node.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. static struct kmem_cache *nat_entry_slab;
  22. static struct kmem_cache *free_nid_slab;
  23. static void clear_node_page_dirty(struct page *page)
  24. {
  25. struct address_space *mapping = page->mapping;
  26. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  27. unsigned int long flags;
  28. if (PageDirty(page)) {
  29. spin_lock_irqsave(&mapping->tree_lock, flags);
  30. radix_tree_tag_clear(&mapping->page_tree,
  31. page_index(page),
  32. PAGECACHE_TAG_DIRTY);
  33. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  34. clear_page_dirty_for_io(page);
  35. dec_page_count(sbi, F2FS_DIRTY_NODES);
  36. }
  37. ClearPageUptodate(page);
  38. }
  39. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  40. {
  41. pgoff_t index = current_nat_addr(sbi, nid);
  42. return get_meta_page(sbi, index);
  43. }
  44. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  45. {
  46. struct page *src_page;
  47. struct page *dst_page;
  48. pgoff_t src_off;
  49. pgoff_t dst_off;
  50. void *src_addr;
  51. void *dst_addr;
  52. struct f2fs_nm_info *nm_i = NM_I(sbi);
  53. src_off = current_nat_addr(sbi, nid);
  54. dst_off = next_nat_addr(sbi, src_off);
  55. /* get current nat block page with lock */
  56. src_page = get_meta_page(sbi, src_off);
  57. /* Dirty src_page means that it is already the new target NAT page. */
  58. if (PageDirty(src_page))
  59. return src_page;
  60. dst_page = grab_meta_page(sbi, dst_off);
  61. src_addr = page_address(src_page);
  62. dst_addr = page_address(dst_page);
  63. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  64. set_page_dirty(dst_page);
  65. f2fs_put_page(src_page, 1);
  66. set_to_next_nat(nm_i, nid);
  67. return dst_page;
  68. }
  69. /*
  70. * Readahead NAT pages
  71. */
  72. static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
  73. {
  74. struct address_space *mapping = sbi->meta_inode->i_mapping;
  75. struct f2fs_nm_info *nm_i = NM_I(sbi);
  76. struct page *page;
  77. pgoff_t index;
  78. int i;
  79. for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
  80. if (nid >= nm_i->max_nid)
  81. nid = 0;
  82. index = current_nat_addr(sbi, nid);
  83. page = grab_cache_page(mapping, index);
  84. if (!page)
  85. continue;
  86. if (f2fs_readpage(sbi, page, index, READ)) {
  87. f2fs_put_page(page, 1);
  88. continue;
  89. }
  90. f2fs_put_page(page, 0);
  91. }
  92. }
  93. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  94. {
  95. return radix_tree_lookup(&nm_i->nat_root, n);
  96. }
  97. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  98. nid_t start, unsigned int nr, struct nat_entry **ep)
  99. {
  100. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  101. }
  102. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  103. {
  104. list_del(&e->list);
  105. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  106. nm_i->nat_cnt--;
  107. kmem_cache_free(nat_entry_slab, e);
  108. }
  109. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  110. {
  111. struct f2fs_nm_info *nm_i = NM_I(sbi);
  112. struct nat_entry *e;
  113. int is_cp = 1;
  114. read_lock(&nm_i->nat_tree_lock);
  115. e = __lookup_nat_cache(nm_i, nid);
  116. if (e && !e->checkpointed)
  117. is_cp = 0;
  118. read_unlock(&nm_i->nat_tree_lock);
  119. return is_cp;
  120. }
  121. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  122. {
  123. struct nat_entry *new;
  124. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  125. if (!new)
  126. return NULL;
  127. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  128. kmem_cache_free(nat_entry_slab, new);
  129. return NULL;
  130. }
  131. memset(new, 0, sizeof(struct nat_entry));
  132. nat_set_nid(new, nid);
  133. list_add_tail(&new->list, &nm_i->nat_entries);
  134. nm_i->nat_cnt++;
  135. return new;
  136. }
  137. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  138. struct f2fs_nat_entry *ne)
  139. {
  140. struct nat_entry *e;
  141. retry:
  142. write_lock(&nm_i->nat_tree_lock);
  143. e = __lookup_nat_cache(nm_i, nid);
  144. if (!e) {
  145. e = grab_nat_entry(nm_i, nid);
  146. if (!e) {
  147. write_unlock(&nm_i->nat_tree_lock);
  148. goto retry;
  149. }
  150. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  151. nat_set_ino(e, le32_to_cpu(ne->ino));
  152. nat_set_version(e, ne->version);
  153. e->checkpointed = true;
  154. }
  155. write_unlock(&nm_i->nat_tree_lock);
  156. }
  157. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  158. block_t new_blkaddr)
  159. {
  160. struct f2fs_nm_info *nm_i = NM_I(sbi);
  161. struct nat_entry *e;
  162. retry:
  163. write_lock(&nm_i->nat_tree_lock);
  164. e = __lookup_nat_cache(nm_i, ni->nid);
  165. if (!e) {
  166. e = grab_nat_entry(nm_i, ni->nid);
  167. if (!e) {
  168. write_unlock(&nm_i->nat_tree_lock);
  169. goto retry;
  170. }
  171. e->ni = *ni;
  172. e->checkpointed = true;
  173. BUG_ON(ni->blk_addr == NEW_ADDR);
  174. } else if (new_blkaddr == NEW_ADDR) {
  175. /*
  176. * when nid is reallocated,
  177. * previous nat entry can be remained in nat cache.
  178. * So, reinitialize it with new information.
