file.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/statfs.h>
  30. #include <linux/compat.h>
  31. #include <linux/slab.h>
  32. #include <linux/btrfs.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "transaction.h"
  36. #include "btrfs_inode.h"
  37. #include "print-tree.h"
  38. #include "tree-log.h"
  39. #include "locking.h"
  40. #include "compat.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. int index;
  264. int ret;
  265. /* get the inode */
  266. key.objectid = defrag->root;
  267. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  268. key.offset = (u64)-1;
  269. index = srcu_read_lock(&fs_info->subvol_srcu);
  270. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  271. if (IS_ERR(inode_root)) {
  272. ret = PTR_ERR(inode_root);
  273. goto cleanup;
  274. }
  275. if (btrfs_root_refs(&inode_root->root_item) == 0) {
  276. ret = -ENOENT;
  277. goto cleanup;
  278. }
  279. key.objectid = defrag->ino;
  280. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  281. key.offset = 0;
  282. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  283. if (IS_ERR(inode)) {
  284. ret = PTR_ERR(inode);
  285. goto cleanup;
  286. }
  287. srcu_read_unlock(&fs_info->subvol_srcu, index);
  288. /* do a chunk of defrag */
  289. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  290. memset(&range, 0, sizeof(range));
  291. range.len = (u64)-1;
  292. range.start = defrag->last_offset;
  293. sb_start_write(fs_info->sb);
  294. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  295. BTRFS_DEFRAG_BATCH);
  296. sb_end_write(fs_info->sb);
  297. /*
  298. * if we filled the whole defrag batch, there
  299. * must be more work to do. Queue this defrag
  300. * again
  301. */
  302. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  303. defrag->last_offset = range.start;
  304. btrfs_requeue_inode_defrag(inode, defrag);
  305. } else if (defrag->last_offset && !defrag->cycled) {
  306. /*
  307. * we didn't fill our defrag batch, but
  308. * we didn't start at zero. Make sure we loop
  309. * around to the start of the file.
  310. */
  311. defrag->last_offset = 0;
  312. defrag->cycled = 1;
  313. btrfs_requeue_inode_defrag(inode, defrag);
  314. } else {
  315. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  316. }
  317. iput(inode);
  318. return 0;
  319. cleanup:
  320. srcu_read_unlock(&fs_info->subvol_srcu, index);
  321. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  322. return ret;
  323. }
  324. /*
  325. * run through the list of inodes in the FS that need
  326. * defragging
  327. */
  328. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  329. {
  330. struct inode_defrag *defrag;
  331. u64 first_ino = 0;
  332. u64 root_objectid = 0;
  333. atomic_inc(&fs_info->defrag_running);
  334. while(1) {
  335. /* Pause the auto defragger. */
  336. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  337. &fs_info->fs_state))
  338. break;
  339. if (!__need_auto_defrag(fs_info->tree_root))
  340. break;
  341. /* find an inode to defrag */
  342. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  343. first_ino);
  344. if (!defrag) {
  345. if (root_objectid || first_ino) {
  346. root_objectid = 0;
  347. first_ino = 0;
  348. continue;
  349. } else {
  350. break;
  351. }
  352. }
  353. first_ino = defrag->ino + 1;
  354. root_objectid = defrag->root;
  355. __btrfs_run_defrag_inode(fs_info, defrag);
  356. }
  357. atomic_dec(&fs_info->defrag_running);
  358. /*
  359. * during unmount, we use the transaction_wait queue to
  360. * wait for the defragger to stop
  361. */
  362. wake_up(&fs_info->transaction_wait);
  363. return 0;
  364. }
  365. /* simple helper to fault in pages and copy. This should go away
  366. * and be replaced with calls into generic code.
  367. */
  368. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  369. size_t write_bytes,
  370. struct page **prepared_pages,
  371. struct iov_iter *i)
  372. {
  373. size_t copied = 0;
  374. size_t total_copied = 0;
  375. int pg = 0;
  376. int offset = pos & (PAGE_CACHE_SIZE - 1);
  377. while (write_bytes > 0) {
  378. size_t count = min_t(size_t,
  379. PAGE_CACHE_SIZE - offset, write_bytes);
  380. struct page *page = prepared_pages[pg];
  381. /*
  382. * Copy data from userspace to the current page
  383. *
  384. * Disable pagefault to avoid recursive lock since
  385. * the pages are already locked
  386. */
  387. pagefault_disable();
  388. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  389. pagefault_enable();
  390. /* Flush processor's dcache for this page */
  391. flush_dcache_page(page);
  392. /*
  393. * if we get a partial write, we can end up with
  394. * partially up to date pages. These add
  395. * a lot of complexity, so make sure they don't
  396. * happen by forcing this copy to be retried.
