checkpoint.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. static struct kmem_cache *orphan_entry_slab;
  23. static struct kmem_cache *inode_entry_slab;
  24. /*
  25. * We guarantee no failure on the returned page.
  26. */
  27. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  28. {
  29. struct address_space *mapping = sbi->meta_inode->i_mapping;
  30. struct page *page = NULL;
  31. repeat:
  32. page = grab_cache_page(mapping, index);
  33. if (!page) {
  34. cond_resched();
  35. goto repeat;
  36. }
  37. /* We wait writeback only inside grab_meta_page() */
  38. wait_on_page_writeback(page);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = sbi->meta_inode->i_mapping;
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
  56. f2fs_put_page(page, 1);
  57. goto repeat;
  58. }
  59. mark_page_accessed(page);
  60. /* We do not allow returning an errorneous page */
  61. return page;
  62. }
  63. static int f2fs_write_meta_page(struct page *page,
  64. struct writeback_control *wbc)
  65. {
  66. struct inode *inode = page->mapping->host;
  67. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  68. /* Should not write any meta pages, if any IO error was occurred */
  69. if (wbc->for_reclaim ||
  70. is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
  71. dec_page_count(sbi, F2FS_DIRTY_META);
  72. wbc->pages_skipped++;
  73. set_page_dirty(page);
  74. return AOP_WRITEPAGE_ACTIVATE;
  75. }
  76. wait_on_page_writeback(page);
  77. write_meta_page(sbi, page);
  78. dec_page_count(sbi, F2FS_DIRTY_META);
  79. unlock_page(page);
  80. return 0;
  81. }
  82. static int f2fs_write_meta_pages(struct address_space *mapping,
  83. struct writeback_control *wbc)
  84. {
  85. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  86. struct block_device *bdev = sbi->sb->s_bdev;
  87. long written;
  88. if (wbc->for_kupdate)
  89. return 0;
  90. if (get_pages(sbi, F2FS_DIRTY_META) == 0)
  91. return 0;
  92. /* if mounting is failed, skip writing node pages */
  93. mutex_lock(&sbi->cp_mutex);
  94. written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
  95. mutex_unlock(&sbi->cp_mutex);
  96. wbc->nr_to_write -= written;
  97. return 0;
  98. }
  99. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  100. long nr_to_write)
  101. {
  102. struct address_space *mapping = sbi->meta_inode->i_mapping;
  103. pgoff_t index = 0, end = LONG_MAX;
  104. struct pagevec pvec;
  105. long nwritten = 0;
  106. struct writeback_control wbc = {
  107. .for_reclaim = 0,
  108. };
  109. pagevec_init(&pvec, 0);
  110. while (index <= end) {
  111. int i, nr_pages;
  112. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  113. PAGECACHE_TAG_DIRTY,
  114. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  115. if (nr_pages == 0)
  116. break;
  117. for (i = 0; i < nr_pages; i++) {
  118. struct page *page = pvec.pages[i];
  119. lock_page(page);
  120. BUG_ON(page->mapping != mapping);
  121. BUG_ON(!PageDirty(page));
  122. clear_page_dirty_for_io(page);
  123. if (f2fs_write_meta_page(page, &wbc)) {
  124. unlock_page(page);
  125. break;
  126. }
  127. if (nwritten++ >= nr_to_write)
  128. break;
  129. }
  130. pagevec_release(&pvec);
  131. cond_resched();
  132. }
  133. if (nwritten)
  134. f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
  135. return nwritten;
  136. }
  137. static int f2fs_set_meta_page_dirty(struct page *page)
  138. {
  139. struct address_space *mapping = page->mapping;
  140. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  141. SetPageUptodate(page);
  142. if (!PageDirty(page)) {
  143. __set_page_dirty_nobuffers(page);
  144. inc_page_count(sbi, F2FS_DIRTY_META);
  145. return 1;
  146. }
  147. return 0;
  148. }
  149. const struct address_space_operations f2fs_meta_aops = {
  150. .writepage = f2fs_write_meta_page,
  151. .writepages = f2fs_write_meta_pages,
  152. .set_page_dirty = f2fs_set_meta_page_dirty,
  153. };
  154. int check_orphan_space(struct f2fs_sb_info *sbi)
  155. {
  156. unsigned int max_orphans;
  157. int err = 0;
  158. /*
  159. * considering 512 blocks in a segment 5 blocks are needed for cp
  160. * and log segment summaries. Remaining blocks are used to keep
  161. * orphan entries with the limitation one reserved segment
  162. * for cp pack we can have max 1020*507 orphan entries
  163. */
  164. max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
  165. mutex_lock(&sbi->orphan_inode_mutex);
  166. if (sbi->n_orphans >= max_orphans)
  167. err = -ENOSPC;
