dir.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. static unsigned long dir_blocks(struct inode *inode)
  17. {
  18. return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
  19. >> PAGE_CACHE_SHIFT;
  20. }
  21. static unsigned int dir_buckets(unsigned int level)
  22. {
  23. if (level < MAX_DIR_HASH_DEPTH / 2)
  24. return 1 << level;
  25. else
  26. return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
  27. }
  28. static unsigned int bucket_blocks(unsigned int level)
  29. {
  30. if (level < MAX_DIR_HASH_DEPTH / 2)
  31. return 2;
  32. else
  33. return 4;
  34. }
  35. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  36. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  37. [F2FS_FT_REG_FILE] = DT_REG,
  38. [F2FS_FT_DIR] = DT_DIR,
  39. [F2FS_FT_CHRDEV] = DT_CHR,
  40. [F2FS_FT_BLKDEV] = DT_BLK,
  41. [F2FS_FT_FIFO] = DT_FIFO,
  42. [F2FS_FT_SOCK] = DT_SOCK,
  43. [F2FS_FT_SYMLINK] = DT_LNK,
  44. };
  45. #define S_SHIFT 12
  46. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  47. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  48. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  49. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  50. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  51. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  52. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  53. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  54. };
  55. static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
  56. {
  57. mode_t mode = inode->i_mode;
  58. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  59. }
  60. static unsigned long dir_block_index(unsigned int level, unsigned int idx)
  61. {
  62. unsigned long i;
  63. unsigned long bidx = 0;
  64. for (i = 0; i < level; i++)
  65. bidx += dir_buckets(i) * bucket_blocks(i);
  66. bidx += idx * bucket_blocks(level);
  67. return bidx;
  68. }
  69. static bool early_match_name(const char *name, size_t namelen,
  70. f2fs_hash_t namehash, struct f2fs_dir_entry *de)
  71. {
  72. if (le16_to_cpu(de->name_len) != namelen)
  73. return false;
  74. if (de->hash_code != namehash)
  75. return false;
  76. return true;
  77. }
  78. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  79. const char *name, size_t namelen, int *max_slots,
  80. f2fs_hash_t namehash, struct page **res_page)
  81. {
  82. struct f2fs_dir_entry *de;
  83. unsigned long bit_pos, end_pos, next_pos;
  84. struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
  85. int slots;
  86. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  87. NR_DENTRY_IN_BLOCK, 0);
  88. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  89. de = &dentry_blk->dentry[bit_pos];
  90. slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  91. if (early_match_name(name, namelen, namehash, de)) {
  92. if (!memcmp(dentry_blk->filename[bit_pos],
  93. name, namelen)) {
  94. *res_page = dentry_page;
  95. goto found;
  96. }
  97. }
  98. next_pos = bit_pos + slots;
  99. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  100. NR_DENTRY_IN_BLOCK, next_pos);
  101. if (bit_pos >= NR_DENTRY_IN_BLOCK)
  102. end_pos = NR_DENTRY_IN_BLOCK;
  103. else
  104. end_pos = bit_pos;
  105. if (*max_slots < end_pos - next_pos)
  106. *max_slots = end_pos - next_pos;
  107. }
  108. de = NULL;
  109. kunmap(dentry_page);
  110. found:
  111. return de;
  112. }
  113. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  114. unsigned int level, const char *name, size_t namelen,
  115. f2fs_hash_t namehash, struct page **res_page)
  116. {
  117. int s = GET_DENTRY_SLOTS(namelen);
  118. unsigned int nbucket, nblock;
  119. unsigned int bidx, end_block;
  120. struct page *dentry_page;
  121. struct f2fs_dir_entry *de = NULL;
  122. bool room = false;
  123. int max_slots = 0;
  124. BUG_ON(level > MAX_DIR_HASH_DEPTH);
  125. nbucket = dir_buckets(level);
  126. nblock = bucket_blocks(level);
  127. bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket);
  128. end_block = bidx + nblock;
  129. for (; bidx < end_block; bidx++) {
  130. /* no need to allocate new dentry pages to all the indices */
  131. dentry_page = find_data_page(dir, bidx);
  132. if (IS_ERR(dentry_page)) {
  133. room = true;
  134. continue;
  135. }
  136. de = find_in_block(dentry_page, name, namelen,
  137. &max_slots, namehash, res_page);
  138. if (de)
  139. break;
  140. if (max_slots >= s)
  141. room = true;
  142. f2fs_put_page(dentry_page, 0);
  143. }
  144. if (!de && room && F2FS_I(dir)->chash != namehash) {
  145. F2FS_I(dir)->chash = namehash;
  146. F2FS_I(dir)->clevel = level;
  147. }
  148. return de;
  149. }
  150. /*
  151. * Find an entry in the specified directory with the wanted name.
