core.c 174 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/export.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/rculist.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/syscalls.h>
  33. #include <linux/anon_inodes.h>
  34. #include <linux/kernel_stat.h>
  35. #include <linux/perf_event.h>
  36. #include <linux/ftrace_event.h>
  37. #include <linux/hw_breakpoint.h>
  38. #include <linux/mm_types.h>
  39. #include "internal.h"
  40. #include <asm/irq_regs.h>
  41. struct remote_function_call {
  42. struct task_struct *p;
  43. int (*func)(void *info);
  44. void *info;
  45. int ret;
  46. };
  47. static void remote_function(void *data)
  48. {
  49. struct remote_function_call *tfc = data;
  50. struct task_struct *p = tfc->p;
  51. if (p) {
  52. tfc->ret = -EAGAIN;
  53. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  54. return;
  55. }
  56. tfc->ret = tfc->func(tfc->info);
  57. }
  58. /**
  59. * task_function_call - call a function on the cpu on which a task runs
  60. * @p: the task to evaluate
  61. * @func: the function to be called
  62. * @info: the function call argument
  63. *
  64. * Calls the function @func when the task is currently running. This might
  65. * be on the current CPU, which just calls the function directly
  66. *
  67. * returns: @func return value, or
  68. * -ESRCH - when the process isn't running
  69. * -EAGAIN - when the process moved away
  70. */
  71. static int
  72. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  73. {
  74. struct remote_function_call data = {
  75. .p = p,
  76. .func = func,
  77. .info = info,
  78. .ret = -ESRCH, /* No such (running) process */
  79. };
  80. if (task_curr(p))
  81. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  82. return data.ret;
  83. }
  84. /**
  85. * cpu_function_call - call a function on the cpu
  86. * @func: the function to be called
  87. * @info: the function call argument
  88. *
  89. * Calls the function @func on the remote cpu.
  90. *
  91. * returns: @func return value or -ENXIO when the cpu is offline
  92. */
  93. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  94. {
  95. struct remote_function_call data = {
  96. .p = NULL,
  97. .func = func,
  98. .info = info,
  99. .ret = -ENXIO, /* No such CPU */
  100. };
  101. smp_call_function_single(cpu, remote_function, &data, 1);
  102. return data.ret;
  103. }
  104. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  105. PERF_FLAG_FD_OUTPUT |\
  106. PERF_FLAG_PID_CGROUP)
  107. /*
  108. * branch priv levels that need permission checks
  109. */
  110. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  111. (PERF_SAMPLE_BRANCH_KERNEL |\
  112. PERF_SAMPLE_BRANCH_HV)
  113. enum event_type_t {
  114. EVENT_FLEXIBLE = 0x1,
  115. EVENT_PINNED = 0x2,
  116. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  117. };
  118. /*
  119. * perf_sched_events : >0 events exist
  120. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  121. */
  122. struct static_key_deferred perf_sched_events __read_mostly;
  123. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  124. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  125. static atomic_t nr_mmap_events __read_mostly;
  126. static atomic_t nr_comm_events __read_mostly;
  127. static atomic_t nr_task_events __read_mostly;
  128. static LIST_HEAD(pmus);
  129. static DEFINE_MUTEX(pmus_lock);
  130. static struct srcu_struct pmus_srcu;
  131. /*
  132. * perf event paranoia level:
  133. * -1 - not paranoid at all
  134. * 0 - disallow raw tracepoint access for unpriv
  135. * 1 - disallow cpu events for unpriv
  136. * 2 - disallow kernel profiling for unpriv
  137. */
  138. int sysctl_perf_event_paranoid __read_mostly = 1;
  139. /* Minimum for 512 kiB + 1 user control page */
  140. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  141. /*
  142. * max perf event sample rate
  143. */
  144. #define DEFAULT_MAX_SAMPLE_RATE 100000
  145. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  146. static int max_samples_per_tick __read_mostly =
  147. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  148. int perf_proc_update_handler(struct ctl_table *table, int write,
  149. void __user *buffer, size_t *lenp,
  150. loff_t *ppos)
  151. {
  152. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  153. if (ret || !write)
  154. return ret;
  155. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  156. return 0;
  157. }
  158. static atomic64_t perf_event_id;
  159. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  160. enum event_type_t event_type);
  161. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  162. enum event_type_t event_type,
  163. struct task_struct *task);
  164. static void update_context_time(struct perf_event_context *ctx);
  165. static u64 perf_event_time(struct perf_event *event);
  166. static void ring_buffer_attach(struct perf_event *event,
  167. struct ring_buffer *rb);
  168. void __weak perf_event_print_debug(void) { }
  169. extern __weak const char *perf_pmu_name(void)
  170. {
  171. return "pmu";
  172. }
  173. static inline u64 perf_clock(void)
  174. {
  175. return local_clock();
  176. }
  177. static inline struct perf_cpu_context *
  178. __get_cpu_context(struct perf_event_context *ctx)
  179. {
  180. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  181. }
  182. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  183. struct perf_event_context *ctx)
  184. {
  185. raw_spin_lock(&cpuctx->ctx.lock);
  186. if (ctx)
  187. raw_spin_lock(&ctx->lock);
  188. }
  189. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  190. struct perf_event_context *ctx)
  191. {
  192. if (ctx)
  193. raw_spin_unlock(&ctx->lock);
  194. raw_spin_unlock(&cpuctx->ctx.lock);
  195. }
  196. #ifdef CONFIG_CGROUP_PERF
  197. /*
  198. * Must ensure cgroup is pinned (css_get) before calling
  199. * this function. In other words, we cannot call this function
  200. * if there is no cgroup event for the current CPU context.
  201. */
  202. static inline struct perf_cgroup *
  203. perf_cgroup_from_task(struct task_struct *task)
  204. {
  205. return container_of(task_subsys_state(task, perf_subsys_id),
  206. struct perf_cgroup, css);
  207. }
  208. static inline bool
  209. perf_cgroup_match(struct perf_event *event)
  210. {
  211. struct perf_event_context *ctx = event->ctx;
  212. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  213. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  214. }
  215. static inline bool perf_tryget_cgroup(struct perf_event *event)
  216. {
  217. return css_tryget(&event->cgrp->css);
  218. }
  219. static inline void perf_put_cgroup(struct perf_event *event)
  220. {
  221. css_put(&event->cgrp->css);
  222. }
  223. static inline void perf_detach_cgroup(struct perf_event *event)
  224. {
  225. perf_put_cgroup(event);
  226. event->cgrp = NULL;
  227. }
  228. static inline int is_cgroup_event(struct perf_event *event)
  229. {
  230. return event->cgrp != NULL;
  231. }
  232. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  233. {
  234. struct perf_cgroup_info *t;
  235. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  236. return t->time;
  237. }
  238. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  239. {
  240. struct perf_cgroup_info *info;
  241. u64 now;
  242. now = perf_clock();
  243. info = this_cpu_ptr(cgrp->info);
  244. info->time += now - info->timestamp;
  245. info->timestamp = now;
  246. }
  247. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  248. {
  249. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  250. if (cgrp_out)
  251. __update_cgrp_time(cgrp_out);
  252. }
  253. static inline void update_cgrp_time_from_event(struct perf_event *event)
  254. {
  255. struct perf_cgroup *cgrp;
  256. /*
  257. * ensure we access cgroup data only when needed and
  258. * when we know the cgroup is pinned (css_get)
  259. */
  260. if (!is_cgroup_event(event))
  261. return;
  262. cgrp = perf_cgroup_from_task(current);
  263. /*
  264. * Do not update time when cgroup is not active
  265. */
  266. if (cgrp == event->cgrp)
  267. __update_cgrp_time(event->cgrp);
  268. }
  269. static inline void
  270. perf_cgroup_set_timestamp(struct task_struct *task,
  271. struct perf_event_context *ctx)
  272. {
  273. struct perf_cgroup *cgrp;
  274. struct perf_cgroup_info *info;
  275. /*
  276. * ctx->lock held by caller
  277. * ensure we do not access cgroup data
  278. * unless we have the cgroup pinned (css_get)
  279. */
  280. if (!task || !ctx->nr_cgroups)
  281. return;
  282. cgrp = perf_cgroup_from_task(task);
  283. info = this_cpu_ptr(cgrp->info);
  284. info->timestamp = ctx->timestamp;
  285. }
  286. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  287. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  288. /*
  289. * reschedule events based on the cgroup constraint of task.
  290. *
  291. * mode SWOUT : schedule out everything
  292. * mode SWIN : schedule in based on cgroup for next
  293. */
  294. void perf_cgroup_switch(struct task_struct *task, int mode)
  295. {
  296. struct perf_cpu_context *cpuctx;
  297. struct pmu *pmu;
  298. unsigned long flags;
  299. /*
  300. * disable interrupts to avoid geting nr_cgroup
  301. * changes via __perf_event_disable(). Also
  302. * avoids preemption.
  303. */
  304. local_irq_save(flags);
  305. /*
  306. * we reschedule only in the presence of cgroup
  307. * constrained events.
  308. */
  309. rcu_read_lock();
  310. list_for_each_entry_rcu(pmu, &pmus, entry) {
  311. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  312. if (cpuctx->unique_pmu != pmu)
  313. continue; /* ensure we process each cpuctx once */
  314. /*
  315. * perf_cgroup_events says at least one
  316. * context on this CPU has cgroup events.
  317. *
  318. * ctx->nr_cgroups reports the number of cgroup
  319. * events for a context.
  320. */
  321. if (cpuctx->ctx.nr_cgroups > 0) {
  322. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  323. perf_pmu_disable(cpuctx->ctx.pmu);
  324. if (mode & PERF_CGROUP_SWOUT) {
  325. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  326. /*
  327. * must not be done before ctxswout due
  328. * to event_filter_match() in event_sched_out()
  329. */
  330. cpuctx->cgrp = NULL;
  331. }
  332. if (mode & PERF_CGROUP_SWIN) {
  333. WARN_ON_ONCE(cpuctx->cgrp);
  334. /*
  335. * set cgrp before ctxsw in to allow
  336. * event_filter_match() to not have to pass
  337. * task around
  338. */
  339. cpuctx->cgrp = perf_cgroup_from_task(task);
  340. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  341. }
  342. perf_pmu_enable(cpuctx->ctx.pmu);
  343. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  344. }
  345. }
  346. rcu_read_unlock();
  347. local_irq_restore(flags);
  348. }
  349. static inline void perf_cgroup_sched_out(struct task_struct *task,
  350. struct task_struct *next)
  351. {
  352. struct perf_cgroup *cgrp1;
  353. struct perf_cgroup *cgrp2 = NULL;
  354. /*
  355. * we come here when we know perf_cgroup_events > 0
  356. */
  357. cgrp1 = perf_cgroup_from_task(task);
  358. /*
  359. * next is NULL when called from perf_event_enable_on_exec()
  360. * that will systematically cause a cgroup_switch()
  361. */
  362. if (next)
  363. cgrp2 = perf_cgroup_from_task(next);
  364. /*
  365. * only schedule out current cgroup events if we know
  366. * that we are switching to a different cgroup. Otherwise,
  367. * do no touch the cgroup events.
  368. */
  369. if (cgrp1 != cgrp2)
  370. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  371. }
  372. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  373. struct task_struct *task)
  374. {
  375. struct perf_cgroup *cgrp1;
  376. struct perf_cgroup *cgrp2 = NULL;
  377. /*
  378. * we come here when we know perf_cgroup_events > 0
  379. */
  380. cgrp1 = perf_cgroup_from_task(task);
  381. /* prev can never be NULL */
  382. cgrp2 = perf_cgroup_from_task(prev);
  383. /*
  384. * only need to schedule in cgroup events if we are changing
  385. * cgroup during ctxsw. Cgroup events were not scheduled
  386. * out of ctxsw out if that was not the case.
  387. */
  388. if (cgrp1 != cgrp2)
  389. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  390. }
  391. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  392. struct perf_event_attr *attr,
  393. struct perf_event *group_leader)
  394. {
  395. struct perf_cgroup *cgrp;
  396. struct cgroup_subsys_state *css;
  397. struct fd f = fdget(fd);
  398. int ret = 0;
  399. if (!f.file)
  400. return -EBADF;
  401. css = cgroup_css_from_dir(f.file, perf_subsys_id);
  402. if (IS_ERR(css)) {
  403. ret = PTR_ERR(css);
  404. goto out;
  405. }
  406. cgrp = container_of(css, struct perf_cgroup, css);
  407. event->cgrp = cgrp;
  408. /* must be done before we fput() the file */
  409. if (!perf_tryget_cgroup(event)) {
  410. event->cgrp = NULL;
  411. ret = -ENOENT;
  412. goto out;
  413. }
  414. /*
  415. * all events in a group must monitor
  416. * the same cgroup because a task belongs
  417. * to only one perf cgroup at a time
  418. */
  419. if (group_leader && group_leader->cgrp != cgrp) {
  420. perf_detach_cgroup(event);
  421. ret = -EINVAL;
  422. }
  423. out:
  424. fdput(f);
  425. return ret;
  426. }
  427. static inline void
  428. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  429. {
  430. struct perf_cgroup_info *t;
  431. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  432. event->shadow_ctx_time = now - t->timestamp;
  433. }
  434. static inline void
  435. perf_cgroup_defer_enabled(struct perf_event *event)
  436. {
  437. /*
  438. * when the current task's perf cgroup does not match
  439. * the event's, we need to remember to call the
  440. * perf_mark_enable() function the first time a task with
  441. * a matching perf cgroup is scheduled in.
  442. */
  443. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  444. event->cgrp_defer_enabled = 1;
  445. }
  446. static inline void
  447. perf_cgroup_mark_enabled(struct perf_event *event,
  448. struct perf_event_context *ctx)
  449. {
  450. struct perf_event *sub;
  451. u64 tstamp = perf_event_time(event);
  452. if (!event->cgrp_defer_enabled)
  453. return;
  454. event->cgrp_defer_enabled = 0;
  455. event->tstamp_enabled = tstamp - event->total_time_enabled;
  456. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  457. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  458. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  459. sub->cgrp_defer_enabled = 0;
  460. }
  461. }
  462. }
  463. #else /* !CONFIG_CGROUP_PERF */
  464. static inline bool
  465. perf_cgroup_match(struct perf_event *event)
  466. {
  467. return true;
  468. }
  469. static inline void perf_detach_cgroup(struct perf_event *event)
  470. {}
  471. static inline int is_cgroup_event(struct perf_event *event)
  472. {
  473. return 0;
  474. }
  475. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  476. {
  477. return 0;
  478. }
  479. static inline void update_cgrp_time_from_event(struct perf_event *event)
  480. {
  481. }
  482. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  483. {
  484. }
  485. static inline void perf_cgroup_sched_out(struct task_struct *task,
  486. struct task_struct *next)
  487. {
  488. }
  489. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  490. struct task_struct *task)
  491. {
  492. }
  493. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  494. struct perf_event_attr *attr,
  495. struct perf_event *group_leader)
  496. {
  497. return -EINVAL;
  498. }
  499. static inline void
  500. perf_cgroup_set_timestamp(struct task_struct *task,
  501. struct perf_event_context *ctx)
  502. {
  503. }
  504. void
  505. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  506. {
  507. }
  508. static inline void
  509. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  510. {
  511. }
  512. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  513. {
  514. return 0;
  515. }
  516. static inline void
  517. perf_cgroup_defer_enabled(struct perf_event *event)
  518. {
  519. }
  520. static inline void
  521. perf_cgroup_mark_enabled(struct perf_event *event,
  522. struct perf_event_context *ctx)
  523. {
  524. }
  525. #endif
  526. void perf_pmu_disable(struct pmu *pmu)
  527. {
  528. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  529. if (!(*count)++)
  530. pmu->pmu_disable(pmu);
  531. }
  532. void perf_pmu_enable(struct pmu *pmu)
  533. {
  534. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  535. if (!--(*count))
  536. pmu->pmu_enable(pmu);
  537. }
  538. static DEFINE_PER_CPU(struct list_head, rotation_list);
  539. /*
  540. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  541. * because they're strictly cpu affine and rotate_start is called with IRQs
  542. * disabled, while rotate_context is called from IRQ context.
  543. */
  544. static void perf_pmu_rotate_start(struct pmu *pmu)
  545. {
  546. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  547. struct list_head *head = &__get_cpu_var(rotation_list);
  548. WARN_ON(!irqs_disabled());
  549. if (list_empty(&cpuctx->rotation_list))
  550. list_add(&cpuctx->rotation_list, head);
  551. }
  552. static void get_ctx(struct perf_event_context *ctx)
  553. {
  554. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  555. }
  556. static void put_ctx(struct perf_event_context *ctx)
  557. {
  558. if (atomic_dec_and_test(&ctx->refcount)) {
  559. if (ctx->parent_ctx)
  560. put_ctx(ctx->parent_ctx);
  561. if (ctx->task)
  562. put_task_struct(ctx->task);
  563. kfree_rcu(ctx, rcu_head);
  564. }
  565. }
  566. static void unclone_ctx(struct perf_event_context *ctx)
  567. {
  568. if (ctx->parent_ctx) {
  569. put_ctx(ctx->parent_ctx);
  570. ctx->parent_ctx = NULL;
  571. }
  572. }
  573. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  574. {
  575. /*
  576. * only top level events have the pid namespace they were created in
  577. */
  578. if (event->parent)
  579. event = event->parent;
  580. return task_tgid_nr_ns(p, event->ns);
  581. }
  582. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  583. {
  584. /*
  585. * only top level events have the pid namespace they were created in
  586. */
  587. if (event->parent)
  588. event = event->parent;
  589. return task_pid_nr_ns(p, event->ns);
  590. }
  591. /*
  592. * If we inherit events we want to return the parent event id
  593. * to userspace.
  594. */
  595. static u64 primary_event_id(struct perf_event *event)
  596. {
  597. u64 id = event->id;
  598. if (event->parent)
  599. id = event->parent->id;
  600. return id;
  601. }
  602. /*
  603. * Get the perf_event_context for a task and lock it.
  604. * This has to cope with with the fact that until it is locked,
  605. * the context could get moved to another task.
  606. */
  607. static struct perf_event_context *
  608. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  609. {
  610. struct perf_event_context *ctx;
  611. rcu_read_lock();
  612. retry:
  613. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  614. if (ctx) {
  615. /*
  616. * If this context is a clone of another, it might
  617. * get swapped for another underneath us by
  618. * perf_event_task_sched_out, though the
  619. * rcu_read_lock() protects us from any context
  620. * getting freed. Lock the context and check if it
  621. * got swapped before we could get the lock, and retry
  622. * if so. If we locked the right context, then it
  623. * can't get swapped on us any more.
  624. */
  625. raw_spin_lock_irqsave(&ctx->lock, *flags);
  626. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  627. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  628. goto retry;
  629. }
  630. if (!atomic_inc_not_zero(&ctx->refcount)) {
  631. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  632. ctx = NULL;
  633. }
  634. }
  635. rcu_read_unlock();
  636. return ctx;
  637. }
  638. /*
  639. * Get the context for a task and increment its pin_count so it
  640. * can't get swapped to another task. This also increments its
  641. * reference count so that the context can't get freed.
  642. */
  643. static struct perf_event_context *
  644. perf_pin_task_context(struct task_struct *task, int ctxn)
  645. {
  646. struct perf_event_context *ctx;
  647. unsigned long flags;
  648. ctx = perf_lock_task_context(task, ctxn, &flags);
  649. if (ctx) {
  650. ++ctx->pin_count;
  651. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  652. }
  653. return ctx;
  654. }
  655. static void perf_unpin_context(struct perf_event_context *ctx)
  656. {
  657. unsigned long flags;
  658. raw_spin_lock_irqsave(&ctx->lock, flags);
  659. --ctx->pin_count;
  660. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  661. }
  662. /*
  663. * Update the record of the current time in a context.
  664. */
  665. static void update_context_time(struct perf_event_context *ctx)
  666. {
  667. u64 now = perf_clock();
  668. ctx->time += now - ctx->timestamp;
  669. ctx->timestamp = now;
  670. }
  671. static u64 perf_event_time(struct perf_event *event)
  672. {
  673. struct perf_event_context *ctx = event->ctx;
  674. if (is_cgroup_event(event))
  675. return perf_cgroup_event_time(event);
  676. return ctx ? ctx->time : 0;
  677. }
  678. /*
  679. * Update the total_time_enabled and total_time_running fields for a event.
  680. * The caller of this function needs to hold the ctx->lock.
  681. */
  682. static void update_event_times(struct perf_event *event)
  683. {
  684. struct perf_event_context *ctx = event->ctx;
  685. u64 run_end;
  686. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  687. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  688. return;
  689. /*
  690. * in cgroup mode, time_enabled represents
  691. * the time the event was enabled AND active
  692. * tasks were in the monitored cgroup. This is
  693. * independent of the activity of the context as
  694. * there may be a mix of cgroup and non-cgroup events.
  695. *
  696. * That is why we treat cgroup events differently
  697. * here.
  698. */
  699. if (is_cgroup_event(event))
  700. run_end = perf_cgroup_event_time(event);
  701. else if (ctx->is_active)
  702. run_end = ctx->time;
  703. else
  704. run_end = event->tstamp_stopped;
  705. event->total_time_enabled = run_end - event->tstamp_enabled;
  706. if (event->state == PERF_EVENT_STATE_INACTIVE)
  707. run_end = event->tstamp_stopped;
  708. else
  709. run_end = perf_event_time(event);
  710. event->total_time_running = run_end - event->tstamp_running;
  711. }
  712. /*
  713. * Update total_time_enabled and total_time_running for all events in a group.
  714. */
  715. static void update_group_times(struct perf_event *leader)
  716. {
  717. struct perf_event *event;
  718. update_event_times(leader);
  719. list_for_each_entry(event, &leader->sibling_list, group_entry)
  720. update_event_times(event);
  721. }
  722. static struct list_head *
  723. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  724. {
  725. if (event->attr.pinned)
  726. return &ctx->pinned_groups;
  727. else
  728. return &ctx->flexible_groups;
  729. }
  730. /*
  731. * Add a event from the lists for its context.
  732. * Must be called with ctx->mutex and ctx->lock held.
  733. */
  734. static void
  735. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  736. {
  737. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  738. event->attach_state |= PERF_ATTACH_CONTEXT;
  739. /*
  740. * If we're a stand alone event or group leader, we go to the context
  741. * list, group events are kept attached to the group so that
  742. * perf_group_detach can, at all times, locate all siblings.
  743. */
  744. if (event->group_leader == event) {
  745. struct list_head *list;
  746. if (is_software_event(event))
  747. event->group_flags |= PERF_GROUP_SOFTWARE;
  748. list = ctx_group_list(event, ctx);
  749. list_add_tail(&event->group_entry, list);
  750. }
  751. if (is_cgroup_event(event))
  752. ctx->nr_cgroups++;
  753. if (has_branch_stack(event))
  754. ctx->nr_branch_stack++;
  755. list_add_rcu(&event->event_entry, &ctx->event_list);
  756. if (!ctx->nr_events)
  757. perf_pmu_rotate_start(ctx->pmu);
  758. ctx->nr_events++;
  759. if (event->attr.inherit_stat)
  760. ctx->nr_stat++;
  761. }
  762. /*
  763. * Initialize event state based on the perf_event_attr::disabled.
  764. */
  765. static inline void perf_event__state_init(struct perf_event *event)
  766. {
  767. event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
  768. PERF_EVENT_STATE_INACTIVE;
  769. }
  770. /*
  771. * Called at perf_event creation and when events are attached/detached from a
  772. * group.
  773. */
  774. static void perf_event__read_size(struct perf_event *event)
  775. {
  776. int entry = sizeof(u64); /* value */
  777. int size = 0;
  778. int nr = 1;
  779. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  780. size += sizeof(u64);
  781. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  782. size += sizeof(u64);
  783. if (event->attr.read_format & PERF_FORMAT_ID)
  784. entry += sizeof(u64);
  785. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  786. nr += event->group_leader->nr_siblings;
  787. size += sizeof(u64);
  788. }
  789. size += entry * nr;
  790. event->read_size = size;
  791. }
  792. static void perf_event__header_size(struct perf_event *event)
  793. {
  794. struct perf_sample_data *data;
  795. u64 sample_type = event->attr.sample_type;
  796. u16 size = 0;
  797. perf_event__read_size(event);
  798. if (sample_type & PERF_SAMPLE_IP)
  799. size += sizeof(data->ip);
  800. if (sample_type & PERF_SAMPLE_ADDR)
  801. size += sizeof(data->addr);
  802. if (sample_type & PERF_SAMPLE_PERIOD)
  803. size += sizeof(data->period);
  804. if (sample_type & PERF_SAMPLE_READ)
  805. size += event->read_size;
  806. event->header_size = size;
  807. }
  808. static void perf_event__id_header_size(struct perf_event *event)
  809. {
  810. struct perf_sample_data *data;
  811. u64 sample_type = event->attr.sample_type;
  812. u16 size = 0;
  813. if (sample_type & PERF_SAMPLE_TID)
  814. size += sizeof(data->tid_entry);
  815. if (sample_type & PERF_SAMPLE_TIME)
  816. size += sizeof(data->time);
  817. if (sample_type & PERF_SAMPLE_ID)
  818. size += sizeof(data->id);
  819. if (sample_type & PERF_SAMPLE_STREAM_ID)
  820. size += sizeof(data->stream_id);
  821. if (sample_type & PERF_SAMPLE_CPU)
  822. size += sizeof(data->cpu_entry);
  823. event->id_header_size = size;
  824. }
  825. static void perf_group_attach(struct perf_event *event)
  826. {
  827. struct perf_event *group_leader = event->group_leader, *pos;
  828. /*
  829. * We can have double attach due to group movement in perf_event_open.
  830. */
  831. if (event->attach_state & PERF_ATTACH_GROUP)
  832. return;
  833. event->attach_state |= PERF_ATTACH_GROUP;
  834. if (group_leader == event)
  835. return;
  836. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  837. !is_software_event(event))
  838. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  839. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  840. group_leader->nr_siblings++;
  841. perf_event__header_size(group_leader);
  842. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  843. perf_event__header_size(pos);
  844. }
  845. /*
  846. * Remove a event from the lists for its context.
  847. * Must be called with ctx->mutex and ctx->lock held.
  848. */
  849. static void
  850. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  851. {
  852. struct perf_cpu_context *cpuctx;
  853. /*
  854. * We can have double detach due to exit/hot-unplug + close.