  168. mutex_unlock(&sbi->orphan_inode_mutex);
  169. return err;
  170. }
  171. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  172. {
  173. struct list_head *head, *this;
  174. struct orphan_inode_entry *new = NULL, *orphan = NULL;
  175. mutex_lock(&sbi->orphan_inode_mutex);
  176. head = &sbi->orphan_inode_list;
  177. list_for_each(this, head) {
  178. orphan = list_entry(this, struct orphan_inode_entry, list);
  179. if (orphan->ino == ino)
  180. goto out;
  181. if (orphan->ino > ino)
  182. break;
  183. orphan = NULL;
  184. }
  185. retry:
  186. new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
  187. if (!new) {
  188. cond_resched();
  189. goto retry;
  190. }
  191. new->ino = ino;
  192. /* add new_oentry into list which is sorted by inode number */
  193. if (orphan)
  194. list_add(&new->list, this->prev);
  195. else
  196. list_add_tail(&new->list, head);
  197. sbi->n_orphans++;
  198. out:
  199. mutex_unlock(&sbi->orphan_inode_mutex);
  200. }
  201. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  202. {
  203. struct list_head *this, *next, *head;
  204. struct orphan_inode_entry *orphan;
  205. mutex_lock(&sbi->orphan_inode_mutex);
  206. head = &sbi->orphan_inode_list;
  207. list_for_each_safe(this, next, head) {
  208. orphan = list_entry(this, struct orphan_inode_entry, list);
  209. if (orphan->ino == ino) {
  210. list_del(&orphan->list);
  211. kmem_cache_free(orphan_entry_slab, orphan);
  212. sbi->n_orphans--;
  213. break;
  214. }
  215. }
  216. mutex_unlock(&sbi->orphan_inode_mutex);
  217. }
  218. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  219. {
  220. struct inode *inode = f2fs_iget(sbi->sb, ino);
  221. BUG_ON(IS_ERR(inode));
  222. clear_nlink(inode);
  223. /* truncate all the data during iput */
  224. iput(inode);
  225. }
  226. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  227. {
  228. block_t start_blk, orphan_blkaddr, i, j;
  229. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  230. return 0;
  231. sbi->por_doing = 1;
  232. start_blk = __start_cp_addr(sbi) + 1;
  233. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  234. for (i = 0; i < orphan_blkaddr; i++) {
  235. struct page *page = get_meta_page(sbi, start_blk + i);
  236. struct f2fs_orphan_block *orphan_blk;
  237. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  238. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  239. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  240. recover_orphan_inode(sbi, ino);
  241. }
  242. f2fs_put_page(page, 1);
  243. }
  244. /* clear Orphan Flag */
  245. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  246. sbi->por_doing = 0;
  247. return 0;
  248. }
  249. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  250. {
  251. struct list_head *head, *this, *next;
  252. struct f2fs_orphan_block *orphan_blk = NULL;
  253. struct page *page = NULL;
  254. unsigned int nentries = 0;
  255. unsigned short index = 1;
  256. unsigned short orphan_blocks;
  257. orphan_blocks = (unsigned short)((sbi->n_orphans +
  258. (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
  259. mutex_lock(&sbi->orphan_inode_mutex);
  260. head = &sbi->orphan_inode_list;
  261. /* loop for each orphan inode entry and write them in Jornal block */
  262. list_for_each_safe(this, next, head) {
  263. struct orphan_inode_entry *orphan;
  264. orphan = list_entry(this, struct orphan_inode_entry, list);
  265. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  266. /*
  267. * an orphan block is full of 1020 entries,
  268. * then we need to flush current orphan blocks
  269. * and bring another one in memory
  270. */
  271. orphan_blk->blk_addr = cpu_to_le16(index);
  272. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  273. orphan_blk->entry_count = cpu_to_le32(nentries);
  274. set_page_dirty(page);
  275. f2fs_put_page(page, 1);
  276. index++;
  277. start_blk++;
  278. nentries = 0;
  279. page = NULL;
  280. }
  281. if (page)
  282. goto page_exist;
  283. page = grab_meta_page(sbi, start_blk);
  284. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  285. memset(orphan_blk, 0, sizeof(*orphan_blk));
  286. page_exist:
  287. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  288. }
  289. if (!page)
  290. goto end;
  291. orphan_blk->blk_addr = cpu_to_le16(index);
  292. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  293. orphan_blk->entry_count = cpu_to_le32(nentries);
  294. set_page_dirty(page);
  295. f2fs_put_page(page, 1);
  296. end:
  297. mutex_unlock(&sbi->orphan_inode_mutex);
  298. }
  299. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  300. block_t cp_addr, unsigned long long *version)
  301. {
  302. struct page *cp_page_1, *cp_page_2 = NULL;
  303. unsigned long blk_size = sbi->blocksize;
  304. struct f2fs_checkpoint *cp_block;
  305. unsigned long long cur_version = 0, pre_version = 0;
  306. unsigned int crc = 0;
  307. size_t crc_offset;
  308. /* Read the 1st cp block in this CP pack */
  309. cp_page_1 = get_meta_page(sbi, cp_addr);
  310. /* get the version number */
  311. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  312. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  313. if (crc_offset >= blk_size)
  314. goto invalid_cp1;
  315. crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
  316. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  317. goto invalid_cp1;
  318. pre_version = le64_to_cpu(cp_block->checkpoint_ver);
  319. /* Read the 2nd cp block in this CP pack */
  320. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  321. cp_page_2 = get_meta_page(sbi, cp_addr);
  322. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  323. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  324. if (crc_offset >= blk_size)
  325. goto invalid_cp2;
  326. crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
  327. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  328. goto invalid_cp2;
  329. cur_version = le64_to_cpu(cp_block->checkpoint_ver);
  330. if (cur_version == pre_version) {
  331. *version = cur_version;
  332. f2fs_put_page(cp_page_2, 1);
  333. return cp_page_1;
  334. }
  335. invalid_cp2:
  336. f2fs_put_page(cp_page_2, 1);
  337. invalid_cp1:
  338. f2fs_put_page(cp_page_1, 1);
  339. return NULL;
  340. }
  341. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  342. {
  343. struct f2fs_checkpoint *cp_block;
  344. struct f2fs_super_block *fsb = sbi->raw_super;
  345. struct page *cp1, *cp2, *cur_page;
  346. unsigned long blk_size = sbi->blocksize;
  347. unsigned long long cp1_version = 0, cp2_version = 0;
  348. unsigned long long cp_start_blk_no;
  349. sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
  350. if (!sbi->ckpt)
  351. return -ENOMEM;
  352. /*
  353. * Finding out valid cp block involves read both
  354. * sets( cp pack1 and cp pack 2)
  355. */
  356. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  357. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  358. /* The second checkpoint pack should start at the next segment */
  359. cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  360. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  361. if (cp1 && cp2) {
  362. if (ver_after(cp2_version, cp1_version))
  363. cur_page = cp2;
  364. else
  365. cur_page = cp1;
  366. } else if (cp1) {
  367. cur_page = cp1;
  368. } else if (cp2) {
  369. cur_page = cp2;
  370. } else {
  371. goto fail_no_cp;
  372. }
  373. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  374. memcpy(sbi->ckpt, cp_block, blk_size);
  375. f2fs_put_page(cp1, 1);
  376. f2fs_put_page(cp2, 1);
  377. return 0;
  378. fail_no_cp:
  379. kfree(sbi->ckpt);
  380. return -EINVAL;
  381. }
  382. void set_dirty_dir_page(struct inode *inode, struct page *page)
  383. {
  384. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  385. struct list_head *head = &sbi->dir_inode_list;
  386. struct dir_inode_entry *new;
  387. struct list_head *this;
  388. if (!S_ISDIR(inode->i_mode))
  389. return;
  390. retry:
  391. new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  392. if (!new) {
  393. cond_resched();
  394. goto retry;
  395. }
  396. new->inode = inode;
  397. INIT_LIST_HEAD(&new->list);
  398. spin_lock(&sbi->dir_inode_lock);
  399. list_for_each(this, head) {
  400. struct dir_inode_entry *entry;
  401. entry = list_entry(this, struct dir_inode_entry, list);
  402. if (entry->inode == inode) {
  403. kmem_cache_free(inode_entry_slab, new);
  404. goto out;
  405. }
  406. }
  407. list_add_tail(&new->list, head);
  408. sbi->n_dirty_dirs++;
  409. BUG_ON(!S_ISDIR(inode->i_mode));
  410. out:
  411. inc_page_count(sbi, F2FS_DIRTY_DENTS);
  412. inode_inc_dirty_dents(inode);
  413. SetPagePrivate(page);
  414. spin_unlock(&sbi->dir_inode_lock);
  415. }
  416. void remove_dirty_dir_inode(struct inode *inode)
  417. {
  418. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  419. struct list_head *head = &sbi->dir_inode_list;
  420. struct list_head *this;
  421. if (!S_ISDIR(inode->i_mode))