  179. */
  180. e->ni = *ni;
  181. BUG_ON(ni->blk_addr != NULL_ADDR);
  182. }
  183. if (new_blkaddr == NEW_ADDR)
  184. e->checkpointed = false;
  185. /* sanity check */
  186. BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
  187. BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
  188. new_blkaddr == NULL_ADDR);
  189. BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
  190. new_blkaddr == NEW_ADDR);
  191. BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
  192. nat_get_blkaddr(e) != NULL_ADDR &&
  193. new_blkaddr == NEW_ADDR);
  194. /* increament version no as node is removed */
  195. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  196. unsigned char version = nat_get_version(e);
  197. nat_set_version(e, inc_node_version(version));
  198. }
  199. /* change address */
  200. nat_set_blkaddr(e, new_blkaddr);
  201. __set_nat_cache_dirty(nm_i, e);
  202. write_unlock(&nm_i->nat_tree_lock);
  203. }
  204. static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  205. {
  206. struct f2fs_nm_info *nm_i = NM_I(sbi);
  207. if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
  208. return 0;
  209. write_lock(&nm_i->nat_tree_lock);
  210. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  211. struct nat_entry *ne;
  212. ne = list_first_entry(&nm_i->nat_entries,
  213. struct nat_entry, list);
  214. __del_from_nat_cache(nm_i, ne);
  215. nr_shrink--;
  216. }
  217. write_unlock(&nm_i->nat_tree_lock);
  218. return nr_shrink;
  219. }
  220. /*
  221. * This function returns always success
  222. */
  223. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  224. {
  225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  226. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  227. struct f2fs_summary_block *sum = curseg->sum_blk;
  228. nid_t start_nid = START_NID(nid);
  229. struct f2fs_nat_block *nat_blk;
  230. struct page *page = NULL;
  231. struct f2fs_nat_entry ne;
  232. struct nat_entry *e;
  233. int i;
  234. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  235. ni->nid = nid;
  236. /* Check nat cache */
  237. read_lock(&nm_i->nat_tree_lock);
  238. e = __lookup_nat_cache(nm_i, nid);
  239. if (e) {
  240. ni->ino = nat_get_ino(e);
  241. ni->blk_addr = nat_get_blkaddr(e);
  242. ni->version = nat_get_version(e);
  243. }
  244. read_unlock(&nm_i->nat_tree_lock);
  245. if (e)
  246. return;
  247. /* Check current segment summary */
  248. mutex_lock(&curseg->curseg_mutex);
  249. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  250. if (i >= 0) {
  251. ne = nat_in_journal(sum, i);
  252. node_info_from_raw_nat(ni, &ne);
  253. }
  254. mutex_unlock(&curseg->curseg_mutex);
  255. if (i >= 0)
  256. goto cache;
  257. /* Fill node_info from nat page */
  258. page = get_current_nat_page(sbi, start_nid);
  259. nat_blk = (struct f2fs_nat_block *)page_address(page);
  260. ne = nat_blk->entries[nid - start_nid];
  261. node_info_from_raw_nat(ni, &ne);
  262. f2fs_put_page(page, 1);
  263. cache:
  264. /* cache nat entry */
  265. cache_nat_entry(NM_I(sbi), nid, &ne);
  266. }
  267. /*
  268. * The maximum depth is four.
  269. * Offset[0] will have raw inode offset.
  270. */
  271. static int get_node_path(long block, int offset[4], unsigned int noffset[4])
  272. {
  273. const long direct_index = ADDRS_PER_INODE;
  274. const long direct_blks = ADDRS_PER_BLOCK;
  275. const long dptrs_per_blk = NIDS_PER_BLOCK;
  276. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  277. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  278. int n = 0;
  279. int level = 0;
  280. noffset[0] = 0;
  281. if (block < direct_index) {
  282. offset[n++] = block;
  283. level = 0;
  284. goto got;
  285. }
  286. block -= direct_index;
  287. if (block < direct_blks) {
  288. offset[n++] = NODE_DIR1_BLOCK;
  289. noffset[n] = 1;
  290. offset[n++] = block;
  291. level = 1;
  292. goto got;
  293. }
  294. block -= direct_blks;
  295. if (block < direct_blks) {
  296. offset[n++] = NODE_DIR2_BLOCK;
  297. noffset[n] = 2;
  298. offset[n++] = block;
  299. level = 1;
  300. goto got;
  301. }
  302. block -= direct_blks;
  303. if (block < indirect_blks) {
  304. offset[n++] = NODE_IND1_BLOCK;
  305. noffset[n] = 3;
  306. offset[n++] = block / direct_blks;
  307. noffset[n] = 4 + offset[n - 1];
  308. offset[n++] = block % direct_blks;
  309. level = 2;
  310. goto got;
  311. }
  312. block -= indirect_blks;
  313. if (block < indirect_blks) {
  314. offset[n++] = NODE_IND2_BLOCK;
  315. noffset[n] = 4 + dptrs_per_blk;
  316. offset[n++] = block / direct_blks;
  317. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  318. offset[n++] = block % direct_blks;
  319. level = 2;
  320. goto got;
  321. }
  322. block -= indirect_blks;
  323. if (block < dindirect_blks) {
  324. offset[n++] = NODE_DIND_BLOCK;
  325. noffset[n] = 5 + (dptrs_per_blk * 2);
  326. offset[n++] = block / indirect_blks;
  327. noffset[n] = 6 + (dptrs_per_blk * 2) +
  328. offset[n - 1] * (dptrs_per_blk + 1);
  329. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  330. noffset[n] = 7 + (dptrs_per_blk * 2) +
  331. offset[n - 2] * (dptrs_per_blk + 1) +
  332. offset[n - 1];
  333. offset[n++] = block % direct_blks;
  334. level = 3;
  335. goto got;
  336. } else {
  337. BUG();
  338. }
  339. got:
  340. return level;
  341. }
  342. /*
  343. * Caller should call f2fs_put_dnode(dn).