  855. */
  856. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  857. return;
  858. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  859. if (is_cgroup_event(event)) {
  860. ctx->nr_cgroups--;
  861. cpuctx = __get_cpu_context(ctx);
  862. /*
  863. * if there are no more cgroup events
  864. * then cler cgrp to avoid stale pointer
  865. * in update_cgrp_time_from_cpuctx()
  866. */
  867. if (!ctx->nr_cgroups)
  868. cpuctx->cgrp = NULL;
  869. }
  870. if (has_branch_stack(event))
  871. ctx->nr_branch_stack--;
  872. ctx->nr_events--;
  873. if (event->attr.inherit_stat)
  874. ctx->nr_stat--;
  875. list_del_rcu(&event->event_entry);
  876. if (event->group_leader == event)
  877. list_del_init(&event->group_entry);
  878. update_group_times(event);
  879. /*
  880. * If event was in error state, then keep it
  881. * that way, otherwise bogus counts will be
  882. * returned on read(). The only way to get out
  883. * of error state is by explicit re-enabling
  884. * of the event
  885. */
  886. if (event->state > PERF_EVENT_STATE_OFF)
  887. event->state = PERF_EVENT_STATE_OFF;
  888. }
  889. static void perf_group_detach(struct perf_event *event)
  890. {
  891. struct perf_event *sibling, *tmp;
  892. struct list_head *list = NULL;
  893. /*
  894. * We can have double detach due to exit/hot-unplug + close.
  895. */
  896. if (!(event->attach_state & PERF_ATTACH_GROUP))
  897. return;
  898. event->attach_state &= ~PERF_ATTACH_GROUP;
  899. /*
  900. * If this is a sibling, remove it from its group.
  901. */
  902. if (event->group_leader != event) {
  903. list_del_init(&event->group_entry);
  904. event->group_leader->nr_siblings--;
  905. goto out;
  906. }
  907. if (!list_empty(&event->group_entry))
  908. list = &event->group_entry;
  909. /*
  910. * If this was a group event with sibling events then
  911. * upgrade the siblings to singleton events by adding them
  912. * to whatever list we are on.
  913. */
  914. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  915. if (list)
  916. list_move_tail(&sibling->group_entry, list);
  917. sibling->group_leader = sibling;
  918. /* Inherit group flags from the previous leader */
  919. sibling->group_flags = event->group_flags;
  920. }
  921. out:
  922. perf_event__header_size(event->group_leader);
  923. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  924. perf_event__header_size(tmp);
  925. }
  926. static inline int
  927. event_filter_match(struct perf_event *event)
  928. {
  929. return (event->cpu == -1 || event->cpu == smp_processor_id())
  930. && perf_cgroup_match(event);
  931. }
  932. static void
  933. event_sched_out(struct perf_event *event,
  934. struct perf_cpu_context *cpuctx,
  935. struct perf_event_context *ctx)
  936. {
  937. u64 tstamp = perf_event_time(event);
  938. u64 delta;
  939. /*
  940. * An event which could not be activated because of
  941. * filter mismatch still needs to have its timings
  942. * maintained, otherwise bogus information is return
  943. * via read() for time_enabled, time_running:
  944. */
  945. if (event->state == PERF_EVENT_STATE_INACTIVE
  946. && !event_filter_match(event)) {
  947. delta = tstamp - event->tstamp_stopped;
  948. event->tstamp_running += delta;
  949. event->tstamp_stopped = tstamp;
  950. }
  951. if (event->state != PERF_EVENT_STATE_ACTIVE)
  952. return;
  953. event->state = PERF_EVENT_STATE_INACTIVE;
  954. if (event->pending_disable) {
  955. event->pending_disable = 0;
  956. event->state = PERF_EVENT_STATE_OFF;
  957. }
  958. event->tstamp_stopped = tstamp;
  959. event->pmu->del(event, 0);
  960. event->oncpu = -1;
  961. if (!is_software_event(event))
  962. cpuctx->active_oncpu--;
  963. ctx->nr_active--;
  964. if (event->attr.freq && event->attr.sample_freq)
  965. ctx->nr_freq--;
  966. if (event->attr.exclusive || !cpuctx->active_oncpu)
  967. cpuctx->exclusive = 0;
  968. }
  969. static void
  970. group_sched_out(struct perf_event *group_event,
  971. struct perf_cpu_context *cpuctx,
  972. struct perf_event_context *ctx)
  973. {
  974. struct perf_event *event;
  975. int state = group_event->state;
  976. event_sched_out(group_event, cpuctx, ctx);
  977. /*
  978. * Schedule out siblings (if any):
  979. */
  980. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  981. event_sched_out(event, cpuctx, ctx);
  982. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  983. cpuctx->exclusive = 0;
  984. }
  985. /*
  986. * Cross CPU call to remove a performance event
  987. *
  988. * We disable the event on the hardware level first. After that we
  989. * remove it from the context list.
  990. */
  991. static int __perf_remove_from_context(void *info)
  992. {
  993. struct perf_event *event = info;
  994. struct perf_event_context *ctx = event->ctx;
  995. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  996. raw_spin_lock(&ctx->lock);
  997. event_sched_out(event, cpuctx, ctx);
  998. list_del_event(event, ctx);
  999. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  1000. ctx->is_active = 0;
  1001. cpuctx->task_ctx = NULL;
  1002. }
  1003. raw_spin_unlock(&ctx->lock);
  1004. return 0;
  1005. }
  1006. /*
  1007. * Remove the event from a task's (or a CPU's) list of events.
  1008. *
  1009. * CPU events are removed with a smp call. For task events we only
  1010. * call when the task is on a CPU.
  1011. *
  1012. * If event->ctx is a cloned context, callers must make sure that
  1013. * every task struct that event->ctx->task could possibly point to
  1014. * remains valid. This is OK when called from perf_release since
  1015. * that only calls us on the top-level context, which can't be a clone.
  1016. * When called from perf_event_exit_task, it's OK because the
  1017. * context has been detached from its task.
  1018. */
  1019. static void perf_remove_from_context(struct perf_event *event)
  1020. {
  1021. struct perf_event_context *ctx = event->ctx;
  1022. struct task_struct *task = ctx->task;
  1023. lockdep_assert_held(&ctx->mutex);
  1024. if (!task) {
  1025. /*
  1026. * Per cpu events are removed via an smp call and
  1027. * the removal is always successful.
  1028. */
  1029. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  1030. return;
  1031. }
  1032. retry:
  1033. if (!task_function_call(task, __perf_remove_from_context, event))
  1034. return;
  1035. raw_spin_lock_irq(&ctx->lock);
  1036. /*
  1037. * If we failed to find a running task, but find the context active now
  1038. * that we've acquired the ctx->lock, retry.
  1039. */
  1040. if (ctx->is_active) {
  1041. raw_spin_unlock_irq(&ctx->lock);
  1042. goto retry;
  1043. }
  1044. /*
  1045. * Since the task isn't running, its safe to remove the event, us
  1046. * holding the ctx->lock ensures the task won't get scheduled in.
  1047. */
  1048. list_del_event(event, ctx);
  1049. raw_spin_unlock_irq(&ctx->lock);
  1050. }
  1051. /*
  1052. * Cross CPU call to disable a performance event
  1053. */
  1054. int __perf_event_disable(void *info)
  1055. {
  1056. struct perf_event *event = info;
  1057. struct perf_event_context *ctx = event->ctx;
  1058. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1059. /*
  1060. * If this is a per-task event, need to check whether this
  1061. * event's task is the current task on this cpu.
  1062. *
  1063. * Can trigger due to concurrent perf_event_context_sched_out()
  1064. * flipping contexts around.
  1065. */
  1066. if (ctx->task && cpuctx->task_ctx != ctx)
  1067. return -EINVAL;
  1068. raw_spin_lock(&ctx->lock);
  1069. /*
  1070. * If the event is on, turn it off.
  1071. * If it is in error state, leave it in error state.
  1072. */
  1073. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1074. update_context_time(ctx);
  1075. update_cgrp_time_from_event(event);
  1076. update_group_times(event);
  1077. if (event == event->group_leader)
  1078. group_sched_out(event, cpuctx, ctx);
  1079. else
  1080. event_sched_out(event, cpuctx, ctx);
  1081. event->state = PERF_EVENT_STATE_OFF;
  1082. }
  1083. raw_spin_unlock(&ctx->lock);
  1084. return 0;
  1085. }
  1086. /*
  1087. * Disable a event.
  1088. *
  1089. * If event->ctx is a cloned context, callers must make sure that
  1090. * every task struct that event->ctx->task could possibly point to
  1091. * remains valid. This condition is satisifed when called through
  1092. * perf_event_for_each_child or perf_event_for_each because they
  1093. * hold the top-level event's child_mutex, so any descendant that
  1094. * goes to exit will block in sync_child_event.
  1095. * When called from perf_pending_event it's OK because event->ctx
  1096. * is the current context on this CPU and preemption is disabled,
  1097. * hence we can't get into perf_event_task_sched_out for this context.
  1098. */
  1099. void perf_event_disable(struct perf_event *event)
  1100. {
  1101. struct perf_event_context *ctx = event->ctx;
  1102. struct task_struct *task = ctx->task;
  1103. if (!task) {
  1104. /*
  1105. * Disable the event on the cpu that it's on
  1106. */
  1107. cpu_function_call(event->cpu, __perf_event_disable, event);
  1108. return;
  1109. }
  1110. retry:
  1111. if (!task_function_call(task, __perf_event_disable, event))
  1112. return;
  1113. raw_spin_lock_irq(&ctx->lock);
  1114. /*
  1115. * If the event is still active, we need to retry the cross-call.
  1116. */
  1117. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1118. raw_spin_unlock_irq(&ctx->lock);
  1119. /*
  1120. * Reload the task pointer, it might have been changed by
  1121. * a concurrent perf_event_context_sched_out().
  1122. */
  1123. task = ctx->task;
  1124. goto retry;
  1125. }
  1126. /*
  1127. * Since we have the lock this context can't be scheduled
  1128. * in, so we can change the state safely.
  1129. */
  1130. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1131. update_group_times(event);
  1132. event->state = PERF_EVENT_STATE_OFF;
  1133. }
  1134. raw_spin_unlock_irq(&ctx->lock);
  1135. }
  1136. EXPORT_SYMBOL_GPL(perf_event_disable);
  1137. static void perf_set_shadow_time(struct perf_event *event,
  1138. struct perf_event_context *ctx,
  1139. u64 tstamp)
  1140. {
  1141. /*
  1142. * use the correct time source for the time snapshot
  1143. *
  1144. * We could get by without this by leveraging the
  1145. * fact that to get to this function, the caller
  1146. * has most likely already called update_context_time()
  1147. * and update_cgrp_time_xx() and thus both timestamp
  1148. * are identical (or very close). Given that tstamp is,
  1149. * already adjusted for cgroup, we could say that:
  1150. * tstamp - ctx->timestamp
  1151. * is equivalent to
  1152. * tstamp - cgrp->timestamp.
  1153. *
  1154. * Then, in perf_output_read(), the calculation would
  1155. * work with no changes because:
  1156. * - event is guaranteed scheduled in
  1157. * - no scheduled out in between
  1158. * - thus the timestamp would be the same
  1159. *
  1160. * But this is a bit hairy.
  1161. *
  1162. * So instead, we have an explicit cgroup call to remain
  1163. * within the time time source all along. We believe it
  1164. * is cleaner and simpler to understand.
  1165. */
  1166. if (is_cgroup_event(event))
  1167. perf_cgroup_set_shadow_time(event, tstamp);
  1168. else
  1169. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1170. }
  1171. #define MAX_INTERRUPTS (~0ULL)
  1172. static void perf_log_throttle(struct perf_event *event, int enable);
  1173. static int
  1174. event_sched_in(struct perf_event *event,
  1175. struct perf_cpu_context *cpuctx,
  1176. struct perf_event_context *ctx)
  1177. {
  1178. u64 tstamp = perf_event_time(event);
  1179. if (event->state <= PERF_EVENT_STATE_OFF)
  1180. return 0;
  1181. event->state = PERF_EVENT_STATE_ACTIVE;
  1182. event->oncpu = smp_processor_id();
  1183. /*
  1184. * Unthrottle events, since we scheduled we might have missed several
  1185. * ticks already, also for a heavily scheduling task there is little
  1186. * guarantee it'll get a tick in a timely manner.
  1187. */
  1188. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1189. perf_log_throttle(event, 1);
  1190. event->hw.interrupts = 0;
  1191. }
  1192. /*
  1193. * The new state must be visible before we turn it on in the hardware:
  1194. */
  1195. smp_wmb();
  1196. if (event->pmu->add(event, PERF_EF_START)) {
  1197. event->state = PERF_EVENT_STATE_INACTIVE;
  1198. event->oncpu = -1;
  1199. return -EAGAIN;
  1200. }
  1201. event->tstamp_running += tstamp - event->tstamp_stopped;
  1202. perf_set_shadow_time(event, ctx, tstamp);
  1203. if (!is_software_event(event))
  1204. cpuctx->active_oncpu++;
  1205. ctx->nr_active++;
  1206. if (event->attr.freq && event->attr.sample_freq)
  1207. ctx->nr_freq++;
  1208. if (event->attr.exclusive)
  1209. cpuctx->exclusive = 1;
  1210. return 0;
  1211. }
  1212. static int
  1213. group_sched_in(struct perf_event *group_event,
  1214. struct perf_cpu_context *cpuctx,
  1215. struct perf_event_context *ctx)
  1216. {
  1217. struct perf_event *event, *partial_group = NULL;
  1218. struct pmu *pmu = group_event->pmu;
  1219. u64 now = ctx->time;
  1220. bool simulate = false;
  1221. if (group_event->state == PERF_EVENT_STATE_OFF)
  1222. return 0;
  1223. pmu->start_txn(pmu);
  1224. if (event_sched_in(group_event, cpuctx, ctx)) {
  1225. pmu->cancel_txn(pmu);
  1226. return -EAGAIN;
  1227. }
  1228. /*
  1229. * Schedule in siblings as one group (if any):
  1230. */
  1231. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1232. if (event_sched_in(event, cpuctx, ctx)) {
  1233. partial_group = event;
  1234. goto group_error;
  1235. }
  1236. }
  1237. if (!pmu->commit_txn(pmu))
  1238. return 0;
  1239. group_error:
  1240. /*
  1241. * Groups can be scheduled in as one unit only, so undo any
  1242. * partial group before returning:
  1243. * The events up to the failed event are scheduled out normally,
  1244. * tstamp_stopped will be updated.
  1245. *
  1246. * The failed events and the remaining siblings need to have
  1247. * their timings updated as if they had gone thru event_sched_in()
  1248. * and event_sched_out(). This is required to get consistent timings
  1249. * across the group. This also takes care of the case where the group
  1250. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1251. * the time the event was actually stopped, such that time delta
  1252. * calculation in update_event_times() is correct.
  1253. */
  1254. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1255. if (event == partial_group)
  1256. simulate = true;
  1257. if (simulate) {
  1258. event->tstamp_running += now - event->tstamp_stopped;
  1259. event->tstamp_stopped = now;
  1260. } else {
  1261. event_sched_out(event, cpuctx, ctx);
  1262. }
  1263. }
  1264. event_sched_out(group_event, cpuctx, ctx);
  1265. pmu->cancel_txn(pmu);
  1266. return -EAGAIN;
  1267. }
  1268. /*
  1269. * Work out whether we can put this event group on the CPU now.
  1270. */
  1271. static int group_can_go_on(struct perf_event *event,
  1272. struct perf_cpu_context *cpuctx,
  1273. int can_add_hw)
  1274. {
  1275. /*
  1276. * Groups consisting entirely of software events can always go on.
  1277. */
  1278. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1279. return 1;
  1280. /*
  1281. * If an exclusive group is already on, no other hardware
  1282. * events can go on.
  1283. */
  1284. if (cpuctx->exclusive)
  1285. return 0;
  1286. /*
  1287. * If this group is exclusive and there are already
  1288. * events on the CPU, it can't go on.
  1289. */
  1290. if (event->attr.exclusive && cpuctx->active_oncpu)
  1291. return 0;
  1292. /*
  1293. * Otherwise, try to add it if all previous groups were able
  1294. * to go on.
  1295. */
  1296. return can_add_hw;
  1297. }
  1298. static void add_event_to_ctx(struct perf_event *event,
  1299. struct perf_event_context *ctx)
  1300. {
  1301. u64 tstamp = perf_event_time(event);
  1302. list_add_event(event, ctx);
  1303. perf_group_attach(event);
  1304. event->tstamp_enabled = tstamp;
  1305. event->tstamp_running = tstamp;
  1306. event->tstamp_stopped = tstamp;
  1307. }
  1308. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1309. static void
  1310. ctx_sched_in(struct perf_event_context *ctx,
  1311. struct perf_cpu_context *cpuctx,
  1312. enum event_type_t event_type,
  1313. struct task_struct *task);
  1314. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1315. struct perf_event_context *ctx,
  1316. struct task_struct *task)
  1317. {
  1318. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1319. if (ctx)
  1320. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1321. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1322. if (ctx)
  1323. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1324. }
  1325. /*
  1326. * Cross CPU call to install and enable a performance event
  1327. *
  1328. * Must be called with ctx->mutex held
  1329. */
  1330. static int __perf_install_in_context(void *info)
  1331. {
  1332. struct perf_event *event = info;
  1333. struct perf_event_context *ctx = event->ctx;
  1334. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1335. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1336. struct task_struct *task = current;
  1337. perf_ctx_lock(cpuctx, task_ctx);
  1338. perf_pmu_disable(cpuctx->ctx.pmu);
  1339. /*
  1340. * If there was an active task_ctx schedule it out.
  1341. */
  1342. if (task_ctx)
  1343. task_ctx_sched_out(task_ctx);
  1344. /*
  1345. * If the context we're installing events in is not the
  1346. * active task_ctx, flip them.
  1347. */
  1348. if (ctx->task && task_ctx != ctx) {
  1349. if (task_ctx)
  1350. raw_spin_unlock(&task_ctx->lock);
  1351. raw_spin_lock(&ctx->lock);
  1352. task_ctx = ctx;
  1353. }
  1354. if (task_ctx) {
  1355. cpuctx->task_ctx = task_ctx;
  1356. task = task_ctx->task;
  1357. }
  1358. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1359. update_context_time(ctx);
  1360. /*
  1361. * update cgrp time only if current cgrp
  1362. * matches event->cgrp. Must be done before
  1363. * calling add_event_to_ctx()
  1364. */
  1365. update_cgrp_time_from_event(event);
  1366. add_event_to_ctx(event, ctx);
  1367. /*
  1368. * Schedule everything back in
  1369. */
  1370. perf_event_sched_in(cpuctx, task_ctx, task);
  1371. perf_pmu_enable(cpuctx->ctx.pmu);
  1372. perf_ctx_unlock(cpuctx, task_ctx);
  1373. return 0;
  1374. }
  1375. /*
  1376. * Attach a performance event to a context
  1377. *
  1378. * First we add the event to the list with the hardware enable bit
  1379. * in event->hw_config cleared.
  1380. *
  1381. * If the event is attached to a task which is on a CPU we use a smp
  1382. * call to enable it in the task context. The task might have been
  1383. * scheduled away, but we check this in the smp call again.
  1384. */
  1385. static void
  1386. perf_install_in_context(struct perf_event_context *ctx,
  1387. struct perf_event *event,
  1388. int cpu)
  1389. {
  1390. struct task_struct *task = ctx->task;
  1391. lockdep_assert_held(&ctx->mutex);
  1392. event->ctx = ctx;
  1393. if (event->cpu != -1)
  1394. event->cpu = cpu;
  1395. if (!task) {
  1396. /*
  1397. * Per cpu events are installed via an smp call and
  1398. * the install is always successful.
  1399. */
  1400. cpu_function_call(cpu, __perf_install_in_context, event);
  1401. return;
  1402. }
  1403. retry:
  1404. if (!task_function_call(task, __perf_install_in_context, event))
  1405. return;
  1406. raw_spin_lock_irq(&ctx->lock);
  1407. /*
  1408. * If we failed to find a running task, but find the context active now
  1409. * that we've acquired the ctx->lock, retry.
  1410. */
  1411. if (ctx->is_active) {
  1412. raw_spin_unlock_irq(&ctx->lock);
  1413. goto retry;
  1414. }
  1415. /*
  1416. * Since the task isn't running, its safe to add the event, us holding
  1417. * the ctx->lock ensures the task won't get scheduled in.
  1418. */
  1419. add_event_to_ctx(event, ctx);
  1420. raw_spin_unlock_irq(&ctx->lock);
  1421. }
  1422. /*
  1423. * Put a event into inactive state and update time fields.
  1424. * Enabling the leader of a group effectively enables all
  1425. * the group members that aren't explicitly disabled, so we
  1426. * have to update their ->tstamp_enabled also.
  1427. * Note: this works for group members as well as group leaders
  1428. * since the non-leader members' sibling_lists will be empty.
  1429. */
  1430. static void __perf_event_mark_enabled(struct perf_event *event)
  1431. {
  1432. struct perf_event *sub;
  1433. u64 tstamp = perf_event_time(event);
  1434. event->state = PERF_EVENT_STATE_INACTIVE;
  1435. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1436. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1437. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1438. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1439. }
  1440. }
  1441. /*
  1442. * Cross CPU call to enable a performance event
  1443. */
  1444. static int __perf_event_enable(void *info)
  1445. {
  1446. struct perf_event *event = info;
  1447. struct perf_event_context *ctx = event->ctx;
  1448. struct perf_event *leader = event->group_leader;
  1449. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1450. int err;
  1451. if (WARN_ON_ONCE(!ctx->is_active))
  1452. return -EINVAL;
  1453. raw_spin_lock(&ctx->lock);
  1454. update_context_time(ctx);
  1455. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1456. goto unlock;
  1457. /*
  1458. * set current task's cgroup time reference point
  1459. */
  1460. perf_cgroup_set_timestamp(current, ctx);
  1461. __perf_event_mark_enabled(event);
  1462. if (!event_filter_match(event)) {
  1463. if (is_cgroup_event(event))
  1464. perf_cgroup_defer_enabled(event);
  1465. goto unlock;
  1466. }
  1467. /*
  1468. * If the event is in a group and isn't the group leader,
  1469. * then don't put it on unless the group is on.
  1470. */
  1471. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1472. goto unlock;
  1473. if (!group_can_go_on(event, cpuctx, 1)) {
  1474. err = -EEXIST;
  1475. } else {
  1476. if (event == leader)
  1477. err = group_sched_in(event, cpuctx, ctx);
  1478. else
  1479. err = event_sched_in(event, cpuctx, ctx);
  1480. }
  1481. if (err) {
  1482. /*
  1483. * If this event can't go on and it's part of a
  1484. * group, then the whole group has to come off.
  1485. */
  1486. if (leader != event)
  1487. group_sched_out(leader, cpuctx, ctx);
  1488. if (leader->attr.pinned) {
  1489. update_group_times(leader);
  1490. leader->state = PERF_EVENT_STATE_ERROR;
  1491. }
  1492. }
  1493. unlock:
  1494. raw_spin_unlock(&ctx->lock);
  1495. return 0;
  1496. }
  1497. /*
  1498. * Enable a event.
  1499. *
  1500. * If event->ctx is a cloned context, callers must make sure that
  1501. * every task struct that event->ctx->task could possibly point to
  1502. * remains valid. This condition is satisfied when called through
  1503. * perf_event_for_each_child or perf_event_for_each as described
  1504. * for perf_event_disable.
  1505. */
  1506. void perf_event_enable(struct perf_event *event)
  1507. {
  1508. struct perf_event_context *ctx = event->ctx;
  1509. struct task_struct *task = ctx->task;
  1510. if (!task) {
  1511. /*
  1512. * Enable the event on the cpu that it's on
  1513. */
  1514. cpu_function_call(event->cpu, __perf_event_enable, event);
  1515. return;
  1516. }
  1517. raw_spin_lock_irq(&ctx->lock);
  1518. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1519. goto out;
  1520. /*
  1521. * If the event is in error state, clear that first.
  1522. * That way, if we see the event in error state below, we
  1523. * know that it has gone back into error state, as distinct
  1524. * from the task having been scheduled away before the
  1525. * cross-call arrived.
  1526. */
  1527. if (event->state == PERF_EVENT_STATE_ERROR)
  1528. event->state = PERF_EVENT_STATE_OFF;
  1529. retry:
  1530. if (!ctx->is_active) {
  1531. __perf_event_mark_enabled(event);
  1532. goto out;
  1533. }
  1534. raw_spin_unlock_irq(&ctx->lock);
  1535. if (!task_function_call(task, __perf_event_enable, event))
  1536. return;
  1537. raw_spin_lock_irq(&ctx->lock);
  1538. /*
  1539. * If the context is active and the event is still off,
  1540. * we need to retry the cross-call.
  1541. */
  1542. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1543. /*
  1544. * task could have been flipped by a concurrent
  1545. * perf_event_context_sched_out()
  1546. */
  1547. task = ctx->task;
  1548. goto retry;
  1549. }
  1550. out:
  1551. raw_spin_unlock_irq(&ctx->lock);
  1552. }
  1553. EXPORT_SYMBOL_GPL(perf_event_enable);
  1554. int perf_event_refresh(struct perf_event *event, int refresh)
  1555. {
  1556. /*
  1557. * not supported on inherited events
  1558. */
  1559. if (event->attr.inherit || !is_sampling_event(event))
  1560. return -EINVAL;
  1561. atomic_add(refresh, &event->event_limit);
  1562. perf_event_enable(event);
  1563. return 0;
  1564. }
  1565. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1566. static void ctx_sched_out(struct perf_event_context *ctx,
  1567. struct perf_cpu_context *cpuctx,
  1568. enum event_type_t event_type)
  1569. {
  1570. struct perf_event *event;
  1571. int is_active = ctx->is_active;
  1572. ctx->is_active &= ~event_type;
  1573. if (likely(!ctx->nr_events))
  1574. return;
  1575. update_context_time(ctx);
  1576. update_cgrp_time_from_cpuctx(cpuctx);
  1577. if (!ctx->nr_active)
  1578. return;
  1579. perf_pmu_disable(ctx->pmu);
  1580. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1581. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1582. group_sched_out(event, cpuctx, ctx);
  1583. }
  1584. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1585. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1586. group_sched_out(event, cpuctx, ctx);
  1587. }
  1588. perf_pmu_enable(ctx->pmu);
  1589. }
  1590. /*
  1591. * Test whether two contexts are equivalent, i.e. whether they
  1592. * have both been cloned from the same version of the same context
  1593. * and they both have the same number of enabled events.
  1594. * If the number of enabled events is the same, then the set
  1595. * of enabled events should be the same, because these are both
  1596. * inherited contexts, therefore we can't access individual events
  1597. * in them directly with an fd; we can only enable/disable all
  1598. * events via prctl, or enable/disable all events in a family
  1599. * via ioctl, which will have the same effect on both contexts.
  1600. */
  1601. static int context_equiv(struct perf_event_context *ctx1,
  1602. struct perf_event_context *ctx2)
  1603. {
  1604. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1605. && ctx1->parent_gen == ctx2->parent_gen
  1606. && !ctx1->pin_count && !ctx2->pin_count;
  1607. }
  1608. static void __perf_event_sync_stat(struct perf_event *event,
  1609. struct perf_event *next_event)
  1610. {
  1611. u64 value;
  1612. if (!event->attr.inherit_stat)
  1613. return;
  1614. /*
  1615. * Update the event value, we cannot use perf_event_read()
  1616. * because we're in the middle of a context switch and have IRQs
  1617. * disabled, which upsets smp_call_function_single(), however
  1618. * we know the event must be on the current CPU, therefore we
  1619. * don't need to use it.