  422. return;
  423. spin_lock(&sbi->dir_inode_lock);
  424. if (atomic_read(&F2FS_I(inode)->dirty_dents))
  425. goto out;
  426. list_for_each(this, head) {
  427. struct dir_inode_entry *entry;
  428. entry = list_entry(this, struct dir_inode_entry, list);
  429. if (entry->inode == inode) {
  430. list_del(&entry->list);
  431. kmem_cache_free(inode_entry_slab, entry);
  432. sbi->n_dirty_dirs--;
  433. break;
  434. }
  435. }
  436. out:
  437. spin_unlock(&sbi->dir_inode_lock);
  438. }
  439. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  440. {
  441. struct list_head *head = &sbi->dir_inode_list;
  442. struct dir_inode_entry *entry;
  443. struct inode *inode;
  444. retry:
  445. spin_lock(&sbi->dir_inode_lock);
  446. if (list_empty(head)) {
  447. spin_unlock(&sbi->dir_inode_lock);
  448. return;
  449. }
  450. entry = list_entry(head->next, struct dir_inode_entry, list);
  451. inode = igrab(entry->inode);
  452. spin_unlock(&sbi->dir_inode_lock);
  453. if (inode) {
  454. filemap_flush(inode->i_mapping);
  455. iput(inode);
  456. } else {
  457. /*
  458. * We should submit bio, since it exists several
  459. * wribacking dentry pages in the freeing inode.
  460. */
  461. f2fs_submit_bio(sbi, DATA, true);
  462. }
  463. goto retry;
  464. }
  465. /*
  466. * Freeze all the FS-operations for checkpoint.
  467. */
  468. static void block_operations(struct f2fs_sb_info *sbi)
  469. {
  470. int t;
  471. struct writeback_control wbc = {
  472. .sync_mode = WB_SYNC_ALL,
  473. .nr_to_write = LONG_MAX,
  474. .for_reclaim = 0,
  475. };
  476. /* Stop renaming operation */
  477. mutex_lock_op(sbi, RENAME);
  478. mutex_lock_op(sbi, DENTRY_OPS);
  479. retry_dents:
  480. /* write all the dirty dentry pages */
  481. sync_dirty_dir_inodes(sbi);
  482. mutex_lock_op(sbi, DATA_WRITE);
  483. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  484. mutex_unlock_op(sbi, DATA_WRITE);
  485. goto retry_dents;
  486. }
  487. /* block all the operations */
  488. for (t = DATA_NEW; t <= NODE_TRUNC; t++)
  489. mutex_lock_op(sbi, t);
  490. mutex_lock(&sbi->write_inode);
  491. /*
  492. * POR: we should ensure that there is no dirty node pages
  493. * until finishing nat/sit flush.
  494. */
  495. retry:
  496. sync_node_pages(sbi, 0, &wbc);
  497. mutex_lock_op(sbi, NODE_WRITE);
  498. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  499. mutex_unlock_op(sbi, NODE_WRITE);
  500. goto retry;
  501. }
  502. mutex_unlock(&sbi->write_inode);
  503. }
  504. static void unblock_operations(struct f2fs_sb_info *sbi)
  505. {
  506. int t;
  507. for (t = NODE_WRITE; t >= RENAME; t--)
  508. mutex_unlock_op(sbi, t);
  509. }
  510. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  511. {
  512. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  513. nid_t last_nid = 0;
  514. block_t start_blk;
  515. struct page *cp_page;
  516. unsigned int data_sum_blocks, orphan_blocks;
  517. unsigned int crc32 = 0;
  518. void *kaddr;
  519. int i;
  520. /* Flush all the NAT/SIT pages */
  521. while (get_pages(sbi, F2FS_DIRTY_META))
  522. sync_meta_pages(sbi, META, LONG_MAX);
  523. next_free_nid(sbi, &last_nid);
  524. /*
  525. * modify checkpoint
  526. * version number is already updated
  527. */
  528. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  529. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  530. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  531. for (i = 0; i < 3; i++) {
  532. ckpt->cur_node_segno[i] =
  533. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  534. ckpt->cur_node_blkoff[i] =
  535. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  536. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  537. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  538. }
  539. for (i = 0; i < 3; i++) {
  540. ckpt->cur_data_segno[i] =
  541. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  542. ckpt->cur_data_blkoff[i] =
  543. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  544. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  545. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  546. }
  547. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  548. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  549. ckpt->next_free_nid = cpu_to_le32(last_nid);
  550. /* 2 cp + n data seg summary + orphan inode blocks */
  551. data_sum_blocks = npages_for_summary_flush(sbi);
  552. if (data_sum_blocks < 3)
  553. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  554. else
