, __bss_stop, NULL, 1);
  1143. #ifdef CONFIG_SMP
  1144. /* per-cpu sections scanning */
  1145. for_each_possible_cpu(i)
  1146. scan_block(__per_cpu_start + per_cpu_offset(i),
  1147. __per_cpu_end + per_cpu_offset(i), NULL, 1);
  1148. #endif
  1149. /*
  1150. * Struct page scanning for each node.
  1151. */
  1152. lock_memory_hotplug();
  1153. for_each_online_node(i) {
  1154. unsigned long start_pfn = node_start_pfn(i);
  1155. unsigned long end_pfn = node_end_pfn(i);
  1156. unsigned long pfn;
  1157. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1158. struct page *page;
  1159. if (!pfn_valid(pfn))
  1160. continue;
  1161. page = pfn_to_page(pfn);
  1162. /* only scan if page is in use */
  1163. if (page_count(page) == 0)
  1164. continue;
  1165. scan_block(page, page + 1, NULL, 1);
  1166. }
  1167. }
  1168. unlock_memory_hotplug();
  1169. /*
  1170. * Scanning the task stacks (may introduce false negatives).
  1171. */
  1172. if (kmemleak_stack_scan) {
  1173. struct task_struct *p, *g;
  1174. read_lock(&tasklist_lock);
  1175. do_each_thread(g, p) {
  1176. scan_block(task_stack_page(p), task_stack_page(p) +
  1177. THREAD_SIZE, NULL, 0);
  1178. } while_each_thread(g, p);
  1179. read_unlock(&tasklist_lock);
  1180. }
  1181. /*
  1182. * Scan the objects already referenced from the sections scanned
  1183. * above.
  1184. */
  1185. scan_gray_list();
  1186. /*
  1187. * Check for new or unreferenced objects modified since the previous
  1188. * scan and color them gray until the next scan.
  1189. */
  1190. rcu_read_lock();
  1191. list_for_each_entry_rcu(object, &object_list, object_list) {
  1192. spin_lock_irqsave(&object->lock, flags);
  1193. if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
  1194. && update_checksum(object) && get_object(object)) {
  1195. /* color it gray temporarily */
  1196. object->count = object->min_count;
  1197. list_add_tail(&object->gray_list, &gray_list);
  1198. }
  1199. spin_unlock_irqrestore(&object->lock, flags);
  1200. }
  1201. rcu_read_unlock();
  1202. /*
  1203. * Re-scan the gray list for modified unreferenced objects.
  1204. */
  1205. scan_gray_list();
  1206. /*
  1207. * If scanning was stopped do not report any new unreferenced objects.
  1208. */
  1209. if (scan_should_stop())
  1210. return;
  1211. /*
  1212. * Scanning result reporting.
  1213. */
  1214. rcu_read_lock();
  1215. list_for_each_entry_rcu(object, &object_list, object_list) {
  1216. spin_lock_irqsave(&object->lock, flags);
  1217. if (unreferenced_object(object) &&
  1218. !(object->flags & OBJECT_REPORTED)) {
  1219. object->flags |= OBJECT_REPORTED;
  1220. new_leaks++;
  1221. }
  1222. spin_unlock_irqrestore(&object->lock, flags);
  1223. }
  1224. rcu_read_unlock();
  1225. if (new_leaks)
  1226. pr_info("%d new suspected memory leaks (see "
  1227. "/sys/kernel/debug/kmemleak)\n", new_leaks);
  1228. }
  1229. /*
  1230. * Thread function performing automatic memory scanning. Unreferenced objects
  1231. * at the end of a memory scan are reported but only the first time.
  1232. */
  1233. static int kmemleak_scan_thread(void *arg)
  1234. {
  1235. static int first_run = 1;
  1236. pr_info("Automatic memory scanning thread started\n");
  1237. set_user_nice(current, 10);
  1238. /*
  1239. * Wait before the first scan to allow the system to fully initialize.