  1620. */
  1621. switch (event->state) {
  1622. case PERF_EVENT_STATE_ACTIVE:
  1623. event->pmu->read(event);
  1624. /* fall-through */
  1625. case PERF_EVENT_STATE_INACTIVE:
  1626. update_event_times(event);
  1627. break;
  1628. default:
  1629. break;
  1630. }
  1631. /*
  1632. * In order to keep per-task stats reliable we need to flip the event
  1633. * values when we flip the contexts.
  1634. */
  1635. value = local64_read(&next_event->count);
  1636. value = local64_xchg(&event->count, value);
  1637. local64_set(&next_event->count, value);
  1638. swap(event->total_time_enabled, next_event->total_time_enabled);
  1639. swap(event->total_time_running, next_event->total_time_running);
  1640. /*
  1641. * Since we swizzled the values, update the user visible data too.
  1642. */
  1643. perf_event_update_userpage(event);
  1644. perf_event_update_userpage(next_event);
  1645. }
  1646. #define list_next_entry(pos, member) \
  1647. list_entry(pos->member.next, typeof(*pos), member)
  1648. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1649. struct perf_event_context *next_ctx)
  1650. {
  1651. struct perf_event *event, *next_event;
  1652. if (!ctx->nr_stat)
  1653. return;
  1654. update_context_time(ctx);
  1655. event = list_first_entry(&ctx->event_list,
  1656. struct perf_event, event_entry);
  1657. next_event = list_first_entry(&next_ctx->event_list,
  1658. struct perf_event, event_entry);
  1659. while (&event->event_entry != &ctx->event_list &&
  1660. &next_event->event_entry != &next_ctx->event_list) {
  1661. __perf_event_sync_stat(event, next_event);
  1662. event = list_next_entry(event, event_entry);
  1663. next_event = list_next_entry(next_event, event_entry);
  1664. }
  1665. }
  1666. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1667. struct task_struct *next)
  1668. {
  1669. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1670. struct perf_event_context *next_ctx;
  1671. struct perf_event_context *parent;
  1672. struct perf_cpu_context *cpuctx;
  1673. int do_switch = 1;
  1674. if (likely(!ctx))
  1675. return;
  1676. cpuctx = __get_cpu_context(ctx);
  1677. if (!cpuctx->task_ctx)
  1678. return;
  1679. rcu_read_lock();
  1680. parent = rcu_dereference(ctx->parent_ctx);
  1681. next_ctx = next->perf_event_ctxp[ctxn];
  1682. if (parent && next_ctx &&
  1683. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1684. /*
  1685. * Looks like the two contexts are clones, so we might be
  1686. * able to optimize the context switch. We lock both
  1687. * contexts and check that they are clones under the
  1688. * lock (including re-checking that neither has been
  1689. * uncloned in the meantime). It doesn't matter which
  1690. * order we take the locks because no other cpu could
  1691. * be trying to lock both of these tasks.
  1692. */
  1693. raw_spin_lock(&ctx->lock);
  1694. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1695. if (context_equiv(ctx, next_ctx)) {
  1696. /*
  1697. * XXX do we need a memory barrier of sorts
  1698. * wrt to rcu_dereference() of perf_event_ctxp
  1699. */
  1700. task->perf_event_ctxp[ctxn] = next_ctx;
  1701. next->perf_event_ctxp[ctxn] = ctx;
  1702. ctx->task = next;
  1703. next_ctx->task = task;
  1704. do_switch = 0;
  1705. perf_event_sync_stat(ctx, next_ctx);
  1706. }
  1707. raw_spin_unlock(&next_ctx->lock);
  1708. raw_spin_unlock(&ctx->lock);
  1709. }
  1710. rcu_read_unlock();
  1711. if (do_switch) {
  1712. raw_spin_lock(&ctx->lock);
  1713. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1714. cpuctx->task_ctx = NULL;
  1715. raw_spin_unlock(&ctx->lock);
  1716. }
  1717. }
  1718. #define for_each_task_context_nr(ctxn) \
  1719. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1720. /*
  1721. * Called from scheduler to remove the events of the current task,
  1722. * with interrupts disabled.
  1723. *
  1724. * We stop each event and update the event value in event->count.
  1725. *
  1726. * This does not protect us against NMI, but disable()
  1727. * sets the disabled bit in the control field of event _before_
  1728. * accessing the event control register. If a NMI hits, then it will
  1729. * not restart the event.
  1730. */
  1731. void __perf_event_task_sched_out(struct task_struct *task,
  1732. struct task_struct *next)
  1733. {
  1734. int ctxn;
  1735. for_each_task_context_nr(ctxn)
  1736. perf_event_context_sched_out(task, ctxn, next);
  1737. /*
  1738. * if cgroup events exist on this CPU, then we need
  1739. * to check if we have to switch out PMU state.
  1740. * cgroup event are system-wide mode only
  1741. */
  1742. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1743. perf_cgroup_sched_out(task, next);
  1744. }
  1745. static void task_ctx_sched_out(struct perf_event_context *ctx)
  1746. {
  1747. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1748. if (!cpuctx->task_ctx)
  1749. return;
  1750. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1751. return;
  1752. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1753. cpuctx->task_ctx = NULL;
  1754. }
  1755. /*
  1756. * Called with IRQs disabled
  1757. */
  1758. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1759. enum event_type_t event_type)
  1760. {
  1761. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1762. }
  1763. static void
  1764. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1765. struct perf_cpu_context *cpuctx)
  1766. {
  1767. struct perf_event *event;
  1768. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1769. if (event->state <= PERF_EVENT_STATE_OFF)
  1770. continue;
  1771. if (!event_filter_match(event))
  1772. continue;
  1773. /* may need to reset tstamp_enabled */
  1774. if (is_cgroup_event(event))
  1775. perf_cgroup_mark_enabled(event, ctx);
  1776. if (group_can_go_on(event, cpuctx, 1))
  1777. group_sched_in(event, cpuctx, ctx);
  1778. /*
  1779. * If this pinned group hasn't been scheduled,
  1780. * put it in error state.
  1781. */
  1782. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1783. update_group_times(event);
  1784. event->state = PERF_EVENT_STATE_ERROR;
  1785. }
  1786. }
  1787. }
  1788. static void
  1789. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1790. struct perf_cpu_context *cpuctx)
  1791. {
  1792. struct perf_event *event;
  1793. int can_add_hw = 1;
  1794. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1795. /* Ignore events in OFF or ERROR state */
  1796. if (event->state <= PERF_EVENT_STATE_OFF)
  1797. continue;
  1798. /*
  1799. * Listen to the 'cpu' scheduling filter constraint
  1800. * of events:
  1801. */
  1802. if (!event_filter_match(event))
  1803. continue;
  1804. /* may need to reset tstamp_enabled */
  1805. if (is_cgroup_event(event))
  1806. perf_cgroup_mark_enabled(event, ctx);
  1807. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1808. if (group_sched_in(event, cpuctx, ctx))
  1809. can_add_hw = 0;
  1810. }
  1811. }
  1812. }
  1813. static void
  1814. ctx_sched_in(struct perf_event_context *ctx,
  1815. struct perf_cpu_context *cpuctx,
  1816. enum event_type_t event_type,
  1817. struct task_struct *task)
  1818. {
  1819. u64 now;
  1820. int is_active = ctx->is_active;
  1821. ctx->is_active |= event_type;
  1822. if (likely(!ctx->nr_events))
  1823. return;
  1824. now = perf_clock();
  1825. ctx->timestamp = now;
  1826. perf_cgroup_set_timestamp(task, ctx);
  1827. /*
  1828. * First go through the list and put on any pinned groups
  1829. * in order to give them the best chance of going on.
  1830. */
  1831. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  1832. ctx_pinned_sched_in(ctx, cpuctx);
  1833. /* Then walk through the lower prio flexible groups */
  1834. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  1835. ctx_flexible_sched_in(ctx, cpuctx);
  1836. }
  1837. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1838. enum event_type_t event_type,
  1839. struct task_struct *task)
  1840. {
  1841. struct perf_event_context *ctx = &cpuctx->ctx;
  1842. ctx_sched_in(ctx, cpuctx, event_type, task);
  1843. }
  1844. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1845. struct task_struct *task)
  1846. {
  1847. struct perf_cpu_context *cpuctx;
  1848. cpuctx = __get_cpu_context(ctx);
  1849. if (cpuctx->task_ctx == ctx)
  1850. return;
  1851. perf_ctx_lock(cpuctx, ctx);
  1852. perf_pmu_disable(ctx->pmu);
  1853. /*
  1854. * We want to keep the following priority order:
  1855. * cpu pinned (that don't need to move), task pinned,
  1856. * cpu flexible, task flexible.
  1857. */
  1858. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1859. if (ctx->nr_events)
  1860. cpuctx->task_ctx = ctx;
  1861. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  1862. perf_pmu_enable(ctx->pmu);
  1863. perf_ctx_unlock(cpuctx, ctx);
  1864. /*
  1865. * Since these rotations are per-cpu, we need to ensure the
  1866. * cpu-context we got scheduled on is actually rotating.
  1867. */
  1868. perf_pmu_rotate_start(ctx->pmu);
  1869. }
  1870. /*
  1871. * When sampling the branck stack in system-wide, it may be necessary
  1872. * to flush the stack on context switch. This happens when the branch
  1873. * stack does not tag its entries with the pid of the current task.
  1874. * Otherwise it becomes impossible to associate a branch entry with a
  1875. * task. This ambiguity is more likely to appear when the branch stack
  1876. * supports priv level filtering and the user sets it to monitor only
  1877. * at the user level (which could be a useful measurement in system-wide
  1878. * mode). In that case, the risk is high of having a branch stack with
  1879. * branch from multiple tasks. Flushing may mean dropping the existing
  1880. * entries or stashing them somewhere in the PMU specific code layer.
  1881. *
  1882. * This function provides the context switch callback to the lower code
  1883. * layer. It is invoked ONLY when there is at least one system-wide context
  1884. * with at least one active event using taken branch sampling.
  1885. */
  1886. static void perf_branch_stack_sched_in(struct task_struct *prev,
  1887. struct task_struct *task)
  1888. {
  1889. struct perf_cpu_context *cpuctx;
  1890. struct pmu *pmu;
  1891. unsigned long flags;
  1892. /* no need to flush branch stack if not changing task */
  1893. if (prev == task)
  1894. return;
  1895. local_irq_save(flags);
  1896. rcu_read_lock();
  1897. list_for_each_entry_rcu(pmu, &pmus, entry) {
  1898. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  1899. /*
  1900. * check if the context has at least one
  1901. * event using PERF_SAMPLE_BRANCH_STACK
  1902. */
  1903. if (cpuctx->ctx.nr_branch_stack > 0
  1904. && pmu->flush_branch_stack) {
  1905. pmu = cpuctx->ctx.pmu;
  1906. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  1907. perf_pmu_disable(pmu);
  1908. pmu->flush_branch_stack();
  1909. perf_pmu_enable(pmu);
  1910. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  1911. }
  1912. }
  1913. rcu_read_unlock();
  1914. local_irq_restore(flags);
  1915. }
  1916. /*
  1917. * Called from scheduler to add the events of the current task
  1918. * with interrupts disabled.
  1919. *
  1920. * We restore the event value and then enable it.
  1921. *
  1922. * This does not protect us against NMI, but enable()
  1923. * sets the enabled bit in the control field of event _before_
  1924. * accessing the event control register. If a NMI hits, then it will
  1925. * keep the event running.
  1926. */
  1927. void __perf_event_task_sched_in(struct task_struct *prev,
  1928. struct task_struct *task)
  1929. {
  1930. struct perf_event_context *ctx;
  1931. int ctxn;
  1932. for_each_task_context_nr(ctxn) {
  1933. ctx = task->perf_event_ctxp[ctxn];
  1934. if (likely(!ctx))
  1935. continue;
  1936. perf_event_context_sched_in(ctx, task);
  1937. }
  1938. /*
  1939. * if cgroup events exist on this CPU, then we need
  1940. * to check if we have to switch in PMU state.
  1941. * cgroup event are system-wide mode only
  1942. */
  1943. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1944. perf_cgroup_sched_in(prev, task);
  1945. /* check for system-wide branch_stack events */
  1946. if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
  1947. perf_branch_stack_sched_in(prev, task);
  1948. }
  1949. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1950. {
  1951. u64 frequency = event->attr.sample_freq;
  1952. u64 sec = NSEC_PER_SEC;
  1953. u64 divisor, dividend;
  1954. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1955. count_fls = fls64(count);
  1956. nsec_fls = fls64(nsec);
  1957. frequency_fls = fls64(frequency);
  1958. sec_fls = 30;
  1959. /*
  1960. * We got @count in @nsec, with a target of sample_freq HZ
  1961. * the target period becomes:
  1962. *
  1963. * @count * 10^9
  1964. * period = -------------------
  1965. * @nsec * sample_freq
  1966. *
  1967. */
  1968. /*
  1969. * Reduce accuracy by one bit such that @a and @b converge
  1970. * to a similar magnitude.
  1971. */
  1972. #define REDUCE_FLS(a, b) \
  1973. do { \
  1974. if (a##_fls > b##_fls) { \
  1975. a >>= 1; \
  1976. a##_fls--; \
  1977. } else { \
  1978. b >>= 1; \
  1979. b##_fls--; \
  1980. } \
  1981. } while (0)
  1982. /*
  1983. * Reduce accuracy until either term fits in a u64, then proceed with
  1984. * the other, so that finally we can do a u64/u64 division.
  1985. */
  1986. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1987. REDUCE_FLS(nsec, frequency);
  1988. REDUCE_FLS(sec, count);
  1989. }
  1990. if (count_fls + sec_fls > 64) {
  1991. divisor = nsec * frequency;
  1992. while (count_fls + sec_fls > 64) {
  1993. REDUCE_FLS(count, sec);
  1994. divisor >>= 1;
  1995. }
  1996. dividend = count * sec;
  1997. } else {
  1998. dividend = count * sec;
  1999. while (nsec_fls + frequency_fls > 64) {
  2000. REDUCE_FLS(nsec, frequency);
  2001. dividend >>= 1;
  2002. }
  2003. divisor = nsec * frequency;
  2004. }
  2005. if (!divisor)
  2006. return dividend;
  2007. return div64_u64(dividend, divisor);
  2008. }
  2009. static DEFINE_PER_CPU(int, perf_throttled_count);
  2010. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  2011. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  2012. {
  2013. struct hw_perf_event *hwc = &event->hw;
  2014. s64 period, sample_period;
  2015. s64 delta;
  2016. period = perf_calculate_period(event, nsec, count);
  2017. delta = (s64)(period - hwc->sample_period);
  2018. delta = (delta + 7) / 8; /* low pass filter */
  2019. sample_period = hwc->sample_period + delta;
  2020. if (!sample_period)
  2021. sample_period = 1;
  2022. hwc->sample_period = sample_period;
  2023. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2024. if (disable)
  2025. event->pmu->stop(event, PERF_EF_UPDATE);
  2026. local64_set(&hwc->period_left, 0);
  2027. if (disable)
  2028. event->pmu->start(event, PERF_EF_RELOAD);
  2029. }
  2030. }
  2031. /*
  2032. * combine freq adjustment with unthrottling to avoid two passes over the
  2033. * events. At the same time, make sure, having freq events does not change
  2034. * the rate of unthrottling as that would introduce bias.
  2035. */
  2036. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2037. int needs_unthr)
  2038. {
  2039. struct perf_event *event;
  2040. struct hw_perf_event *hwc;
  2041. u64 now, period = TICK_NSEC;
  2042. s64 delta;
  2043. /*
  2044. * only need to iterate over all events iff:
  2045. * - context have events in frequency mode (needs freq adjust)
  2046. * - there are events to unthrottle on this cpu
  2047. */
  2048. if (!(ctx->nr_freq || needs_unthr))
  2049. return;
  2050. raw_spin_lock(&ctx->lock);
  2051. perf_pmu_disable(ctx->pmu);
  2052. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2053. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2054. continue;
  2055. if (!event_filter_match(event))
  2056. continue;
  2057. hwc = &event->hw;
  2058. if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
  2059. hwc->interrupts = 0;
  2060. perf_log_throttle(event, 1);
  2061. event->pmu->start(event, 0);
  2062. }
  2063. if (!event->attr.freq || !event->attr.sample_freq)
  2064. continue;
  2065. /*
  2066. * stop the event and update event->count
  2067. */
  2068. event->pmu->stop(event, PERF_EF_UPDATE);
  2069. now = local64_read(&event->count);
  2070. delta = now - hwc->freq_count_stamp;
  2071. hwc->freq_count_stamp = now;
  2072. /*
  2073. * restart the event
  2074. * reload only if value has changed
  2075. * we have stopped the event so tell that
  2076. * to perf_adjust_period() to avoid stopping it
  2077. * twice.
  2078. */
  2079. if (delta > 0)
  2080. perf_adjust_period(event, period, delta, false);
  2081. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2082. }
  2083. perf_pmu_enable(ctx->pmu);
  2084. raw_spin_unlock(&ctx->lock);
  2085. }
  2086. /*
  2087. * Round-robin a context's events:
  2088. */
  2089. static void rotate_ctx(struct perf_event_context *ctx)
  2090. {
  2091. /*
  2092. * Rotate the first entry last of non-pinned groups. Rotation might be
  2093. * disabled by the inheritance code.
  2094. */
  2095. if (!ctx->rotate_disable)
  2096. list_rotate_left(&ctx->flexible_groups);
  2097. }
  2098. /*
  2099. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  2100. * because they're strictly cpu affine and rotate_start is called with IRQs
  2101. * disabled, while rotate_context is called from IRQ context.
  2102. */
  2103. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  2104. {
  2105. struct perf_event_context *ctx = NULL;
  2106. int rotate = 0, remove = 1;
  2107. if (cpuctx->ctx.nr_events) {
  2108. remove = 0;
  2109. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2110. rotate = 1;
  2111. }
  2112. ctx = cpuctx->task_ctx;
  2113. if (ctx && ctx->nr_events) {
  2114. remove = 0;
  2115. if (ctx->nr_events != ctx->nr_active)
  2116. rotate = 1;
  2117. }
  2118. if (!rotate)
  2119. goto done;
  2120. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2121. perf_pmu_disable(cpuctx->ctx.pmu);
  2122. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2123. if (ctx)
  2124. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2125. rotate_ctx(&cpuctx->ctx);
  2126. if (ctx)
  2127. rotate_ctx(ctx);
  2128. perf_event_sched_in(cpuctx, ctx, current);
  2129. perf_pmu_enable(cpuctx->ctx.pmu);
  2130. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2131. done:
  2132. if (remove)
  2133. list_del_init(&cpuctx->rotation_list);
  2134. }
  2135. void perf_event_task_tick(void)
  2136. {
  2137. struct list_head *head = &__get_cpu_var(rotation_list);
  2138. struct perf_cpu_context *cpuctx, *tmp;
  2139. struct perf_event_context *ctx;
  2140. int throttled;
  2141. WARN_ON(!irqs_disabled());
  2142. __this_cpu_inc(perf_throttled_seq);
  2143. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2144. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2145. ctx = &cpuctx->ctx;
  2146. perf_adjust_freq_unthr_context(ctx, throttled);
  2147. ctx = cpuctx->task_ctx;
  2148. if (ctx)
  2149. perf_adjust_freq_unthr_context(ctx, throttled);
  2150. if (cpuctx->jiffies_interval == 1 ||
  2151. !(jiffies % cpuctx->jiffies_interval))
  2152. perf_rotate_context(cpuctx);
  2153. }
  2154. }
  2155. static int event_enable_on_exec(struct perf_event *event,
  2156. struct perf_event_context *ctx)
  2157. {
  2158. if (!event->attr.enable_on_exec)
  2159. return 0;
  2160. event->attr.enable_on_exec = 0;
  2161. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2162. return 0;
  2163. __perf_event_mark_enabled(event);
  2164. return 1;
  2165. }
  2166. /*
  2167. * Enable all of a task's events that have been marked enable-on-exec.
  2168. * This expects task == current.
  2169. */
  2170. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2171. {
  2172. struct perf_event *event;
  2173. unsigned long flags;
  2174. int enabled = 0;
  2175. int ret;
  2176. local_irq_save(flags);
  2177. if (!ctx || !ctx->nr_events)
  2178. goto out;
  2179. /*
  2180. * We must ctxsw out cgroup events to avoid conflict
  2181. * when invoking perf_task_event_sched_in() later on
  2182. * in this function. Otherwise we end up trying to
  2183. * ctxswin cgroup events which are already scheduled
  2184. * in.
  2185. */
  2186. perf_cgroup_sched_out(current, NULL);
  2187. raw_spin_lock(&ctx->lock);
  2188. task_ctx_sched_out(ctx);
  2189. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2190. ret = event_enable_on_exec(event, ctx);
  2191. if (ret)
  2192. enabled = 1;
  2193. }
  2194. /*
  2195. * Unclone this context if we enabled any event.
  2196. */
  2197. if (enabled)
  2198. unclone_ctx(ctx);
  2199. raw_spin_unlock(&ctx->lock);
  2200. /*
  2201. * Also calls ctxswin for cgroup events, if any:
  2202. */
  2203. perf_event_context_sched_in(ctx, ctx->task);
  2204. out:
  2205. local_irq_restore(flags);
  2206. }
  2207. /*
  2208. * Cross CPU call to read the hardware event
  2209. */
  2210. static void __perf_event_read(void *info)
  2211. {
  2212. struct perf_event *event = info;
  2213. struct perf_event_context *ctx = event->ctx;
  2214. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2215. /*
  2216. * If this is a task context, we need to check whether it is
  2217. * the current task context of this cpu. If not it has been
  2218. * scheduled out before the smp call arrived. In that case
  2219. * event->count would have been updated to a recent sample
  2220. * when the event was scheduled out.
  2221. */
  2222. if (ctx->task && cpuctx->task_ctx != ctx)
  2223. return;
  2224. raw_spin_lock(&ctx->lock);
  2225. if (ctx->is_active) {
  2226. update_context_time(ctx);
  2227. update_cgrp_time_from_event(event);
  2228. }
  2229. update_event_times(event);
  2230. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2231. event->pmu->read(event);
  2232. raw_spin_unlock(&ctx->lock);
  2233. }
  2234. static inline u64 perf_event_count(struct perf_event *event)
  2235. {
  2236. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2237. }
  2238. static u64 perf_event_read(struct perf_event *event)
  2239. {
  2240. /*
  2241. * If event is enabled and currently active on a CPU, update the
  2242. * value in the event structure:
  2243. */
  2244. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2245. smp_call_function_single(event->oncpu,
  2246. __perf_event_read, event, 1);
  2247. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2248. struct perf_event_context *ctx = event->ctx;
  2249. unsigned long flags;
  2250. raw_spin_lock_irqsave(&ctx->lock, flags);
  2251. /*
  2252. * may read while context is not active
  2253. * (e.g., thread is blocked), in that case
  2254. * we cannot update context time
  2255. */
  2256. if (ctx->is_active) {
  2257. update_context_time(ctx);
  2258. update_cgrp_time_from_event(event);
  2259. }
  2260. update_event_times(event);
  2261. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2262. }
  2263. return perf_event_count(event);
  2264. }
  2265. /*
  2266. * Initialize the perf_event context in a task_struct:
  2267. */
  2268. static void __perf_event_init_context(struct perf_event_context *ctx)
  2269. {
  2270. raw_spin_lock_init(&ctx->lock);
  2271. mutex_init(&ctx->mutex);
  2272. INIT_LIST_HEAD(&ctx->pinned_groups);
  2273. INIT_LIST_HEAD(&ctx->flexible_groups);
  2274. INIT_LIST_HEAD(&ctx->event_list);
  2275. atomic_set(&ctx->refcount, 1);
  2276. }
  2277. static struct perf_event_context *
  2278. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2279. {
  2280. struct perf_event_context *ctx;
  2281. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2282. if (!ctx)
  2283. return NULL;
  2284. __perf_event_init_context(ctx);
  2285. if (task) {
  2286. ctx->task = task;
  2287. get_task_struct(task);
  2288. }
  2289. ctx->pmu = pmu;
  2290. return ctx;
  2291. }
  2292. static struct task_struct *
  2293. find_lively_task_by_vpid(pid_t vpid)
  2294. {
  2295. struct task_struct *task;
  2296. int err;
  2297. rcu_read_lock();
  2298. if (!vpid)
  2299. task = current;
  2300. else
  2301. task = find_task_by_vpid(vpid);
  2302. if (task)
  2303. get_task_struct(task);
  2304. rcu_read_unlock();
  2305. if (!task)
  2306. return ERR_PTR(-ESRCH);
  2307. /* Reuse ptrace permission checks for now. */
  2308. err = -EACCES;
  2309. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2310. goto errout;
  2311. return task;
  2312. errout:
  2313. put_task_struct(task);
  2314. return ERR_PTR(err);
  2315. }
  2316. /*
  2317. * Returns a matching context with refcount and pincount.
  2318. */
  2319. static struct perf_event_context *
  2320. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2321. {
  2322. struct perf_event_context *ctx;
  2323. struct perf_cpu_context *cpuctx;
  2324. unsigned long flags;
  2325. int ctxn, err;
  2326. if (!task) {
  2327. /* Must be root to operate on a CPU event: */
  2328. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2329. return ERR_PTR(-EACCES);
  2330. /*
  2331. * We could be clever and allow to attach a event to an
  2332. * offline CPU and activate it when the CPU comes up, but
  2333. * that's for later.
  2334. */
  2335. if (!cpu_online(cpu))
  2336. return ERR_PTR(-ENODEV);
  2337. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2338. ctx = &cpuctx->ctx;
  2339. get_ctx(ctx);
  2340. ++ctx->pin_count;
  2341. return ctx;
  2342. }
  2343. err = -EINVAL;
  2344. ctxn = pmu->task_ctx_nr;
  2345. if (ctxn < 0)
  2346. goto errout;
  2347. retry:
  2348. ctx = perf_lock_task_context(task, ctxn, &flags);
  2349. if (ctx) {
  2350. unclone_ctx(ctx);
  2351. ++ctx->pin_count;
  2352. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2353. } else {
  2354. ctx = alloc_perf_context(pmu, task);
  2355. err = -ENOMEM;
  2356. if (!ctx)
  2357. goto errout;
  2358. err = 0;
  2359. mutex_lock(&task->perf_event_mutex);
  2360. /*
  2361. * If it has already passed perf_event_exit_task().
  2362. * we must see PF_EXITING, it takes this mutex too.