  555. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  556. orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
  557. / F2FS_ORPHANS_PER_BLOCK;
  558. ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
  559. if (is_umount) {
  560. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  561. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  562. data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
  563. } else {
  564. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  565. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  566. data_sum_blocks + orphan_blocks);
  567. }
  568. if (sbi->n_orphans)
  569. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  570. else
  571. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  572. /* update SIT/NAT bitmap */
  573. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  574. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  575. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  576. *(__le32 *)((unsigned char *)ckpt +
  577. le32_to_cpu(ckpt->checksum_offset))
  578. = cpu_to_le32(crc32);
  579. start_blk = __start_cp_addr(sbi);
  580. /* write out checkpoint buffer at block 0 */
  581. cp_page = grab_meta_page(sbi, start_blk++);
  582. kaddr = page_address(cp_page);
  583. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  584. set_page_dirty(cp_page);
  585. f2fs_put_page(cp_page, 1);
  586. if (sbi->n_orphans) {
  587. write_orphan_inodes(sbi, start_blk);
  588. start_blk += orphan_blocks;
  589. }
  590. write_data_summaries(sbi, start_blk);
  591. start_blk += data_sum_blocks;
  592. if (is_umount) {
  593. write_node_summaries(sbi, start_blk);
  594. start_blk += NR_CURSEG_NODE_TYPE;
  595. }
  596. /* writeout checkpoint block */
  597. cp_page = grab_meta_page(sbi, start_blk);
  598. kaddr = page_address(cp_page);
  599. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  600. set_page_dirty(cp_page);
  601. f2fs_put_page(cp_page, 1);
  602. /* wait for previous submitted node/meta pages writeback */
  603. while (get_pages(sbi, F2FS_WRITEBACK))
  604. congestion_wait(BLK_RW_ASYNC, HZ / 50);
  605. filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
  606. filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
  607. /* update user_block_counts */
  608. sbi->last_valid_block_count = sbi->total_valid_block_count;
  609. sbi->alloc_valid_block_count = 0;
  610. /* Here, we only have one bio having CP pack */
  611. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  612. if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
  613. clear_prefree_segments(sbi);
  614. F2FS_RESET_SB_DIRT(sbi);
  615. }
  616. }
  617. /*
  618. * We guarantee that this checkpoint procedure should not fail.
  619. */
  620. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  621. {
  622. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  623. unsigned long long ckpt_ver;
  624. mutex_lock(&sbi->cp_mutex);
  625. block_operations(sbi);
  626. f2fs_submit_bio(sbi, DATA, true);
  627. f2fs_submit_bio(sbi, NODE, true);
  628. f2fs_submit_bio(sbi, META, true);
  629. /*
  630. * update checkpoint pack index
  631. * Increase the version number so that
  632. * SIT entries and seg summaries are written at correct place
  633. */
  634. ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
  635. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  636. /* write cached NAT/SIT entries to NAT/SIT area */
  637. flush_nat_entries(sbi);
  638. flush_sit_entries(sbi);
  639. reset_victim_segmap(sbi);
  640. /* unlock all the fs_lock[] in do_checkpoint() */
  641. do_checkpoint(sbi, is_umount);
  642. unblock_operations(sbi);
  643. mutex_unlock(&sbi->cp_mutex);
  644. }
  645. void init_orphan_info(struct f2fs_sb_info *sbi)
  646. {
  647. mutex_init(&sbi->orphan_inode_mutex);
  648. INIT_LIST_HEAD(&sbi->orphan_inode_list);
  649. sbi->n_orphans = 0;
  650. }
  651. int __init create_checkpoint_caches(void)
  652. {
  653. orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
  654. sizeof(struct orphan_inode_entry), NULL);
  655. if (unlikely(!orphan_entry_slab))
  656. return -ENOMEM;
  657. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  658. sizeof(struct dir_inode_entry), NULL);
  659. if (unlikely(!inode_entry_slab)) {
  660. kmem_cache_destroy(orphan_entry_slab);
  661. return -ENOMEM;
  662. }
  663. return 0;
  664. }
  665. void destroy_checkpoint_caches(void)
  666. {
  667. kmem_cache_destroy(orphan_entry_slab);
  668. kmem_cache_destroy(inode_entry_slab);
  669. }