rtmutex-tester.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. /*
  2. * RT-Mutex-tester: scriptable tester for rt mutexes
  3. *
  4. * started by Thomas Gleixner:
  5. *
  6. * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  7. *
  8. */
  9. #include <linux/device.h>
  10. #include <linux/kthread.h>
  11. #include <linux/export.h>
  12. #include <linux/sched.h>
  13. #include <linux/sched/rt.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/timer.h>
  16. #include <linux/freezer.h>
  17. #include "rtmutex.h"
  18. #define MAX_RT_TEST_THREADS 8
  19. #define MAX_RT_TEST_MUTEXES 8
  20. static spinlock_t rttest_lock;
  21. static atomic_t rttest_event;
  22. struct test_thread_data {
  23. int opcode;
  24. int opdata;
  25. int mutexes[MAX_RT_TEST_MUTEXES];
  26. int event;
  27. struct device dev;
  28. };
  29. static struct test_thread_data thread_data[MAX_RT_TEST_THREADS];
  30. static struct task_struct *threads[MAX_RT_TEST_THREADS];
  31. static struct rt_mutex mutexes[MAX_RT_TEST_MUTEXES];
  32. enum test_opcodes {
  33. RTTEST_NOP = 0,
  34. RTTEST_SCHEDOT, /* 1 Sched other, data = nice */
  35. RTTEST_SCHEDRT, /* 2 Sched fifo, data = prio */
  36. RTTEST_LOCK, /* 3 Lock uninterruptible, data = lockindex */
  37. RTTEST_LOCKNOWAIT, /* 4 Lock uninterruptible no wait in wakeup, data = lockindex */
  38. RTTEST_LOCKINT, /* 5 Lock interruptible, data = lockindex */
  39. RTTEST_LOCKINTNOWAIT, /* 6 Lock interruptible no wait in wakeup, data = lockindex */
  40. RTTEST_LOCKCONT, /* 7 Continue locking after the wakeup delay */
  41. RTTEST_UNLOCK, /* 8 Unlock, data = lockindex */
  42. /* 9, 10 - reserved for BKL commemoration */
  43. RTTEST_SIGNAL = 11, /* 11 Signal other test thread, data = thread id */
  44. RTTEST_RESETEVENT = 98, /* 98 Reset event counter */
  45. RTTEST_RESET = 99, /* 99 Reset all pending operations */
  46. };
  47. static int handle_op(struct test_thread_data *td, int lockwakeup)
  48. {
  49. int i, id, ret = -EINVAL;
  50. switch(td->opcode) {
  51. case RTTEST_NOP:
  52. return 0;
  53. case RTTEST_LOCKCONT:
  54. td->mutexes[td->opdata] = 1;
  55. td->event = atomic_add_return(1, &rttest_event);
  56. return 0;
  57. case RTTEST_RESET:
  58. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++) {
  59. if (td->mutexes[i] == 4) {
  60. rt_mutex_unlock(&mutexes[i]);
  61. td->mutexes[i] = 0;
  62. }
  63. }
  64. return 0;
  65. case RTTEST_RESETEVENT:
  66. atomic_set(&rttest_event, 0);
  67. return 0;
  68. default:
  69. if (lockwakeup)
  70. return ret;
  71. }
  72. switch(td->opcode) {
  73. case RTTEST_LOCK:
  74. case RTTEST_LOCKNOWAIT:
  75. id = td->opdata;
  76. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  77. return ret;
  78. td->mutexes[id] = 1;
  79. td->event = atomic_add_return(1, &rttest_event);
  80. rt_mutex_lock(&mutexes[id]);
  81. td->event = atomic_add_return(1, &rttest_event);
  82. td->mutexes[id] = 4;
  83. return 0;
  84. case RTTEST_LOCKINT:
  85. case RTTEST_LOCKINTNOWAIT:
  86. id = td->opdata;
  87. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  88. return ret;
  89. td->mutexes[id] = 1;
  90. td->event = atomic_add_return(1, &rttest_event);
  91. ret = rt_mutex_lock_interruptible(&mutexes[id], 0);
  92. td->event = atomic_add_return(1, &rttest_event);
  93. td->mutexes[id] = ret ? 0 : 4;
  94. return ret ? -EINTR : 0;
  95. case RTTEST_UNLOCK:
  96. id = td->opdata;
  97. if (id < 0 || id >= MAX_RT_TEST_MUTEXES || td->mutexes[id] != 4)
  98. return ret;
  99. td->event = atomic_add_return(1, &rttest_event);
  100. rt_mutex_unlock(&mutexes[id]);
  101. td->event = atomic_add_return(1, &rttest_event);
  102. td->mutexes[id] = 0;
  103. return 0;
  104. default:
  105. break;
  106. }
  107. return ret;
  108. }
  109. /*
  110. * Schedule replacement for rtsem_down(). Only called for threads with
  111. * PF_MUTEX_TESTER set.