  2363. */
  2364. if (task->flags & PF_EXITING)
  2365. err = -ESRCH;
  2366. else if (task->perf_event_ctxp[ctxn])
  2367. err = -EAGAIN;
  2368. else {
  2369. get_ctx(ctx);
  2370. ++ctx->pin_count;
  2371. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2372. }
  2373. mutex_unlock(&task->perf_event_mutex);
  2374. if (unlikely(err)) {
  2375. put_ctx(ctx);
  2376. if (err == -EAGAIN)
  2377. goto retry;
  2378. goto errout;
  2379. }
  2380. }
  2381. return ctx;
  2382. errout:
  2383. return ERR_PTR(err);
  2384. }
  2385. static void perf_event_free_filter(struct perf_event *event);
  2386. static void free_event_rcu(struct rcu_head *head)
  2387. {
  2388. struct perf_event *event;
  2389. event = container_of(head, struct perf_event, rcu_head);
  2390. if (event->ns)
  2391. put_pid_ns(event->ns);
  2392. perf_event_free_filter(event);
  2393. kfree(event);
  2394. }
  2395. static void ring_buffer_put(struct ring_buffer *rb);
  2396. static void free_event(struct perf_event *event)
  2397. {
  2398. irq_work_sync(&event->pending);
  2399. if (!event->parent) {
  2400. if (event->attach_state & PERF_ATTACH_TASK)
  2401. static_key_slow_dec_deferred(&perf_sched_events);
  2402. if (event->attr.mmap || event->attr.mmap_data)
  2403. atomic_dec(&nr_mmap_events);
  2404. if (event->attr.comm)
  2405. atomic_dec(&nr_comm_events);
  2406. if (event->attr.task)
  2407. atomic_dec(&nr_task_events);
  2408. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2409. put_callchain_buffers();
  2410. if (is_cgroup_event(event)) {
  2411. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2412. static_key_slow_dec_deferred(&perf_sched_events);
  2413. }
  2414. if (has_branch_stack(event)) {
  2415. static_key_slow_dec_deferred(&perf_sched_events);
  2416. /* is system-wide event */
  2417. if (!(event->attach_state & PERF_ATTACH_TASK))
  2418. atomic_dec(&per_cpu(perf_branch_stack_events,
  2419. event->cpu));
  2420. }
  2421. }
  2422. if (event->rb) {
  2423. ring_buffer_put(event->rb);
  2424. event->rb = NULL;
  2425. }
  2426. if (is_cgroup_event(event))
  2427. perf_detach_cgroup(event);
  2428. if (event->destroy)
  2429. event->destroy(event);
  2430. if (event->ctx)
  2431. put_ctx(event->ctx);
  2432. call_rcu(&event->rcu_head, free_event_rcu);
  2433. }
  2434. int perf_event_release_kernel(struct perf_event *event)
  2435. {
  2436. struct perf_event_context *ctx = event->ctx;
  2437. WARN_ON_ONCE(ctx->parent_ctx);
  2438. /*
  2439. * There are two ways this annotation is useful:
  2440. *
  2441. * 1) there is a lock recursion from perf_event_exit_task
  2442. * see the comment there.
  2443. *
  2444. * 2) there is a lock-inversion with mmap_sem through
  2445. * perf_event_read_group(), which takes faults while
  2446. * holding ctx->mutex, however this is called after
  2447. * the last filedesc died, so there is no possibility
  2448. * to trigger the AB-BA case.
  2449. */
  2450. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2451. raw_spin_lock_irq(&ctx->lock);
  2452. perf_group_detach(event);
  2453. raw_spin_unlock_irq(&ctx->lock);
  2454. perf_remove_from_context(event);
  2455. mutex_unlock(&ctx->mutex);
  2456. free_event(event);
  2457. return 0;
  2458. }
  2459. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2460. /*
  2461. * Called when the last reference to the file is gone.
  2462. */
  2463. static void put_event(struct perf_event *event)
  2464. {
  2465. struct task_struct *owner;
  2466. if (!atomic_long_dec_and_test(&event->refcount))
  2467. return;
  2468. rcu_read_lock();
  2469. owner = ACCESS_ONCE(event->owner);
  2470. /*
  2471. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2472. * !owner it means the list deletion is complete and we can indeed
  2473. * free this event, otherwise we need to serialize on
  2474. * owner->perf_event_mutex.
  2475. */
  2476. smp_read_barrier_depends();
  2477. if (owner) {
  2478. /*
  2479. * Since delayed_put_task_struct() also drops the last
  2480. * task reference we can safely take a new reference
  2481. * while holding the rcu_read_lock().
  2482. */
  2483. get_task_struct(owner);
  2484. }
  2485. rcu_read_unlock();
  2486. if (owner) {
  2487. mutex_lock(&owner->perf_event_mutex);
  2488. /*
  2489. * We have to re-check the event->owner field, if it is cleared
  2490. * we raced with perf_event_exit_task(), acquiring the mutex
  2491. * ensured they're done, and we can proceed with freeing the
  2492. * event.
  2493. */
  2494. if (event->owner)
  2495. list_del_init(&event->owner_entry);
  2496. mutex_unlock(&owner->perf_event_mutex);
  2497. put_task_struct(owner);
  2498. }
  2499. perf_event_release_kernel(event);
  2500. }
  2501. static int perf_release(struct inode *inode, struct file *file)
  2502. {
  2503. put_event(file->private_data);
  2504. return 0;
  2505. }
  2506. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2507. {
  2508. struct perf_event *child;
  2509. u64 total = 0;
  2510. *enabled = 0;
  2511. *running = 0;
  2512. mutex_lock(&event->child_mutex);
  2513. total += perf_event_read(event);
  2514. *enabled += event->total_time_enabled +
  2515. atomic64_read(&event->child_total_time_enabled);
  2516. *running += event->total_time_running +
  2517. atomic64_read(&event->child_total_time_running);
  2518. list_for_each_entry(child, &event->child_list, child_list) {
  2519. total += perf_event_read(child);
  2520. *enabled += child->total_time_enabled;
  2521. *running += child->total_time_running;
  2522. }
  2523. mutex_unlock(&event->child_mutex);
  2524. return total;
  2525. }
  2526. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2527. static int perf_event_read_group(struct perf_event *event,
  2528. u64 read_format, char __user *buf)
  2529. {
  2530. struct perf_event *leader = event->group_leader, *sub;
  2531. int n = 0, size = 0, ret = -EFAULT;
  2532. struct perf_event_context *ctx = leader->ctx;
  2533. u64 values[5];
  2534. u64 count, enabled, running;
  2535. mutex_lock(&ctx->mutex);
  2536. count = perf_event_read_value(leader, &enabled, &running);
  2537. values[n++] = 1 + leader->nr_siblings;
  2538. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2539. values[n++] = enabled;
  2540. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2541. values[n++] = running;
  2542. values[n++] = count;
  2543. if (read_format & PERF_FORMAT_ID)
  2544. values[n++] = primary_event_id(leader);
  2545. size = n * sizeof(u64);
  2546. if (copy_to_user(buf, values, size))
  2547. goto unlock;
  2548. ret = size;
  2549. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2550. n = 0;
  2551. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2552. if (read_format & PERF_FORMAT_ID)
  2553. values[n++] = primary_event_id(sub);
  2554. size = n * sizeof(u64);
  2555. if (copy_to_user(buf + ret, values, size)) {
  2556. ret = -EFAULT;
  2557. goto unlock;
  2558. }
  2559. ret += size;
  2560. }
  2561. unlock:
  2562. mutex_unlock(&ctx->mutex);
  2563. return ret;
  2564. }
  2565. static int perf_event_read_one(struct perf_event *event,
  2566. u64 read_format, char __user *buf)
  2567. {
  2568. u64 enabled, running;
  2569. u64 values[4];
  2570. int n = 0;
  2571. values[n++] = perf_event_read_value(event, &enabled, &running);
  2572. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2573. values[n++] = enabled;
  2574. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2575. values[n++] = running;
  2576. if (read_format & PERF_FORMAT_ID)
  2577. values[n++] = primary_event_id(event);
  2578. if (copy_to_user(buf, values, n * sizeof(u64)))
  2579. return -EFAULT;
  2580. return n * sizeof(u64);
  2581. }
  2582. /*
  2583. * Read the performance event - simple non blocking version for now
  2584. */
  2585. static ssize_t
  2586. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2587. {
  2588. u64 read_format = event->attr.read_format;
  2589. int ret;
  2590. /*
  2591. * Return end-of-file for a read on a event that is in
  2592. * error state (i.e. because it was pinned but it couldn't be
  2593. * scheduled on to the CPU at some point).
  2594. */
  2595. if (event->state == PERF_EVENT_STATE_ERROR)
  2596. return 0;
  2597. if (count < event->read_size)
  2598. return -ENOSPC;
  2599. WARN_ON_ONCE(event->ctx->parent_ctx);
  2600. if (read_format & PERF_FORMAT_GROUP)
  2601. ret = perf_event_read_group(event, read_format, buf);
  2602. else
  2603. ret = perf_event_read_one(event, read_format, buf);
  2604. return ret;
  2605. }
  2606. static ssize_t
  2607. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2608. {
  2609. struct perf_event *event = file->private_data;
  2610. return perf_read_hw(event, buf, count);
  2611. }
  2612. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2613. {
  2614. struct perf_event *event = file->private_data;
  2615. struct ring_buffer *rb;
  2616. unsigned int events = POLL_HUP;
  2617. /*
  2618. * Race between perf_event_set_output() and perf_poll(): perf_poll()
  2619. * grabs the rb reference but perf_event_set_output() overrides it.
  2620. * Here is the timeline for two threads T1, T2:
  2621. * t0: T1, rb = rcu_dereference(event->rb)
  2622. * t1: T2, old_rb = event->rb
  2623. * t2: T2, event->rb = new rb
  2624. * t3: T2, ring_buffer_detach(old_rb)
  2625. * t4: T1, ring_buffer_attach(rb1)
  2626. * t5: T1, poll_wait(event->waitq)
  2627. *
  2628. * To avoid this problem, we grab mmap_mutex in perf_poll()
  2629. * thereby ensuring that the assignment of the new ring buffer
  2630. * and the detachment of the old buffer appear atomic to perf_poll()
  2631. */
  2632. mutex_lock(&event->mmap_mutex);
  2633. rcu_read_lock();
  2634. rb = rcu_dereference(event->rb);
  2635. if (rb) {
  2636. ring_buffer_attach(event, rb);
  2637. events = atomic_xchg(&rb->poll, 0);
  2638. }
  2639. rcu_read_unlock();
  2640. mutex_unlock(&event->mmap_mutex);
  2641. poll_wait(file, &event->waitq, wait);
  2642. return events;
  2643. }
  2644. static void perf_event_reset(struct perf_event *event)
  2645. {
  2646. (void)perf_event_read(event);
  2647. local64_set(&event->count, 0);
  2648. perf_event_update_userpage(event);
  2649. }
  2650. /*
  2651. * Holding the top-level event's child_mutex means that any
  2652. * descendant process that has inherited this event will block
  2653. * in sync_child_event if it goes to exit, thus satisfying the
  2654. * task existence requirements of perf_event_enable/disable.
  2655. */
  2656. static void perf_event_for_each_child(struct perf_event *event,
  2657. void (*func)(struct perf_event *))
  2658. {
  2659. struct perf_event *child;
  2660. WARN_ON_ONCE(event->ctx->parent_ctx);
  2661. mutex_lock(&event->child_mutex);
  2662. func(event);
  2663. list_for_each_entry(child, &event->child_list, child_list)
  2664. func(child);
  2665. mutex_unlock(&event->child_mutex);
  2666. }
  2667. static void perf_event_for_each(struct perf_event *event,
  2668. void (*func)(struct perf_event *))
  2669. {
  2670. struct perf_event_context *ctx = event->ctx;
  2671. struct perf_event *sibling;
  2672. WARN_ON_ONCE(ctx->parent_ctx);
  2673. mutex_lock(&ctx->mutex);
  2674. event = event->group_leader;
  2675. perf_event_for_each_child(event, func);
  2676. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2677. perf_event_for_each_child(sibling, func);
  2678. mutex_unlock(&ctx->mutex);
  2679. }
  2680. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2681. {
  2682. struct perf_event_context *ctx = event->ctx;
  2683. int ret = 0;
  2684. u64 value;
  2685. if (!is_sampling_event(event))
  2686. return -EINVAL;
  2687. if (copy_from_user(&value, arg, sizeof(value)))
  2688. return -EFAULT;
  2689. if (!value)
  2690. return -EINVAL;
  2691. raw_spin_lock_irq(&ctx->lock);
  2692. if (event->attr.freq) {
  2693. if (value > sysctl_perf_event_sample_rate) {
  2694. ret = -EINVAL;
  2695. goto unlock;
  2696. }
  2697. event->attr.sample_freq = value;
  2698. } else {
  2699. event->attr.sample_period = value;
  2700. event->hw.sample_period = value;
  2701. }
  2702. unlock:
  2703. raw_spin_unlock_irq(&ctx->lock);
  2704. return ret;
  2705. }
  2706. static const struct file_operations perf_fops;
  2707. static inline int perf_fget_light(int fd, struct fd *p)
  2708. {
  2709. struct fd f = fdget(fd);
  2710. if (!f.file)
  2711. return -EBADF;
  2712. if (f.file->f_op != &perf_fops) {
  2713. fdput(f);
  2714. return -EBADF;
  2715. }
  2716. *p = f;
  2717. return 0;
  2718. }
  2719. static int perf_event_set_output(struct perf_event *event,
  2720. struct perf_event *output_event);
  2721. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2722. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2723. {
  2724. struct perf_event *event = file->private_data;
  2725. void (*func)(struct perf_event *);
  2726. u32 flags = arg;
  2727. switch (cmd) {
  2728. case PERF_EVENT_IOC_ENABLE:
  2729. func = perf_event_enable;
  2730. break;
  2731. case PERF_EVENT_IOC_DISABLE:
  2732. func = perf_event_disable;
  2733. break;
  2734. case PERF_EVENT_IOC_RESET:
  2735. func = perf_event_reset;
  2736. break;
  2737. case PERF_EVENT_IOC_REFRESH:
  2738. return perf_event_refresh(event, arg);
  2739. case PERF_EVENT_IOC_PERIOD:
  2740. return perf_event_period(event, (u64 __user *)arg);
  2741. case PERF_EVENT_IOC_SET_OUTPUT:
  2742. {
  2743. int ret;
  2744. if (arg != -1) {
  2745. struct perf_event *output_event;
  2746. struct fd output;
  2747. ret = perf_fget_light(arg, &output);
  2748. if (ret)
  2749. return ret;
  2750. output_event = output.file->private_data;
  2751. ret = perf_event_set_output(event, output_event);
  2752. fdput(output);
  2753. } else {
  2754. ret = perf_event_set_output(event, NULL);
  2755. }
  2756. return ret;
  2757. }
  2758. case PERF_EVENT_IOC_SET_FILTER:
  2759. return perf_event_set_filter(event, (void __user *)arg);
  2760. default:
  2761. return -ENOTTY;
  2762. }
  2763. if (flags & PERF_IOC_FLAG_GROUP)
  2764. perf_event_for_each(event, func);
  2765. else
  2766. perf_event_for_each_child(event, func);
  2767. return 0;
  2768. }
  2769. int perf_event_task_enable(void)
  2770. {
  2771. struct perf_event *event;
  2772. mutex_lock(&current->perf_event_mutex);
  2773. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2774. perf_event_for_each_child(event, perf_event_enable);
  2775. mutex_unlock(&current->perf_event_mutex);
  2776. return 0;
  2777. }
  2778. int perf_event_task_disable(void)
  2779. {
  2780. struct perf_event *event;
  2781. mutex_lock(&current->perf_event_mutex);
  2782. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2783. perf_event_for_each_child(event, perf_event_disable);
  2784. mutex_unlock(&current->perf_event_mutex);
  2785. return 0;
  2786. }
  2787. static int perf_event_index(struct perf_event *event)
  2788. {
  2789. if (event->hw.state & PERF_HES_STOPPED)
  2790. return 0;
  2791. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2792. return 0;
  2793. return event->pmu->event_idx(event);
  2794. }
  2795. static void calc_timer_values(struct perf_event *event,
  2796. u64 *now,
  2797. u64 *enabled,
  2798. u64 *running)
  2799. {
  2800. u64 ctx_time;
  2801. *now = perf_clock();
  2802. ctx_time = event->shadow_ctx_time + *now;
  2803. *enabled = ctx_time - event->tstamp_enabled;
  2804. *running = ctx_time - event->tstamp_running;
  2805. }
  2806. void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  2807. {
  2808. }
  2809. /*
  2810. * Callers need to ensure there can be no nesting of this function, otherwise
  2811. * the seqlock logic goes bad. We can not serialize this because the arch
  2812. * code calls this from NMI context.
  2813. */
  2814. void perf_event_update_userpage(struct perf_event *event)
  2815. {
  2816. struct perf_event_mmap_page *userpg;
  2817. struct ring_buffer *rb;
  2818. u64 enabled, running, now;
  2819. rcu_read_lock();
  2820. /*
  2821. * compute total_time_enabled, total_time_running
  2822. * based on snapshot values taken when the event
  2823. * was last scheduled in.
  2824. *
  2825. * we cannot simply called update_context_time()
  2826. * because of locking issue as we can be called in
  2827. * NMI context
  2828. */
  2829. calc_timer_values(event, &now, &enabled, &running);
  2830. rb = rcu_dereference(event->rb);
  2831. if (!rb)
  2832. goto unlock;
  2833. userpg = rb->user_page;
  2834. /*
  2835. * Disable preemption so as to not let the corresponding user-space
  2836. * spin too long if we get preempted.
  2837. */
  2838. preempt_disable();
  2839. ++userpg->lock;
  2840. barrier();
  2841. userpg->index = perf_event_index(event);
  2842. userpg->offset = perf_event_count(event);
  2843. if (userpg->index)
  2844. userpg->offset -= local64_read(&event->hw.prev_count);
  2845. userpg->time_enabled = enabled +
  2846. atomic64_read(&event->child_total_time_enabled);
  2847. userpg->time_running = running +
  2848. atomic64_read(&event->child_total_time_running);
  2849. arch_perf_update_userpage(userpg, now);
  2850. barrier();
  2851. ++userpg->lock;
  2852. preempt_enable();
  2853. unlock:
  2854. rcu_read_unlock();
  2855. }
  2856. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2857. {
  2858. struct perf_event *event = vma->vm_file->private_data;
  2859. struct ring_buffer *rb;
  2860. int ret = VM_FAULT_SIGBUS;
  2861. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2862. if (vmf->pgoff == 0)
  2863. ret = 0;
  2864. return ret;
  2865. }
  2866. rcu_read_lock();
  2867. rb = rcu_dereference(event->rb);
  2868. if (!rb)
  2869. goto unlock;
  2870. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2871. goto unlock;
  2872. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  2873. if (!vmf->page)
  2874. goto unlock;
  2875. get_page(vmf->page);
  2876. vmf->page->mapping = vma->vm_file->f_mapping;
  2877. vmf->page->index = vmf->pgoff;
  2878. ret = 0;
  2879. unlock:
  2880. rcu_read_unlock();
  2881. return ret;
  2882. }
  2883. static void ring_buffer_attach(struct perf_event *event,
  2884. struct ring_buffer *rb)
  2885. {
  2886. unsigned long flags;
  2887. if (!list_empty(&event->rb_entry))
  2888. return;
  2889. spin_lock_irqsave(&rb->event_lock, flags);
  2890. if (!list_empty(&event->rb_entry))
  2891. goto unlock;
  2892. list_add(&event->rb_entry, &rb->event_list);
  2893. unlock:
  2894. spin_unlock_irqrestore(&rb->event_lock, flags);
  2895. }
  2896. static void ring_buffer_detach(struct perf_event *event,
  2897. struct ring_buffer *rb)
  2898. {
  2899. unsigned long flags;
  2900. if (list_empty(&event->rb_entry))
  2901. return;
  2902. spin_lock_irqsave(&rb->event_lock, flags);
  2903. list_del_init(&event->rb_entry);
  2904. wake_up_all(&event->waitq);
  2905. spin_unlock_irqrestore(&rb->event_lock, flags);
  2906. }
  2907. static void ring_buffer_wakeup(struct perf_event *event)
  2908. {
  2909. struct ring_buffer *rb;
  2910. rcu_read_lock();
  2911. rb = rcu_dereference(event->rb);
  2912. if (!rb)
  2913. goto unlock;
  2914. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  2915. wake_up_all(&event->waitq);
  2916. unlock:
  2917. rcu_read_unlock();
  2918. }
  2919. static void rb_free_rcu(struct rcu_head *rcu_head)
  2920. {
  2921. struct ring_buffer *rb;
  2922. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  2923. rb_free(rb);
  2924. }
  2925. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  2926. {
  2927. struct ring_buffer *rb;
  2928. rcu_read_lock();
  2929. rb = rcu_dereference(event->rb);
  2930. if (rb) {
  2931. if (!atomic_inc_not_zero(&rb->refcount))
  2932. rb = NULL;
  2933. }
  2934. rcu_read_unlock();
  2935. return rb;
  2936. }
  2937. static void ring_buffer_put(struct ring_buffer *rb)
  2938. {
  2939. struct perf_event *event, *n;
  2940. unsigned long flags;
  2941. if (!atomic_dec_and_test(&rb->refcount))
  2942. return;
  2943. spin_lock_irqsave(&rb->event_lock, flags);
  2944. list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
  2945. list_del_init(&event->rb_entry);
  2946. wake_up_all(&event->waitq);
  2947. }
  2948. spin_unlock_irqrestore(&rb->event_lock, flags);
  2949. call_rcu(&rb->rcu_head, rb_free_rcu);
  2950. }
  2951. static void perf_mmap_open(struct vm_area_struct *vma)
  2952. {
  2953. struct perf_event *event = vma->vm_file->private_data;
  2954. atomic_inc(&event->mmap_count);
  2955. }
  2956. static void perf_mmap_close(struct vm_area_struct *vma)
  2957. {
  2958. struct perf_event *event = vma->vm_file->private_data;
  2959. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2960. unsigned long size = perf_data_size(event->rb);
  2961. struct user_struct *user = event->mmap_user;
  2962. struct ring_buffer *rb = event->rb;
  2963. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2964. vma->vm_mm->pinned_vm -= event->mmap_locked;
  2965. rcu_assign_pointer(event->rb, NULL);
  2966. ring_buffer_detach(event, rb);
  2967. mutex_unlock(&event->mmap_mutex);
  2968. ring_buffer_put(rb);
  2969. free_uid(user);
  2970. }
  2971. }
  2972. static const struct vm_operations_struct perf_mmap_vmops = {
  2973. .open = perf_mmap_open,
  2974. .close = perf_mmap_close,
  2975. .fault = perf_mmap_fault,
  2976. .page_mkwrite = perf_mmap_fault,
  2977. };
  2978. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2979. {
  2980. struct perf_event *event = file->private_data;
  2981. unsigned long user_locked, user_lock_limit;
  2982. struct user_struct *user = current_user();
  2983. unsigned long locked, lock_limit;
  2984. struct ring_buffer *rb;
  2985. unsigned long vma_size;
  2986. unsigned long nr_pages;
  2987. long user_extra, extra;
  2988. int ret = 0, flags = 0;
  2989. /*
  2990. * Don't allow mmap() of inherited per-task counters. This would
  2991. * create a performance issue due to all children writing to the
  2992. * same rb.
  2993. */
  2994. if (event->cpu == -1 && event->attr.inherit)
  2995. return -EINVAL;
  2996. if (!(vma->vm_flags & VM_SHARED))
  2997. return -EINVAL;
  2998. vma_size = vma->vm_end - vma->vm_start;
  2999. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3000. /*
  3001. * If we have rb pages ensure they're a power-of-two number, so we
  3002. * can do bitmasks instead of modulo.
  3003. */
  3004. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3005. return -EINVAL;
  3006. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3007. return -EINVAL;
  3008. if (vma->vm_pgoff != 0)
  3009. return -EINVAL;
  3010. WARN_ON_ONCE(event->ctx->parent_ctx);
  3011. mutex_lock(&event->mmap_mutex);
  3012. if (event->rb) {
  3013. if (event->rb->nr_pages == nr_pages)
  3014. atomic_inc(&event->rb->refcount);
  3015. else
  3016. ret = -EINVAL;
  3017. goto unlock;
  3018. }
  3019. user_extra = nr_pages + 1;
  3020. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3021. /*
  3022. * Increase the limit linearly with more CPUs:
  3023. */
  3024. user_lock_limit *= num_online_cpus();
  3025. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3026. extra = 0;
  3027. if (user_locked > user_lock_limit)
  3028. extra = user_locked - user_lock_limit;
  3029. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3030. lock_limit >>= PAGE_SHIFT;
  3031. locked = vma->vm_mm->pinned_vm + extra;
  3032. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3033. !capable(CAP_IPC_LOCK)) {
  3034. ret = -EPERM;
  3035. goto unlock;
  3036. }
  3037. WARN_ON(event->rb);
  3038. if (vma->vm_flags & VM_WRITE)
  3039. flags |= RING_BUFFER_WRITABLE;
  3040. rb = rb_alloc(nr_pages,
  3041. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3042. event->cpu, flags);
  3043. if (!rb) {
  3044. ret = -ENOMEM;
  3045. goto unlock;
  3046. }
  3047. rcu_assign_pointer(event->rb, rb);
  3048. atomic_long_add(user_extra, &user->locked_vm);
  3049. event->mmap_locked = extra;
  3050. event->mmap_user = get_current_user();
  3051. vma->vm_mm->pinned_vm += event->mmap_locked;
  3052. perf_event_update_userpage(event);
  3053. unlock:
  3054. if (!ret)
  3055. atomic_inc(&event->mmap_count);
  3056. mutex_unlock(&event->mmap_mutex);
  3057. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  3058. vma->vm_ops = &perf_mmap_vmops;
  3059. return ret;
  3060. }
  3061. static int perf_fasync(int fd, struct file *filp, int on)
  3062. {
  3063. struct inode *inode = file_inode(filp);
  3064. struct perf_event *event = filp->private_data;
  3065. int retval;
  3066. mutex_lock(&inode->i_mutex);
  3067. retval = fasync_helper(fd, filp, on, &event->fasync);
  3068. mutex_unlock(&inode->i_mutex);
  3069. if (retval < 0)
  3070. return retval;
  3071. return 0;
  3072. }
  3073. static const struct file_operations perf_fops = {
  3074. .llseek = no_llseek,
  3075. .release = perf_release,
  3076. .read = perf_read,
  3077. .poll = perf_poll,
  3078. .unlocked_ioctl = perf_ioctl,
  3079. .compat_ioctl = perf_ioctl,
  3080. .mmap = perf_mmap,
  3081. .fasync = perf_fasync,
  3082. };
  3083. /*
  3084. * Perf event wakeup
  3085. *
  3086. * If there's data, ensure we set the poll() state and publish everything
  3087. * to user-space before waking everybody up.
