data.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/bio.h>
  19. #include <linux/prefetch.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. /*
  24. * Lock ordering for the change of data block address:
  25. * ->data_page
  26. * ->node_page
  27. * update block addresses in the node page
  28. */
  29. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  30. {
  31. struct f2fs_node *rn;
  32. __le32 *addr_array;
  33. struct page *node_page = dn->node_page;
  34. unsigned int ofs_in_node = dn->ofs_in_node;
  35. wait_on_page_writeback(node_page);
  36. rn = (struct f2fs_node *)page_address(node_page);
  37. /* Get physical address of data block */
  38. addr_array = blkaddr_in_node(rn);
  39. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  40. set_page_dirty(node_page);
  41. }
  42. int reserve_new_block(struct dnode_of_data *dn)
  43. {
  44. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  45. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  46. return -EPERM;
  47. if (!inc_valid_block_count(sbi, dn->inode, 1))
  48. return -ENOSPC;
  49. __set_data_blkaddr(dn, NEW_ADDR);
  50. dn->data_blkaddr = NEW_ADDR;
  51. sync_inode_page(dn);
  52. return 0;
  53. }
  54. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  55. struct buffer_head *bh_result)
  56. {
  57. struct f2fs_inode_info *fi = F2FS_I(inode);
  58. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  59. pgoff_t start_fofs, end_fofs;
  60. block_t start_blkaddr;
  61. read_lock(&fi->ext.ext_lock);
  62. if (fi->ext.len == 0) {
  63. read_unlock(&fi->ext.ext_lock);
  64. return 0;
  65. }
  66. sbi->total_hit_ext++;
  67. start_fofs = fi->ext.fofs;
  68. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  69. start_blkaddr = fi->ext.blk_addr;
  70. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  71. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  72. size_t count;
  73. clear_buffer_new(bh_result);
  74. map_bh(bh_result, inode->i_sb,
  75. start_blkaddr + pgofs - start_fofs);
  76. count = end_fofs - pgofs + 1;
  77. if (count < (UINT_MAX >> blkbits))
  78. bh_result->b_size = (count << blkbits);
  79. else
  80. bh_result->b_size = UINT_MAX;
  81. sbi->read_hit_ext++;
  82. read_unlock(&fi->ext.ext_lock);
  83. return 1;
  84. }
  85. read_unlock(&fi->ext.ext_lock);
  86. return 0;
  87. }
  88. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  89. {
  90. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  91. pgoff_t fofs, start_fofs, end_fofs;
  92. block_t start_blkaddr, end_blkaddr;
  93. BUG_ON(blk_addr == NEW_ADDR);
  94. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  95. /* Update the page address in the parent node */
  96. __set_data_blkaddr(dn, blk_addr);
  97. write_lock(&fi->ext.ext_lock);
  98. start_fofs = fi->ext.fofs;
  99. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  100. start_blkaddr = fi->ext.blk_addr;
  101. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  102. /* Drop and initialize the matched extent */
  103. if (fi->ext.len == 1 && fofs == start_fofs)
  104. fi->ext.len = 0;
  105. /* Initial extent */
  106. if (fi->ext.len == 0) {
  107. if (blk_addr != NULL_ADDR) {
  108. fi->ext.fofs = fofs;
  109. fi->ext.blk_addr = blk_addr;
  110. fi->ext.len = 1;
  111. }
  112. goto end_update;
  113. }
  114. /* Frone merge */
  115. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  116. fi->ext.fofs--;
  117. fi->ext.blk_addr--;
  118. fi->ext.len++;
  119. goto end_update;
  120. }
  121. /* Back merge */
  122. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  123. fi->ext.len++;
  124. goto end_update;
  125. }
  126. /* Split the existing extent */
  127. if (fi->ext.len > 1 &&
  128. fofs >= start_fofs && fofs <= end_fofs) {
  129. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  130. fi->ext.len = fofs - start_fofs;
  131. } else {
  132. fi->ext.fofs = fofs + 1;
  133. fi->ext.blk_addr = start_blkaddr +
  134. fofs - start_fofs + 1;
  135. fi->ext.len -= fofs - start_fofs + 1;
  136. }
  137. goto end_update;
  138. }
  139. write_unlock(&fi->ext.ext_lock);
  140. return;
  141. end_update:
  142. write_unlock(&fi->ext.ext_lock);
  143. sync_inode_page(dn);
  144. return;
  145. }
  146. struct page *find_data_page(struct inode *inode, pgoff_t index)