  112. *
  113. * This allows us to have finegrained control over the event flow.
  114. *
  115. */
  116. void schedule_rt_mutex_test(struct rt_mutex *mutex)
  117. {
  118. int tid, op, dat;
  119. struct test_thread_data *td;
  120. /* We have to lookup the task */
  121. for (tid = 0; tid < MAX_RT_TEST_THREADS; tid++) {
  122. if (threads[tid] == current)
  123. break;
  124. }
  125. BUG_ON(tid == MAX_RT_TEST_THREADS);
  126. td = &thread_data[tid];
  127. op = td->opcode;
  128. dat = td->opdata;
  129. switch (op) {
  130. case RTTEST_LOCK:
  131. case RTTEST_LOCKINT:
  132. case RTTEST_LOCKNOWAIT:
  133. case RTTEST_LOCKINTNOWAIT:
  134. if (mutex != &mutexes[dat])
  135. break;
  136. if (td->mutexes[dat] != 1)
  137. break;
  138. td->mutexes[dat] = 2;
  139. td->event = atomic_add_return(1, &rttest_event);
  140. break;
  141. default:
  142. break;
  143. }
  144. schedule();
  145. switch (op) {
  146. case RTTEST_LOCK:
  147. case RTTEST_LOCKINT:
  148. if (mutex != &mutexes[dat])
  149. return;
  150. if (td->mutexes[dat] != 2)
  151. return;
  152. td->mutexes[dat] = 3;
  153. td->event = atomic_add_return(1, &rttest_event);
  154. break;
  155. case RTTEST_LOCKNOWAIT:
  156. case RTTEST_LOCKINTNOWAIT:
  157. if (mutex != &mutexes[dat])
  158. return;
  159. if (td->mutexes[dat] != 2)
  160. return;
  161. td->mutexes[dat] = 1;
  162. td->event = atomic_add_return(1, &rttest_event);
  163. return;
  164. default:
  165. return;
  166. }
  167. td->opcode = 0;
  168. for (;;) {
  169. set_current_state(TASK_INTERRUPTIBLE);
  170. if (td->opcode > 0) {
  171. int ret;
  172. set_current_state(TASK_RUNNING);
  173. ret = handle_op(td, 1);
  174. set_current_state(TASK_INTERRUPTIBLE);
  175. if (td->opcode == RTTEST_LOCKCONT)
  176. break;
  177. td->opcode = ret;
  178. }
  179. /* Wait for the next command to be executed */
  180. schedule();
  181. }
  182. /* Restore previous command and data */
  183. td->opcode = op;
  184. td->opdata = dat;
  185. }
  186. static int test_func(void *data)
  187. {
  188. struct test_thread_data *td = data;
  189. int ret;
  190. current->flags |= PF_MUTEX_TESTER;
  191. set_freezable();
  192. allow_signal(SIGHUP);
  193. for(;;) {
  194. set_current_state(TASK_INTERRUPTIBLE);
  195. if (td->opcode > 0) {
  196. set_current_state(TASK_RUNNING);
  197. ret = handle_op(td, 0);
  198. set_current_state(TASK_INTERRUPTIBLE);
  199. td->opcode = ret;
  200. }
  201. /* Wait for the next command to be executed */
  202. schedule();
  203. try_to_freeze();
  204. if (signal_pending(current))
  205. flush_signals(current);
  206. if(kthread_should_stop())
  207. break;
  208. }
  209. return 0;
  210. }
  211. /**
  212. * sysfs_test_command - interface for test commands
  213. * @dev: thread reference
  214. * @buf: command for actual step
  215. * @count: length of buffer
  216. *
  217. * command syntax:
  218. *
  219. * opcode:data
  220. */
  221. static ssize_t sysfs_test_command(struct device *dev, struct device_attribute *attr,
  222. const char *buf, size_t count)
  223. {
  224. struct sched_param schedpar;
  225. struct test_thread_data *td;
  226. char cmdbuf[32];
  227. int op, dat, tid, ret;
  228. td = container_of(dev, struct test_thread_data, dev);
  229. tid = td->dev.id;
  230. /* strings from sysfs write are not 0 terminated! */
  231. if (count >= sizeof(cmdbuf))