  3088. */
  3089. void perf_event_wakeup(struct perf_event *event)
  3090. {
  3091. ring_buffer_wakeup(event);
  3092. if (event->pending_kill) {
  3093. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3094. event->pending_kill = 0;
  3095. }
  3096. }
  3097. static void perf_pending_event(struct irq_work *entry)
  3098. {
  3099. struct perf_event *event = container_of(entry,
  3100. struct perf_event, pending);
  3101. if (event->pending_disable) {
  3102. event->pending_disable = 0;
  3103. __perf_event_disable(event);
  3104. }
  3105. if (event->pending_wakeup) {
  3106. event->pending_wakeup = 0;
  3107. perf_event_wakeup(event);
  3108. }
  3109. }
  3110. /*
  3111. * We assume there is only KVM supporting the callbacks.
  3112. * Later on, we might change it to a list if there is
  3113. * another virtualization implementation supporting the callbacks.
  3114. */
  3115. struct perf_guest_info_callbacks *perf_guest_cbs;
  3116. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3117. {
  3118. perf_guest_cbs = cbs;
  3119. return 0;
  3120. }
  3121. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3122. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3123. {
  3124. perf_guest_cbs = NULL;
  3125. return 0;
  3126. }
  3127. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3128. static void
  3129. perf_output_sample_regs(struct perf_output_handle *handle,
  3130. struct pt_regs *regs, u64 mask)
  3131. {
  3132. int bit;
  3133. for_each_set_bit(bit, (const unsigned long *) &mask,
  3134. sizeof(mask) * BITS_PER_BYTE) {
  3135. u64 val;
  3136. val = perf_reg_value(regs, bit);
  3137. perf_output_put(handle, val);
  3138. }
  3139. }
  3140. static void perf_sample_regs_user(struct perf_regs_user *regs_user,
  3141. struct pt_regs *regs)
  3142. {
  3143. if (!user_mode(regs)) {
  3144. if (current->mm)
  3145. regs = task_pt_regs(current);
  3146. else
  3147. regs = NULL;
  3148. }
  3149. if (regs) {
  3150. regs_user->regs = regs;
  3151. regs_user->abi = perf_reg_abi(current);
  3152. }
  3153. }
  3154. /*
  3155. * Get remaining task size from user stack pointer.
  3156. *
  3157. * It'd be better to take stack vma map and limit this more
  3158. * precisly, but there's no way to get it safely under interrupt,
  3159. * so using TASK_SIZE as limit.
  3160. */
  3161. static u64 perf_ustack_task_size(struct pt_regs *regs)
  3162. {
  3163. unsigned long addr = perf_user_stack_pointer(regs);
  3164. if (!addr || addr >= TASK_SIZE)
  3165. return 0;
  3166. return TASK_SIZE - addr;
  3167. }
  3168. static u16
  3169. perf_sample_ustack_size(u16 stack_size, u16 header_size,
  3170. struct pt_regs *regs)
  3171. {
  3172. u64 task_size;
  3173. /* No regs, no stack pointer, no dump. */
  3174. if (!regs)
  3175. return 0;
  3176. /*
  3177. * Check if we fit in with the requested stack size into the:
  3178. * - TASK_SIZE
  3179. * If we don't, we limit the size to the TASK_SIZE.
  3180. *
  3181. * - remaining sample size
  3182. * If we don't, we customize the stack size to
  3183. * fit in to the remaining sample size.
  3184. */
  3185. task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
  3186. stack_size = min(stack_size, (u16) task_size);
  3187. /* Current header size plus static size and dynamic size. */
  3188. header_size += 2 * sizeof(u64);
  3189. /* Do we fit in with the current stack dump size? */
  3190. if ((u16) (header_size + stack_size) < header_size) {
  3191. /*
  3192. * If we overflow the maximum size for the sample,
  3193. * we customize the stack dump size to fit in.
  3194. */
  3195. stack_size = USHRT_MAX - header_size - sizeof(u64);
  3196. stack_size = round_up(stack_size, sizeof(u64));
  3197. }
  3198. return stack_size;
  3199. }
  3200. static void
  3201. perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
  3202. struct pt_regs *regs)
  3203. {
  3204. /* Case of a kernel thread, nothing to dump */
  3205. if (!regs) {
  3206. u64 size = 0;
  3207. perf_output_put(handle, size);
  3208. } else {
  3209. unsigned long sp;
  3210. unsigned int rem;
  3211. u64 dyn_size;
  3212. /*
  3213. * We dump:
  3214. * static size
  3215. * - the size requested by user or the best one we can fit
  3216. * in to the sample max size
  3217. * data
  3218. * - user stack dump data
  3219. * dynamic size
  3220. * - the actual dumped size
  3221. */
  3222. /* Static size. */
  3223. perf_output_put(handle, dump_size);
  3224. /* Data. */
  3225. sp = perf_user_stack_pointer(regs);
  3226. rem = __output_copy_user(handle, (void *) sp, dump_size);
  3227. dyn_size = dump_size - rem;
  3228. perf_output_skip(handle, rem);
  3229. /* Dynamic size. */
  3230. perf_output_put(handle, dyn_size);
  3231. }
  3232. }
  3233. static void __perf_event_header__init_id(struct perf_event_header *header,
  3234. struct perf_sample_data *data,
  3235. struct perf_event *event)
  3236. {
  3237. u64 sample_type = event->attr.sample_type;
  3238. data->type = sample_type;
  3239. header->size += event->id_header_size;
  3240. if (sample_type & PERF_SAMPLE_TID) {
  3241. /* namespace issues */
  3242. data->tid_entry.pid = perf_event_pid(event, current);
  3243. data->tid_entry.tid = perf_event_tid(event, current);
  3244. }
  3245. if (sample_type & PERF_SAMPLE_TIME)
  3246. data->time = perf_clock();
  3247. if (sample_type & PERF_SAMPLE_ID)
  3248. data->id = primary_event_id(event);
  3249. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3250. data->stream_id = event->id;
  3251. if (sample_type & PERF_SAMPLE_CPU) {
  3252. data->cpu_entry.cpu = raw_smp_processor_id();
  3253. data->cpu_entry.reserved = 0;
  3254. }
  3255. }
  3256. void perf_event_header__init_id(struct perf_event_header *header,
  3257. struct perf_sample_data *data,
  3258. struct perf_event *event)
  3259. {
  3260. if (event->attr.sample_id_all)
  3261. __perf_event_header__init_id(header, data, event);
  3262. }
  3263. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3264. struct perf_sample_data *data)
  3265. {
  3266. u64 sample_type = data->type;
  3267. if (sample_type & PERF_SAMPLE_TID)
  3268. perf_output_put(handle, data->tid_entry);
  3269. if (sample_type & PERF_SAMPLE_TIME)
  3270. perf_output_put(handle, data->time);
  3271. if (sample_type & PERF_SAMPLE_ID)
  3272. perf_output_put(handle, data->id);
  3273. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3274. perf_output_put(handle, data->stream_id);
  3275. if (sample_type & PERF_SAMPLE_CPU)
  3276. perf_output_put(handle, data->cpu_entry);
  3277. }
  3278. void perf_event__output_id_sample(struct perf_event *event,
  3279. struct perf_output_handle *handle,
  3280. struct perf_sample_data *sample)
  3281. {
  3282. if (event->attr.sample_id_all)
  3283. __perf_event__output_id_sample(handle, sample);
  3284. }
  3285. static void perf_output_read_one(struct perf_output_handle *handle,
  3286. struct perf_event *event,
  3287. u64 enabled, u64 running)
  3288. {
  3289. u64 read_format = event->attr.read_format;
  3290. u64 values[4];
  3291. int n = 0;
  3292. values[n++] = perf_event_count(event);
  3293. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3294. values[n++] = enabled +
  3295. atomic64_read(&event->child_total_time_enabled);
  3296. }
  3297. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3298. values[n++] = running +
  3299. atomic64_read(&event->child_total_time_running);
  3300. }
  3301. if (read_format & PERF_FORMAT_ID)
  3302. values[n++] = primary_event_id(event);
  3303. __output_copy(handle, values, n * sizeof(u64));
  3304. }
  3305. /*
  3306. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3307. */
  3308. static void perf_output_read_group(struct perf_output_handle *handle,
  3309. struct perf_event *event,
  3310. u64 enabled, u64 running)
  3311. {
  3312. struct perf_event *leader = event->group_leader, *sub;
  3313. u64 read_format = event->attr.read_format;
  3314. u64 values[5];
  3315. int n = 0;
  3316. values[n++] = 1 + leader->nr_siblings;
  3317. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3318. values[n++] = enabled;
  3319. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3320. values[n++] = running;
  3321. if (leader != event)
  3322. leader->pmu->read(leader);
  3323. values[n++] = perf_event_count(leader);
  3324. if (read_format & PERF_FORMAT_ID)
  3325. values[n++] = primary_event_id(leader);
  3326. __output_copy(handle, values, n * sizeof(u64));
  3327. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3328. n = 0;
  3329. if (sub != event)
  3330. sub->pmu->read(sub);
  3331. values[n++] = perf_event_count(sub);
  3332. if (read_format & PERF_FORMAT_ID)
  3333. values[n++] = primary_event_id(sub);
  3334. __output_copy(handle, values, n * sizeof(u64));
  3335. }
  3336. }
  3337. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3338. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3339. static void perf_output_read(struct perf_output_handle *handle,
  3340. struct perf_event *event)
  3341. {
  3342. u64 enabled = 0, running = 0, now;
  3343. u64 read_format = event->attr.read_format;
  3344. /*
  3345. * compute total_time_enabled, total_time_running
  3346. * based on snapshot values taken when the event
  3347. * was last scheduled in.
  3348. *
  3349. * we cannot simply called update_context_time()
  3350. * because of locking issue as we are called in
  3351. * NMI context
  3352. */
  3353. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3354. calc_timer_values(event, &now, &enabled, &running);
  3355. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3356. perf_output_read_group(handle, event, enabled, running);
  3357. else
  3358. perf_output_read_one(handle, event, enabled, running);
  3359. }
  3360. void perf_output_sample(struct perf_output_handle *handle,
  3361. struct perf_event_header *header,
  3362. struct perf_sample_data *data,
  3363. struct perf_event *event)
  3364. {
  3365. u64 sample_type = data->type;
  3366. perf_output_put(handle, *header);
  3367. if (sample_type & PERF_SAMPLE_IP)
  3368. perf_output_put(handle, data->ip);
  3369. if (sample_type & PERF_SAMPLE_TID)
  3370. perf_output_put(handle, data->tid_entry);
  3371. if (sample_type & PERF_SAMPLE_TIME)
  3372. perf_output_put(handle, data->time);
  3373. if (sample_type & PERF_SAMPLE_ADDR)
  3374. perf_output_put(handle, data->addr);
  3375. if (sample_type & PERF_SAMPLE_ID)
  3376. perf_output_put(handle, data->id);
  3377. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3378. perf_output_put(handle, data->stream_id);
  3379. if (sample_type & PERF_SAMPLE_CPU)
  3380. perf_output_put(handle, data->cpu_entry);
  3381. if (sample_type & PERF_SAMPLE_PERIOD)
  3382. perf_output_put(handle, data->period);
  3383. if (sample_type & PERF_SAMPLE_READ)
  3384. perf_output_read(handle, event);
  3385. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3386. if (data->callchain) {
  3387. int size = 1;
  3388. if (data->callchain)
  3389. size += data->callchain->nr;
  3390. size *= sizeof(u64);
  3391. __output_copy(handle, data->callchain, size);
  3392. } else {
  3393. u64 nr = 0;
  3394. perf_output_put(handle, nr);
  3395. }
  3396. }
  3397. if (sample_type & PERF_SAMPLE_RAW) {
  3398. if (data->raw) {
  3399. perf_output_put(handle, data->raw->size);
  3400. __output_copy(handle, data->raw->data,
  3401. data->raw->size);
  3402. } else {
  3403. struct {
  3404. u32 size;
  3405. u32 data;
  3406. } raw = {
  3407. .size = sizeof(u32),
  3408. .data = 0,
  3409. };
  3410. perf_output_put(handle, raw);
  3411. }
  3412. }
  3413. if (!event->attr.watermark) {
  3414. int wakeup_events = event->attr.wakeup_events;
  3415. if (wakeup_events) {
  3416. struct ring_buffer *rb = handle->rb;
  3417. int events = local_inc_return(&rb->events);
  3418. if (events >= wakeup_events) {
  3419. local_sub(wakeup_events, &rb->events);
  3420. local_inc(&rb->wakeup);
  3421. }
  3422. }
  3423. }
  3424. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3425. if (data->br_stack) {
  3426. size_t size;
  3427. size = data->br_stack->nr
  3428. * sizeof(struct perf_branch_entry);
  3429. perf_output_put(handle, data->br_stack->nr);
  3430. perf_output_copy(handle, data->br_stack->entries, size);
  3431. } else {
  3432. /*
  3433. * we always store at least the value of nr
  3434. */
  3435. u64 nr = 0;
  3436. perf_output_put(handle, nr);
  3437. }
  3438. }
  3439. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3440. u64 abi = data->regs_user.abi;
  3441. /*
  3442. * If there are no regs to dump, notice it through
  3443. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  3444. */
  3445. perf_output_put(handle, abi);
  3446. if (abi) {
  3447. u64 mask = event->attr.sample_regs_user;
  3448. perf_output_sample_regs(handle,
  3449. data->regs_user.regs,
  3450. mask);
  3451. }
  3452. }
  3453. if (sample_type & PERF_SAMPLE_STACK_USER)
  3454. perf_output_sample_ustack(handle,
  3455. data->stack_user_size,
  3456. data->regs_user.regs);
  3457. }
  3458. void perf_prepare_sample(struct perf_event_header *header,
  3459. struct perf_sample_data *data,
  3460. struct perf_event *event,
  3461. struct pt_regs *regs)
  3462. {
  3463. u64 sample_type = event->attr.sample_type;
  3464. header->type = PERF_RECORD_SAMPLE;
  3465. header->size = sizeof(*header) + event->header_size;
  3466. header->misc = 0;
  3467. header->misc |= perf_misc_flags(regs);
  3468. __perf_event_header__init_id(header, data, event);
  3469. if (sample_type & PERF_SAMPLE_IP)
  3470. data->ip = perf_instruction_pointer(regs);
  3471. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3472. int size = 1;
  3473. data->callchain = perf_callchain(event, regs);
  3474. if (data->callchain)
  3475. size += data->callchain->nr;
  3476. header->size += size * sizeof(u64);
  3477. }
  3478. if (sample_type & PERF_SAMPLE_RAW) {
  3479. int size = sizeof(u32);
  3480. if (data->raw)
  3481. size += data->raw->size;
  3482. else
  3483. size += sizeof(u32);
  3484. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3485. header->size += size;
  3486. }
  3487. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3488. int size = sizeof(u64); /* nr */
  3489. if (data->br_stack) {
  3490. size += data->br_stack->nr
  3491. * sizeof(struct perf_branch_entry);
  3492. }
  3493. header->size += size;
  3494. }
  3495. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3496. /* regs dump ABI info */
  3497. int size = sizeof(u64);
  3498. perf_sample_regs_user(&data->regs_user, regs);
  3499. if (data->regs_user.regs) {
  3500. u64 mask = event->attr.sample_regs_user;
  3501. size += hweight64(mask) * sizeof(u64);
  3502. }
  3503. header->size += size;
  3504. }
  3505. if (sample_type & PERF_SAMPLE_STACK_USER) {
  3506. /*
  3507. * Either we need PERF_SAMPLE_STACK_USER bit to be allways
  3508. * processed as the last one or have additional check added
  3509. * in case new sample type is added, because we could eat
  3510. * up the rest of the sample size.
  3511. */
  3512. struct perf_regs_user *uregs = &data->regs_user;
  3513. u16 stack_size = event->attr.sample_stack_user;
  3514. u16 size = sizeof(u64);
  3515. if (!uregs->abi)
  3516. perf_sample_regs_user(uregs, regs);
  3517. stack_size = perf_sample_ustack_size(stack_size, header->size,
  3518. uregs->regs);
  3519. /*
  3520. * If there is something to dump, add space for the dump
  3521. * itself and for the field that tells the dynamic size,
  3522. * which is how many have been actually dumped.
  3523. */
  3524. if (stack_size)
  3525. size += sizeof(u64) + stack_size;
  3526. data->stack_user_size = stack_size;
  3527. header->size += size;
  3528. }
  3529. }
  3530. static void perf_event_output(struct perf_event *event,
  3531. struct perf_sample_data *data,
  3532. struct pt_regs *regs)
  3533. {
  3534. struct perf_output_handle handle;
  3535. struct perf_event_header header;
  3536. /* protect the callchain buffers */
  3537. rcu_read_lock();
  3538. perf_prepare_sample(&header, data, event, regs);
  3539. if (perf_output_begin(&handle, event, header.size))
  3540. goto exit;
  3541. perf_output_sample(&handle, &header, data, event);
  3542. perf_output_end(&handle);
  3543. exit:
  3544. rcu_read_unlock();
  3545. }
  3546. /*
  3547. * read event_id
  3548. */
  3549. struct perf_read_event {
  3550. struct perf_event_header header;
  3551. u32 pid;
  3552. u32 tid;
  3553. };
  3554. static void
  3555. perf_event_read_event(struct perf_event *event,
  3556. struct task_struct *task)
  3557. {
  3558. struct perf_output_handle handle;
  3559. struct perf_sample_data sample;
  3560. struct perf_read_event read_event = {
  3561. .header = {
  3562. .type = PERF_RECORD_READ,
  3563. .misc = 0,
  3564. .size = sizeof(read_event) + event->read_size,
  3565. },
  3566. .pid = perf_event_pid(event, task),
  3567. .tid = perf_event_tid(event, task),
  3568. };
  3569. int ret;
  3570. perf_event_header__init_id(&read_event.header, &sample, event);
  3571. ret = perf_output_begin(&handle, event, read_event.header.size);
  3572. if (ret)
  3573. return;
  3574. perf_output_put(&handle, read_event);
  3575. perf_output_read(&handle, event);
  3576. perf_event__output_id_sample(event, &handle, &sample);
  3577. perf_output_end(&handle);
  3578. }
  3579. /*
  3580. * task tracking -- fork/exit
  3581. *
  3582. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3583. */
  3584. struct perf_task_event {
  3585. struct task_struct *task;
  3586. struct perf_event_context *task_ctx;
  3587. struct {
  3588. struct perf_event_header header;
  3589. u32 pid;
  3590. u32 ppid;
  3591. u32 tid;
  3592. u32 ptid;
  3593. u64 time;
  3594. } event_id;
  3595. };
  3596. static void perf_event_task_output(struct perf_event *event,
  3597. struct perf_task_event *task_event)
  3598. {
  3599. struct perf_output_handle handle;
  3600. struct perf_sample_data sample;
  3601. struct task_struct *task = task_event->task;
  3602. int ret, size = task_event->event_id.header.size;
  3603. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3604. ret = perf_output_begin(&handle, event,
  3605. task_event->event_id.header.size);
  3606. if (ret)
  3607. goto out;
  3608. task_event->event_id.pid = perf_event_pid(event, task);
  3609. task_event->event_id.ppid = perf_event_pid(event, current);
  3610. task_event->event_id.tid = perf_event_tid(event, task);
  3611. task_event->event_id.ptid = perf_event_tid(event, current);
  3612. perf_output_put(&handle, task_event->event_id);
  3613. perf_event__output_id_sample(event, &handle, &sample);
  3614. perf_output_end(&handle);
  3615. out:
  3616. task_event->event_id.header.size = size;
  3617. }
  3618. static int perf_event_task_match(struct perf_event *event)
  3619. {
  3620. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3621. return 0;
  3622. if (!event_filter_match(event))
  3623. return 0;
  3624. if (event->attr.comm || event->attr.mmap ||
  3625. event->attr.mmap_data || event->attr.task)
  3626. return 1;
  3627. return 0;
  3628. }
  3629. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3630. struct perf_task_event *task_event)
  3631. {
  3632. struct perf_event *event;
  3633. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3634. if (perf_event_task_match(event))
  3635. perf_event_task_output(event, task_event);
  3636. }
  3637. }
  3638. static void perf_event_task_event(struct perf_task_event *task_event)
  3639. {
  3640. struct perf_cpu_context *cpuctx;
  3641. struct perf_event_context *ctx;
  3642. struct pmu *pmu;
  3643. int ctxn;
  3644. rcu_read_lock();
  3645. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3646. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3647. if (cpuctx->unique_pmu != pmu)
  3648. goto next;
  3649. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3650. ctx = task_event->task_ctx;
  3651. if (!ctx) {
  3652. ctxn = pmu->task_ctx_nr;
  3653. if (ctxn < 0)
  3654. goto next;
  3655. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3656. if (ctx)
  3657. perf_event_task_ctx(ctx, task_event);
  3658. }
  3659. next:
  3660. put_cpu_ptr(pmu->pmu_cpu_context);
  3661. }
  3662. if (task_event->task_ctx)
  3663. perf_event_task_ctx(task_event->task_ctx, task_event);
  3664. rcu_read_unlock();
  3665. }
  3666. static void perf_event_task(struct task_struct *task,
  3667. struct perf_event_context *task_ctx,
  3668. int new)
  3669. {
  3670. struct perf_task_event task_event;
  3671. if (!atomic_read(&nr_comm_events) &&
  3672. !atomic_read(&nr_mmap_events) &&
  3673. !atomic_read(&nr_task_events))
  3674. return;
  3675. task_event = (struct perf_task_event){
  3676. .task = task,
  3677. .task_ctx = task_ctx,
  3678. .event_id = {
  3679. .header = {
  3680. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3681. .misc = 0,
  3682. .size = sizeof(task_event.event_id),
  3683. },
  3684. /* .pid */
  3685. /* .ppid */
  3686. /* .tid */
  3687. /* .ptid */
  3688. .time = perf_clock(),
  3689. },
  3690. };
  3691. perf_event_task_event(&task_event);
  3692. }
  3693. void perf_event_fork(struct task_struct *task)
  3694. {
  3695. perf_event_task(task, NULL, 1);
  3696. }
  3697. /*
  3698. * comm tracking
  3699. */
  3700. struct perf_comm_event {
  3701. struct task_struct *task;
  3702. char *comm;
  3703. int comm_size;
  3704. struct {
  3705. struct perf_event_header header;
  3706. u32 pid;
  3707. u32 tid;
  3708. } event_id;
  3709. };
  3710. static void perf_event_comm_output(struct perf_event *event,
  3711. struct perf_comm_event *comm_event)
  3712. {
  3713. struct perf_output_handle handle;
  3714. struct perf_sample_data sample;
  3715. int size = comm_event->event_id.header.size;
  3716. int ret;
  3717. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3718. ret = perf_output_begin(&handle, event,
  3719. comm_event->event_id.header.size);
  3720. if (ret)
  3721. goto out;
  3722. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3723. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3724. perf_output_put(&handle, comm_event->event_id);
  3725. __output_copy(&handle, comm_event->comm,
  3726. comm_event->comm_size);
  3727. perf_event__output_id_sample(event, &handle, &sample);
  3728. perf_output_end(&handle);
  3729. out:
  3730. comm_event->event_id.header.size = size;
  3731. }
  3732. static int perf_event_comm_match(struct perf_event *event)
  3733. {
  3734. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3735. return 0;
  3736. if (!event_filter_match(event))
  3737. return 0;
  3738. if (event->attr.comm)
  3739. return 1;
  3740. return 0;
  3741. }
  3742. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3743. struct perf_comm_event *comm_event)
  3744. {
  3745. struct perf_event *event;
  3746. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3747. if (perf_event_comm_match(event))
  3748. perf_event_comm_output(event, comm_event);
  3749. }
  3750. }
  3751. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3752. {
  3753. struct perf_cpu_context *cpuctx;
  3754. struct perf_event_context *ctx;
  3755. char comm[TASK_COMM_LEN];
  3756. unsigned int size;
  3757. struct pmu *pmu;
  3758. int ctxn;
  3759. memset(comm, 0, sizeof(comm));
  3760. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3761. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3762. comm_event->comm = comm;
  3763. comm_event->comm_size = size;
  3764. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3765. rcu_read_lock();
  3766. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3767. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3768. if (cpuctx->unique_pmu != pmu)
  3769. goto next;
  3770. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3771. ctxn = pmu->task_ctx_nr;
  3772. if (ctxn < 0)
  3773. goto next;
  3774. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3775. if (ctx)
  3776. perf_event_comm_ctx(ctx, comm_event);
  3777. next:
  3778. put_cpu_ptr(pmu->pmu_cpu_context);
  3779. }
  3780. rcu_read_unlock();
  3781. }
  3782. void perf_event_comm(struct task_struct *task)
  3783. {
  3784. struct perf_comm_event comm_event;
  3785. struct perf_event_context *ctx;
  3786. int ctxn;
  3787. for_each_task_context_nr(ctxn) {
  3788. ctx = task->perf_event_ctxp[ctxn];
  3789. if (!ctx)
  3790. continue;
  3791. perf_event_enable_on_exec(ctx);
  3792. }
  3793. if (!atomic_read(&nr_comm_events))
  3794. return;
  3795. comm_event = (struct perf_comm_event){
  3796. .task = task,
  3797. /* .comm */
  3798. /* .comm_size */
  3799. .event_id = {
  3800. .header = {
  3801. .type = PERF_RECORD_COMM,
  3802. .misc = 0,
  3803. /* .size */
  3804. },
  3805. /* .pid */
  3806. /* .tid */
  3807. },
  3808. };
  3809. perf_event_comm_event(&comm_event);
  3810. }
  3811. /*
  3812. * mmap tracking
  3813. */
  3814. struct perf_mmap_event {
  3815. struct vm_area_struct *vma;
  3816. const char *file_name;
  3817. int file_size;
  3818. struct {
  3819. struct perf_event_header header;
  3820. u32 pid;
  3821. u32 tid;
  3822. u64 start;
  3823. u64 len;
  3824. u64 pgoff;
  3825. } event_id;
  3826. };
  3827. static void perf_event_mmap_output(struct perf_event *event,
  3828. struct perf_mmap_event *mmap_event)
  3829. {
  3830. struct perf_output_handle handle;
  3831. struct perf_sample_data sample;
  3832. int size = mmap_event->event_id.header.size;
  3833. int ret;
  3834. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3835. ret = perf_output_begin(&handle, event,
  3836. mmap_event->event_id.header.size);
  3837. if (ret)
  3838. goto out;
  3839. mmap_event->event_id.pid = perf_event_pid(event, current);
  3840. mmap_event->event_id.tid = perf_event_tid(event, current);
  3841. perf_output_put(&handle, mmap_event->event_id);
  3842. __output_copy(&handle, mmap_event->file_name,
  3843. mmap_event->file_size);
  3844. perf_event__output_id_sample(event, &handle, &sample);
  3845. perf_output_end(&handle);
  3846. out:
  3847. mmap_event->event_id.header.size = size;
  3848. }
  3849. static int perf_event_mmap_match(struct perf_event *event,
  3850. struct perf_mmap_event *mmap_event,
  3851. int executable)
  3852. {
  3853. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3854. return 0;
  3855. if (!event_filter_match(event))
  3856. return 0;
  3857. if ((!executable && event->attr.mmap_data) ||
  3858. (executable && event->attr.mmap))
  3859. return 1;
  3860. return 0;
  3861. }
  3862. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3863. struct perf_mmap_event *mmap_event,
  3864. int executable)
  3865. {
  3866. struct perf_event *event;
  3867. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3868. if (perf_event_mmap_match(event, mmap_event, executable))
  3869. perf_event_mmap_output(event, mmap_event);
  3870. }
  3871. }
  3872. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3873. {
  3874. struct perf_cpu_context *cpuctx;
  3875. struct perf_event_context *ctx;
  3876. struct vm_area_struct *vma = mmap_event->vma;
  3877. struct file *file = vma->vm_file;
  3878. unsigned int size;
  3879. char tmp[16];
  3880. char *buf = NULL;
  3881. const char *name;
  3882. struct pmu *pmu;
  3883. int ctxn;
  3884. memset(tmp, 0, sizeof(tmp));
  3885. if (file) {
  3886. /*
  3887. * d_path works from the end of the rb backwards, so we
  3888. * need to add enough zero bytes after the string to handle
  3889. * the 64bit alignment we do later.