  147. {
  148. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  149. struct address_space *mapping = inode->i_mapping;
  150. struct dnode_of_data dn;
  151. struct page *page;
  152. int err;
  153. page = find_get_page(mapping, index);
  154. if (page && PageUptodate(page))
  155. return page;
  156. f2fs_put_page(page, 0);
  157. set_new_dnode(&dn, inode, NULL, NULL, 0);
  158. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  159. if (err)
  160. return ERR_PTR(err);
  161. f2fs_put_dnode(&dn);
  162. if (dn.data_blkaddr == NULL_ADDR)
  163. return ERR_PTR(-ENOENT);
  164. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  165. if (dn.data_blkaddr == NEW_ADDR)
  166. return ERR_PTR(-EINVAL);
  167. page = grab_cache_page(mapping, index);
  168. if (!page)
  169. return ERR_PTR(-ENOMEM);
  170. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  171. if (err) {
  172. f2fs_put_page(page, 1);
  173. return ERR_PTR(err);
  174. }
  175. unlock_page(page);
  176. return page;
  177. }
  178. /*
  179. * If it tries to access a hole, return an error.
  180. * Because, the callers, functions in dir.c and GC, should be able to know
  181. * whether this page exists or not.
  182. */
  183. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  184. {
  185. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  186. struct address_space *mapping = inode->i_mapping;
  187. struct dnode_of_data dn;
  188. struct page *page;
  189. int err;
  190. set_new_dnode(&dn, inode, NULL, NULL, 0);
  191. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  192. if (err)
  193. return ERR_PTR(err);
  194. f2fs_put_dnode(&dn);
  195. if (dn.data_blkaddr == NULL_ADDR)
  196. return ERR_PTR(-ENOENT);
  197. page = grab_cache_page(mapping, index);
  198. if (!page)
  199. return ERR_PTR(-ENOMEM);
  200. if (PageUptodate(page))
  201. return page;
  202. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  203. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  204. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  205. if (err) {
  206. f2fs_put_page(page, 1);
  207. return ERR_PTR(err);
  208. }
  209. return page;
  210. }
  211. /*
  212. * Caller ensures that this data page is never allocated.
  213. * A new zero-filled data page is allocated in the page cache.
  214. */
  215. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  216. bool new_i_size)
  217. {
  218. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  219. struct address_space *mapping = inode->i_mapping;
  220. struct page *page;
  221. struct dnode_of_data dn;
  222. int err;
  223. set_new_dnode(&dn, inode, NULL, NULL, 0);
  224. err = get_dnode_of_data(&dn, index, 0);
  225. if (err)
  226. return ERR_PTR(err);
  227. if (dn.data_blkaddr == NULL_ADDR) {
  228. if (reserve_new_block(&dn)) {
  229. f2fs_put_dnode(&dn);
  230. return ERR_PTR(-ENOSPC);
  231. }
  232. }
  233. f2fs_put_dnode(&dn);
  234. page = grab_cache_page(mapping, index);
  235. if (!page)
  236. return ERR_PTR(-ENOMEM);
  237. if (PageUptodate(page))
  238. return page;
  239. if (dn.data_blkaddr == NEW_ADDR) {
  240. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  241. } else {
  242. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  243. if (err) {
  244. f2fs_put_page(page, 1);
  245. return ERR_PTR(err);
  246. }
  247. }
  248. SetPageUptodate(page);
  249. if (new_i_size &&
  250. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  251. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  252. mark_inode_dirty_sync(inode);
  253. }
  254. return page;
  255. }
  256. static void read_end_io(struct bio *bio, int err)
  257. {
  258. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  259. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  260. do {
  261. struct page *page = bvec->bv_page;
  262. if (--bvec >= bio->bi_io_vec)
  263. prefetchw(&bvec->bv_page->flags);
  264. if (uptodate) {
  265. SetPageUptodate(page);
  266. } else {
  267. ClearPageUptodate(page);
  268. SetPageError(page);
  269. }
  270. unlock_page(page);
  271. } while (bvec >= bio->bi_io_vec);
  272. kfree(bio->bi_private);
  273. bio_put(bio);
  274. }
  275. /*
  276. * Fill the locked page with data located in the block address.
