recovery.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct list_head *this;
  28. struct fsync_inode_entry *entry;
  29. list_for_each(this, head) {
  30. entry = list_entry(this, struct fsync_inode_entry, list);
  31. if (entry->inode->i_ino == ino)
  32. return entry;
  33. }
  34. return NULL;
  35. }
  36. static int recover_dentry(struct page *ipage, struct inode *inode)
  37. {
  38. struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage);
  39. struct f2fs_inode *raw_inode = &(raw_node->i);
  40. struct qstr name;
  41. struct f2fs_dir_entry *de;
  42. struct page *page;
  43. struct inode *dir;
  44. int err = 0;
  45. if (!is_dent_dnode(ipage))
  46. goto out;
  47. dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino));
  48. if (IS_ERR(dir)) {
  49. err = -EINVAL;
  50. goto out;
  51. }
  52. name.len = le32_to_cpu(raw_inode->i_namelen);
  53. name.name = raw_inode->i_name;
  54. de = f2fs_find_entry(dir, &name, &page);
  55. if (de) {
  56. kunmap(page);
  57. f2fs_put_page(page, 0);
  58. } else {
  59. err = __f2fs_add_link(dir, &name, inode);
  60. }
  61. iput(dir);
  62. out:
  63. kunmap(ipage);
  64. return err;
  65. }
  66. static int recover_inode(struct inode *inode, struct page *node_page)
  67. {
  68. void *kaddr = page_address(node_page);
  69. struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
  70. struct f2fs_inode *raw_inode = &(raw_node->i);
  71. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  72. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  73. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  74. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  75. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  76. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  77. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  78. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  79. return recover_dentry(node_page, inode);
  80. }
  81. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  82. {
  83. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  84. struct curseg_info *curseg;
  85. struct page *page;
  86. block_t blkaddr;
  87. int err = 0;
  88. /* get node pages in the current segment */
  89. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  90. blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
  91. /* read node page */
  92. page = alloc_page(GFP_F2FS_ZERO);
  93. if (IS_ERR(page))
  94. return PTR_ERR(page);
  95. lock_page(page);
  96. while (1) {
  97. struct fsync_inode_entry *entry;
  98. if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
  99. goto out;
  100. if (cp_ver != cpver_of_node(page))
  101. goto out;
  102. if (!is_fsync_dnode(page))
  103. goto next;
  104. entry = get_fsync_inode(head, ino_of_node(page));
  105. if (entry) {
  106. entry->blkaddr = blkaddr;
  107. if (IS_INODE(page) && is_dent_dnode(page))
  108. set_inode_flag(F2FS_I(entry->inode),
  109. FI_INC_LINK);
  110. } else {
  111. if (IS_INODE(page) && is_dent_dnode(page)) {
  112. if (recover_inode_page(sbi, page)) {
  113. err = -ENOMEM;
  114. goto out;
  115. }
  116. }
  117. /* add this fsync inode to the list */
  118. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  119. if (!entry) {
  120. err = -ENOMEM;
  121. goto out;
  122. }
  123. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  124. if (IS_ERR(entry->inode)) {
  125. err = PTR_ERR(entry->inode);
  126. kmem_cache_free(fsync_entry_slab, entry);
  127. goto out;
  128. }
  129. list_add_tail(&entry->list, head);
  130. entry->blkaddr = blkaddr;
  131. }
  132. if (IS_INODE(page)) {
  133. err = recover_inode(entry->inode, page);
  134. if (err)
  135. goto out;
  136. }
  137. next:
  138. /* check next segment */
  139. blkaddr = next_blkaddr_of_node(page);
  140. ClearPageUptodate(page);
  141. }
  142. out:
  143. unlock_page(page);
  144. __free_pages(page, 0);
  145. return err;
  146. }
  147. static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
  148. struct list_head *head)
  149. {
  150. struct fsync_inode_entry *entry, *tmp;
  151. list_for_each_entry_safe(entry, tmp, head, list) {
  152. iput(entry->inode);
  153. list_del(&entry->list);
  154. kmem_cache_free(fsync_entry_slab, entry);
  155. }
  156. }
  157. static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  158. block_t blkaddr)
  159. {
  160. struct seg_entry *sentry;
  161. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  162. unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
  163. (sbi->blocks_per_seg - 1);
  164. struct f2fs_summary sum;
  165. nid_t ino;
  166. void *kaddr;
  167. struct inode *inode;
  168. struct page *node_page;
  169. block_t bidx;
  170. int i;
  171. sentry = get_seg_entry(sbi, segno);
  172. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  173. return;
  174. /* Get the previous summary */