  344. */
  345. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
  346. {
  347. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  348. struct page *npage[4];
  349. struct page *parent;
  350. int offset[4];
  351. unsigned int noffset[4];
  352. nid_t nids[4];
  353. int level, i;
  354. int err = 0;
  355. level = get_node_path(index, offset, noffset);
  356. nids[0] = dn->inode->i_ino;
  357. npage[0] = get_node_page(sbi, nids[0]);
  358. if (IS_ERR(npage[0]))
  359. return PTR_ERR(npage[0]);
  360. parent = npage[0];
  361. nids[1] = get_nid(parent, offset[0], true);
  362. dn->inode_page = npage[0];
  363. dn->inode_page_locked = true;
  364. /* get indirect or direct nodes */
  365. for (i = 1; i <= level; i++) {
  366. bool done = false;
  367. if (!nids[i] && !ro) {
  368. mutex_lock_op(sbi, NODE_NEW);
  369. /* alloc new node */
  370. if (!alloc_nid(sbi, &(nids[i]))) {
  371. mutex_unlock_op(sbi, NODE_NEW);
  372. err = -ENOSPC;
  373. goto release_pages;
  374. }
  375. dn->nid = nids[i];
  376. npage[i] = new_node_page(dn, noffset[i]);
  377. if (IS_ERR(npage[i])) {
  378. alloc_nid_failed(sbi, nids[i]);
  379. mutex_unlock_op(sbi, NODE_NEW);
  380. err = PTR_ERR(npage[i]);
  381. goto release_pages;
  382. }
  383. set_nid(parent, offset[i - 1], nids[i], i == 1);
  384. alloc_nid_done(sbi, nids[i]);
  385. mutex_unlock_op(sbi, NODE_NEW);
  386. done = true;
  387. } else if (ro && i == level && level > 1) {
  388. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  389. if (IS_ERR(npage[i])) {
  390. err = PTR_ERR(npage[i]);
  391. goto release_pages;
  392. }
  393. done = true;
  394. }
  395. if (i == 1) {
  396. dn->inode_page_locked = false;
  397. unlock_page(parent);
  398. } else {
  399. f2fs_put_page(parent, 1);
  400. }
  401. if (!done) {
  402. npage[i] = get_node_page(sbi, nids[i]);
  403. if (IS_ERR(npage[i])) {
  404. err = PTR_ERR(npage[i]);
  405. f2fs_put_page(npage[0], 0);
  406. goto release_out;
  407. }
  408. }
  409. if (i < level) {
  410. parent = npage[i];
  411. nids[i + 1] = get_nid(parent, offset[i], false);
  412. }
  413. }
  414. dn->nid = nids[level];
  415. dn->ofs_in_node = offset[level];
  416. dn->node_page = npage[level];
  417. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  418. return 0;
  419. release_pages:
  420. f2fs_put_page(parent, 1);
  421. if (i > 1)
  422. f2fs_put_page(npage[0], 0);
  423. release_out:
  424. dn->inode_page = NULL;
  425. dn->node_page = NULL;
  426. return err;
  427. }
  428. static void truncate_node(struct dnode_of_data *dn)
  429. {
  430. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  431. struct node_info ni;
  432. get_node_info(sbi, dn->nid, &ni);
  433. if (dn->inode->i_blocks == 0) {
  434. BUG_ON(ni.blk_addr != NULL_ADDR);
  435. goto invalidate;
  436. }
  437. BUG_ON(ni.blk_addr == NULL_ADDR);
  438. /* Deallocate node address */
  439. invalidate_blocks(sbi, ni.blk_addr);
  440. dec_valid_node_count(sbi, dn->inode, 1);
  441. set_node_addr(sbi, &ni, NULL_ADDR);
  442. if (dn->nid == dn->inode->i_ino) {
  443. remove_orphan_inode(sbi, dn->nid);
  444. dec_valid_inode_count(sbi);
  445. } else {
  446. sync_inode_page(dn);
  447. }
  448. invalidate:
  449. clear_node_page_dirty(dn->node_page);
  450. F2FS_SET_SB_DIRT(sbi);
  451. f2fs_put_page(dn->node_page, 1);
  452. dn->node_page = NULL;
  453. }
  454. static int truncate_dnode(struct dnode_of_data *dn)
  455. {
  456. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  457. struct page *page;
  458. if (dn->nid == 0)
  459. return 1;
  460. /* get direct node */
  461. page = get_node_page(sbi, dn->nid);
  462. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  463. return 1;
  464. else if (IS_ERR(page))
  465. return PTR_ERR(page);
  466. /* Make dnode_of_data for parameter */
  467. dn->node_page = page;
  468. dn->ofs_in_node = 0;
  469. truncate_data_blocks(dn);
  470. truncate_node(dn);
  471. return 1;
  472. }
  473. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  474. int ofs, int depth)
  475. {
  476. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  477. struct dnode_of_data rdn = *dn;
  478. struct page *page;
  479. struct f2fs_node *rn;
  480. nid_t child_nid;
  481. unsigned int child_nofs;
  482. int freed = 0;
  483. int i, ret;
  484. if (dn->nid == 0)
  485. return NIDS_PER_BLOCK + 1;
  486. page = get_node_page(sbi, dn->nid);
  487. if (IS_ERR(page))
  488. return PTR_ERR(page);
  489. rn = (struct f2fs_node *)page_address(page);
  490. if (depth < 3) {
  491. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  492. child_nid = le32_to_cpu(rn->in.nid[i]);
  493. if (child_nid == 0)
  494. continue;
  495. rdn.nid = child_nid;
  496. ret = truncate_dnode(&rdn);
  497. if (ret < 0)
  498. goto out_err;
  499. set_nid(page, i, 0, false);
  500. }
  501. } else {
  502. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  503. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  504. child_nid = le32_to_cpu(rn->in.nid[i]);
  505. if (child_nid == 0) {
  506. child_nofs += NIDS_PER_BLOCK + 1;
  507. continue;
  508. }
  509. rdn.nid = child_nid;
  510. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  511. if (ret == (NIDS_PER_BLOCK + 1)) {
  512. set_nid(page, i, 0, false);
  513. child_nofs += ret;
  514. } else if (ret < 0 && ret != -ENOENT) {
  515. goto out_err;
  516. }
  517. }
  518. freed = child_nofs;
  519. }
  520. if (!ofs) {
  521. /* remove current indirect node */
  522. dn->node_page = page;
  523. truncate_node(dn);
  524. freed++;
  525. } else {
  526. f2fs_put_page(page, 1);
  527. }
  528. return freed;
  529. out_err:
  530. f2fs_put_page(page, 1);
  531. return ret;
  532. }
  533. static int truncate_partial_nodes(struct dnode_of_data *dn,
  534. struct f2fs_inode *ri, int *offset, int depth)
  535. {
  536. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  537. struct page *pages[2];
  538. nid_t nid[3];
  539. nid_t child_nid;
  540. int err = 0;
  541. int i;
  542. int idx = depth - 2;
  543. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  544. if (!nid[0])
  545. return 0;
  546. /* get indirect nodes in the path */
  547. for (i = 0; i < depth - 1; i++) {
  548. /* refernece count'll be increased */
  549. pages[i] = get_node_page(sbi, nid[i]);
  550. if (IS_ERR(pages[i])) {
  551. depth = i + 1;
  552. err = PTR_ERR(pages[i]);
  553. goto fail;
  554. }
  555. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  556. }
  557. /* free direct nodes linked to a partial indirect node */
  558. for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
  559. child_nid = get_nid(pages[idx], i, false);
  560. if (!child_nid)
  561. continue;
  562. dn->nid = child_nid;
  563. err = truncate_dnode(dn);
  564. if (err < 0)
  565. goto fail;
  566. set_nid(pages[idx], i, 0, false);
  567. }
  568. if (offset[depth - 1] == 0) {
  569. dn->node_page = pages[idx];
  570. dn->nid = nid[idx];
  571. truncate_node(dn);
  572. } else {
  573. f2fs_put_page(pages[idx], 1);
  574. }
  575. offset[idx]++;
  576. offset[depth - 1] = 0;
  577. fail:
  578. for (i = depth - 3; i >= 0; i--)
  579. f2fs_put_page(pages[i], 1);
  580. return err;
  581. }
  582. /*
  583. * All the block addresses of data and nodes should be nullified.