  277. * Read operation is synchronous, and caller must unlock the page.
  278. */
  279. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  280. block_t blk_addr, int type)
  281. {
  282. struct block_device *bdev = sbi->sb->s_bdev;
  283. bool sync = (type == READ_SYNC);
  284. struct bio *bio;
  285. /* This page can be already read by other threads */
  286. if (PageUptodate(page)) {
  287. if (!sync)
  288. unlock_page(page);
  289. return 0;
  290. }
  291. down_read(&sbi->bio_sem);
  292. /* Allocate a new bio */
  293. bio = f2fs_bio_alloc(bdev, 1);
  294. /* Initialize the bio */
  295. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  296. bio->bi_end_io = read_end_io;
  297. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  298. kfree(bio->bi_private);
  299. bio_put(bio);
  300. up_read(&sbi->bio_sem);
  301. return -EFAULT;
  302. }
  303. submit_bio(type, bio);
  304. up_read(&sbi->bio_sem);
  305. /* wait for read completion if sync */
  306. if (sync) {
  307. lock_page(page);
  308. if (PageError(page))
  309. return -EIO;
  310. }
  311. return 0;
  312. }
  313. /*
  314. * This function should be used by the data read flow only where it
  315. * does not check the "create" flag that indicates block allocation.
  316. * The reason for this special functionality is to exploit VFS readahead
  317. * mechanism.
  318. */
  319. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  320. struct buffer_head *bh_result, int create)
  321. {
  322. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  323. unsigned maxblocks = bh_result->b_size >> blkbits;
  324. struct dnode_of_data dn;
  325. pgoff_t pgofs;
  326. int err;
  327. /* Get the page offset from the block offset(iblock) */
  328. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  329. if (check_extent_cache(inode, pgofs, bh_result))
  330. return 0;
  331. /* When reading holes, we need its node page */
  332. set_new_dnode(&dn, inode, NULL, NULL, 0);
  333. err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
  334. if (err)
  335. return (err == -ENOENT) ? 0 : err;
  336. /* It does not support data allocation */
  337. BUG_ON(create);
  338. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  339. int i;
  340. unsigned int end_offset;
  341. end_offset = IS_INODE(dn.node_page) ?
  342. ADDRS_PER_INODE :
  343. ADDRS_PER_BLOCK;
  344. clear_buffer_new(bh_result);
  345. /* Give more consecutive addresses for the read ahead */
  346. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  347. if (((datablock_addr(dn.node_page,
  348. dn.ofs_in_node + i))
  349. != (dn.data_blkaddr + i)) || maxblocks == i)
  350. break;
  351. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  352. bh_result->b_size = (i << blkbits);
  353. }
  354. f2fs_put_dnode(&dn);
  355. return 0;
  356. }
  357. static int f2fs_read_data_page(struct file *file, struct page *page)
  358. {
  359. return mpage_readpage(page, get_data_block_ro);
  360. }
  361. static int f2fs_read_data_pages(struct file *file,
  362. struct address_space *mapping,
  363. struct list_head *pages, unsigned nr_pages)
  364. {
  365. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  366. }
  367. int do_write_data_page(struct page *page)
  368. {
  369. struct inode *inode = page->mapping->host;
  370. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  371. block_t old_blk_addr, new_blk_addr;
  372. struct dnode_of_data dn;
  373. int err = 0;
  374. set_new_dnode(&dn, inode, NULL, NULL, 0);
  375. err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
  376. if (err)
  377. return err;
  378. old_blk_addr = dn.data_blkaddr;
  379. /* This page is already truncated */
  380. if (old_blk_addr == NULL_ADDR)
  381. goto out_writepage;
  382. set_page_writeback(page);
  383. /*
  384. * If current allocation needs SSR,
  385. * it had better in-place writes for updated data.