  397. *
  398. * The rest of the btrfs_file_write code will fall
  399. * back to page at a time copies after we return 0.
  400. */
  401. if (!PageUptodate(page) && copied < count)
  402. copied = 0;
  403. iov_iter_advance(i, copied);
  404. write_bytes -= copied;
  405. total_copied += copied;
  406. /* Return to btrfs_file_aio_write to fault page */
  407. if (unlikely(copied == 0))
  408. break;
  409. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  410. offset += copied;
  411. } else {
  412. pg++;
  413. offset = 0;
  414. }
  415. }
  416. return total_copied;
  417. }
  418. /*
  419. * unlocks pages after btrfs_file_write is done with them
  420. */
  421. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  422. {
  423. size_t i;
  424. for (i = 0; i < num_pages; i++) {
  425. /* page checked is some magic around finding pages that
  426. * have been modified without going through btrfs_set_page_dirty
  427. * clear it here
  428. */
  429. ClearPageChecked(pages[i]);
  430. unlock_page(pages[i]);
  431. mark_page_accessed(pages[i]);
  432. page_cache_release(pages[i]);
  433. }
  434. }
  435. /*
  436. * after copy_from_user, pages need to be dirtied and we need to make
  437. * sure holes are created between the current EOF and the start of
  438. * any next extents (if required).
  439. *
  440. * this also makes the decision about creating an inline extent vs
  441. * doing real data extents, marking pages dirty and delalloc as required.
  442. */
  443. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  444. struct page **pages, size_t num_pages,
  445. loff_t pos, size_t write_bytes,
  446. struct extent_state **cached)
  447. {
  448. int err = 0;
  449. int i;
  450. u64 num_bytes;
  451. u64 start_pos;
  452. u64 end_of_last_block;
  453. u64 end_pos = pos + write_bytes;
  454. loff_t isize = i_size_read(inode);
  455. start_pos = pos & ~((u64)root->sectorsize - 1);
  456. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  457. end_of_last_block = start_pos + num_bytes - 1;
  458. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  459. cached);
  460. if (err)
  461. return err;
  462. for (i = 0; i < num_pages; i++) {
  463. struct page *p = pages[i];
  464. SetPageUptodate(p);
  465. ClearPageChecked(p);
  466. set_page_dirty(p);
  467. }
  468. /*
  469. * we've only changed i_size in ram, and we haven't updated
  470. * the disk i_size. There is no need to log the inode
  471. * at this time.
  472. */
  473. if (end_pos > isize)
  474. i_size_write(inode, end_pos);
  475. return 0;
  476. }
  477. /*
  478. * this drops all the extents in the cache that intersect the range
  479. * [start, end]. Existing extents are split as required.
  480. */
  481. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  482. int skip_pinned)
  483. {
  484. struct extent_map *em;
  485. struct extent_map *split = NULL;
  486. struct extent_map *split2 = NULL;
  487. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  488. u64 len = end - start + 1;
  489. u64 gen;
  490. int ret;
  491. int testend = 1;
  492. unsigned long flags;
  493. int compressed = 0;
  494. WARN_ON(end < start);
  495. if (end == (u64)-1) {
  496. len = (u64)-1;
  497. testend = 0;
  498. }
  499. while (1) {
  500. int no_splits = 0;
  501. if (!split)
  502. split = alloc_extent_map();
  503. if (!split2)
  504. split2 = alloc_extent_map();
  505. if (!split || !split2)
  506. no_splits = 1;
  507. write_lock(&em_tree->lock);
  508. em = lookup_extent_mapping(em_tree, start, len);
  509. if (!em) {
  510. write_unlock(&em_tree->lock);
  511. break;
  512. }
  513. flags = em->flags;
  514. gen = em->generation;
  515. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  516. if (testend && em->start + em->len >= start + len) {
  517. free_extent_map(em);
  518. write_unlock(&em_tree->lock);
  519. break;
  520. }
  521. start = em->start + em->len;
  522. if (testend)
  523. len = start + len - (em->start + em->len);
  524. free_extent_map(em);
  525. write_unlock(&em_tree->lock);
  526. continue;
  527. }
  528. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  529. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  530. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  531. remove_extent_mapping(em_tree, em);
  532. if (no_splits)
  533. goto next;
  534. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  535. em->start < start) {
  536. split->start = em->start;
  537. split->len = start - em->start;
  538. split->orig_start = em->orig_start;
  539. split->block_start = em->block_start;