  232. return -EINVAL;
  233. /* strip of \n: */
  234. if (buf[count-1] == '\n')
  235. count--;
  236. if (count < 1)
  237. return -EINVAL;
  238. memcpy(cmdbuf, buf, count);
  239. cmdbuf[count] = 0;
  240. if (sscanf(cmdbuf, "%d:%d", &op, &dat) != 2)
  241. return -EINVAL;
  242. switch (op) {
  243. case RTTEST_SCHEDOT:
  244. schedpar.sched_priority = 0;
  245. ret = sched_setscheduler(threads[tid], SCHED_NORMAL, &schedpar);
  246. if (ret)
  247. return ret;
  248. set_user_nice(current, 0);
  249. break;
  250. case RTTEST_SCHEDRT:
  251. schedpar.sched_priority = dat;
  252. ret = sched_setscheduler(threads[tid], SCHED_FIFO, &schedpar);
  253. if (ret)
  254. return ret;
  255. break;
  256. case RTTEST_SIGNAL:
  257. send_sig(SIGHUP, threads[tid], 0);
  258. break;
  259. default:
  260. if (td->opcode > 0)
  261. return -EBUSY;
  262. td->opdata = dat;
  263. td->opcode = op;
  264. wake_up_process(threads[tid]);
  265. }
  266. return count;
  267. }
  268. /**
  269. * sysfs_test_status - sysfs interface for rt tester
  270. * @dev: thread to query
  271. * @buf: char buffer to be filled with thread status info
  272. */
  273. static ssize_t sysfs_test_status(struct device *dev, struct device_attribute *attr,
  274. char *buf)
  275. {
  276. struct test_thread_data *td;
  277. struct task_struct *tsk;
  278. char *curr = buf;
  279. int i;
  280. td = container_of(dev, struct test_thread_data, dev);
  281. tsk = threads[td->dev.id];
  282. spin_lock(&rttest_lock);
  283. curr += sprintf(curr,
  284. "O: %4d, E:%8d, S: 0x%08lx, P: %4d, N: %4d, B: %p, M:",
  285. td->opcode, td->event, tsk->state,
  286. (MAX_RT_PRIO - 1) - tsk->prio,
  287. (MAX_RT_PRIO - 1) - tsk->normal_prio,
  288. tsk->pi_blocked_on);
  289. for (i = MAX_RT_TEST_MUTEXES - 1; i >=0 ; i--)
  290. curr += sprintf(curr, "%d", td->mutexes[i]);
  291. spin_unlock(&rttest_lock);
  292. curr += sprintf(curr, ", T: %p, R: %p\n", tsk,
  293. mutexes[td->dev.id].owner);
  294. return curr - buf;
  295. }
  296. static DEVICE_ATTR(status, 0600, sysfs_test_status, NULL);
  297. static DEVICE_ATTR(command, 0600, NULL, sysfs_test_command);
  298. static struct bus_type rttest_subsys = {
  299. .name = "rttest",
  300. .dev_name = "rttest",
  301. };
  302. static int init_test_thread(int id)
  303. {
  304. thread_data[id].dev.bus = &rttest_subsys;
  305. thread_data[id].dev.id = id;
  306. threads[id] = kthread_run(test_func, &thread_data[id], "rt-test-%d", id);
  307. if (IS_ERR(threads[id]))
  308. return PTR_ERR(threads[id]);
  309. return device_register(&thread_data[id].dev);
  310. }
  311. static int init_rttest(void)
  312. {
  313. int ret, i;
  314. spin_lock_init(&rttest_lock);
  315. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++)
  316. rt_mutex_init(&mutexes[i]);
  317. ret = subsys_system_register(&rttest_subsys, NULL);
  318. if (ret)
  319. return ret;
  320. for (i = 0; i < MAX_RT_TEST_THREADS; i++) {
  321. ret = init_test_thread(i);
  322. if (ret)
  323. break;
  324. ret = device_create_file(&thread_data[i].dev, &dev_attr_status);
  325. if (ret)
  326. break;
  327. ret = device_create_file(&thread_data[i].dev, &dev_attr_command);
  328. if (ret)
  329. break;
  330. }
  331. printk("Initializing RT-Tester: %s\n", ret ? "Failed" : "OK" );
  332. return ret;
  333. }
  334. device_initcall(init_rttest);