  386. */
  387. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  388. need_inplace_update(inode)) {
  389. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  390. old_blk_addr);
  391. } else {
  392. write_data_page(inode, page, &dn,
  393. old_blk_addr, &new_blk_addr);
  394. update_extent_cache(new_blk_addr, &dn);
  395. F2FS_I(inode)->data_version =
  396. le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  397. }
  398. out_writepage:
  399. f2fs_put_dnode(&dn);
  400. return err;
  401. }
  402. static int f2fs_write_data_page(struct page *page,
  403. struct writeback_control *wbc)
  404. {
  405. struct inode *inode = page->mapping->host;
  406. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  407. loff_t i_size = i_size_read(inode);
  408. const pgoff_t end_index = ((unsigned long long) i_size)
  409. >> PAGE_CACHE_SHIFT;
  410. unsigned offset;
  411. int err = 0;
  412. if (page->index < end_index)
  413. goto out;
  414. /*
  415. * If the offset is out-of-range of file size,
  416. * this page does not have to be written to disk.
  417. */
  418. offset = i_size & (PAGE_CACHE_SIZE - 1);
  419. if ((page->index >= end_index + 1) || !offset) {
  420. if (S_ISDIR(inode->i_mode)) {
  421. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  422. inode_dec_dirty_dents(inode);
  423. }
  424. goto unlock_out;
  425. }
  426. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  427. out:
  428. if (sbi->por_doing)
  429. goto redirty_out;
  430. if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
  431. goto redirty_out;
  432. mutex_lock_op(sbi, DATA_WRITE);
  433. if (S_ISDIR(inode->i_mode)) {
  434. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  435. inode_dec_dirty_dents(inode);
  436. }
  437. err = do_write_data_page(page);
  438. if (err && err != -ENOENT) {
  439. wbc->pages_skipped++;
  440. set_page_dirty(page);
  441. }
  442. mutex_unlock_op(sbi, DATA_WRITE);
  443. if (wbc->for_reclaim)
  444. f2fs_submit_bio(sbi, DATA, true);
  445. if (err == -ENOENT)
  446. goto unlock_out;
  447. clear_cold_data(page);
  448. unlock_page(page);
  449. if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
  450. f2fs_balance_fs(sbi);
  451. return 0;
  452. unlock_out:
  453. unlock_page(page);
  454. return (err == -ENOENT) ? 0 : err;
  455. redirty_out:
  456. wbc->pages_skipped++;
  457. set_page_dirty(page);
  458. return AOP_WRITEPAGE_ACTIVATE;
  459. }
  460. #define MAX_DESIRED_PAGES_WP 4096
  461. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  462. void *data)
  463. {
  464. struct address_space *mapping = data;
  465. int ret = mapping->a_ops->writepage(page, wbc);
  466. mapping_set_error(mapping, ret);
  467. return ret;
  468. }
  469. static int f2fs_write_data_pages(struct address_space *mapping,
  470. struct writeback_control *wbc)
  471. {
  472. struct inode *inode = mapping->host;
  473. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  474. int ret;
  475. long excess_nrtw = 0, desired_nrtw;
  476. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  477. desired_nrtw = MAX_DESIRED_PAGES_WP;
  478. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  479. wbc->nr_to_write = desired_nrtw;
  480. }
  481. if (!S_ISDIR(inode->i_mode))
  482. mutex_lock(&sbi->writepages);
  483. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  484. if (!S_ISDIR(inode->i_mode))
  485. mutex_unlock(&sbi->writepages);
  486. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  487. remove_dirty_dir_inode(inode);
  488. wbc->nr_to_write -= excess_nrtw;
  489. return ret;
  490. }
  491. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  492. loff_t pos, unsigned len, unsigned flags,