  1240. */
  1241. if (first_run) {
  1242. first_run = 0;
  1243. ssleep(SECS_FIRST_SCAN);
  1244. }
  1245. while (!kthread_should_stop()) {
  1246. signed long timeout = jiffies_scan_wait;
  1247. mutex_lock(&scan_mutex);
  1248. kmemleak_scan();
  1249. mutex_unlock(&scan_mutex);
  1250. /* wait before the next scan */
  1251. while (timeout && !kthread_should_stop())
  1252. timeout = schedule_timeout_interruptible(timeout);
  1253. }
  1254. pr_info("Automatic memory scanning thread ended\n");
  1255. return 0;
  1256. }
  1257. /*
  1258. * Start the automatic memory scanning thread. This function must be called
  1259. * with the scan_mutex held.
  1260. */
  1261. static void start_scan_thread(void)
  1262. {
  1263. if (scan_thread)
  1264. return;
  1265. scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
  1266. if (IS_ERR(scan_thread)) {
  1267. pr_warning("Failed to create the scan thread\n");
  1268. scan_thread = NULL;
  1269. }
  1270. }
  1271. /*
  1272. * Stop the automatic memory scanning thread. This function must be called
  1273. * with the scan_mutex held.
  1274. */
  1275. static void stop_scan_thread(void)
  1276. {
  1277. if (scan_thread) {
  1278. kthread_stop(scan_thread);
  1279. scan_thread = NULL;
  1280. }
  1281. }
  1282. /*
  1283. * Iterate over the object_list and return the first valid object at or after
  1284. * the required position with its use_count incremented. The function triggers
  1285. * a memory scanning when the pos argument points to the first position.
  1286. */
  1287. static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
  1288. {
  1289. struct kmemleak_object *object;
  1290. loff_t n = *pos;
  1291. int err;
  1292. err = mutex_lock_interruptible(&scan_mutex);
  1293. if (err < 0)
  1294. return ERR_PTR(err);
  1295. rcu_read_lock();
  1296. list_for_each_entry_rcu(object, &object_list, object_list) {
  1297. if (n-- > 0)
  1298. continue;
  1299. if (get_object(object))
  1300. goto out;
  1301. }
  1302. object = NULL;
  1303. out:
  1304. return object;
  1305. }
  1306. /*
  1307. * Return the next object in the object_list. The function decrements the
  1308. * use_count of the previous object and increases that of the next one.
  1309. */
  1310. static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1311. {
  1312. struct kmemleak_object *prev_obj = v;
  1313. struct kmemleak_object *next_obj = NULL;
  1314. struct kmemleak_object *obj = prev_obj;
  1315. ++(*pos);
  1316. list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
  1317. if (get_object(obj)) {
  1318. next_obj = obj;
  1319. break;
  1320. }
  1321. }
  1322. put_object(prev_obj);
  1323. return next_obj;
  1324. }
  1325. /*
  1326. * Decrement the use_count of the last object required, if any.
  1327. */
  1328. static void kmemleak_seq_stop(struct seq_file *seq, void *v)
  1329. {
  1330. if (!IS_ERR(v)) {
  1331. /*
  1332. * kmemleak_seq_start may return ERR_PTR if the scan_mutex
  1333. * waiting was interrupted, so only release it if !IS_ERR.
  1334. */
  1335. rcu_read_unlock();
  1336. mutex_unlock(&scan_mutex);
  1337. if (v)
  1338. put_object(v);
  1339. }
  1340. }
  1341. /*
  1342. * Print the information for an unreferenced object to the seq file.