  584. */
  585. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  586. {
  587. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  588. int err = 0, cont = 1;
  589. int level, offset[4], noffset[4];
  590. unsigned int nofs = 0;
  591. struct f2fs_node *rn;
  592. struct dnode_of_data dn;
  593. struct page *page;
  594. level = get_node_path(from, offset, noffset);
  595. page = get_node_page(sbi, inode->i_ino);
  596. if (IS_ERR(page))
  597. return PTR_ERR(page);
  598. set_new_dnode(&dn, inode, page, NULL, 0);
  599. unlock_page(page);
  600. rn = page_address(page);
  601. switch (level) {
  602. case 0:
  603. case 1:
  604. nofs = noffset[1];
  605. break;
  606. case 2:
  607. nofs = noffset[1];
  608. if (!offset[level - 1])
  609. goto skip_partial;
  610. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  611. if (err < 0 && err != -ENOENT)
  612. goto fail;
  613. nofs += 1 + NIDS_PER_BLOCK;
  614. break;
  615. case 3:
  616. nofs = 5 + 2 * NIDS_PER_BLOCK;
  617. if (!offset[level - 1])
  618. goto skip_partial;
  619. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  620. if (err < 0 && err != -ENOENT)
  621. goto fail;
  622. break;
  623. default:
  624. BUG();
  625. }
  626. skip_partial:
  627. while (cont) {
  628. dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
  629. switch (offset[0]) {
  630. case NODE_DIR1_BLOCK:
  631. case NODE_DIR2_BLOCK:
  632. err = truncate_dnode(&dn);
  633. break;
  634. case NODE_IND1_BLOCK:
  635. case NODE_IND2_BLOCK:
  636. err = truncate_nodes(&dn, nofs, offset[1], 2);
  637. break;
  638. case NODE_DIND_BLOCK:
  639. err = truncate_nodes(&dn, nofs, offset[1], 3);
  640. cont = 0;
  641. break;
  642. default:
  643. BUG();
  644. }
  645. if (err < 0 && err != -ENOENT)
  646. goto fail;
  647. if (offset[1] == 0 &&
  648. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  649. lock_page(page);
  650. wait_on_page_writeback(page);
  651. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  652. set_page_dirty(page);
  653. unlock_page(page);
  654. }
  655. offset[1] = 0;
  656. offset[0]++;
  657. nofs += err;
  658. }
  659. fail:
  660. f2fs_put_page(page, 0);
  661. return err > 0 ? 0 : err;
  662. }
  663. int remove_inode_page(struct inode *inode)
  664. {
  665. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  666. struct page *page;
  667. nid_t ino = inode->i_ino;
  668. struct dnode_of_data dn;
  669. mutex_lock_op(sbi, NODE_TRUNC);
  670. page = get_node_page(sbi, ino);
  671. if (IS_ERR(page)) {
  672. mutex_unlock_op(sbi, NODE_TRUNC);
  673. return PTR_ERR(page);
  674. }
  675. if (F2FS_I(inode)->i_xattr_nid) {
  676. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  677. struct page *npage = get_node_page(sbi, nid);
  678. if (IS_ERR(npage)) {
  679. mutex_unlock_op(sbi, NODE_TRUNC);
  680. return PTR_ERR(npage);
  681. }
  682. F2FS_I(inode)->i_xattr_nid = 0;
  683. set_new_dnode(&dn, inode, page, npage, nid);
  684. dn.inode_page_locked = 1;
  685. truncate_node(&dn);
  686. }
  687. /* 0 is possible, after f2fs_new_inode() is failed */
  688. BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
  689. set_new_dnode(&dn, inode, page, page, ino);
  690. truncate_node(&dn);
  691. mutex_unlock_op(sbi, NODE_TRUNC);
  692. return 0;
  693. }
  694. int new_inode_page(struct inode *inode, const struct qstr *name)
  695. {
  696. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  697. struct page *page;
  698. struct dnode_of_data dn;
  699. /* allocate inode page for new inode */
  700. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  701. mutex_lock_op(sbi, NODE_NEW);
  702. page = new_node_page(&dn, 0);
  703. init_dent_inode(name, page);
  704. mutex_unlock_op(sbi, NODE_NEW);
  705. if (IS_ERR(page))
  706. return PTR_ERR(page);
  707. f2fs_put_page(page, 1);
  708. return 0;
  709. }
  710. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  711. {
  712. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  713. struct address_space *mapping = sbi->node_inode->i_mapping;
  714. struct node_info old_ni, new_ni;
  715. struct page *page;
  716. int err;
  717. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  718. return ERR_PTR(-EPERM);
  719. page = grab_cache_page(mapping, dn->nid);
  720. if (!page)
  721. return ERR_PTR(-ENOMEM);
  722. get_node_info(sbi, dn->nid, &old_ni);
  723. SetPageUptodate(page);
  724. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  725. /* Reinitialize old_ni with new node page */
  726. BUG_ON(old_ni.blk_addr != NULL_ADDR);
  727. new_ni = old_ni;
  728. new_ni.ino = dn->inode->i_ino;
  729. if (!inc_valid_node_count(sbi, dn->inode, 1)) {
  730. err = -ENOSPC;
  731. goto fail;
  732. }
  733. set_node_addr(sbi, &new_ni, NEW_ADDR);
  734. set_cold_node(dn->inode, page);
  735. dn->node_page = page;
  736. sync_inode_page(dn);
  737. set_page_dirty(page);
  738. if (ofs == 0)
  739. inc_valid_inode_count(sbi);
  740. return page;
  741. fail:
  742. clear_node_page_dirty(page);
  743. f2fs_put_page(page, 1);
  744. return ERR_PTR(err);
  745. }
  746. static int read_node_page(struct page *page, int type)
  747. {
  748. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  749. struct node_info ni;
  750. get_node_info(sbi, page->index, &ni);
  751. if (ni.blk_addr == NULL_ADDR)
  752. return -ENOENT;
  753. return f2fs_readpage(sbi, page, ni.blk_addr, type);
  754. }
  755. /*
  756. * Readahead a node page
  757. */
  758. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  759. {
  760. struct address_space *mapping = sbi->node_inode->i_mapping;
  761. struct page *apage;
  762. apage = find_get_page(mapping, nid);
  763. if (apage && PageUptodate(apage))
  764. goto release_out;
  765. f2fs_put_page(apage, 0);
  766. apage = grab_cache_page(mapping, nid);
  767. if (!apage)
  768. return;
  769. if (read_node_page(apage, READA))
  770. unlock_page(apage);
  771. release_out:
  772. f2fs_put_page(apage, 0);
  773. return;
  774. }
  775. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  776. {
  777. int err;
  778. struct page *page;
  779. struct address_space *mapping = sbi->node_inode->i_mapping;
  780. page = grab_cache_page(mapping, nid);
  781. if (!page)
  782. return ERR_PTR(-ENOMEM);
  783. err = read_node_page(page, READ_SYNC);
  784. if (err) {
  785. f2fs_put_page(page, 1);
  786. return ERR_PTR(err);
  787. }
  788. BUG_ON(nid != nid_of_node(page));
  789. mark_page_accessed(page);
  790. return page;
  791. }
  792. /*
  793. * Return a locked page for the desired node page.