  3890. */
  3891. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3892. if (!buf) {
  3893. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3894. goto got_name;
  3895. }
  3896. name = d_path(&file->f_path, buf, PATH_MAX);
  3897. if (IS_ERR(name)) {
  3898. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3899. goto got_name;
  3900. }
  3901. } else {
  3902. if (arch_vma_name(mmap_event->vma)) {
  3903. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3904. sizeof(tmp));
  3905. goto got_name;
  3906. }
  3907. if (!vma->vm_mm) {
  3908. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3909. goto got_name;
  3910. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3911. vma->vm_end >= vma->vm_mm->brk) {
  3912. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3913. goto got_name;
  3914. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3915. vma->vm_end >= vma->vm_mm->start_stack) {
  3916. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3917. goto got_name;
  3918. }
  3919. name = strncpy(tmp, "//anon", sizeof(tmp));
  3920. goto got_name;
  3921. }
  3922. got_name:
  3923. size = ALIGN(strlen(name)+1, sizeof(u64));
  3924. mmap_event->file_name = name;
  3925. mmap_event->file_size = size;
  3926. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3927. rcu_read_lock();
  3928. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3929. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3930. if (cpuctx->unique_pmu != pmu)
  3931. goto next;
  3932. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3933. vma->vm_flags & VM_EXEC);
  3934. ctxn = pmu->task_ctx_nr;
  3935. if (ctxn < 0)
  3936. goto next;
  3937. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3938. if (ctx) {
  3939. perf_event_mmap_ctx(ctx, mmap_event,
  3940. vma->vm_flags & VM_EXEC);
  3941. }
  3942. next:
  3943. put_cpu_ptr(pmu->pmu_cpu_context);
  3944. }
  3945. rcu_read_unlock();
  3946. kfree(buf);
  3947. }
  3948. void perf_event_mmap(struct vm_area_struct *vma)
  3949. {
  3950. struct perf_mmap_event mmap_event;
  3951. if (!atomic_read(&nr_mmap_events))
  3952. return;
  3953. mmap_event = (struct perf_mmap_event){
  3954. .vma = vma,
  3955. /* .file_name */
  3956. /* .file_size */
  3957. .event_id = {
  3958. .header = {
  3959. .type = PERF_RECORD_MMAP,
  3960. .misc = PERF_RECORD_MISC_USER,
  3961. /* .size */
  3962. },
  3963. /* .pid */
  3964. /* .tid */
  3965. .start = vma->vm_start,
  3966. .len = vma->vm_end - vma->vm_start,
  3967. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3968. },
  3969. };
  3970. perf_event_mmap_event(&mmap_event);
  3971. }
  3972. /*
  3973. * IRQ throttle logging
  3974. */
  3975. static void perf_log_throttle(struct perf_event *event, int enable)
  3976. {
  3977. struct perf_output_handle handle;
  3978. struct perf_sample_data sample;
  3979. int ret;
  3980. struct {
  3981. struct perf_event_header header;
  3982. u64 time;
  3983. u64 id;
  3984. u64 stream_id;
  3985. } throttle_event = {
  3986. .header = {
  3987. .type = PERF_RECORD_THROTTLE,
  3988. .misc = 0,
  3989. .size = sizeof(throttle_event),
  3990. },
  3991. .time = perf_clock(),
  3992. .id = primary_event_id(event),
  3993. .stream_id = event->id,
  3994. };
  3995. if (enable)
  3996. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  3997. perf_event_header__init_id(&throttle_event.header, &sample, event);
  3998. ret = perf_output_begin(&handle, event,
  3999. throttle_event.header.size);
  4000. if (ret)
  4001. return;
  4002. perf_output_put(&handle, throttle_event);
  4003. perf_event__output_id_sample(event, &handle, &sample);
  4004. perf_output_end(&handle);
  4005. }
  4006. /*
  4007. * Generic event overflow handling, sampling.
  4008. */
  4009. static int __perf_event_overflow(struct perf_event *event,
  4010. int throttle, struct perf_sample_data *data,
  4011. struct pt_regs *regs)
  4012. {
  4013. int events = atomic_read(&event->event_limit);
  4014. struct hw_perf_event *hwc = &event->hw;
  4015. u64 seq;
  4016. int ret = 0;
  4017. /*
  4018. * Non-sampling counters might still use the PMI to fold short
  4019. * hardware counters, ignore those.
  4020. */
  4021. if (unlikely(!is_sampling_event(event)))
  4022. return 0;
  4023. seq = __this_cpu_read(perf_throttled_seq);
  4024. if (seq != hwc->interrupts_seq) {
  4025. hwc->interrupts_seq = seq;
  4026. hwc->interrupts = 1;
  4027. } else {
  4028. hwc->interrupts++;
  4029. if (unlikely(throttle
  4030. && hwc->interrupts >= max_samples_per_tick)) {
  4031. __this_cpu_inc(perf_throttled_count);
  4032. hwc->interrupts = MAX_INTERRUPTS;
  4033. perf_log_throttle(event, 0);
  4034. ret = 1;
  4035. }
  4036. }
  4037. if (event->attr.freq) {
  4038. u64 now = perf_clock();
  4039. s64 delta = now - hwc->freq_time_stamp;
  4040. hwc->freq_time_stamp = now;
  4041. if (delta > 0 && delta < 2*TICK_NSEC)
  4042. perf_adjust_period(event, delta, hwc->last_period, true);
  4043. }
  4044. /*
  4045. * XXX event_limit might not quite work as expected on inherited
  4046. * events
  4047. */
  4048. event->pending_kill = POLL_IN;
  4049. if (events && atomic_dec_and_test(&event->event_limit)) {
  4050. ret = 1;
  4051. event->pending_kill = POLL_HUP;
  4052. event->pending_disable = 1;
  4053. irq_work_queue(&event->pending);
  4054. }
  4055. if (event->overflow_handler)
  4056. event->overflow_handler(event, data, regs);
  4057. else
  4058. perf_event_output(event, data, regs);
  4059. if (event->fasync && event->pending_kill) {
  4060. event->pending_wakeup = 1;
  4061. irq_work_queue(&event->pending);
  4062. }
  4063. return ret;
  4064. }
  4065. int perf_event_overflow(struct perf_event *event,
  4066. struct perf_sample_data *data,
  4067. struct pt_regs *regs)
  4068. {
  4069. return __perf_event_overflow(event, 1, data, regs);
  4070. }
  4071. /*
  4072. * Generic software event infrastructure
  4073. */
  4074. struct swevent_htable {
  4075. struct swevent_hlist *swevent_hlist;
  4076. struct mutex hlist_mutex;
  4077. int hlist_refcount;
  4078. /* Recursion avoidance in each contexts */
  4079. int recursion[PERF_NR_CONTEXTS];
  4080. };
  4081. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4082. /*
  4083. * We directly increment event->count and keep a second value in
  4084. * event->hw.period_left to count intervals. This period event
  4085. * is kept in the range [-sample_period, 0] so that we can use the
  4086. * sign as trigger.
  4087. */
  4088. static u64 perf_swevent_set_period(struct perf_event *event)
  4089. {
  4090. struct hw_perf_event *hwc = &event->hw;
  4091. u64 period = hwc->last_period;
  4092. u64 nr, offset;
  4093. s64 old, val;
  4094. hwc->last_period = hwc->sample_period;
  4095. again:
  4096. old = val = local64_read(&hwc->period_left);
  4097. if (val < 0)
  4098. return 0;
  4099. nr = div64_u64(period + val, period);
  4100. offset = nr * period;
  4101. val -= offset;
  4102. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4103. goto again;
  4104. return nr;
  4105. }
  4106. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4107. struct perf_sample_data *data,
  4108. struct pt_regs *regs)
  4109. {
  4110. struct hw_perf_event *hwc = &event->hw;
  4111. int throttle = 0;
  4112. if (!overflow)
  4113. overflow = perf_swevent_set_period(event);
  4114. if (hwc->interrupts == MAX_INTERRUPTS)
  4115. return;
  4116. for (; overflow; overflow--) {
  4117. if (__perf_event_overflow(event, throttle,
  4118. data, regs)) {
  4119. /*
  4120. * We inhibit the overflow from happening when
  4121. * hwc->interrupts == MAX_INTERRUPTS.
  4122. */
  4123. break;
  4124. }
  4125. throttle = 1;
  4126. }
  4127. }
  4128. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4129. struct perf_sample_data *data,
  4130. struct pt_regs *regs)
  4131. {
  4132. struct hw_perf_event *hwc = &event->hw;
  4133. local64_add(nr, &event->count);
  4134. if (!regs)
  4135. return;
  4136. if (!is_sampling_event(event))
  4137. return;
  4138. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  4139. data->period = nr;
  4140. return perf_swevent_overflow(event, 1, data, regs);
  4141. } else
  4142. data->period = event->hw.last_period;
  4143. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4144. return perf_swevent_overflow(event, 1, data, regs);
  4145. if (local64_add_negative(nr, &hwc->period_left))
  4146. return;
  4147. perf_swevent_overflow(event, 0, data, regs);
  4148. }
  4149. static int perf_exclude_event(struct perf_event *event,
  4150. struct pt_regs *regs)
  4151. {
  4152. if (event->hw.state & PERF_HES_STOPPED)
  4153. return 1;
  4154. if (regs) {
  4155. if (event->attr.exclude_user && user_mode(regs))
  4156. return 1;
  4157. if (event->attr.exclude_kernel && !user_mode(regs))
  4158. return 1;
  4159. }
  4160. return 0;
  4161. }
  4162. static int perf_swevent_match(struct perf_event *event,
  4163. enum perf_type_id type,
  4164. u32 event_id,
  4165. struct perf_sample_data *data,
  4166. struct pt_regs *regs)
  4167. {
  4168. if (event->attr.type != type)
  4169. return 0;
  4170. if (event->attr.config != event_id)
  4171. return 0;
  4172. if (perf_exclude_event(event, regs))
  4173. return 0;
  4174. return 1;
  4175. }
  4176. static inline u64 swevent_hash(u64 type, u32 event_id)
  4177. {
  4178. u64 val = event_id | (type << 32);
  4179. return hash_64(val, SWEVENT_HLIST_BITS);
  4180. }
  4181. static inline struct hlist_head *
  4182. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4183. {
  4184. u64 hash = swevent_hash(type, event_id);
  4185. return &hlist->heads[hash];
  4186. }
  4187. /* For the read side: events when they trigger */
  4188. static inline struct hlist_head *
  4189. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4190. {
  4191. struct swevent_hlist *hlist;
  4192. hlist = rcu_dereference(swhash->swevent_hlist);
  4193. if (!hlist)
  4194. return NULL;
  4195. return __find_swevent_head(hlist, type, event_id);
  4196. }
  4197. /* For the event head insertion and removal in the hlist */
  4198. static inline struct hlist_head *
  4199. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4200. {
  4201. struct swevent_hlist *hlist;
  4202. u32 event_id = event->attr.config;
  4203. u64 type = event->attr.type;
  4204. /*
  4205. * Event scheduling is always serialized against hlist allocation
  4206. * and release. Which makes the protected version suitable here.
  4207. * The context lock guarantees that.
  4208. */
  4209. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4210. lockdep_is_held(&event->ctx->lock));
  4211. if (!hlist)
  4212. return NULL;
  4213. return __find_swevent_head(hlist, type, event_id);
  4214. }
  4215. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4216. u64 nr,
  4217. struct perf_sample_data *data,
  4218. struct pt_regs *regs)
  4219. {
  4220. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4221. struct perf_event *event;
  4222. struct hlist_head *head;
  4223. rcu_read_lock();
  4224. head = find_swevent_head_rcu(swhash, type, event_id);
  4225. if (!head)
  4226. goto end;
  4227. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4228. if (perf_swevent_match(event, type, event_id, data, regs))
  4229. perf_swevent_event(event, nr, data, regs);
  4230. }
  4231. end:
  4232. rcu_read_unlock();
  4233. }
  4234. int perf_swevent_get_recursion_context(void)
  4235. {
  4236. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4237. return get_recursion_context(swhash->recursion);
  4238. }
  4239. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4240. inline void perf_swevent_put_recursion_context(int rctx)
  4241. {
  4242. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4243. put_recursion_context(swhash->recursion, rctx);
  4244. }
  4245. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4246. {
  4247. struct perf_sample_data data;
  4248. int rctx;
  4249. preempt_disable_notrace();
  4250. rctx = perf_swevent_get_recursion_context();
  4251. if (rctx < 0)
  4252. return;
  4253. perf_sample_data_init(&data, addr, 0);
  4254. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4255. perf_swevent_put_recursion_context(rctx);
  4256. preempt_enable_notrace();
  4257. }
  4258. static void perf_swevent_read(struct perf_event *event)
  4259. {
  4260. }
  4261. static int perf_swevent_add(struct perf_event *event, int flags)
  4262. {
  4263. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4264. struct hw_perf_event *hwc = &event->hw;
  4265. struct hlist_head *head;
  4266. if (is_sampling_event(event)) {
  4267. hwc->last_period = hwc->sample_period;
  4268. perf_swevent_set_period(event);
  4269. }
  4270. hwc->state = !(flags & PERF_EF_START);
  4271. head = find_swevent_head(swhash, event);
  4272. if (WARN_ON_ONCE(!head))
  4273. return -EINVAL;
  4274. hlist_add_head_rcu(&event->hlist_entry, head);
  4275. return 0;
  4276. }
  4277. static void perf_swevent_del(struct perf_event *event, int flags)
  4278. {
  4279. hlist_del_rcu(&event->hlist_entry);
  4280. }
  4281. static void perf_swevent_start(struct perf_event *event, int flags)
  4282. {
  4283. event->hw.state = 0;
  4284. }
  4285. static void perf_swevent_stop(struct perf_event *event, int flags)
  4286. {
  4287. event->hw.state = PERF_HES_STOPPED;
  4288. }
  4289. /* Deref the hlist from the update side */
  4290. static inline struct swevent_hlist *
  4291. swevent_hlist_deref(struct swevent_htable *swhash)
  4292. {
  4293. return rcu_dereference_protected(swhash->swevent_hlist,
  4294. lockdep_is_held(&swhash->hlist_mutex));
  4295. }
  4296. static void swevent_hlist_release(struct swevent_htable *swhash)
  4297. {
  4298. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4299. if (!hlist)
  4300. return;
  4301. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4302. kfree_rcu(hlist, rcu_head);
  4303. }
  4304. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4305. {
  4306. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4307. mutex_lock(&swhash->hlist_mutex);
  4308. if (!--swhash->hlist_refcount)
  4309. swevent_hlist_release(swhash);
  4310. mutex_unlock(&swhash->hlist_mutex);
  4311. }
  4312. static void swevent_hlist_put(struct perf_event *event)
  4313. {
  4314. int cpu;
  4315. if (event->cpu != -1) {
  4316. swevent_hlist_put_cpu(event, event->cpu);
  4317. return;
  4318. }
  4319. for_each_possible_cpu(cpu)
  4320. swevent_hlist_put_cpu(event, cpu);
  4321. }
  4322. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4323. {
  4324. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4325. int err = 0;
  4326. mutex_lock(&swhash->hlist_mutex);
  4327. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4328. struct swevent_hlist *hlist;
  4329. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4330. if (!hlist) {
  4331. err = -ENOMEM;
  4332. goto exit;
  4333. }
  4334. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4335. }
  4336. swhash->hlist_refcount++;
  4337. exit:
  4338. mutex_unlock(&swhash->hlist_mutex);
  4339. return err;
  4340. }
  4341. static int swevent_hlist_get(struct perf_event *event)
  4342. {
  4343. int err;
  4344. int cpu, failed_cpu;
  4345. if (event->cpu != -1)
  4346. return swevent_hlist_get_cpu(event, event->cpu);
  4347. get_online_cpus();
  4348. for_each_possible_cpu(cpu) {
  4349. err = swevent_hlist_get_cpu(event, cpu);
  4350. if (err) {
  4351. failed_cpu = cpu;
  4352. goto fail;
  4353. }
  4354. }
  4355. put_online_cpus();
  4356. return 0;
  4357. fail:
  4358. for_each_possible_cpu(cpu) {
  4359. if (cpu == failed_cpu)
  4360. break;
  4361. swevent_hlist_put_cpu(event, cpu);
  4362. }
  4363. put_online_cpus();
  4364. return err;
  4365. }
  4366. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4367. static void sw_perf_event_destroy(struct perf_event *event)
  4368. {
  4369. u64 event_id = event->attr.config;
  4370. WARN_ON(event->parent);
  4371. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  4372. swevent_hlist_put(event);
  4373. }
  4374. static int perf_swevent_init(struct perf_event *event)
  4375. {
  4376. int event_id = event->attr.config;
  4377. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4378. return -ENOENT;
  4379. /*
  4380. * no branch sampling for software events
  4381. */
  4382. if (has_branch_stack(event))
  4383. return -EOPNOTSUPP;
  4384. switch (event_id) {
  4385. case PERF_COUNT_SW_CPU_CLOCK:
  4386. case PERF_COUNT_SW_TASK_CLOCK:
  4387. return -ENOENT;
  4388. default:
  4389. break;
  4390. }
  4391. if (event_id >= PERF_COUNT_SW_MAX)
  4392. return -ENOENT;
  4393. if (!event->parent) {
  4394. int err;
  4395. err = swevent_hlist_get(event);
  4396. if (err)
  4397. return err;
  4398. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  4399. event->destroy = sw_perf_event_destroy;
  4400. }
  4401. return 0;
  4402. }
  4403. static int perf_swevent_event_idx(struct perf_event *event)
  4404. {
  4405. return 0;
  4406. }
  4407. static struct pmu perf_swevent = {
  4408. .task_ctx_nr = perf_sw_context,
  4409. .event_init = perf_swevent_init,
  4410. .add = perf_swevent_add,
  4411. .del = perf_swevent_del,
  4412. .start = perf_swevent_start,
  4413. .stop = perf_swevent_stop,
  4414. .read = perf_swevent_read,
  4415. .event_idx = perf_swevent_event_idx,
  4416. };
  4417. #ifdef CONFIG_EVENT_TRACING
  4418. static int perf_tp_filter_match(struct perf_event *event,
  4419. struct perf_sample_data *data)
  4420. {
  4421. void *record = data->raw->data;
  4422. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4423. return 1;
  4424. return 0;
  4425. }
  4426. static int perf_tp_event_match(struct perf_event *event,
  4427. struct perf_sample_data *data,
  4428. struct pt_regs *regs)
  4429. {
  4430. if (event->hw.state & PERF_HES_STOPPED)
  4431. return 0;
  4432. /*
  4433. * All tracepoints are from kernel-space.
  4434. */
  4435. if (event->attr.exclude_kernel)
  4436. return 0;
  4437. if (!perf_tp_filter_match(event, data))
  4438. return 0;
  4439. return 1;
  4440. }
  4441. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4442. struct pt_regs *regs, struct hlist_head *head, int rctx,
  4443. struct task_struct *task)
  4444. {
  4445. struct perf_sample_data data;
  4446. struct perf_event *event;
  4447. struct perf_raw_record raw = {
  4448. .size = entry_size,
  4449. .data = record,
  4450. };
  4451. perf_sample_data_init(&data, addr, 0);
  4452. data.raw = &raw;
  4453. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4454. if (perf_tp_event_match(event, &data, regs))
  4455. perf_swevent_event(event, count, &data, regs);
  4456. }
  4457. /*
  4458. * If we got specified a target task, also iterate its context and
  4459. * deliver this event there too.
  4460. */
  4461. if (task && task != current) {
  4462. struct perf_event_context *ctx;
  4463. struct trace_entry *entry = record;
  4464. rcu_read_lock();
  4465. ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
  4466. if (!ctx)
  4467. goto unlock;
  4468. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  4469. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4470. continue;
  4471. if (event->attr.config != entry->type)
  4472. continue;
  4473. if (perf_tp_event_match(event, &data, regs))
  4474. perf_swevent_event(event, count, &data, regs);
  4475. }
  4476. unlock:
  4477. rcu_read_unlock();
  4478. }
  4479. perf_swevent_put_recursion_context(rctx);
  4480. }
  4481. EXPORT_SYMBOL_GPL(perf_tp_event);
  4482. static void tp_perf_event_destroy(struct perf_event *event)
  4483. {
  4484. perf_trace_destroy(event);
  4485. }
  4486. static int perf_tp_event_init(struct perf_event *event)
  4487. {
  4488. int err;
  4489. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4490. return -ENOENT;
  4491. /*
  4492. * no branch sampling for tracepoint events
  4493. */
  4494. if (has_branch_stack(event))
  4495. return -EOPNOTSUPP;
  4496. err = perf_trace_init(event);
  4497. if (err)
  4498. return err;
  4499. event->destroy = tp_perf_event_destroy;
  4500. return 0;
  4501. }
  4502. static struct pmu perf_tracepoint = {
  4503. .task_ctx_nr = perf_sw_context,
  4504. .event_init = perf_tp_event_init,
  4505. .add = perf_trace_add,
  4506. .del = perf_trace_del,
  4507. .start = perf_swevent_start,
  4508. .stop = perf_swevent_stop,
  4509. .read = perf_swevent_read,
  4510. .event_idx = perf_swevent_event_idx,
  4511. };
  4512. static inline void perf_tp_register(void)
  4513. {
  4514. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4515. }
  4516. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4517. {
  4518. char *filter_str;
  4519. int ret;
  4520. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4521. return -EINVAL;
  4522. filter_str = strndup_user(arg, PAGE_SIZE);
  4523. if (IS_ERR(filter_str))
  4524. return PTR_ERR(filter_str);
  4525. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4526. kfree(filter_str);
  4527. return ret;
  4528. }
  4529. static void perf_event_free_filter(struct perf_event *event)
  4530. {
  4531. ftrace_profile_free_filter(event);
  4532. }
  4533. #else
  4534. static inline void perf_tp_register(void)
  4535. {
  4536. }
  4537. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4538. {
  4539. return -ENOENT;
  4540. }
  4541. static void perf_event_free_filter(struct perf_event *event)
  4542. {
  4543. }
  4544. #endif /* CONFIG_EVENT_TRACING */
  4545. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4546. void perf_bp_event(struct perf_event *bp, void *data)
  4547. {
  4548. struct perf_sample_data sample;
  4549. struct pt_regs *regs = data;
  4550. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  4551. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4552. perf_swevent_event(bp, 1, &sample, regs);
  4553. }
  4554. #endif
  4555. /*
  4556. * hrtimer based swevent callback
  4557. */
  4558. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4559. {
  4560. enum hrtimer_restart ret = HRTIMER_RESTART;
  4561. struct perf_sample_data data;
  4562. struct pt_regs *regs;
  4563. struct perf_event *event;
  4564. u64 period;
  4565. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4566. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4567. return HRTIMER_NORESTART;
  4568. event->pmu->read(event);
  4569. perf_sample_data_init(&data, 0, event->hw.last_period);
  4570. regs = get_irq_regs();
  4571. if (regs && !perf_exclude_event(event, regs)) {
  4572. if (!(event->attr.exclude_idle && is_idle_task(current)))
  4573. if (__perf_event_overflow(event, 1, &data, regs))
  4574. ret = HRTIMER_NORESTART;
  4575. }
  4576. period = max_t(u64, 10000, event->hw.sample_period);
  4577. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4578. return ret;
  4579. }
  4580. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4581. {
  4582. struct hw_perf_event *hwc = &event->hw;
  4583. s64 period;
  4584. if (!is_sampling_event(event))
  4585. return;
  4586. period = local64_read(&hwc->period_left);
  4587. if (period) {
  4588. if (period < 0)
  4589. period = 10000;
  4590. local64_set(&hwc->period_left, 0);
  4591. } else {
  4592. period = max_t(u64, 10000, hwc->sample_period);
  4593. }
  4594. __hrtimer_start_range_ns(&hwc->hrtimer,
  4595. ns_to_ktime(period), 0,
  4596. HRTIMER_MODE_REL_PINNED, 0);
  4597. }
  4598. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4599. {
  4600. struct hw_perf_event *hwc = &event->hw;
  4601. if (is_sampling_event(event)) {
  4602. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4603. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4604. hrtimer_cancel(&hwc->hrtimer);
  4605. }
  4606. }
  4607. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4608. {
  4609. struct hw_perf_event *hwc = &event->hw;
  4610. if (!is_sampling_event(event))
  4611. return;
  4612. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4613. hwc->hrtimer.function = perf_swevent_hrtimer;
  4614. /*
  4615. * Since hrtimers have a fixed rate, we can do a static freq->period
  4616. * mapping and avoid the whole period adjust feedback stuff.