  1343. */
  1344. static int kmemleak_seq_show(struct seq_file *seq, void *v)
  1345. {
  1346. struct kmemleak_object *object = v;
  1347. unsigned long flags;
  1348. spin_lock_irqsave(&object->lock, flags);
  1349. if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
  1350. print_unreferenced(seq, object);
  1351. spin_unlock_irqrestore(&object->lock, flags);
  1352. return 0;
  1353. }
  1354. static const struct seq_operations kmemleak_seq_ops = {
  1355. .start = kmemleak_seq_start,
  1356. .next = kmemleak_seq_next,
  1357. .stop = kmemleak_seq_stop,
  1358. .show = kmemleak_seq_show,
  1359. };
  1360. static int kmemleak_open(struct inode *inode, struct file *file)
  1361. {
  1362. return seq_open(file, &kmemleak_seq_ops);
  1363. }
  1364. static int kmemleak_release(struct inode *inode, struct file *file)
  1365. {
  1366. return seq_release(inode, file);
  1367. }
  1368. static int dump_str_object_info(const char *str)
  1369. {
  1370. unsigned long flags;
  1371. struct kmemleak_object *object;
  1372. unsigned long addr;
  1373. if (kstrtoul(str, 0, &addr))
  1374. return -EINVAL;
  1375. object = find_and_get_object(addr, 0);
  1376. if (!object) {
  1377. pr_info("Unknown object at 0x%08lx\n", addr);
  1378. return -EINVAL;
  1379. }
  1380. spin_lock_irqsave(&object->lock, flags);
  1381. dump_object_info(object);
  1382. spin_unlock_irqrestore(&object->lock, flags);
  1383. put_object(object);
  1384. return 0;
  1385. }
  1386. /*
  1387. * We use grey instead of black to ensure we can do future scans on the same
  1388. * objects. If we did not do future scans these black objects could
  1389. * potentially contain references to newly allocated objects in the future and
  1390. * we'd end up with false positives.
  1391. */
  1392. static void kmemleak_clear(void)
  1393. {
  1394. struct kmemleak_object *object;
  1395. unsigned long flags;
  1396. rcu_read_lock();
  1397. list_for_each_entry_rcu(object, &object_list, object_list) {
  1398. spin_lock_irqsave(&object->lock, flags);
  1399. if ((object->flags & OBJECT_REPORTED) &&
  1400. unreferenced_object(object))
  1401. __paint_it(object, KMEMLEAK_GREY);
  1402. spin_unlock_irqrestore(&object->lock, flags);
  1403. }
  1404. rcu_read_unlock();
  1405. }
  1406. /*
  1407. * File write operation to configure kmemleak at run-time. The following
  1408. * commands can be written to the /sys/kernel/debug/kmemleak file:
  1409. * off - disable kmemleak (irreversible)
  1410. * stack=on - enable the task stacks scanning
  1411. * stack=off - disable the tasks stacks scanning
  1412. * scan=on - start the automatic memory scanning thread
  1413. * scan=off - stop the automatic memory scanning thread
  1414. * scan=... - set the automatic memory scanning period in seconds (0 to
  1415. * disable it)
  1416. * scan - trigger a memory scan
  1417. * clear - mark all current reported unreferenced kmemleak objects as
  1418. * grey to ignore printing them
  1419. * dump=... - dump information about the object found at the given address
  1420. */
  1421. static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
  1422. size_t size, loff_t *ppos)
  1423. {
  1424. char buf[64];
  1425. int buf_size;
  1426. int ret;
  1427. if (!atomic_read(&kmemleak_enabled))
  1428. return -EBUSY;
  1429. buf_size = min(size, (sizeof(buf) - 1));
  1430. if (strncpy_from_user(buf, user_buf, buf_size) < 0)
  1431. return -EFAULT;
  1432. buf[buf_size] = 0;
  1433. ret = mutex_lock_interruptible(&scan_mutex);
  1434. if (ret < 0)
  1435. return ret;
  1436. if (strncmp(buf, "off", 3) == 0)