  794. * And, readahead MAX_RA_NODE number of node pages.
  795. */
  796. struct page *get_node_page_ra(struct page *parent, int start)
  797. {
  798. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  799. struct address_space *mapping = sbi->node_inode->i_mapping;
  800. int i, end;
  801. int err = 0;
  802. nid_t nid;
  803. struct page *page;
  804. /* First, try getting the desired direct node. */
  805. nid = get_nid(parent, start, false);
  806. if (!nid)
  807. return ERR_PTR(-ENOENT);
  808. page = find_get_page(mapping, nid);
  809. if (page && PageUptodate(page))
  810. goto page_hit;
  811. f2fs_put_page(page, 0);
  812. repeat:
  813. page = grab_cache_page(mapping, nid);
  814. if (!page)
  815. return ERR_PTR(-ENOMEM);
  816. err = read_node_page(page, READA);
  817. if (err) {
  818. f2fs_put_page(page, 1);
  819. return ERR_PTR(err);
  820. }
  821. /* Then, try readahead for siblings of the desired node */
  822. end = start + MAX_RA_NODE;
  823. end = min(end, NIDS_PER_BLOCK);
  824. for (i = start + 1; i < end; i++) {
  825. nid = get_nid(parent, i, false);
  826. if (!nid)
  827. continue;
  828. ra_node_page(sbi, nid);
  829. }
  830. page_hit:
  831. lock_page(page);
  832. if (PageError(page)) {
  833. f2fs_put_page(page, 1);
  834. return ERR_PTR(-EIO);
  835. }
  836. /* Has the page been truncated? */
  837. if (page->mapping != mapping) {
  838. f2fs_put_page(page, 1);
  839. goto repeat;
  840. }
  841. return page;
  842. }
  843. void sync_inode_page(struct dnode_of_data *dn)
  844. {
  845. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  846. update_inode(dn->inode, dn->node_page);
  847. } else if (dn->inode_page) {
  848. if (!dn->inode_page_locked)
  849. lock_page(dn->inode_page);
  850. update_inode(dn->inode, dn->inode_page);
  851. if (!dn->inode_page_locked)
  852. unlock_page(dn->inode_page);
  853. } else {
  854. f2fs_write_inode(dn->inode, NULL);
  855. }
  856. }
  857. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  858. struct writeback_control *wbc)
  859. {
  860. struct address_space *mapping = sbi->node_inode->i_mapping;
  861. pgoff_t index, end;
  862. struct pagevec pvec;
  863. int step = ino ? 2 : 0;
  864. int nwritten = 0, wrote = 0;
  865. pagevec_init(&pvec, 0);
  866. next_step:
  867. index = 0;
  868. end = LONG_MAX;
  869. while (index <= end) {
  870. int i, nr_pages;
  871. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  872. PAGECACHE_TAG_DIRTY,
  873. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  874. if (nr_pages == 0)
  875. break;
  876. for (i = 0; i < nr_pages; i++) {
  877. struct page *page = pvec.pages[i];
  878. /*
  879. * flushing sequence with step:
  880. * 0. indirect nodes
  881. * 1. dentry dnodes
  882. * 2. file dnodes
  883. */
  884. if (step == 0 && IS_DNODE(page))
  885. continue;
  886. if (step == 1 && (!IS_DNODE(page) ||
  887. is_cold_node(page)))
  888. continue;
  889. if (step == 2 && (!IS_DNODE(page) ||
  890. !is_cold_node(page)))
  891. continue;
  892. /*
  893. * If an fsync mode,
  894. * we should not skip writing node pages.
  895. */
  896. if (ino && ino_of_node(page) == ino)
  897. lock_page(page);
  898. else if (!trylock_page(page))
  899. continue;
  900. if (unlikely(page->mapping != mapping)) {
  901. continue_unlock:
  902. unlock_page(page);
  903. continue;
  904. }
  905. if (ino && ino_of_node(page) != ino)
  906. goto continue_unlock;
  907. if (!PageDirty(page)) {
  908. /* someone wrote it for us */
  909. goto continue_unlock;
  910. }
  911. if (!clear_page_dirty_for_io(page))
  912. goto continue_unlock;
  913. /* called by fsync() */
  914. if (ino && IS_DNODE(page)) {
  915. int mark = !is_checkpointed_node(sbi, ino);
  916. set_fsync_mark(page, 1);
  917. if (IS_INODE(page))
  918. set_dentry_mark(page, mark);
  919. nwritten++;
  920. } else {
  921. set_fsync_mark(page, 0);
  922. set_dentry_mark(page, 0);
  923. }
  924. mapping->a_ops->writepage(page, wbc);
  925. wrote++;
  926. if (--wbc->nr_to_write == 0)
  927. break;
  928. }
  929. pagevec_release(&pvec);
  930. cond_resched();
  931. if (wbc->nr_to_write == 0) {
  932. step = 2;
  933. break;
  934. }
  935. }
  936. if (step < 2) {
  937. step++;
  938. goto next_step;
  939. }
  940. if (wrote)
  941. f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
  942. return nwritten;
  943. }
  944. static int f2fs_write_node_page(struct page *page,
  945. struct writeback_control *wbc)
  946. {
  947. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  948. nid_t nid;
  949. block_t new_addr;
  950. struct node_info ni;
  951. if (wbc->for_reclaim) {
  952. dec_page_count(sbi, F2FS_DIRTY_NODES);
  953. wbc->pages_skipped++;
  954. set_page_dirty(page);
  955. return AOP_WRITEPAGE_ACTIVATE;
  956. }
  957. wait_on_page_writeback(page);
  958. mutex_lock_op(sbi, NODE_WRITE);
  959. /* get old block addr of this node page */
  960. nid = nid_of_node(page);
  961. BUG_ON(page->index != nid);
  962. get_node_info(sbi, nid, &ni);
  963. /* This page is already truncated */
  964. if (ni.blk_addr == NULL_ADDR)
  965. return 0;
  966. set_page_writeback(page);
  967. /* insert node offset */
  968. write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
  969. set_node_addr(sbi, &ni, new_addr);
  970. dec_page_count(sbi, F2FS_DIRTY_NODES);
  971. mutex_unlock_op(sbi, NODE_WRITE);
  972. unlock_page(page);
  973. return 0;
  974. }
  975. /*
  976. * It is very important to gather dirty pages and write at once, so that we can
  977. * submit a big bio without interfering other data writes.