  4617. */
  4618. if (event->attr.freq) {
  4619. long freq = event->attr.sample_freq;
  4620. event->attr.sample_period = NSEC_PER_SEC / freq;
  4621. hwc->sample_period = event->attr.sample_period;
  4622. local64_set(&hwc->period_left, hwc->sample_period);
  4623. hwc->last_period = hwc->sample_period;
  4624. event->attr.freq = 0;
  4625. }
  4626. }
  4627. /*
  4628. * Software event: cpu wall time clock
  4629. */
  4630. static void cpu_clock_event_update(struct perf_event *event)
  4631. {
  4632. s64 prev;
  4633. u64 now;
  4634. now = local_clock();
  4635. prev = local64_xchg(&event->hw.prev_count, now);
  4636. local64_add(now - prev, &event->count);
  4637. }
  4638. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4639. {
  4640. local64_set(&event->hw.prev_count, local_clock());
  4641. perf_swevent_start_hrtimer(event);
  4642. }
  4643. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4644. {
  4645. perf_swevent_cancel_hrtimer(event);
  4646. cpu_clock_event_update(event);
  4647. }
  4648. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4649. {
  4650. if (flags & PERF_EF_START)
  4651. cpu_clock_event_start(event, flags);
  4652. return 0;
  4653. }
  4654. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4655. {
  4656. cpu_clock_event_stop(event, flags);
  4657. }
  4658. static void cpu_clock_event_read(struct perf_event *event)
  4659. {
  4660. cpu_clock_event_update(event);
  4661. }
  4662. static int cpu_clock_event_init(struct perf_event *event)
  4663. {
  4664. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4665. return -ENOENT;
  4666. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4667. return -ENOENT;
  4668. /*
  4669. * no branch sampling for software events
  4670. */
  4671. if (has_branch_stack(event))
  4672. return -EOPNOTSUPP;
  4673. perf_swevent_init_hrtimer(event);
  4674. return 0;
  4675. }
  4676. static struct pmu perf_cpu_clock = {
  4677. .task_ctx_nr = perf_sw_context,
  4678. .event_init = cpu_clock_event_init,
  4679. .add = cpu_clock_event_add,
  4680. .del = cpu_clock_event_del,
  4681. .start = cpu_clock_event_start,
  4682. .stop = cpu_clock_event_stop,
  4683. .read = cpu_clock_event_read,
  4684. .event_idx = perf_swevent_event_idx,
  4685. };
  4686. /*
  4687. * Software event: task time clock
  4688. */
  4689. static void task_clock_event_update(struct perf_event *event, u64 now)
  4690. {
  4691. u64 prev;
  4692. s64 delta;
  4693. prev = local64_xchg(&event->hw.prev_count, now);
  4694. delta = now - prev;
  4695. local64_add(delta, &event->count);
  4696. }
  4697. static void task_clock_event_start(struct perf_event *event, int flags)
  4698. {
  4699. local64_set(&event->hw.prev_count, event->ctx->time);
  4700. perf_swevent_start_hrtimer(event);
  4701. }
  4702. static void task_clock_event_stop(struct perf_event *event, int flags)
  4703. {
  4704. perf_swevent_cancel_hrtimer(event);
  4705. task_clock_event_update(event, event->ctx->time);
  4706. }
  4707. static int task_clock_event_add(struct perf_event *event, int flags)
  4708. {
  4709. if (flags & PERF_EF_START)
  4710. task_clock_event_start(event, flags);
  4711. return 0;
  4712. }
  4713. static void task_clock_event_del(struct perf_event *event, int flags)
  4714. {
  4715. task_clock_event_stop(event, PERF_EF_UPDATE);
  4716. }
  4717. static void task_clock_event_read(struct perf_event *event)
  4718. {
  4719. u64 now = perf_clock();
  4720. u64 delta = now - event->ctx->timestamp;
  4721. u64 time = event->ctx->time + delta;
  4722. task_clock_event_update(event, time);
  4723. }
  4724. static int task_clock_event_init(struct perf_event *event)
  4725. {
  4726. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4727. return -ENOENT;
  4728. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4729. return -ENOENT;
  4730. /*
  4731. * no branch sampling for software events
  4732. */
  4733. if (has_branch_stack(event))
  4734. return -EOPNOTSUPP;
  4735. perf_swevent_init_hrtimer(event);
  4736. return 0;
  4737. }
  4738. static struct pmu perf_task_clock = {
  4739. .task_ctx_nr = perf_sw_context,
  4740. .event_init = task_clock_event_init,
  4741. .add = task_clock_event_add,
  4742. .del = task_clock_event_del,
  4743. .start = task_clock_event_start,
  4744. .stop = task_clock_event_stop,
  4745. .read = task_clock_event_read,
  4746. .event_idx = perf_swevent_event_idx,
  4747. };
  4748. static void perf_pmu_nop_void(struct pmu *pmu)
  4749. {
  4750. }
  4751. static int perf_pmu_nop_int(struct pmu *pmu)
  4752. {
  4753. return 0;
  4754. }
  4755. static void perf_pmu_start_txn(struct pmu *pmu)
  4756. {
  4757. perf_pmu_disable(pmu);
  4758. }
  4759. static int perf_pmu_commit_txn(struct pmu *pmu)
  4760. {
  4761. perf_pmu_enable(pmu);
  4762. return 0;
  4763. }
  4764. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4765. {
  4766. perf_pmu_enable(pmu);
  4767. }
  4768. static int perf_event_idx_default(struct perf_event *event)
  4769. {
  4770. return event->hw.idx + 1;
  4771. }
  4772. /*
  4773. * Ensures all contexts with the same task_ctx_nr have the same
  4774. * pmu_cpu_context too.
  4775. */
  4776. static void *find_pmu_context(int ctxn)
  4777. {
  4778. struct pmu *pmu;
  4779. if (ctxn < 0)
  4780. return NULL;
  4781. list_for_each_entry(pmu, &pmus, entry) {
  4782. if (pmu->task_ctx_nr == ctxn)
  4783. return pmu->pmu_cpu_context;
  4784. }
  4785. return NULL;
  4786. }
  4787. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4788. {
  4789. int cpu;
  4790. for_each_possible_cpu(cpu) {
  4791. struct perf_cpu_context *cpuctx;
  4792. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4793. if (cpuctx->unique_pmu == old_pmu)
  4794. cpuctx->unique_pmu = pmu;
  4795. }
  4796. }
  4797. static void free_pmu_context(struct pmu *pmu)
  4798. {
  4799. struct pmu *i;
  4800. mutex_lock(&pmus_lock);
  4801. /*
  4802. * Like a real lame refcount.
  4803. */
  4804. list_for_each_entry(i, &pmus, entry) {
  4805. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4806. update_pmu_context(i, pmu);
  4807. goto out;
  4808. }
  4809. }
  4810. free_percpu(pmu->pmu_cpu_context);
  4811. out:
  4812. mutex_unlock(&pmus_lock);
  4813. }
  4814. static struct idr pmu_idr;
  4815. static ssize_t
  4816. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4817. {
  4818. struct pmu *pmu = dev_get_drvdata(dev);
  4819. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4820. }
  4821. static struct device_attribute pmu_dev_attrs[] = {
  4822. __ATTR_RO(type),
  4823. __ATTR_NULL,
  4824. };
  4825. static int pmu_bus_running;
  4826. static struct bus_type pmu_bus = {
  4827. .name = "event_source",
  4828. .dev_attrs = pmu_dev_attrs,
  4829. };
  4830. static void pmu_dev_release(struct device *dev)
  4831. {
  4832. kfree(dev);
  4833. }
  4834. static int pmu_dev_alloc(struct pmu *pmu)
  4835. {
  4836. int ret = -ENOMEM;
  4837. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4838. if (!pmu->dev)
  4839. goto out;
  4840. pmu->dev->groups = pmu->attr_groups;
  4841. device_initialize(pmu->dev);
  4842. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4843. if (ret)
  4844. goto free_dev;
  4845. dev_set_drvdata(pmu->dev, pmu);
  4846. pmu->dev->bus = &pmu_bus;
  4847. pmu->dev->release = pmu_dev_release;
  4848. ret = device_add(pmu->dev);
  4849. if (ret)
  4850. goto free_dev;
  4851. out:
  4852. return ret;
  4853. free_dev:
  4854. put_device(pmu->dev);
  4855. goto out;
  4856. }
  4857. static struct lock_class_key cpuctx_mutex;
  4858. static struct lock_class_key cpuctx_lock;
  4859. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4860. {
  4861. int cpu, ret;
  4862. mutex_lock(&pmus_lock);
  4863. ret = -ENOMEM;
  4864. pmu->pmu_disable_count = alloc_percpu(int);
  4865. if (!pmu->pmu_disable_count)
  4866. goto unlock;
  4867. pmu->type = -1;
  4868. if (!name)
  4869. goto skip_type;
  4870. pmu->name = name;
  4871. if (type < 0) {
  4872. type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
  4873. if (type < 0) {
  4874. ret = type;
  4875. goto free_pdc;
  4876. }
  4877. }
  4878. pmu->type = type;
  4879. if (pmu_bus_running) {
  4880. ret = pmu_dev_alloc(pmu);
  4881. if (ret)
  4882. goto free_idr;
  4883. }
  4884. skip_type:
  4885. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4886. if (pmu->pmu_cpu_context)
  4887. goto got_cpu_context;
  4888. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4889. if (!pmu->pmu_cpu_context)
  4890. goto free_dev;
  4891. for_each_possible_cpu(cpu) {
  4892. struct perf_cpu_context *cpuctx;
  4893. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4894. __perf_event_init_context(&cpuctx->ctx);
  4895. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4896. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  4897. cpuctx->ctx.type = cpu_context;
  4898. cpuctx->ctx.pmu = pmu;
  4899. cpuctx->jiffies_interval = 1;
  4900. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4901. cpuctx->unique_pmu = pmu;
  4902. }
  4903. got_cpu_context:
  4904. if (!pmu->start_txn) {
  4905. if (pmu->pmu_enable) {
  4906. /*
  4907. * If we have pmu_enable/pmu_disable calls, install
  4908. * transaction stubs that use that to try and batch
  4909. * hardware accesses.
  4910. */
  4911. pmu->start_txn = perf_pmu_start_txn;
  4912. pmu->commit_txn = perf_pmu_commit_txn;
  4913. pmu->cancel_txn = perf_pmu_cancel_txn;
  4914. } else {
  4915. pmu->start_txn = perf_pmu_nop_void;
  4916. pmu->commit_txn = perf_pmu_nop_int;
  4917. pmu->cancel_txn = perf_pmu_nop_void;
  4918. }
  4919. }
  4920. if (!pmu->pmu_enable) {
  4921. pmu->pmu_enable = perf_pmu_nop_void;
  4922. pmu->pmu_disable = perf_pmu_nop_void;
  4923. }
  4924. if (!pmu->event_idx)
  4925. pmu->event_idx = perf_event_idx_default;
  4926. list_add_rcu(&pmu->entry, &pmus);
  4927. ret = 0;
  4928. unlock:
  4929. mutex_unlock(&pmus_lock);
  4930. return ret;
  4931. free_dev:
  4932. device_del(pmu->dev);
  4933. put_device(pmu->dev);
  4934. free_idr:
  4935. if (pmu->type >= PERF_TYPE_MAX)
  4936. idr_remove(&pmu_idr, pmu->type);
  4937. free_pdc:
  4938. free_percpu(pmu->pmu_disable_count);
  4939. goto unlock;
  4940. }
  4941. void perf_pmu_unregister(struct pmu *pmu)
  4942. {
  4943. mutex_lock(&pmus_lock);
  4944. list_del_rcu(&pmu->entry);
  4945. mutex_unlock(&pmus_lock);
  4946. /*
  4947. * We dereference the pmu list under both SRCU and regular RCU, so
  4948. * synchronize against both of those.
  4949. */
  4950. synchronize_srcu(&pmus_srcu);
  4951. synchronize_rcu();
  4952. free_percpu(pmu->pmu_disable_count);
  4953. if (pmu->type >= PERF_TYPE_MAX)
  4954. idr_remove(&pmu_idr, pmu->type);
  4955. device_del(pmu->dev);
  4956. put_device(pmu->dev);
  4957. free_pmu_context(pmu);
  4958. }
  4959. struct pmu *perf_init_event(struct perf_event *event)
  4960. {
  4961. struct pmu *pmu = NULL;
  4962. int idx;
  4963. int ret;
  4964. idx = srcu_read_lock(&pmus_srcu);
  4965. rcu_read_lock();
  4966. pmu = idr_find(&pmu_idr, event->attr.type);
  4967. rcu_read_unlock();
  4968. if (pmu) {
  4969. event->pmu = pmu;
  4970. ret = pmu->event_init(event);
  4971. if (ret)
  4972. pmu = ERR_PTR(ret);
  4973. goto unlock;
  4974. }
  4975. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4976. event->pmu = pmu;
  4977. ret = pmu->event_init(event);
  4978. if (!ret)
  4979. goto unlock;
  4980. if (ret != -ENOENT) {
  4981. pmu = ERR_PTR(ret);
  4982. goto unlock;
  4983. }
  4984. }
  4985. pmu = ERR_PTR(-ENOENT);
  4986. unlock:
  4987. srcu_read_unlock(&pmus_srcu, idx);
  4988. return pmu;
  4989. }
  4990. /*
  4991. * Allocate and initialize a event structure
  4992. */
  4993. static struct perf_event *
  4994. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4995. struct task_struct *task,
  4996. struct perf_event *group_leader,
  4997. struct perf_event *parent_event,
  4998. perf_overflow_handler_t overflow_handler,
  4999. void *context)
  5000. {
  5001. struct pmu *pmu;
  5002. struct perf_event *event;
  5003. struct hw_perf_event *hwc;
  5004. long err;
  5005. if ((unsigned)cpu >= nr_cpu_ids) {
  5006. if (!task || cpu != -1)
  5007. return ERR_PTR(-EINVAL);
  5008. }
  5009. event = kzalloc(sizeof(*event), GFP_KERNEL);
  5010. if (!event)
  5011. return ERR_PTR(-ENOMEM);
  5012. /*
  5013. * Single events are their own group leaders, with an
  5014. * empty sibling list:
  5015. */
  5016. if (!group_leader)
  5017. group_leader = event;
  5018. mutex_init(&event->child_mutex);
  5019. INIT_LIST_HEAD(&event->child_list);
  5020. INIT_LIST_HEAD(&event->group_entry);
  5021. INIT_LIST_HEAD(&event->event_entry);
  5022. INIT_LIST_HEAD(&event->sibling_list);
  5023. INIT_LIST_HEAD(&event->rb_entry);
  5024. init_waitqueue_head(&event->waitq);
  5025. init_irq_work(&event->pending, perf_pending_event);
  5026. mutex_init(&event->mmap_mutex);
  5027. atomic_long_set(&event->refcount, 1);
  5028. event->cpu = cpu;
  5029. event->attr = *attr;
  5030. event->group_leader = group_leader;
  5031. event->pmu = NULL;
  5032. event->oncpu = -1;
  5033. event->parent = parent_event;
  5034. event->ns = get_pid_ns(task_active_pid_ns(current));
  5035. event->id = atomic64_inc_return(&perf_event_id);
  5036. event->state = PERF_EVENT_STATE_INACTIVE;
  5037. if (task) {
  5038. event->attach_state = PERF_ATTACH_TASK;
  5039. if (attr->type == PERF_TYPE_TRACEPOINT)
  5040. event->hw.tp_target = task;
  5041. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5042. /*
  5043. * hw_breakpoint is a bit difficult here..
  5044. */
  5045. else if (attr->type == PERF_TYPE_BREAKPOINT)
  5046. event->hw.bp_target = task;
  5047. #endif
  5048. }
  5049. if (!overflow_handler && parent_event) {
  5050. overflow_handler = parent_event->overflow_handler;
  5051. context = parent_event->overflow_handler_context;
  5052. }
  5053. event->overflow_handler = overflow_handler;
  5054. event->overflow_handler_context = context;
  5055. perf_event__state_init(event);
  5056. pmu = NULL;
  5057. hwc = &event->hw;
  5058. hwc->sample_period = attr->sample_period;
  5059. if (attr->freq && attr->sample_freq)
  5060. hwc->sample_period = 1;
  5061. hwc->last_period = hwc->sample_period;
  5062. local64_set(&hwc->period_left, hwc->sample_period);
  5063. /*
  5064. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5065. */
  5066. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5067. goto done;
  5068. pmu = perf_init_event(event);
  5069. done:
  5070. err = 0;
  5071. if (!pmu)
  5072. err = -EINVAL;
  5073. else if (IS_ERR(pmu))
  5074. err = PTR_ERR(pmu);
  5075. if (err) {
  5076. if (event->ns)
  5077. put_pid_ns(event->ns);
  5078. kfree(event);
  5079. return ERR_PTR(err);
  5080. }
  5081. if (!event->parent) {
  5082. if (event->attach_state & PERF_ATTACH_TASK)
  5083. static_key_slow_inc(&perf_sched_events.key);
  5084. if (event->attr.mmap || event->attr.mmap_data)
  5085. atomic_inc(&nr_mmap_events);
  5086. if (event->attr.comm)
  5087. atomic_inc(&nr_comm_events);
  5088. if (event->attr.task)
  5089. atomic_inc(&nr_task_events);
  5090. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5091. err = get_callchain_buffers();
  5092. if (err) {
  5093. free_event(event);
  5094. return ERR_PTR(err);
  5095. }
  5096. }
  5097. if (has_branch_stack(event)) {
  5098. static_key_slow_inc(&perf_sched_events.key);
  5099. if (!(event->attach_state & PERF_ATTACH_TASK))
  5100. atomic_inc(&per_cpu(perf_branch_stack_events,
  5101. event->cpu));
  5102. }
  5103. }
  5104. return event;
  5105. }
  5106. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5107. struct perf_event_attr *attr)
  5108. {
  5109. u32 size;
  5110. int ret;
  5111. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5112. return -EFAULT;
  5113. /*
  5114. * zero the full structure, so that a short copy will be nice.
  5115. */
  5116. memset(attr, 0, sizeof(*attr));
  5117. ret = get_user(size, &uattr->size);
  5118. if (ret)
  5119. return ret;
  5120. if (size > PAGE_SIZE) /* silly large */
  5121. goto err_size;
  5122. if (!size) /* abi compat */
  5123. size = PERF_ATTR_SIZE_VER0;
  5124. if (size < PERF_ATTR_SIZE_VER0)
  5125. goto err_size;
  5126. /*
  5127. * If we're handed a bigger struct than we know of,
  5128. * ensure all the unknown bits are 0 - i.e. new
  5129. * user-space does not rely on any kernel feature
  5130. * extensions we dont know about yet.
  5131. */
  5132. if (size > sizeof(*attr)) {
  5133. unsigned char __user *addr;
  5134. unsigned char __user *end;
  5135. unsigned char val;
  5136. addr = (void __user *)uattr + sizeof(*attr);
  5137. end = (void __user *)uattr + size;
  5138. for (; addr < end; addr++) {
  5139. ret = get_user(val, addr);
  5140. if (ret)
  5141. return ret;
  5142. if (val)
  5143. goto err_size;
  5144. }
  5145. size = sizeof(*attr);
  5146. }
  5147. ret = copy_from_user(attr, uattr, size);
  5148. if (ret)
  5149. return -EFAULT;
  5150. if (attr->__reserved_1)
  5151. return -EINVAL;
  5152. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5153. return -EINVAL;
  5154. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5155. return -EINVAL;
  5156. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  5157. u64 mask = attr->branch_sample_type;
  5158. /* only using defined bits */
  5159. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  5160. return -EINVAL;
  5161. /* at least one branch bit must be set */
  5162. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  5163. return -EINVAL;
  5164. /* kernel level capture: check permissions */
  5165. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  5166. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5167. return -EACCES;
  5168. /* propagate priv level, when not set for branch */
  5169. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  5170. /* exclude_kernel checked on syscall entry */
  5171. if (!attr->exclude_kernel)
  5172. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  5173. if (!attr->exclude_user)
  5174. mask |= PERF_SAMPLE_BRANCH_USER;
  5175. if (!attr->exclude_hv)
  5176. mask |= PERF_SAMPLE_BRANCH_HV;
  5177. /*
  5178. * adjust user setting (for HW filter setup)
  5179. */
  5180. attr->branch_sample_type = mask;
  5181. }
  5182. }
  5183. if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
  5184. ret = perf_reg_validate(attr->sample_regs_user);
  5185. if (ret)
  5186. return ret;
  5187. }
  5188. if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
  5189. if (!arch_perf_have_user_stack_dump())
  5190. return -ENOSYS;
  5191. /*
  5192. * We have __u32 type for the size, but so far
  5193. * we can only use __u16 as maximum due to the
  5194. * __u16 sample size limit.
  5195. */
  5196. if (attr->sample_stack_user >= USHRT_MAX)
  5197. ret = -EINVAL;
  5198. else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
  5199. ret = -EINVAL;
  5200. }
  5201. out:
  5202. return ret;
  5203. err_size:
  5204. put_user(sizeof(*attr), &uattr->size);
  5205. ret = -E2BIG;
  5206. goto out;
  5207. }
  5208. static int
  5209. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5210. {
  5211. struct ring_buffer *rb = NULL, *old_rb = NULL;
  5212. int ret = -EINVAL;
  5213. if (!output_event)
  5214. goto set;
  5215. /* don't allow circular references */
  5216. if (event == output_event)
  5217. goto out;
  5218. /*
  5219. * Don't allow cross-cpu buffers
  5220. */
  5221. if (output_event->cpu != event->cpu)
  5222. goto out;
  5223. /*
  5224. * If its not a per-cpu rb, it must be the same task.
  5225. */
  5226. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5227. goto out;
  5228. set:
  5229. mutex_lock(&event->mmap_mutex);
  5230. /* Can't redirect output if we've got an active mmap() */
  5231. if (atomic_read(&event->mmap_count))
  5232. goto unlock;
  5233. if (output_event) {
  5234. /* get the rb we want to redirect to */
  5235. rb = ring_buffer_get(output_event);
  5236. if (!rb)
  5237. goto unlock;
  5238. }
  5239. old_rb = event->rb;
  5240. rcu_assign_pointer(event->rb, rb);
  5241. if (old_rb)
  5242. ring_buffer_detach(event, old_rb);
  5243. ret = 0;
  5244. unlock:
  5245. mutex_unlock(&event->mmap_mutex);
  5246. if (old_rb)
  5247. ring_buffer_put(old_rb);
  5248. out:
  5249. return ret;
  5250. }
  5251. /**
  5252. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5253. *
  5254. * @attr_uptr: event_id type attributes for monitoring/sampling
  5255. * @pid: target pid
  5256. * @cpu: target cpu
  5257. * @group_fd: group leader event fd
  5258. */
  5259. SYSCALL_DEFINE5(perf_event_open,
  5260. struct perf_event_attr __user *, attr_uptr,
  5261. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5262. {
  5263. struct perf_event *group_leader = NULL, *output_event = NULL;
  5264. struct perf_event *event, *sibling;
  5265. struct perf_event_attr attr;
  5266. struct perf_event_context *ctx;
  5267. struct file *event_file = NULL;
  5268. struct fd group = {NULL, 0};
  5269. struct task_struct *task = NULL;
  5270. struct pmu *pmu;
  5271. int event_fd;
  5272. int move_group = 0;
  5273. int err;
  5274. /* for future expandability... */
  5275. if (flags & ~PERF_FLAG_ALL)
  5276. return -EINVAL;
  5277. err = perf_copy_attr(attr_uptr, &attr);
  5278. if (err)
  5279. return err;
  5280. if (!attr.exclude_kernel) {
  5281. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5282. return -EACCES;
  5283. }
  5284. if (attr.freq) {
  5285. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5286. return -EINVAL;
  5287. }
  5288. /*
  5289. * In cgroup mode, the pid argument is used to pass the fd
  5290. * opened to the cgroup directory in cgroupfs. The cpu argument
  5291. * designates the cpu on which to monitor threads from that
  5292. * cgroup.
  5293. */
  5294. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5295. return -EINVAL;
  5296. event_fd = get_unused_fd();
  5297. if (event_fd < 0)
  5298. return event_fd;
  5299. if (group_fd != -1) {
  5300. err = perf_fget_light(group_fd, &group);
  5301. if (err)
  5302. goto err_fd;
  5303. group_leader = group.file->private_data;
  5304. if (flags & PERF_FLAG_FD_OUTPUT)
  5305. output_event = group_leader;
  5306. if (flags & PERF_FLAG_FD_NO_GROUP)
  5307. group_leader = NULL;
  5308. }
  5309. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5310. task = find_lively_task_by_vpid(pid);
  5311. if (IS_ERR(task)) {
  5312. err = PTR_ERR(task);
  5313. goto err_group_fd;
  5314. }
  5315. }
  5316. get_online_cpus();
  5317. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  5318. NULL, NULL);
  5319. if (IS_ERR(event)) {
  5320. err = PTR_ERR(event);
  5321. goto err_task;
  5322. }
  5323. if (flags & PERF_FLAG_PID_CGROUP) {
  5324. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5325. if (err)
  5326. goto err_alloc;
  5327. /*
  5328. * one more event:
  5329. * - that has cgroup constraint on event->cpu
  5330. * - that may need work on context switch
  5331. */
  5332. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  5333. static_key_slow_inc(&perf_sched_events.key);
  5334. }
  5335. /*
  5336. * Special case software events and allow them to be part of
  5337. * any hardware group.
  5338. */
  5339. pmu = event->pmu;
  5340. if (group_leader &&
  5341. (is_software_event(event) != is_software_event(group_leader))) {
  5342. if (is_software_event(event)) {
  5343. /*
  5344. * If event and group_leader are not both a software
  5345. * event, and event is, then group leader is not.
  5346. *
  5347. * Allow the addition of software events to !software
  5348. * groups, this is safe because software events never
  5349. * fail to schedule.
  5350. */
  5351. pmu = group_leader->pmu;
  5352. } else if (is_software_event(group_leader) &&
  5353. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5354. /*
  5355. * In case the group is a pure software group, and we
  5356. * try to add a hardware event, move the whole group to
  5357. * the hardware context.
  5358. */
  5359. move_group = 1;
  5360. }
  5361. }
  5362. /*
  5363. * Get the target context (task or percpu):
  5364. */
  5365. ctx = find_get_context(pmu, task, event->cpu);
  5366. if (IS_ERR(ctx)) {
  5367. err = PTR_ERR(ctx);
  5368. goto err_alloc;
  5369. }
  5370. if (task) {
  5371. put_task_struct(task);
  5372. task = NULL;
  5373. }
  5374. /*
  5375. * Look up the group leader (we will attach this event to it):
  5376. */
  5377. if (group_leader) {
  5378. err = -EINVAL;
  5379. /*
  5380. * Do not allow a recursive hierarchy (this new sibling
  5381. * becoming part of another group-sibling):
  5382. */
  5383. if (group_leader->group_leader != group_leader)
  5384. goto err_context;
  5385. /*
  5386. * Do not allow to attach to a group in a different
  5387. * task or CPU context:
  5388. */
  5389. if (move_group) {
  5390. if (group_leader->ctx->type != ctx->type)
  5391. goto err_context;
  5392. } else {
  5393. if (group_leader->ctx != ctx)
  5394. goto err_context;
  5395. }
  5396. /*
  5397. * Only a group leader can be exclusive or pinned
  5398. */
  5399. if (attr.exclusive || attr.pinned)
  5400. goto err_context;
  5401. }
  5402. if (output_event) {
  5403. err = perf_event_set_output(event, output_event);
  5404. if (err)
  5405. goto err_context;
  5406. }
  5407. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5408. if (IS_ERR(event_file)) {
  5409. err = PTR_ERR(event_file);
  5410. goto err_context;
  5411. }
  5412. if (move_group) {
  5413. struct perf_event_context *gctx = group_leader->ctx;
  5414. mutex_lock(&gctx->mutex);
  5415. perf_remove_from_context(group_leader);
  5416. /*
  5417. * Removing from the context ends up with disabled
  5418. * event. What we want here is event in the initial
  5419. * startup state, ready to be add into new context.