  152. * It returns the page where the entry was found (as a parameter - res_page),
  153. * and the entry itself. Page is returned mapped and unlocked.
  154. * Entry is guaranteed to be valid.
  155. */
  156. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  157. struct qstr *child, struct page **res_page)
  158. {
  159. const char *name = child->name;
  160. size_t namelen = child->len;
  161. unsigned long npages = dir_blocks(dir);
  162. struct f2fs_dir_entry *de = NULL;
  163. f2fs_hash_t name_hash;
  164. unsigned int max_depth;
  165. unsigned int level;
  166. if (npages == 0)
  167. return NULL;
  168. *res_page = NULL;
  169. name_hash = f2fs_dentry_hash(name, namelen);
  170. max_depth = F2FS_I(dir)->i_current_depth;
  171. for (level = 0; level < max_depth; level++) {
  172. de = find_in_level(dir, level, name,
  173. namelen, name_hash, res_page);
  174. if (de)
  175. break;
  176. }
  177. if (!de && F2FS_I(dir)->chash != name_hash) {
  178. F2FS_I(dir)->chash = name_hash;
  179. F2FS_I(dir)->clevel = level - 1;
  180. }
  181. return de;
  182. }
  183. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  184. {
  185. struct page *page = NULL;
  186. struct f2fs_dir_entry *de = NULL;
  187. struct f2fs_dentry_block *dentry_blk = NULL;
  188. page = get_lock_data_page(dir, 0);
  189. if (IS_ERR(page))
  190. return NULL;
  191. dentry_blk = kmap(page);
  192. de = &dentry_blk->dentry[1];
  193. *p = page;
  194. unlock_page(page);
  195. return de;
  196. }
  197. ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
  198. {
  199. ino_t res = 0;
  200. struct f2fs_dir_entry *de;
  201. struct page *page;
  202. de = f2fs_find_entry(dir, qstr, &page);
  203. if (de) {
  204. res = le32_to_cpu(de->ino);
  205. kunmap(page);
  206. f2fs_put_page(page, 0);
  207. }
  208. return res;
  209. }
  210. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  211. struct page *page, struct inode *inode)
  212. {
  213. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  214. mutex_lock_op(sbi, DENTRY_OPS);
  215. lock_page(page);
  216. wait_on_page_writeback(page);
  217. de->ino = cpu_to_le32(inode->i_ino);
  218. set_de_type(de, inode);
  219. kunmap(page);
  220. set_page_dirty(page);
  221. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  222. mark_inode_dirty(dir);
  223. /* update parent inode number before releasing dentry page */
  224. F2FS_I(inode)->i_pino = dir->i_ino;
  225. f2fs_put_page(page, 1);
  226. mutex_unlock_op(sbi, DENTRY_OPS);
  227. }
  228. void init_dent_inode(const struct qstr *name, struct page *ipage)
  229. {
  230. struct f2fs_node *rn;
  231. if (IS_ERR(ipage))
  232. return;
  233. wait_on_page_writeback(ipage);
  234. /* copy name info. to this inode page */
  235. rn = (struct f2fs_node *)page_address(ipage);
  236. rn->i.i_namelen = cpu_to_le32(name->len);
  237. memcpy(rn->i.i_name, name->name, name->len);
  238. set_page_dirty(ipage);
  239. }
  240. static int init_inode_metadata(struct inode *inode,
  241. struct inode *dir, const struct qstr *name)
  242. {
  243. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  244. int err;
  245. err = new_inode_page(inode, name);
  246. if (err)
  247. return err;
  248. if (S_ISDIR(inode->i_mode)) {
  249. err = f2fs_make_empty(inode, dir);
  250. if (err) {
  251. remove_inode_page(inode);
  252. return err;
  253. }
  254. }
  255. err = f2fs_init_acl(inode, dir);
  256. if (err) {
  257. remove_inode_page(inode);
  258. return err;
  259. }
  260. } else {
  261. struct page *ipage;
  262. ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino);
  263. if (IS_ERR(ipage))