  978. * Be default, 512 pages (2MB), a segment size, is quite reasonable.
  979. */
  980. #define COLLECT_DIRTY_NODES 512
  981. static int f2fs_write_node_pages(struct address_space *mapping,
  982. struct writeback_control *wbc)
  983. {
  984. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  985. struct block_device *bdev = sbi->sb->s_bdev;
  986. long nr_to_write = wbc->nr_to_write;
  987. /* First check balancing cached NAT entries */
  988. if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
  989. write_checkpoint(sbi, false);
  990. return 0;
  991. }
  992. /* collect a number of dirty node pages and write together */
  993. if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
  994. return 0;
  995. /* if mounting is failed, skip writing node pages */
  996. wbc->nr_to_write = bio_get_nr_vecs(bdev);
  997. sync_node_pages(sbi, 0, wbc);
  998. wbc->nr_to_write = nr_to_write -
  999. (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
  1000. return 0;
  1001. }
  1002. static int f2fs_set_node_page_dirty(struct page *page)
  1003. {
  1004. struct address_space *mapping = page->mapping;
  1005. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1006. SetPageUptodate(page);
  1007. if (!PageDirty(page)) {
  1008. __set_page_dirty_nobuffers(page);
  1009. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1010. SetPagePrivate(page);
  1011. return 1;
  1012. }
  1013. return 0;
  1014. }
  1015. static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
  1016. {
  1017. struct inode *inode = page->mapping->host;
  1018. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1019. if (PageDirty(page))
  1020. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1021. ClearPagePrivate(page);
  1022. }
  1023. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1024. {
  1025. ClearPagePrivate(page);
  1026. return 0;
  1027. }
  1028. /*
  1029. * Structure of the f2fs node operations
  1030. */
  1031. const struct address_space_operations f2fs_node_aops = {
  1032. .writepage = f2fs_write_node_page,
  1033. .writepages = f2fs_write_node_pages,
  1034. .set_page_dirty = f2fs_set_node_page_dirty,
  1035. .invalidatepage = f2fs_invalidate_node_page,
  1036. .releasepage = f2fs_release_node_page,
  1037. };
  1038. static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
  1039. {
  1040. struct list_head *this;
  1041. struct free_nid *i = NULL;
  1042. list_for_each(this, head) {
  1043. i = list_entry(this, struct free_nid, list);
  1044. if (i->nid == n)
  1045. break;
  1046. i = NULL;
  1047. }
  1048. return i;
  1049. }
  1050. static void __del_from_free_nid_list(struct free_nid *i)
  1051. {
  1052. list_del(&i->list);
  1053. kmem_cache_free(free_nid_slab, i);
  1054. }
  1055. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1056. {
  1057. struct free_nid *i;
  1058. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1059. return 0;
  1060. retry:
  1061. i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1062. if (!i) {
  1063. cond_resched();
  1064. goto retry;
  1065. }
  1066. i->nid = nid;
  1067. i->state = NID_NEW;
  1068. spin_lock(&nm_i->free_nid_list_lock);
  1069. if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
  1070. spin_unlock(&nm_i->free_nid_list_lock);
  1071. kmem_cache_free(free_nid_slab, i);
  1072. return 0;
  1073. }
  1074. list_add_tail(&i->list, &nm_i->free_nid_list);
  1075. nm_i->fcnt++;
  1076. spin_unlock(&nm_i->free_nid_list_lock);
  1077. return 1;
  1078. }
  1079. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1080. {
  1081. struct free_nid *i;
  1082. spin_lock(&nm_i->free_nid_list_lock);
  1083. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1084. if (i && i->state == NID_NEW) {
  1085. __del_from_free_nid_list(i);
  1086. nm_i->fcnt--;
  1087. }
  1088. spin_unlock(&nm_i->free_nid_list_lock);
  1089. }
  1090. static int scan_nat_page(struct f2fs_nm_info *nm_i,
  1091. struct page *nat_page, nid_t start_nid)
  1092. {
  1093. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1094. block_t blk_addr;
  1095. int fcnt = 0;
  1096. int i;
  1097. /* 0 nid should not be used */
  1098. if (start_nid == 0)
  1099. ++start_nid;
  1100. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1101. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1102. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1103. BUG_ON(blk_addr == NEW_ADDR);
  1104. if (blk_addr == NULL_ADDR)
  1105. fcnt += add_free_nid(nm_i, start_nid);
  1106. }
  1107. return fcnt;
  1108. }
  1109. static void build_free_nids(struct f2fs_sb_info *sbi)
  1110. {
  1111. struct free_nid *fnid, *next_fnid;
  1112. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1113. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1114. struct f2fs_summary_block *sum = curseg->sum_blk;
  1115. nid_t nid = 0;
  1116. bool is_cycled = false;
  1117. int fcnt = 0;
  1118. int i;
  1119. nid = nm_i->next_scan_nid;
  1120. nm_i->init_scan_nid = nid;
  1121. ra_nat_pages(sbi, nid);
  1122. while (1) {
  1123. struct page *page = get_current_nat_page(sbi, nid);
  1124. fcnt += scan_nat_page(nm_i, page, nid);
  1125. f2fs_put_page(page, 1);
  1126. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1127. if (nid >= nm_i->max_nid) {
  1128. nid = 0;
  1129. is_cycled = true;
  1130. }
  1131. if (fcnt > MAX_FREE_NIDS)
  1132. break;
  1133. if (is_cycled && nm_i->init_scan_nid <= nid)
  1134. break;
  1135. }
  1136. nm_i->next_scan_nid = nid;
  1137. /* find free nids from current sum_pages */
  1138. mutex_lock(&curseg->curseg_mutex);
  1139. for (i = 0; i < nats_in_cursum(sum); i++) {
  1140. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1141. nid = le32_to_cpu(nid_in_journal(sum, i));
  1142. if (addr == NULL_ADDR)
  1143. add_free_nid(nm_i, nid);
  1144. else
  1145. remove_free_nid(nm_i, nid);
  1146. }
  1147. mutex_unlock(&curseg->curseg_mutex);
  1148. /* remove the free nids from current allocated nids */
  1149. list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
  1150. struct nat_entry *ne;
  1151. read_lock(&nm_i->nat_tree_lock);
  1152. ne = __lookup_nat_cache(nm_i, fnid->nid);
  1153. if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
  1154. remove_free_nid(nm_i, fnid->nid);
  1155. read_unlock(&nm_i->nat_tree_lock);
  1156. }
  1157. }
  1158. /*
  1159. * If this function returns success, caller can obtain a new nid
  1160. * from second parameter of this function.