  5420. */
  5421. perf_event__state_init(group_leader);
  5422. list_for_each_entry(sibling, &group_leader->sibling_list,
  5423. group_entry) {
  5424. perf_remove_from_context(sibling);
  5425. perf_event__state_init(sibling);
  5426. put_ctx(gctx);
  5427. }
  5428. mutex_unlock(&gctx->mutex);
  5429. put_ctx(gctx);
  5430. }
  5431. WARN_ON_ONCE(ctx->parent_ctx);
  5432. mutex_lock(&ctx->mutex);
  5433. if (move_group) {
  5434. synchronize_rcu();
  5435. perf_install_in_context(ctx, group_leader, event->cpu);
  5436. get_ctx(ctx);
  5437. list_for_each_entry(sibling, &group_leader->sibling_list,
  5438. group_entry) {
  5439. perf_install_in_context(ctx, sibling, event->cpu);
  5440. get_ctx(ctx);
  5441. }
  5442. }
  5443. perf_install_in_context(ctx, event, event->cpu);
  5444. ++ctx->generation;
  5445. perf_unpin_context(ctx);
  5446. mutex_unlock(&ctx->mutex);
  5447. put_online_cpus();
  5448. event->owner = current;
  5449. mutex_lock(&current->perf_event_mutex);
  5450. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5451. mutex_unlock(&current->perf_event_mutex);
  5452. /*
  5453. * Precalculate sample_data sizes
  5454. */
  5455. perf_event__header_size(event);
  5456. perf_event__id_header_size(event);
  5457. /*
  5458. * Drop the reference on the group_event after placing the
  5459. * new event on the sibling_list. This ensures destruction
  5460. * of the group leader will find the pointer to itself in
  5461. * perf_group_detach().
  5462. */
  5463. fdput(group);
  5464. fd_install(event_fd, event_file);
  5465. return event_fd;
  5466. err_context:
  5467. perf_unpin_context(ctx);
  5468. put_ctx(ctx);
  5469. err_alloc:
  5470. free_event(event);
  5471. err_task:
  5472. put_online_cpus();
  5473. if (task)
  5474. put_task_struct(task);
  5475. err_group_fd:
  5476. fdput(group);
  5477. err_fd:
  5478. put_unused_fd(event_fd);
  5479. return err;
  5480. }
  5481. /**
  5482. * perf_event_create_kernel_counter
  5483. *
  5484. * @attr: attributes of the counter to create
  5485. * @cpu: cpu in which the counter is bound
  5486. * @task: task to profile (NULL for percpu)
  5487. */
  5488. struct perf_event *
  5489. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5490. struct task_struct *task,
  5491. perf_overflow_handler_t overflow_handler,
  5492. void *context)
  5493. {
  5494. struct perf_event_context *ctx;
  5495. struct perf_event *event;
  5496. int err;
  5497. /*
  5498. * Get the target context (task or percpu):
  5499. */
  5500. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  5501. overflow_handler, context);
  5502. if (IS_ERR(event)) {
  5503. err = PTR_ERR(event);
  5504. goto err;
  5505. }
  5506. ctx = find_get_context(event->pmu, task, cpu);
  5507. if (IS_ERR(ctx)) {
  5508. err = PTR_ERR(ctx);
  5509. goto err_free;
  5510. }
  5511. WARN_ON_ONCE(ctx->parent_ctx);
  5512. mutex_lock(&ctx->mutex);
  5513. perf_install_in_context(ctx, event, cpu);
  5514. ++ctx->generation;
  5515. perf_unpin_context(ctx);
  5516. mutex_unlock(&ctx->mutex);
  5517. return event;
  5518. err_free:
  5519. free_event(event);
  5520. err:
  5521. return ERR_PTR(err);
  5522. }
  5523. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5524. void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
  5525. {
  5526. struct perf_event_context *src_ctx;
  5527. struct perf_event_context *dst_ctx;
  5528. struct perf_event *event, *tmp;
  5529. LIST_HEAD(events);
  5530. src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
  5531. dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
  5532. mutex_lock(&src_ctx->mutex);
  5533. list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
  5534. event_entry) {
  5535. perf_remove_from_context(event);
  5536. put_ctx(src_ctx);
  5537. list_add(&event->event_entry, &events);
  5538. }
  5539. mutex_unlock(&src_ctx->mutex);
  5540. synchronize_rcu();
  5541. mutex_lock(&dst_ctx->mutex);
  5542. list_for_each_entry_safe(event, tmp, &events, event_entry) {
  5543. list_del(&event->event_entry);
  5544. if (event->state >= PERF_EVENT_STATE_OFF)
  5545. event->state = PERF_EVENT_STATE_INACTIVE;
  5546. perf_install_in_context(dst_ctx, event, dst_cpu);
  5547. get_ctx(dst_ctx);
  5548. }
  5549. mutex_unlock(&dst_ctx->mutex);
  5550. }
  5551. EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
  5552. static void sync_child_event(struct perf_event *child_event,
  5553. struct task_struct *child)
  5554. {
  5555. struct perf_event *parent_event = child_event->parent;
  5556. u64 child_val;
  5557. if (child_event->attr.inherit_stat)
  5558. perf_event_read_event(child_event, child);
  5559. child_val = perf_event_count(child_event);
  5560. /*
  5561. * Add back the child's count to the parent's count:
  5562. */
  5563. atomic64_add(child_val, &parent_event->child_count);
  5564. atomic64_add(child_event->total_time_enabled,
  5565. &parent_event->child_total_time_enabled);
  5566. atomic64_add(child_event->total_time_running,
  5567. &parent_event->child_total_time_running);
  5568. /*
  5569. * Remove this event from the parent's list
  5570. */
  5571. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5572. mutex_lock(&parent_event->child_mutex);
  5573. list_del_init(&child_event->child_list);
  5574. mutex_unlock(&parent_event->child_mutex);
  5575. /*
  5576. * Release the parent event, if this was the last
  5577. * reference to it.
  5578. */
  5579. put_event(parent_event);
  5580. }
  5581. static void
  5582. __perf_event_exit_task(struct perf_event *child_event,
  5583. struct perf_event_context *child_ctx,
  5584. struct task_struct *child)
  5585. {
  5586. if (child_event->parent) {
  5587. raw_spin_lock_irq(&child_ctx->lock);
  5588. perf_group_detach(child_event);
  5589. raw_spin_unlock_irq(&child_ctx->lock);
  5590. }
  5591. perf_remove_from_context(child_event);
  5592. /*
  5593. * It can happen that the parent exits first, and has events
  5594. * that are still around due to the child reference. These
  5595. * events need to be zapped.
  5596. */
  5597. if (child_event->parent) {
  5598. sync_child_event(child_event, child);
  5599. free_event(child_event);
  5600. }
  5601. }
  5602. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5603. {
  5604. struct perf_event *child_event, *tmp;
  5605. struct perf_event_context *child_ctx;
  5606. unsigned long flags;
  5607. if (likely(!child->perf_event_ctxp[ctxn])) {
  5608. perf_event_task(child, NULL, 0);
  5609. return;
  5610. }
  5611. local_irq_save(flags);
  5612. /*
  5613. * We can't reschedule here because interrupts are disabled,
  5614. * and either child is current or it is a task that can't be
  5615. * scheduled, so we are now safe from rescheduling changing
  5616. * our context.
  5617. */
  5618. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5619. /*
  5620. * Take the context lock here so that if find_get_context is
  5621. * reading child->perf_event_ctxp, we wait until it has
  5622. * incremented the context's refcount before we do put_ctx below.
  5623. */
  5624. raw_spin_lock(&child_ctx->lock);
  5625. task_ctx_sched_out(child_ctx);
  5626. child->perf_event_ctxp[ctxn] = NULL;
  5627. /*
  5628. * If this context is a clone; unclone it so it can't get
  5629. * swapped to another process while we're removing all
  5630. * the events from it.
  5631. */
  5632. unclone_ctx(child_ctx);
  5633. update_context_time(child_ctx);
  5634. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5635. /*
  5636. * Report the task dead after unscheduling the events so that we
  5637. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5638. * get a few PERF_RECORD_READ events.
  5639. */
  5640. perf_event_task(child, child_ctx, 0);
  5641. /*
  5642. * We can recurse on the same lock type through:
  5643. *
  5644. * __perf_event_exit_task()
  5645. * sync_child_event()
  5646. * put_event()
  5647. * mutex_lock(&ctx->mutex)
  5648. *
  5649. * But since its the parent context it won't be the same instance.
  5650. */
  5651. mutex_lock(&child_ctx->mutex);
  5652. again:
  5653. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5654. group_entry)
  5655. __perf_event_exit_task(child_event, child_ctx, child);
  5656. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5657. group_entry)
  5658. __perf_event_exit_task(child_event, child_ctx, child);
  5659. /*
  5660. * If the last event was a group event, it will have appended all
  5661. * its siblings to the list, but we obtained 'tmp' before that which
  5662. * will still point to the list head terminating the iteration.
  5663. */
  5664. if (!list_empty(&child_ctx->pinned_groups) ||
  5665. !list_empty(&child_ctx->flexible_groups))
  5666. goto again;
  5667. mutex_unlock(&child_ctx->mutex);
  5668. put_ctx(child_ctx);
  5669. }
  5670. /*
  5671. * When a child task exits, feed back event values to parent events.
  5672. */
  5673. void perf_event_exit_task(struct task_struct *child)
  5674. {
  5675. struct perf_event *event, *tmp;
  5676. int ctxn;
  5677. mutex_lock(&child->perf_event_mutex);
  5678. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5679. owner_entry) {
  5680. list_del_init(&event->owner_entry);
  5681. /*
  5682. * Ensure the list deletion is visible before we clear
  5683. * the owner, closes a race against perf_release() where
  5684. * we need to serialize on the owner->perf_event_mutex.
  5685. */
  5686. smp_wmb();
  5687. event->owner = NULL;
  5688. }
  5689. mutex_unlock(&child->perf_event_mutex);
  5690. for_each_task_context_nr(ctxn)
  5691. perf_event_exit_task_context(child, ctxn);
  5692. }
  5693. static void perf_free_event(struct perf_event *event,
  5694. struct perf_event_context *ctx)
  5695. {
  5696. struct perf_event *parent = event->parent;
  5697. if (WARN_ON_ONCE(!parent))
  5698. return;
  5699. mutex_lock(&parent->child_mutex);
  5700. list_del_init(&event->child_list);
  5701. mutex_unlock(&parent->child_mutex);
  5702. put_event(parent);
  5703. perf_group_detach(event);
  5704. list_del_event(event, ctx);
  5705. free_event(event);
  5706. }
  5707. /*
  5708. * free an unexposed, unused context as created by inheritance by
  5709. * perf_event_init_task below, used by fork() in case of fail.
  5710. */
  5711. void perf_event_free_task(struct task_struct *task)
  5712. {
  5713. struct perf_event_context *ctx;
  5714. struct perf_event *event, *tmp;
  5715. int ctxn;
  5716. for_each_task_context_nr(ctxn) {
  5717. ctx = task->perf_event_ctxp[ctxn];
  5718. if (!ctx)
  5719. continue;
  5720. mutex_lock(&ctx->mutex);
  5721. again:
  5722. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5723. group_entry)
  5724. perf_free_event(event, ctx);
  5725. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5726. group_entry)
  5727. perf_free_event(event, ctx);
  5728. if (!list_empty(&ctx->pinned_groups) ||
  5729. !list_empty(&ctx->flexible_groups))
  5730. goto again;
  5731. mutex_unlock(&ctx->mutex);
  5732. put_ctx(ctx);
  5733. }
  5734. }
  5735. void perf_event_delayed_put(struct task_struct *task)
  5736. {
  5737. int ctxn;
  5738. for_each_task_context_nr(ctxn)
  5739. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5740. }
  5741. /*
  5742. * inherit a event from parent task to child task:
  5743. */
  5744. static struct perf_event *
  5745. inherit_event(struct perf_event *parent_event,
  5746. struct task_struct *parent,
  5747. struct perf_event_context *parent_ctx,
  5748. struct task_struct *child,
  5749. struct perf_event *group_leader,
  5750. struct perf_event_context *child_ctx)
  5751. {
  5752. struct perf_event *child_event;
  5753. unsigned long flags;
  5754. /*
  5755. * Instead of creating recursive hierarchies of events,
  5756. * we link inherited events back to the original parent,
  5757. * which has a filp for sure, which we use as the reference
  5758. * count:
  5759. */
  5760. if (parent_event->parent)
  5761. parent_event = parent_event->parent;
  5762. child_event = perf_event_alloc(&parent_event->attr,
  5763. parent_event->cpu,
  5764. child,
  5765. group_leader, parent_event,
  5766. NULL, NULL);
  5767. if (IS_ERR(child_event))
  5768. return child_event;
  5769. if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
  5770. free_event(child_event);
  5771. return NULL;
  5772. }
  5773. get_ctx(child_ctx);
  5774. /*
  5775. * Make the child state follow the state of the parent event,
  5776. * not its attr.disabled bit. We hold the parent's mutex,
  5777. * so we won't race with perf_event_{en, dis}able_family.
  5778. */
  5779. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5780. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5781. else
  5782. child_event->state = PERF_EVENT_STATE_OFF;
  5783. if (parent_event->attr.freq) {
  5784. u64 sample_period = parent_event->hw.sample_period;
  5785. struct hw_perf_event *hwc = &child_event->hw;
  5786. hwc->sample_period = sample_period;
  5787. hwc->last_period = sample_period;
  5788. local64_set(&hwc->period_left, sample_period);
  5789. }
  5790. child_event->ctx = child_ctx;
  5791. child_event->overflow_handler = parent_event->overflow_handler;
  5792. child_event->overflow_handler_context
  5793. = parent_event->overflow_handler_context;
  5794. /*
  5795. * Precalculate sample_data sizes
  5796. */
  5797. perf_event__header_size(child_event);
  5798. perf_event__id_header_size(child_event);
  5799. /*
  5800. * Link it up in the child's context:
  5801. */
  5802. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5803. add_event_to_ctx(child_event, child_ctx);
  5804. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5805. /*
  5806. * Link this into the parent event's child list
  5807. */
  5808. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5809. mutex_lock(&parent_event->child_mutex);
  5810. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5811. mutex_unlock(&parent_event->child_mutex);
  5812. return child_event;
  5813. }
  5814. static int inherit_group(struct perf_event *parent_event,
  5815. struct task_struct *parent,
  5816. struct perf_event_context *parent_ctx,
  5817. struct task_struct *child,
  5818. struct perf_event_context *child_ctx)
  5819. {
  5820. struct perf_event *leader;
  5821. struct perf_event *sub;
  5822. struct perf_event *child_ctr;
  5823. leader = inherit_event(parent_event, parent, parent_ctx,
  5824. child, NULL, child_ctx);
  5825. if (IS_ERR(leader))
  5826. return PTR_ERR(leader);
  5827. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5828. child_ctr = inherit_event(sub, parent, parent_ctx,
  5829. child, leader, child_ctx);
  5830. if (IS_ERR(child_ctr))
  5831. return PTR_ERR(child_ctr);
  5832. }
  5833. return 0;
  5834. }
  5835. static int
  5836. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5837. struct perf_event_context *parent_ctx,
  5838. struct task_struct *child, int ctxn,
  5839. int *inherited_all)
  5840. {
  5841. int ret;
  5842. struct perf_event_context *child_ctx;
  5843. if (!event->attr.inherit) {
  5844. *inherited_all = 0;
  5845. return 0;
  5846. }
  5847. child_ctx = child->perf_event_ctxp[ctxn];
  5848. if (!child_ctx) {
  5849. /*
  5850. * This is executed from the parent task context, so
  5851. * inherit events that have been marked for cloning.
  5852. * First allocate and initialize a context for the
  5853. * child.
  5854. */
  5855. child_ctx = alloc_perf_context(event->pmu, child);
  5856. if (!child_ctx)
  5857. return -ENOMEM;
  5858. child->perf_event_ctxp[ctxn] = child_ctx;
  5859. }
  5860. ret = inherit_group(event, parent, parent_ctx,
  5861. child, child_ctx);
  5862. if (ret)
  5863. *inherited_all = 0;
  5864. return ret;
  5865. }
  5866. /*
  5867. * Initialize the perf_event context in task_struct
  5868. */
  5869. int perf_event_init_context(struct task_struct *child, int ctxn)
  5870. {
  5871. struct perf_event_context *child_ctx, *parent_ctx;
  5872. struct perf_event_context *cloned_ctx;
  5873. struct perf_event *event;
  5874. struct task_struct *parent = current;
  5875. int inherited_all = 1;
  5876. unsigned long flags;
  5877. int ret = 0;
  5878. if (likely(!parent->perf_event_ctxp[ctxn]))
  5879. return 0;
  5880. /*
  5881. * If the parent's context is a clone, pin it so it won't get
  5882. * swapped under us.
  5883. */
  5884. parent_ctx = perf_pin_task_context(parent, ctxn);
  5885. /*
  5886. * No need to check if parent_ctx != NULL here; since we saw
  5887. * it non-NULL earlier, the only reason for it to become NULL
  5888. * is if we exit, and since we're currently in the middle of
  5889. * a fork we can't be exiting at the same time.
  5890. */
  5891. /*
  5892. * Lock the parent list. No need to lock the child - not PID
  5893. * hashed yet and not running, so nobody can access it.
  5894. */
  5895. mutex_lock(&parent_ctx->mutex);
  5896. /*
  5897. * We dont have to disable NMIs - we are only looking at
  5898. * the list, not manipulating it:
  5899. */
  5900. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5901. ret = inherit_task_group(event, parent, parent_ctx,
  5902. child, ctxn, &inherited_all);
  5903. if (ret)
  5904. break;
  5905. }
  5906. /*
  5907. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5908. * to allocations, but we need to prevent rotation because
  5909. * rotate_ctx() will change the list from interrupt context.
  5910. */
  5911. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5912. parent_ctx->rotate_disable = 1;
  5913. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5914. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5915. ret = inherit_task_group(event, parent, parent_ctx,
  5916. child, ctxn, &inherited_all);
  5917. if (ret)
  5918. break;
  5919. }
  5920. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5921. parent_ctx->rotate_disable = 0;
  5922. child_ctx = child->perf_event_ctxp[ctxn];
  5923. if (child_ctx && inherited_all) {
  5924. /*
  5925. * Mark the child context as a clone of the parent
  5926. * context, or of whatever the parent is a clone of.
  5927. *
  5928. * Note that if the parent is a clone, the holding of
  5929. * parent_ctx->lock avoids it from being uncloned.
  5930. */
  5931. cloned_ctx = parent_ctx->parent_ctx;
  5932. if (cloned_ctx) {
  5933. child_ctx->parent_ctx = cloned_ctx;
  5934. child_ctx->parent_gen = parent_ctx->parent_gen;
  5935. } else {
  5936. child_ctx->parent_ctx = parent_ctx;
  5937. child_ctx->parent_gen = parent_ctx->generation;
  5938. }
  5939. get_ctx(child_ctx->parent_ctx);
  5940. }
  5941. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5942. mutex_unlock(&parent_ctx->mutex);
  5943. perf_unpin_context(parent_ctx);
  5944. put_ctx(parent_ctx);
  5945. return ret;
  5946. }
  5947. /*
  5948. * Initialize the perf_event context in task_struct
  5949. */
  5950. int perf_event_init_task(struct task_struct *child)
  5951. {
  5952. int ctxn, ret;
  5953. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5954. mutex_init(&child->perf_event_mutex);
  5955. INIT_LIST_HEAD(&child->perf_event_list);
  5956. for_each_task_context_nr(ctxn) {
  5957. ret = perf_event_init_context(child, ctxn);
  5958. if (ret)
  5959. return ret;
  5960. }
  5961. return 0;
  5962. }
  5963. static void __init perf_event_init_all_cpus(void)
  5964. {
  5965. struct swevent_htable *swhash;
  5966. int cpu;
  5967. for_each_possible_cpu(cpu) {
  5968. swhash = &per_cpu(swevent_htable, cpu);
  5969. mutex_init(&swhash->hlist_mutex);
  5970. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5971. }
  5972. }
  5973. static void __cpuinit perf_event_init_cpu(int cpu)
  5974. {
  5975. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5976. mutex_lock(&swhash->hlist_mutex);
  5977. if (swhash->hlist_refcount > 0) {
  5978. struct swevent_hlist *hlist;
  5979. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5980. WARN_ON(!hlist);
  5981. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5982. }
  5983. mutex_unlock(&swhash->hlist_mutex);
  5984. }
  5985. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5986. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5987. {
  5988. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5989. WARN_ON(!irqs_disabled());
  5990. list_del_init(&cpuctx->rotation_list);
  5991. }
  5992. static void __perf_event_exit_context(void *__info)
  5993. {
  5994. struct perf_event_context *ctx = __info;
  5995. struct perf_event *event, *tmp;
  5996. perf_pmu_rotate_stop(ctx->pmu);
  5997. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5998. __perf_remove_from_context(event);
  5999. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  6000. __perf_remove_from_context(event);
  6001. }
  6002. static void perf_event_exit_cpu_context(int cpu)
  6003. {
  6004. struct perf_event_context *ctx;
  6005. struct pmu *pmu;
  6006. int idx;
  6007. idx = srcu_read_lock(&pmus_srcu);
  6008. list_for_each_entry_rcu(pmu, &pmus, entry) {
  6009. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  6010. mutex_lock(&ctx->mutex);
  6011. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  6012. mutex_unlock(&ctx->mutex);
  6013. }
  6014. srcu_read_unlock(&pmus_srcu, idx);
  6015. }
  6016. static void perf_event_exit_cpu(int cpu)
  6017. {
  6018. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6019. mutex_lock(&swhash->hlist_mutex);
  6020. swevent_hlist_release(swhash);
  6021. mutex_unlock(&swhash->hlist_mutex);
  6022. perf_event_exit_cpu_context(cpu);
  6023. }
  6024. #else
  6025. static inline void perf_event_exit_cpu(int cpu) { }
  6026. #endif
  6027. static int
  6028. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  6029. {
  6030. int cpu;
  6031. for_each_online_cpu(cpu)
  6032. perf_event_exit_cpu(cpu);
  6033. return NOTIFY_OK;
  6034. }
  6035. /*
  6036. * Run the perf reboot notifier at the very last possible moment so that
  6037. * the generic watchdog code runs as long as possible.
  6038. */
  6039. static struct notifier_block perf_reboot_notifier = {
  6040. .notifier_call = perf_reboot,
  6041. .priority = INT_MIN,
  6042. };
  6043. static int __cpuinit
  6044. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  6045. {
  6046. unsigned int cpu = (long)hcpu;
  6047. switch (action & ~CPU_TASKS_FROZEN) {
  6048. case CPU_UP_PREPARE:
  6049. case CPU_DOWN_FAILED:
  6050. perf_event_init_cpu(cpu);
  6051. break;
  6052. case CPU_UP_CANCELED:
  6053. case CPU_DOWN_PREPARE:
  6054. perf_event_exit_cpu(cpu);
  6055. break;
  6056. default:
  6057. break;
  6058. }
  6059. return NOTIFY_OK;
  6060. }
  6061. void __init perf_event_init(void)
  6062. {
  6063. int ret;
  6064. idr_init(&pmu_idr);
  6065. perf_event_init_all_cpus();
  6066. init_srcu_struct(&pmus_srcu);
  6067. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  6068. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  6069. perf_pmu_register(&perf_task_clock, NULL, -1);
  6070. perf_tp_register();
  6071. perf_cpu_notifier(perf_cpu_notify);
  6072. register_reboot_notifier(&perf_reboot_notifier);
  6073. ret = init_hw_breakpoint();
  6074. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  6075. /* do not patch jump label more than once per second */
  6076. jump_label_rate_limit(&perf_sched_events, HZ);
  6077. /*
  6078. * Build time assertion that we keep the data_head at the intended
  6079. * location. IOW, validation we got the __reserved[] size right.
  6080. */
  6081. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  6082. != 1024);
  6083. }
  6084. static int __init perf_event_sysfs_init(void)
  6085. {
  6086. struct pmu *pmu;
  6087. int ret;
  6088. mutex_lock(&pmus_lock);
  6089. ret = bus_register(&pmu_bus);
  6090. if (ret)
  6091. goto unlock;
  6092. list_for_each_entry(pmu, &pmus, entry) {
  6093. if (!pmu->name || pmu->type < 0)
  6094. continue;
  6095. ret = pmu_dev_alloc(pmu);
  6096. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  6097. }
  6098. pmu_bus_running = 1;
  6099. ret = 0;
  6100. unlock:
  6101. mutex_unlock(&pmus_lock);
  6102. return ret;
  6103. }
  6104. device_initcall(perf_event_sysfs_init);
  6105. #ifdef CONFIG_CGROUP_PERF
  6106. static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
  6107. {
  6108. struct perf_cgroup *jc;
  6109. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  6110. if (!jc)
  6111. return ERR_PTR(-ENOMEM);
  6112. jc->info = alloc_percpu(struct perf_cgroup_info);
  6113. if (!jc->info) {
  6114. kfree(jc);
  6115. return ERR_PTR(-ENOMEM);
  6116. }
  6117. return &jc->css;
  6118. }
  6119. static void perf_cgroup_css_free(struct cgroup *cont)
  6120. {
  6121. struct perf_cgroup *jc;
  6122. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  6123. struct perf_cgroup, css);
  6124. free_percpu(jc->info);
  6125. kfree(jc);
  6126. }
  6127. static int __perf_cgroup_move(void *info)
  6128. {
  6129. struct task_struct *task = info;
  6130. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6131. return 0;
  6132. }
  6133. static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  6134. {
  6135. struct task_struct *task;
  6136. cgroup_taskset_for_each(task, cgrp, tset)
  6137. task_function_call(task, __perf_cgroup_move, task);
  6138. }
  6139. static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6140. struct task_struct *task)
  6141. {
  6142. /*
  6143. * cgroup_exit() is called in the copy_process() failure path.
  6144. * Ignore this case since the task hasn't ran yet, this avoids
  6145. * trying to poke a half freed task state from generic code.
  6146. */
  6147. if (!(task->flags & PF_EXITING))
  6148. return;
  6149. task_function_call(task, __perf_cgroup_move, task);
  6150. }
  6151. struct cgroup_subsys perf_subsys = {
  6152. .name = "perf_event",
  6153. .subsys_id = perf_subsys_id,
  6154. .css_alloc = perf_cgroup_css_alloc,
  6155. .css_free = perf_cgroup_css_free,
  6156. .exit = perf_cgroup_exit,
  6157. .attach = perf_cgroup_attach,
  6158. /*
  6159. * perf_event cgroup doesn't handle nesting correctly.
  6160. * ctx->nr_cgroups adjustments should be propagated through the
  6161. * cgroup hierarchy. Fix it and remove the following.
  6162. */
  6163. .broken_hierarchy = true,
  6164. };
  6165. #endif /* CONFIG_CGROUP_PERF */