  264. return PTR_ERR(ipage);
  265. set_cold_node(inode, ipage);
  266. init_dent_inode(name, ipage);
  267. f2fs_put_page(ipage, 1);
  268. }
  269. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
  270. inc_nlink(inode);
  271. f2fs_write_inode(inode, NULL);
  272. }
  273. return 0;
  274. }
  275. static void update_parent_metadata(struct inode *dir, struct inode *inode,
  276. unsigned int current_depth)
  277. {
  278. bool need_dir_update = false;
  279. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  280. if (S_ISDIR(inode->i_mode)) {
  281. inc_nlink(dir);
  282. need_dir_update = true;
  283. }
  284. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  285. }
  286. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  287. if (F2FS_I(dir)->i_current_depth != current_depth) {
  288. F2FS_I(dir)->i_current_depth = current_depth;
  289. need_dir_update = true;
  290. }
  291. if (need_dir_update)
  292. f2fs_write_inode(dir, NULL);
  293. else
  294. mark_inode_dirty(dir);
  295. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
  296. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  297. }
  298. static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
  299. {
  300. int bit_start = 0;
  301. int zero_start, zero_end;
  302. next:
  303. zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
  304. NR_DENTRY_IN_BLOCK,
  305. bit_start);
  306. if (zero_start >= NR_DENTRY_IN_BLOCK)
  307. return NR_DENTRY_IN_BLOCK;
  308. zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
  309. NR_DENTRY_IN_BLOCK,
  310. zero_start);
  311. if (zero_end - zero_start >= slots)
  312. return zero_start;
  313. bit_start = zero_end + 1;
  314. if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
  315. return NR_DENTRY_IN_BLOCK;
  316. goto next;
  317. }
  318. int __f2fs_add_link(struct inode *dir, const struct qstr *name, struct inode *inode)
  319. {
  320. unsigned int bit_pos;
  321. unsigned int level;
  322. unsigned int current_depth;
  323. unsigned long bidx, block;
  324. f2fs_hash_t dentry_hash;
  325. struct f2fs_dir_entry *de;
  326. unsigned int nbucket, nblock;
  327. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  328. size_t namelen = name->len;
  329. struct page *dentry_page = NULL;
  330. struct f2fs_dentry_block *dentry_blk = NULL;
  331. int slots = GET_DENTRY_SLOTS(namelen);
  332. int err = 0;
  333. int i;
  334. dentry_hash = f2fs_dentry_hash(name->name, name->len);
  335. level = 0;
  336. current_depth = F2FS_I(dir)->i_current_depth;
  337. if (F2FS_I(dir)->chash == dentry_hash) {
  338. level = F2FS_I(dir)->clevel;
  339. F2FS_I(dir)->chash = 0;
  340. }
  341. start:
  342. if (current_depth == MAX_DIR_HASH_DEPTH)
  343. return -ENOSPC;
  344. /* Increase the depth, if required */
  345. if (level == current_depth)
  346. ++current_depth;
  347. nbucket = dir_buckets(level);
  348. nblock = bucket_blocks(level);
  349. bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket));
  350. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  351. mutex_lock_op(sbi, DENTRY_OPS);
  352. dentry_page = get_new_data_page(dir, block, true);
  353. if (IS_ERR(dentry_page)) {
  354. mutex_unlock_op(sbi, DENTRY_OPS);
  355. return PTR_ERR(dentry_page);
  356. }
  357. dentry_blk = kmap(dentry_page);
  358. bit_pos = room_for_filename(dentry_blk, slots);
  359. if (bit_pos < NR_DENTRY_IN_BLOCK)
  360. goto add_dentry;
  361. kunmap(dentry_page);
  362. f2fs_put_page(dentry_page, 1);
  363. mutex_unlock_op(sbi, DENTRY_OPS);
  364. }
  365. /* Move to next level to find the empty slot for new dentry */
  366. ++level;