  1161. * The returned nid could be used ino as well as nid when inode is created.
  1162. */
  1163. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1164. {
  1165. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1166. struct free_nid *i = NULL;
  1167. struct list_head *this;
  1168. retry:
  1169. mutex_lock(&nm_i->build_lock);
  1170. if (!nm_i->fcnt) {
  1171. /* scan NAT in order to build free nid list */
  1172. build_free_nids(sbi);
  1173. if (!nm_i->fcnt) {
  1174. mutex_unlock(&nm_i->build_lock);
  1175. return false;
  1176. }
  1177. }
  1178. mutex_unlock(&nm_i->build_lock);
  1179. /*
  1180. * We check fcnt again since previous check is racy as
  1181. * we didn't hold free_nid_list_lock. So other thread
  1182. * could consume all of free nids.
  1183. */
  1184. spin_lock(&nm_i->free_nid_list_lock);
  1185. if (!nm_i->fcnt) {
  1186. spin_unlock(&nm_i->free_nid_list_lock);
  1187. goto retry;
  1188. }
  1189. BUG_ON(list_empty(&nm_i->free_nid_list));
  1190. list_for_each(this, &nm_i->free_nid_list) {
  1191. i = list_entry(this, struct free_nid, list);
  1192. if (i->state == NID_NEW)
  1193. break;
  1194. }
  1195. BUG_ON(i->state != NID_NEW);
  1196. *nid = i->nid;
  1197. i->state = NID_ALLOC;
  1198. nm_i->fcnt--;
  1199. spin_unlock(&nm_i->free_nid_list_lock);
  1200. return true;
  1201. }
  1202. /*
  1203. * alloc_nid() should be called prior to this function.
  1204. */
  1205. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1206. {
  1207. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1208. struct free_nid *i;
  1209. spin_lock(&nm_i->free_nid_list_lock);
  1210. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1211. if (i) {
  1212. BUG_ON(i->state != NID_ALLOC);
  1213. __del_from_free_nid_list(i);
  1214. }
  1215. spin_unlock(&nm_i->free_nid_list_lock);
  1216. }
  1217. /*
  1218. * alloc_nid() should be called prior to this function.
  1219. */
  1220. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1221. {
  1222. alloc_nid_done(sbi, nid);
  1223. add_free_nid(NM_I(sbi), nid);
  1224. }
  1225. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1226. struct f2fs_summary *sum, struct node_info *ni,
  1227. block_t new_blkaddr)
  1228. {
  1229. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1230. set_node_addr(sbi, ni, new_blkaddr);
  1231. clear_node_page_dirty(page);
  1232. }
  1233. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1234. {
  1235. struct address_space *mapping = sbi->node_inode->i_mapping;
  1236. struct f2fs_node *src, *dst;
  1237. nid_t ino = ino_of_node(page);
  1238. struct node_info old_ni, new_ni;
  1239. struct page *ipage;
  1240. ipage = grab_cache_page(mapping, ino);
  1241. if (!ipage)
  1242. return -ENOMEM;
  1243. /* Should not use this inode from free nid list */
  1244. remove_free_nid(NM_I(sbi), ino);
  1245. get_node_info(sbi, ino, &old_ni);
  1246. SetPageUptodate(ipage);
  1247. fill_node_footer(ipage, ino, ino, 0, true);
  1248. src = (struct f2fs_node *)page_address(page);
  1249. dst = (struct f2fs_node *)page_address(ipage);
  1250. memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
  1251. dst->i.i_size = 0;
  1252. dst->i.i_blocks = cpu_to_le64(1);
  1253. dst->i.i_links = cpu_to_le32(1);
  1254. dst->i.i_xattr_nid = 0;
  1255. new_ni = old_ni;
  1256. new_ni.ino = ino;
  1257. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1258. inc_valid_inode_count(sbi);
  1259. f2fs_put_page(ipage, 1);
  1260. return 0;
  1261. }
  1262. int restore_node_summary(struct f2fs_sb_info *sbi,
  1263. unsigned int segno, struct f2fs_summary_block *sum)
  1264. {
  1265. struct f2fs_node *rn;
  1266. struct f2fs_summary *sum_entry;
  1267. struct page *page;
  1268. block_t addr;
  1269. int i, last_offset;
  1270. /* alloc temporal page for read node */
  1271. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  1272. if (IS_ERR(page))
  1273. return PTR_ERR(page);
  1274. lock_page(page);
  1275. /* scan the node segment */
  1276. last_offset = sbi->blocks_per_seg;
  1277. addr = START_BLOCK(sbi, segno);
  1278. sum_entry = &sum->entries[0];
  1279. for (i = 0; i < last_offset; i++, sum_entry++) {
  1280. if (f2fs_readpage(sbi, page, addr, READ_SYNC))
  1281. goto out;
  1282. rn = (struct f2fs_node *)page_address(page);
  1283. sum_entry->nid = rn->footer.nid;
  1284. sum_entry->version = 0;
  1285. sum_entry->ofs_in_node = 0;
  1286. addr++;
  1287. /*
  1288. * In order to read next node page,
  1289. * we must clear PageUptodate flag.
  1290. */
  1291. ClearPageUptodate(page);
  1292. }
  1293. out:
  1294. unlock_page(page);
  1295. __free_pages(page, 0);
  1296. return 0;
  1297. }
  1298. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1299. {
  1300. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1301. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1302. struct f2fs_summary_block *sum = curseg->sum_blk;
  1303. int i;
  1304. mutex_lock(&curseg->curseg_mutex);
  1305. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1306. mutex_unlock(&curseg->curseg_mutex);
  1307. return false;
  1308. }
  1309. for (i = 0; i < nats_in_cursum(sum); i++) {
  1310. struct nat_entry *ne;
  1311. struct f2fs_nat_entry raw_ne;
  1312. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1313. raw_ne = nat_in_journal(sum, i);
  1314. retry:
  1315. write_lock(&nm_i->nat_tree_lock);
  1316. ne = __lookup_nat_cache(nm_i, nid);
  1317. if (ne) {
  1318. __set_nat_cache_dirty(nm_i, ne);
  1319. write_unlock(&nm_i->nat_tree_lock);
  1320. continue;
  1321. }
  1322. ne = grab_nat_entry(nm_i, nid);
  1323. if (!ne) {
  1324. write_unlock(&nm_i->nat_tree_lock);
  1325. goto retry;
  1326. }
  1327. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1328. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1329. nat_set_version(ne, raw_ne.version);
  1330. __set_nat_cache_dirty(nm_i, ne);
  1331. write_unlock(&nm_i->nat_tree_lock);
  1332. }
  1333. update_nats_in_cursum(sum, -i);
  1334. mutex_unlock(&curseg->curseg_mutex);
  1335. return true;
  1336. }
  1337. /*
  1338. * This function is called during the checkpointing process.