  1437. kmemleak_disable();
  1438. else if (strncmp(buf, "stack=on", 8) == 0)
  1439. kmemleak_stack_scan = 1;
  1440. else if (strncmp(buf, "stack=off", 9) == 0)
  1441. kmemleak_stack_scan = 0;
  1442. else if (strncmp(buf, "scan=on", 7) == 0)
  1443. start_scan_thread();
  1444. else if (strncmp(buf, "scan=off", 8) == 0)
  1445. stop_scan_thread();
  1446. else if (strncmp(buf, "scan=", 5) == 0) {
  1447. unsigned long secs;
  1448. ret = strict_strtoul(buf + 5, 0, &secs);
  1449. if (ret < 0)
  1450. goto out;
  1451. stop_scan_thread();
  1452. if (secs) {
  1453. jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
  1454. start_scan_thread();
  1455. }
  1456. } else if (strncmp(buf, "scan", 4) == 0)
  1457. kmemleak_scan();
  1458. else if (strncmp(buf, "clear", 5) == 0)
  1459. kmemleak_clear();
  1460. else if (strncmp(buf, "dump=", 5) == 0)
  1461. ret = dump_str_object_info(buf + 5);
  1462. else
  1463. ret = -EINVAL;
  1464. out:
  1465. mutex_unlock(&scan_mutex);
  1466. if (ret < 0)
  1467. return ret;
  1468. /* ignore the rest of the buffer, only one command at a time */
  1469. *ppos += size;
  1470. return size;
  1471. }
  1472. static const struct file_operations kmemleak_fops = {
  1473. .owner = THIS_MODULE,
  1474. .open = kmemleak_open,
  1475. .read = seq_read,
  1476. .write = kmemleak_write,
  1477. .llseek = seq_lseek,
  1478. .release = kmemleak_release,
  1479. };
  1480. /*
  1481. * Stop the memory scanning thread and free the kmemleak internal objects if
  1482. * no previous scan thread (otherwise, kmemleak may still have some useful
  1483. * information on memory leaks).
  1484. */
  1485. static void kmemleak_do_cleanup(struct work_struct *work)
  1486. {
  1487. struct kmemleak_object *object;
  1488. bool cleanup = scan_thread == NULL;
  1489. mutex_lock(&scan_mutex);
  1490. stop_scan_thread();
  1491. if (cleanup) {
  1492. rcu_read_lock();
  1493. list_for_each_entry_rcu(object, &object_list, object_list)
  1494. delete_object_full(object->pointer);
  1495. rcu_read_unlock();
  1496. }
  1497. mutex_unlock(&scan_mutex);
  1498. }
  1499. static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
  1500. /*
  1501. * Disable kmemleak. No memory allocation/freeing will be traced once this
  1502. * function is called. Disabling kmemleak is an irreversible operation.
  1503. */
  1504. static void kmemleak_disable(void)
  1505. {
  1506. /* atomically check whether it was already invoked */
  1507. if (atomic_cmpxchg(&kmemleak_error, 0, 1))
  1508. return;
  1509. /* stop any memory operation tracing */
  1510. atomic_set(&kmemleak_enabled, 0);
  1511. /* check whether it is too early for a kernel thread */
  1512. if (atomic_read(&kmemleak_initialized))
  1513. schedule_work(&cleanup_work);
  1514. pr_info("Kernel memory leak detector disabled\n");
  1515. }
  1516. /*
  1517. * Allow boot-time kmemleak disabling (enabled by default).
  1518. */
  1519. static int kmemleak_boot_config(char *str)
  1520. {
  1521. if (!str)
  1522. return -EINVAL;
  1523. if (strcmp(str, "off") == 0)
  1524. kmemleak_disable();
  1525. else if (strcmp(str, "on") == 0)
  1526. kmemleak_skip_disable = 1;
  1527. else
  1528. return -EINVAL;
  1529. return 0;
  1530. }
  1531. early_param("kmemleak", kmemleak_boot_config);
  1532. static void __init print_log_trace(struct early_log *log)
  1533. {
  1534. struct stack_trace trace;
  1535. trace.nr_entries = log->trace_len;
  1536. trace.entries = log->trace;
  1537. pr_notice("Early log backtrace:\n");
  1538. print_stack_trace(&trace, 2);
  1539. }
  1540. /*
  1541. * Kmemleak initialization.