  540. if (compressed)
  541. split->block_len = em->block_len;
  542. else
  543. split->block_len = split->len;
  544. split->orig_block_len = max(split->block_len,
  545. em->orig_block_len);
  546. split->generation = gen;
  547. split->bdev = em->bdev;
  548. split->flags = flags;
  549. split->compress_type = em->compress_type;
  550. ret = add_extent_mapping(em_tree, split);
  551. BUG_ON(ret); /* Logic error */
  552. list_move(&split->list, &em_tree->modified_extents);
  553. free_extent_map(split);
  554. split = split2;
  555. split2 = NULL;
  556. }
  557. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  558. testend && em->start + em->len > start + len) {
  559. u64 diff = start + len - em->start;
  560. split->start = start + len;
  561. split->len = em->start + em->len - (start + len);
  562. split->bdev = em->bdev;
  563. split->flags = flags;
  564. split->compress_type = em->compress_type;
  565. split->generation = gen;
  566. split->orig_block_len = max(em->block_len,
  567. em->orig_block_len);
  568. if (compressed) {
  569. split->block_len = em->block_len;
  570. split->block_start = em->block_start;
  571. split->orig_start = em->orig_start;
  572. } else {
  573. split->block_len = split->len;
  574. split->block_start = em->block_start + diff;
  575. split->orig_start = em->orig_start;
  576. }
  577. ret = add_extent_mapping(em_tree, split);
  578. BUG_ON(ret); /* Logic error */
  579. list_move(&split->list, &em_tree->modified_extents);
  580. free_extent_map(split);
  581. split = NULL;
  582. }
  583. next:
  584. write_unlock(&em_tree->lock);
  585. /* once for us */
  586. free_extent_map(em);
  587. /* once for the tree*/
  588. free_extent_map(em);
  589. }
  590. if (split)
  591. free_extent_map(split);
  592. if (split2)
  593. free_extent_map(split2);
  594. }
  595. /*
  596. * this is very complex, but the basic idea is to drop all extents
  597. * in the range start - end. hint_block is filled in with a block number
  598. * that would be a good hint to the block allocator for this file.
  599. *
  600. * If an extent intersects the range but is not entirely inside the range
  601. * it is either truncated or split. Anything entirely inside the range
  602. * is deleted from the tree.
  603. */
  604. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  605. struct btrfs_root *root, struct inode *inode,
  606. struct btrfs_path *path, u64 start, u64 end,
  607. u64 *drop_end, int drop_cache)
  608. {
  609. struct extent_buffer *leaf;
  610. struct btrfs_file_extent_item *fi;
  611. struct btrfs_key key;
  612. struct btrfs_key new_key;
  613. u64 ino = btrfs_ino(inode);
  614. u64 search_start = start;
  615. u64 disk_bytenr = 0;
  616. u64 num_bytes = 0;
  617. u64 extent_offset = 0;
  618. u64 extent_end = 0;
  619. int del_nr = 0;
  620. int del_slot = 0;
  621. int extent_type;
  622. int recow;
  623. int ret;
  624. int modify_tree = -1;
  625. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  626. int found = 0;
  627. if (drop_cache)
  628. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  629. if (start >= BTRFS_I(inode)->disk_i_size)
  630. modify_tree = 0;
  631. while (1) {
  632. recow = 0;
  633. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  634. search_start, modify_tree);
  635. if (ret < 0)
  636. break;
  637. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  638. leaf = path->nodes[0];
  639. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  640. if (key.objectid == ino &&
  641. key.type == BTRFS_EXTENT_DATA_KEY)
  642. path->slots[0]--;
  643. }
  644. ret = 0;
  645. next_slot:
  646. leaf = path->nodes[0];
  647. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  648. BUG_ON(del_nr > 0);
  649. ret = btrfs_next_leaf(root, path);
  650. if (ret < 0)
  651. break;
  652. if (ret > 0) {
  653. ret = 0;
  654. break;
  655. }
  656. leaf = path->nodes[0];
  657. recow = 1;
  658. }
  659. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  660. if (key.objectid > ino ||
  661. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  662. break;
  663. fi = btrfs_item_ptr(leaf, path->slots[0],
  664. struct btrfs_file_extent_item);
  665. extent_type = btrfs_file_extent_type(leaf, fi);
  666. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  667. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  668. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  669. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  670. extent_offset = btrfs_file_extent_offset(leaf, fi);