  1339. */
  1340. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1341. {
  1342. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1343. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1344. struct f2fs_summary_block *sum = curseg->sum_blk;
  1345. struct list_head *cur, *n;
  1346. struct page *page = NULL;
  1347. struct f2fs_nat_block *nat_blk = NULL;
  1348. nid_t start_nid = 0, end_nid = 0;
  1349. bool flushed;
  1350. flushed = flush_nats_in_journal(sbi);
  1351. if (!flushed)
  1352. mutex_lock(&curseg->curseg_mutex);
  1353. /* 1) flush dirty nat caches */
  1354. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1355. struct nat_entry *ne;
  1356. nid_t nid;
  1357. struct f2fs_nat_entry raw_ne;
  1358. int offset = -1;
  1359. block_t new_blkaddr;
  1360. ne = list_entry(cur, struct nat_entry, list);
  1361. nid = nat_get_nid(ne);
  1362. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1363. continue;
  1364. if (flushed)
  1365. goto to_nat_page;
  1366. /* if there is room for nat enries in curseg->sumpage */
  1367. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1368. if (offset >= 0) {
  1369. raw_ne = nat_in_journal(sum, offset);
  1370. goto flush_now;
  1371. }
  1372. to_nat_page:
  1373. if (!page || (start_nid > nid || nid > end_nid)) {
  1374. if (page) {
  1375. f2fs_put_page(page, 1);
  1376. page = NULL;
  1377. }
  1378. start_nid = START_NID(nid);
  1379. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1380. /*
  1381. * get nat block with dirty flag, increased reference
  1382. * count, mapped and lock
  1383. */
  1384. page = get_next_nat_page(sbi, start_nid);
  1385. nat_blk = page_address(page);
  1386. }
  1387. BUG_ON(!nat_blk);
  1388. raw_ne = nat_blk->entries[nid - start_nid];
  1389. flush_now:
  1390. new_blkaddr = nat_get_blkaddr(ne);
  1391. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1392. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1393. raw_ne.version = nat_get_version(ne);
  1394. if (offset < 0) {
  1395. nat_blk->entries[nid - start_nid] = raw_ne;
  1396. } else {
  1397. nat_in_journal(sum, offset) = raw_ne;
  1398. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1399. }
  1400. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  1401. write_lock(&nm_i->nat_tree_lock);
  1402. __del_from_nat_cache(nm_i, ne);
  1403. write_unlock(&nm_i->nat_tree_lock);
  1404. /* We can reuse this freed nid at this point */
  1405. add_free_nid(NM_I(sbi), nid);
  1406. } else {
  1407. write_lock(&nm_i->nat_tree_lock);
  1408. __clear_nat_cache_dirty(nm_i, ne);
  1409. ne->checkpointed = true;
  1410. write_unlock(&nm_i->nat_tree_lock);
  1411. }
  1412. }
  1413. if (!flushed)
  1414. mutex_unlock(&curseg->curseg_mutex);
  1415. f2fs_put_page(page, 1);
  1416. /* 2) shrink nat caches if necessary */
  1417. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1418. }
  1419. static int init_node_manager(struct f2fs_sb_info *sbi)
  1420. {
  1421. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1422. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1423. unsigned char *version_bitmap;
  1424. unsigned int nat_segs, nat_blocks;
  1425. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1426. /* segment_count_nat includes pair segment so divide to 2. */
  1427. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1428. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1429. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1430. nm_i->fcnt = 0;
  1431. nm_i->nat_cnt = 0;
  1432. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1433. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1434. INIT_LIST_HEAD(&nm_i->nat_entries);
  1435. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1436. mutex_init(&nm_i->build_lock);
  1437. spin_lock_init(&nm_i->free_nid_list_lock);
  1438. rwlock_init(&nm_i->nat_tree_lock);
  1439. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1440. nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1441. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1442. nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
  1443. if (!nm_i->nat_bitmap)
  1444. return -ENOMEM;
  1445. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1446. if (!version_bitmap)
  1447. return -EFAULT;
  1448. /* copy version bitmap */
  1449. memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
  1450. return 0;
  1451. }
  1452. int build_node_manager(struct f2fs_sb_info *sbi)
  1453. {
  1454. int err;
  1455. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1456. if (!sbi->nm_info)
  1457. return -ENOMEM;
  1458. err = init_node_manager(sbi);
  1459. if (err)
  1460. return err;
  1461. build_free_nids(sbi);
  1462. return 0;
  1463. }
  1464. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1465. {
  1466. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1467. struct free_nid *i, *next_i;
  1468. struct nat_entry *natvec[NATVEC_SIZE];
  1469. nid_t nid = 0;
  1470. unsigned int found;
  1471. if (!nm_i)
  1472. return;
  1473. /* destroy free nid list */
  1474. spin_lock(&nm_i->free_nid_list_lock);
  1475. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1476. BUG_ON(i->state == NID_ALLOC);
  1477. __del_from_free_nid_list(i);
  1478. nm_i->fcnt--;
  1479. }
  1480. BUG_ON(nm_i->fcnt);
  1481. spin_unlock(&nm_i->free_nid_list_lock);
  1482. /* destroy nat cache */
  1483. write_lock(&nm_i->nat_tree_lock);
  1484. while ((found = __gang_lookup_nat_cache(nm_i,
  1485. nid, NATVEC_SIZE, natvec))) {
  1486. unsigned idx;
  1487. for (idx = 0; idx < found; idx++) {
  1488. struct nat_entry *e = natvec[idx];
  1489. nid = nat_get_nid(e) + 1;
  1490. __del_from_nat_cache(nm_i, e);
  1491. }
  1492. }
  1493. BUG_ON(nm_i->nat_cnt);
  1494. write_unlock(&nm_i->nat_tree_lock);
  1495. kfree(nm_i->nat_bitmap);
  1496. sbi->nm_info = NULL;
  1497. kfree(nm_i);
  1498. }
  1499. int __init create_node_manager_caches(void)
  1500. {
  1501. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1502. sizeof(struct nat_entry), NULL);
  1503. if (!nat_entry_slab)
  1504. return -ENOMEM;
  1505. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1506. sizeof(struct free_nid), NULL);
  1507. if (!free_nid_slab) {
  1508. kmem_cache_destroy(nat_entry_slab);
  1509. return -ENOMEM;
  1510. }
  1511. return 0;
  1512. }
  1513. void destroy_node_manager_caches(void)
  1514. {
  1515. kmem_cache_destroy(free_nid_slab);
  1516. kmem_cache_destroy(nat_entry_slab);
  1517. }