  1542. */
  1543. void __init kmemleak_init(void)
  1544. {
  1545. int i;
  1546. unsigned long flags;
  1547. #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
  1548. if (!kmemleak_skip_disable) {
  1549. atomic_set(&kmemleak_early_log, 0);
  1550. kmemleak_disable();
  1551. return;
  1552. }
  1553. #endif
  1554. jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
  1555. jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
  1556. object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
  1557. scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
  1558. if (crt_early_log >= ARRAY_SIZE(early_log))
  1559. pr_warning("Early log buffer exceeded (%d), please increase "
  1560. "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
  1561. /* the kernel is still in UP mode, so disabling the IRQs is enough */
  1562. local_irq_save(flags);
  1563. atomic_set(&kmemleak_early_log, 0);
  1564. if (atomic_read(&kmemleak_error)) {
  1565. local_irq_restore(flags);
  1566. return;
  1567. } else
  1568. atomic_set(&kmemleak_enabled, 1);
  1569. local_irq_restore(flags);
  1570. /*
  1571. * This is the point where tracking allocations is safe. Automatic
  1572. * scanning is started during the late initcall. Add the early logged
  1573. * callbacks to the kmemleak infrastructure.
  1574. */
  1575. for (i = 0; i < crt_early_log; i++) {
  1576. struct early_log *log = &early_log[i];
  1577. switch (log->op_type) {
  1578. case KMEMLEAK_ALLOC:
  1579. early_alloc(log);
  1580. break;
  1581. case KMEMLEAK_ALLOC_PERCPU:
  1582. early_alloc_percpu(log);
  1583. break;
  1584. case KMEMLEAK_FREE:
  1585. kmemleak_free(log->ptr);
  1586. break;
  1587. case KMEMLEAK_FREE_PART:
  1588. kmemleak_free_part(log->ptr, log->size);
  1589. break;
  1590. case KMEMLEAK_FREE_PERCPU:
  1591. kmemleak_free_percpu(log->ptr);
  1592. break;
  1593. case KMEMLEAK_NOT_LEAK:
  1594. kmemleak_not_leak(log->ptr);
  1595. break;
  1596. case KMEMLEAK_IGNORE:
  1597. kmemleak_ignore(log->ptr);
  1598. break;
  1599. case KMEMLEAK_SCAN_AREA:
  1600. kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
  1601. break;
  1602. case KMEMLEAK_NO_SCAN:
  1603. kmemleak_no_scan(log->ptr);
  1604. break;
  1605. default:
  1606. kmemleak_warn("Unknown early log operation: %d\n",
  1607. log->op_type);
  1608. }
  1609. if (atomic_read(&kmemleak_warning)) {
  1610. print_log_trace(log);
  1611. atomic_set(&kmemleak_warning, 0);
  1612. }
  1613. }
  1614. }
  1615. /*
  1616. * Late initialization function.
  1617. */
  1618. static int __init kmemleak_late_init(void)
  1619. {
  1620. struct dentry *dentry;
  1621. atomic_set(&kmemleak_initialized, 1);
  1622. if (atomic_read(&kmemleak_error)) {
  1623. /*
  1624. * Some error occurred and kmemleak was disabled. There is a
  1625. * small chance that kmemleak_disable() was called immediately
  1626. * after setting kmemleak_initialized and we may end up with
  1627. * two clean-up threads but serialized by scan_mutex.
  1628. */
  1629. schedule_work(&cleanup_work);
  1630. return -ENOMEM;
  1631. }
  1632. dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
  1633. &kmemleak_fops);
  1634. if (!dentry)
  1635. pr_warning("Failed to create the debugfs kmemleak file\n");
  1636. mutex_lock(&scan_mutex);
  1637. start_scan_thread();
  1638. mutex_unlock(&scan_mutex);
  1639. pr_info("Kernel memory leak detector initialized\n");
  1640. return 0;
  1641. }
  1642. late_initcall(kmemleak_late_init);