  671. extent_end = key.offset +
  672. btrfs_file_extent_num_bytes(leaf, fi);
  673. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  674. extent_end = key.offset +
  675. btrfs_file_extent_inline_len(leaf, fi);
  676. } else {
  677. WARN_ON(1);
  678. extent_end = search_start;
  679. }
  680. if (extent_end <= search_start) {
  681. path->slots[0]++;
  682. goto next_slot;
  683. }
  684. found = 1;
  685. search_start = max(key.offset, start);
  686. if (recow || !modify_tree) {
  687. modify_tree = -1;
  688. btrfs_release_path(path);
  689. continue;
  690. }
  691. /*
  692. * | - range to drop - |
  693. * | -------- extent -------- |
  694. */
  695. if (start > key.offset && end < extent_end) {
  696. BUG_ON(del_nr > 0);
  697. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  698. memcpy(&new_key, &key, sizeof(new_key));
  699. new_key.offset = start;
  700. ret = btrfs_duplicate_item(trans, root, path,
  701. &new_key);
  702. if (ret == -EAGAIN) {
  703. btrfs_release_path(path);
  704. continue;
  705. }
  706. if (ret < 0)
  707. break;
  708. leaf = path->nodes[0];
  709. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  710. struct btrfs_file_extent_item);
  711. btrfs_set_file_extent_num_bytes(leaf, fi,
  712. start - key.offset);
  713. fi = btrfs_item_ptr(leaf, path->slots[0],
  714. struct btrfs_file_extent_item);
  715. extent_offset += start - key.offset;
  716. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  717. btrfs_set_file_extent_num_bytes(leaf, fi,
  718. extent_end - start);
  719. btrfs_mark_buffer_dirty(leaf);
  720. if (update_refs && disk_bytenr > 0) {
  721. ret = btrfs_inc_extent_ref(trans, root,
  722. disk_bytenr, num_bytes, 0,
  723. root->root_key.objectid,
  724. new_key.objectid,
  725. start - extent_offset, 0);
  726. BUG_ON(ret); /* -ENOMEM */
  727. }
  728. key.offset = start;
  729. }
  730. /*
  731. * | ---- range to drop ----- |
  732. * | -------- extent -------- |
  733. */
  734. if (start <= key.offset && end < extent_end) {
  735. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  736. memcpy(&new_key, &key, sizeof(new_key));
  737. new_key.offset = end;
  738. btrfs_set_item_key_safe(trans, root, path, &new_key);
  739. extent_offset += end - key.offset;
  740. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  741. btrfs_set_file_extent_num_bytes(leaf, fi,
  742. extent_end - end);
  743. btrfs_mark_buffer_dirty(leaf);
  744. if (update_refs && disk_bytenr > 0)
  745. inode_sub_bytes(inode, end - key.offset);
  746. break;
  747. }
  748. search_start = extent_end;
  749. /*
  750. * | ---- range to drop ----- |
  751. * | -------- extent -------- |
  752. */
  753. if (start > key.offset && end >= extent_end) {
  754. BUG_ON(del_nr > 0);
  755. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  756. btrfs_set_file_extent_num_bytes(leaf, fi,
  757. start - key.offset);
  758. btrfs_mark_buffer_dirty(leaf);
  759. if (update_refs && disk_bytenr > 0)
  760. inode_sub_bytes(inode, extent_end - start);
  761. if (end == extent_end)
  762. break;
  763. path->slots[0]++;
  764. goto next_slot;
  765. }
  766. /*
  767. * | ---- range to drop ----- |
  768. * | ------ extent ------ |
  769. */
  770. if (start <= key.offset && end >= extent_end) {
  771. if (del_nr == 0) {
  772. del_slot = path->slots[0];
  773. del_nr = 1;
  774. } else {
  775. BUG_ON(del_slot + del_nr != path->slots[0]);
  776. del_nr++;
  777. }
  778. if (update_refs &&
  779. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  780. inode_sub_bytes(inode,
  781. extent_end - key.offset);
  782. extent_end = ALIGN(extent_end,
  783. root->sectorsize);
  784. } else if (update_refs && disk_bytenr > 0) {
  785. ret = btrfs_free_extent(trans, root,
  786. disk_bytenr, num_bytes, 0,
  787. root->root_key.objectid,
  788. key.objectid, key.offset -
  789. extent_offset, 0);
  790. BUG_ON(ret); /* -ENOMEM */
  791. inode_sub_bytes(inode,
  792. extent_end - key.offset);
  793. }
  794. if (end == extent_end)
  795. break;
  796. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  797. path->slots[0]++;
  798. goto next_slot;
  799. }
  800. ret = btrfs_del_items(trans, root, path, del_slot,
  801. del_nr);
  802. if (ret) {
  803. btrfs_abort_transaction(trans, root, ret);
  804. break;
  805. }
  806. del_nr = 0;
  807. del_slot = 0;
  808. btrfs_release_path(path);
  809. continue;
  810. }
  811. BUG_ON(1);
  812. }
  813. if (!ret && del_nr > 0) {
  814. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  815. if (ret)
  816. btrfs_abort_transaction(trans, root, ret);