  175. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  176. struct curseg_info *curseg = CURSEG_I(sbi, i);
  177. if (curseg->segno == segno) {
  178. sum = curseg->sum_blk->entries[blkoff];
  179. break;
  180. }
  181. }
  182. if (i > CURSEG_COLD_DATA) {
  183. struct page *sum_page = get_sum_page(sbi, segno);
  184. struct f2fs_summary_block *sum_node;
  185. kaddr = page_address(sum_page);
  186. sum_node = (struct f2fs_summary_block *)kaddr;
  187. sum = sum_node->entries[blkoff];
  188. f2fs_put_page(sum_page, 1);
  189. }
  190. /* Get the node page */
  191. node_page = get_node_page(sbi, le32_to_cpu(sum.nid));
  192. bidx = start_bidx_of_node(ofs_of_node(node_page)) +
  193. le16_to_cpu(sum.ofs_in_node);
  194. ino = ino_of_node(node_page);
  195. f2fs_put_page(node_page, 1);
  196. /* Deallocate previous index in the node page */
  197. inode = f2fs_iget(sbi->sb, ino);
  198. if (IS_ERR(inode))
  199. return;
  200. truncate_hole(inode, bidx, bidx + 1);
  201. iput(inode);
  202. }
  203. static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  204. struct page *page, block_t blkaddr)
  205. {
  206. unsigned int start, end;
  207. struct dnode_of_data dn;
  208. struct f2fs_summary sum;
  209. struct node_info ni;
  210. start = start_bidx_of_node(ofs_of_node(page));
  211. if (IS_INODE(page))
  212. end = start + ADDRS_PER_INODE;
  213. else
  214. end = start + ADDRS_PER_BLOCK;
  215. set_new_dnode(&dn, inode, NULL, NULL, 0);
  216. if (get_dnode_of_data(&dn, start, 0))
  217. return;
  218. wait_on_page_writeback(dn.node_page);
  219. get_node_info(sbi, dn.nid, &ni);
  220. BUG_ON(ni.ino != ino_of_node(page));
  221. BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
  222. for (; start < end; start++) {
  223. block_t src, dest;
  224. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  225. dest = datablock_addr(page, dn.ofs_in_node);
  226. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  227. if (src == NULL_ADDR) {
  228. int err = reserve_new_block(&dn);
  229. /* We should not get -ENOSPC */
  230. BUG_ON(err);
  231. }
  232. /* Check the previous node page having this index */
  233. check_index_in_prev_nodes(sbi, dest);
  234. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  235. /* write dummy data page */
  236. recover_data_page(sbi, NULL, &sum, src, dest);
  237. update_extent_cache(dest, &dn);
  238. }
  239. dn.ofs_in_node++;
  240. }
  241. /* write node page in place */
  242. set_summary(&sum, dn.nid, 0, 0);
  243. if (IS_INODE(dn.node_page))
  244. sync_inode_page(&dn);
  245. copy_node_footer(dn.node_page, page);
  246. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  247. ofs_of_node(page), false);
  248. set_page_dirty(dn.node_page);
  249. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  250. f2fs_put_dnode(&dn);
  251. }
  252. static void recover_data(struct f2fs_sb_info *sbi,
  253. struct list_head *head, int type)
  254. {
  255. unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
  256. struct curseg_info *curseg;
  257. struct page *page;
  258. block_t blkaddr;
  259. /* get node pages in the current segment */
  260. curseg = CURSEG_I(sbi, type);
  261. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  262. /* read node page */
  263. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  264. if (IS_ERR(page))
  265. return;
  266. lock_page(page);
  267. while (1) {
  268. struct fsync_inode_entry *entry;
  269. if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
  270. goto out;
  271. if (cp_ver != cpver_of_node(page))
  272. goto out;
  273. entry = get_fsync_inode(head, ino_of_node(page));
  274. if (!entry)
  275. goto next;
  276. do_recover_data(sbi, entry->inode, page, blkaddr);
  277. if (entry->blkaddr == blkaddr) {
  278. iput(entry->inode);
  279. list_del(&entry->list);
  280. kmem_cache_free(fsync_entry_slab, entry);
  281. }
  282. next:
  283. /* check next segment */
  284. blkaddr = next_blkaddr_of_node(page);
  285. ClearPageUptodate(page);
  286. }
  287. out:
  288. unlock_page(page);
  289. __free_pages(page, 0);
  290. allocate_new_segments(sbi);
  291. }
  292. void recover_fsync_data(struct f2fs_sb_info *sbi)
  293. {
  294. struct list_head inode_list;
  295. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  296. sizeof(struct fsync_inode_entry), NULL);
  297. if (unlikely(!fsync_entry_slab))
  298. return;
  299. INIT_LIST_HEAD(&inode_list);
  300. /* step #1: find fsynced inode numbers */
  301. if (find_fsync_dnodes(sbi, &inode_list))
  302. goto out;
  303. if (list_empty(&inode_list))
  304. goto out;
  305. /* step #2: recover data */
  306. sbi->por_doing = 1;
  307. recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  308. sbi->por_doing = 0;
  309. BUG_ON(!list_empty(&inode_list));
  310. out:
  311. destroy_fsync_dnodes(sbi, &inode_list);
  312. kmem_cache_destroy(fsync_entry_slab);
  313. write_checkpoint(sbi, false);
  314. }