  493. struct page **pagep, void **fsdata)
  494. {
  495. struct inode *inode = mapping->host;
  496. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  497. struct page *page;
  498. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  499. struct dnode_of_data dn;
  500. int err = 0;
  501. /* for nobh_write_end */
  502. *fsdata = NULL;
  503. f2fs_balance_fs(sbi);
  504. page = grab_cache_page_write_begin(mapping, index, flags);
  505. if (!page)
  506. return -ENOMEM;
  507. *pagep = page;
  508. mutex_lock_op(sbi, DATA_NEW);
  509. set_new_dnode(&dn, inode, NULL, NULL, 0);
  510. err = get_dnode_of_data(&dn, index, 0);
  511. if (err) {
  512. mutex_unlock_op(sbi, DATA_NEW);
  513. f2fs_put_page(page, 1);
  514. return err;
  515. }
  516. if (dn.data_blkaddr == NULL_ADDR) {
  517. err = reserve_new_block(&dn);
  518. if (err) {
  519. f2fs_put_dnode(&dn);
  520. mutex_unlock_op(sbi, DATA_NEW);
  521. f2fs_put_page(page, 1);
  522. return err;
  523. }
  524. }
  525. f2fs_put_dnode(&dn);
  526. mutex_unlock_op(sbi, DATA_NEW);
  527. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  528. return 0;
  529. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  530. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  531. unsigned end = start + len;
  532. /* Reading beyond i_size is simple: memset to zero */
  533. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  534. return 0;
  535. }
  536. if (dn.data_blkaddr == NEW_ADDR) {
  537. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  538. } else {
  539. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  540. if (err) {
  541. f2fs_put_page(page, 1);
  542. return err;
  543. }
  544. }
  545. SetPageUptodate(page);
  546. clear_cold_data(page);
  547. return 0;
  548. }
  549. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  550. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  551. {
  552. struct file *file = iocb->ki_filp;
  553. struct inode *inode = file->f_mapping->host;
  554. if (rw == WRITE)
  555. return 0;
  556. /* Needs synchronization with the cleaner */
  557. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  558. get_data_block_ro);
  559. }
  560. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  561. {
  562. struct inode *inode = page->mapping->host;
  563. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  564. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  565. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  566. inode_dec_dirty_dents(inode);
  567. }
  568. ClearPagePrivate(page);
  569. }
  570. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  571. {
  572. ClearPagePrivate(page);
  573. return 0;
  574. }
  575. static int f2fs_set_data_page_dirty(struct page *page)
  576. {
  577. struct address_space *mapping = page->mapping;
  578. struct inode *inode = mapping->host;
  579. SetPageUptodate(page);
  580. if (!PageDirty(page)) {
  581. __set_page_dirty_nobuffers(page);
  582. set_dirty_dir_page(inode, page);
  583. return 1;
  584. }
  585. return 0;
  586. }
  587. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  588. {
  589. return generic_block_bmap(mapping, block, get_data_block_ro);
  590. }
  591. const struct address_space_operations f2fs_dblock_aops = {
  592. .readpage = f2fs_read_data_page,
  593. .readpages = f2fs_read_data_pages,
  594. .writepage = f2fs_write_data_page,
  595. .writepages = f2fs_write_data_pages,
  596. .write_begin = f2fs_write_begin,
  597. .write_end = nobh_write_end,
  598. .set_page_dirty = f2fs_set_data_page_dirty,
  599. .invalidatepage = f2fs_invalidate_data_page,
  600. .releasepage = f2fs_release_data_page,
  601. .direct_IO = f2fs_direct_IO,
  602. .bmap = f2fs_bmap,
  603. };