  367. goto start;
  368. add_dentry:
  369. err = init_inode_metadata(inode, dir, name);
  370. if (err)
  371. goto fail;
  372. wait_on_page_writeback(dentry_page);
  373. de = &dentry_blk->dentry[bit_pos];
  374. de->hash_code = dentry_hash;
  375. de->name_len = cpu_to_le16(namelen);
  376. memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
  377. de->ino = cpu_to_le32(inode->i_ino);
  378. set_de_type(de, inode);
  379. for (i = 0; i < slots; i++)
  380. test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  381. set_page_dirty(dentry_page);
  382. update_parent_metadata(dir, inode, current_depth);
  383. /* update parent inode number before releasing dentry page */
  384. F2FS_I(inode)->i_pino = dir->i_ino;
  385. fail:
  386. kunmap(dentry_page);
  387. f2fs_put_page(dentry_page, 1);
  388. mutex_unlock_op(sbi, DENTRY_OPS);
  389. return err;
  390. }
  391. /*
  392. * It only removes the dentry from the dentry page,corresponding name
  393. * entry in name page does not need to be touched during deletion.
  394. */
  395. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  396. struct inode *inode)
  397. {
  398. struct f2fs_dentry_block *dentry_blk;
  399. unsigned int bit_pos;
  400. struct address_space *mapping = page->mapping;
  401. struct inode *dir = mapping->host;
  402. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  403. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  404. void *kaddr = page_address(page);
  405. int i;
  406. mutex_lock_op(sbi, DENTRY_OPS);
  407. lock_page(page);
  408. wait_on_page_writeback(page);
  409. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  410. bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
  411. for (i = 0; i < slots; i++)
  412. test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  413. /* Let's check and deallocate this dentry page */
  414. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  415. NR_DENTRY_IN_BLOCK,
  416. 0);
  417. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  418. set_page_dirty(page);
  419. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  420. if (inode && S_ISDIR(inode->i_mode)) {
  421. drop_nlink(dir);
  422. f2fs_write_inode(dir, NULL);
  423. } else {
  424. mark_inode_dirty(dir);
  425. }
  426. if (inode) {
  427. inode->i_ctime = CURRENT_TIME;
  428. drop_nlink(inode);
  429. if (S_ISDIR(inode->i_mode)) {
  430. drop_nlink(inode);
  431. i_size_write(inode, 0);
  432. }
  433. f2fs_write_inode(inode, NULL);
  434. if (inode->i_nlink == 0)
  435. add_orphan_inode(sbi, inode->i_ino);
  436. }
  437. if (bit_pos == NR_DENTRY_IN_BLOCK) {
  438. truncate_hole(dir, page->index, page->index + 1);
  439. clear_page_dirty_for_io(page);
  440. ClearPageUptodate(page);
  441. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  442. inode_dec_dirty_dents(dir);
  443. }
  444. f2fs_put_page(page, 1);
  445. mutex_unlock_op(sbi, DENTRY_OPS);
  446. }
  447. int f2fs_make_empty(struct inode *inode, struct inode *parent)
  448. {
  449. struct page *dentry_page;
  450. struct f2fs_dentry_block *dentry_blk;
  451. struct f2fs_dir_entry *de;
  452. void *kaddr;
  453. dentry_page = get_new_data_page(inode, 0, true);
  454. if (IS_ERR(dentry_page))
  455. return PTR_ERR(dentry_page);
  456. kaddr = kmap_atomic(dentry_page);
  457. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  458. de = &dentry_blk->dentry[0];
  459. de->name_len = cpu_to_le16(1);
  460. de->hash_code = f2fs_dentry_hash(".", 1);
  461. de->ino = cpu_to_le32(inode->i_ino);
  462. memcpy(dentry_blk->filename[0], ".", 1);
  463. set_de_type(de, inode);
  464. de = &dentry_blk->dentry[1];
  465. de->hash_code = f2fs_dentry_hash("..", 2);
  466. de->name_len = cpu_to_le16(2);
  467. de->ino = cpu_to_le32(parent->i_ino);
  468. memcpy(dentry_blk->filename[1], "..", 2);
  469. set_de_type(de, inode);
  470. test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
  471. test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
  472. kunmap_atomic(kaddr);
  473. set_page_dirty(dentry_page);
  474. f2fs_put_page(dentry_page, 1);
  475. return 0;
  476. }
  477. bool f2fs_empty_dir(struct inode *dir)
  478. {
  479. unsigned long bidx;
  480. struct page *dentry_page;
  481. unsigned int bit_pos;
  482. struct f2fs_dentry_block *dentry_blk;
  483. unsigned long nblock = dir_blocks(dir);
  484. for (bidx = 0; bidx < nblock; bidx++) {
  485. void *kaddr;
  486. dentry_page = get_lock_data_page(dir, bidx);
  487. if (IS_ERR(dentry_page)) {
  488. if (PTR_ERR(dentry_page) == -ENOENT)
  489. continue;
  490. else
  491. return false;
  492. }
  493. kaddr = kmap_atomic(dentry_page);
  494. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  495. if (bidx == 0)
  496. bit_pos = 2;
  497. else
  498. bit_pos = 0;
  499. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  500. NR_DENTRY_IN_BLOCK,
  501. bit_pos);
  502. kunmap_atomic(kaddr);
  503. f2fs_put_page(dentry_page, 1);
  504. if (bit_pos < NR_DENTRY_IN_BLOCK)
  505. return false;
  506. }
  507. return true;
  508. }
  509. static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
  510. {
  511. unsigned long pos = file->f_pos;
  512. struct inode *inode = file_inode(file);
  513. unsigned long npages = dir_blocks(inode);
  514. unsigned char *types = NULL;
  515. unsigned int bit_pos = 0, start_bit_pos = 0;
  516. int over = 0;
  517. struct f2fs_dentry_block *dentry_blk = NULL;
  518. struct f2fs_dir_entry *de = NULL;
  519. struct page *dentry_page = NULL;
  520. unsigned int n = 0;
  521. unsigned char d_type = DT_UNKNOWN;
  522. int slots;
  523. types = f2fs_filetype_table;
  524. bit_pos = (pos % NR_DENTRY_IN_BLOCK);
  525. n = (pos / NR_DENTRY_IN_BLOCK);
  526. for ( ; n < npages; n++) {
  527. dentry_page = get_lock_data_page(inode, n);
  528. if (IS_ERR(dentry_page))
  529. continue;
  530. start_bit_pos = bit_pos;
  531. dentry_blk = kmap(dentry_page);
  532. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  533. d_type = DT_UNKNOWN;
  534. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  535. NR_DENTRY_IN_BLOCK,
  536. bit_pos);
  537. if (bit_pos >= NR_DENTRY_IN_BLOCK)
  538. break;
  539. de = &dentry_blk->dentry[bit_pos];
  540. if (types && de->file_type < F2FS_FT_MAX)
  541. d_type = types[de->file_type];
  542. over = filldir(dirent,
  543. dentry_blk->filename[bit_pos],
  544. le16_to_cpu(de->name_len),
  545. (n * NR_DENTRY_IN_BLOCK) + bit_pos,
  546. le32_to_cpu(de->ino), d_type);
  547. if (over) {
  548. file->f_pos += bit_pos - start_bit_pos;
  549. goto success;
  550. }
  551. slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  552. bit_pos += slots;
  553. }
  554. bit_pos = 0;
  555. file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  556. kunmap(dentry_page);
  557. f2fs_put_page(dentry_page, 1);
  558. dentry_page = NULL;
  559. }
  560. success:
  561. if (dentry_page && !IS_ERR(dentry_page)) {
  562. kunmap(dentry_page);
  563. f2fs_put_page(dentry_page, 1);
  564. }
  565. return 0;
  566. }
  567. const struct file_operations f2fs_dir_operations = {
  568. .llseek = generic_file_llseek,
  569. .read = generic_read_dir,
  570. .readdir = f2fs_readdir,
  571. .fsync = f2fs_sync_file,
  572. .unlocked_ioctl = f2fs_ioctl,
  573. };