  817. }
  818. if (drop_end)
  819. *drop_end = found ? min(end, extent_end) : end;
  820. btrfs_release_path(path);
  821. return ret;
  822. }
  823. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  824. struct btrfs_root *root, struct inode *inode, u64 start,
  825. u64 end, int drop_cache)
  826. {
  827. struct btrfs_path *path;
  828. int ret;
  829. path = btrfs_alloc_path();
  830. if (!path)
  831. return -ENOMEM;
  832. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  833. drop_cache);
  834. btrfs_free_path(path);
  835. return ret;
  836. }
  837. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  838. u64 objectid, u64 bytenr, u64 orig_offset,
  839. u64 *start, u64 *end)
  840. {
  841. struct btrfs_file_extent_item *fi;
  842. struct btrfs_key key;
  843. u64 extent_end;
  844. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  845. return 0;
  846. btrfs_item_key_to_cpu(leaf, &key, slot);
  847. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  848. return 0;
  849. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  850. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  851. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  852. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  853. btrfs_file_extent_compression(leaf, fi) ||
  854. btrfs_file_extent_encryption(leaf, fi) ||
  855. btrfs_file_extent_other_encoding(leaf, fi))
  856. return 0;
  857. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  858. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  859. return 0;
  860. *start = key.offset;
  861. *end = extent_end;
  862. return 1;
  863. }
  864. /*
  865. * Mark extent in the range start - end as written.
  866. *
  867. * This changes extent type from 'pre-allocated' to 'regular'. If only
  868. * part of extent is marked as written, the extent will be split into
  869. * two or three.
  870. */
  871. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  872. struct inode *inode, u64 start, u64 end)
  873. {
  874. struct btrfs_root *root = BTRFS_I(inode)->root;
  875. struct extent_buffer *leaf;
  876. struct btrfs_path *path;
  877. struct btrfs_file_extent_item *fi;
  878. struct btrfs_key key;
  879. struct btrfs_key new_key;
  880. u64 bytenr;
  881. u64 num_bytes;
  882. u64 extent_end;
  883. u64 orig_offset;
  884. u64 other_start;
  885. u64 other_end;
  886. u64 split;
  887. int del_nr = 0;
  888. int del_slot = 0;
  889. int recow;
  890. int ret;
  891. u64 ino = btrfs_ino(inode);
  892. path = btrfs_alloc_path();
  893. if (!path)
  894. return -ENOMEM;
  895. again:
  896. recow = 0;
  897. split = start;
  898. key.objectid = ino;
  899. key.type = BTRFS_EXTENT_DATA_KEY;
  900. key.offset = split;
  901. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  902. if (ret < 0)
  903. goto out;
  904. if (ret > 0 && path->slots[0] > 0)
  905. path->slots[0]--;
  906. leaf = path->nodes[0];
  907. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  908. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  909. fi = btrfs_item_ptr(leaf, path->slots[0],
  910. struct btrfs_file_extent_item);
  911. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  912. BTRFS_FILE_EXTENT_PREALLOC);
  913. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  914. BUG_ON(key.offset > start || extent_end < end);
  915. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  916. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  917. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  918. memcpy(&new_key, &key, sizeof(new_key));
  919. if (start == key.offset && end < extent_end) {
  920. other_start = 0;
  921. other_end = start;
  922. if (extent_mergeable(leaf, path->slots[0] - 1,
  923. ino, bytenr, orig_offset,
  924. &other_start, &other_end)) {
  925. new_key.offset = end;
  926. btrfs_set_item_key_safe(trans, root, path, &new_key);
  927. fi = btrfs_item_ptr(leaf, path->slots[0],
  928. struct btrfs_file_extent_item);
  929. btrfs_set_file_extent_generation(leaf, fi,
  930. trans->transid);
  931. btrfs_set_file_extent_num_bytes(leaf, fi,
  932. extent_end - end);
  933. btrfs_set_file_extent_offset(leaf, fi,
  934. end - orig_offset);
  935. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  936. struct btrfs_file_extent_item);
  937. btrfs_set_file_extent_generation(leaf, fi,
  938. trans->transid);
  939. btrfs_set_file_extent_num_bytes(leaf, fi,
  940. end - other_start);
  941. btrfs_mark_buffer_dirty(leaf);
  942. goto out;
  943. }
  944. }
  945. if (start > key.offset && end == extent_end) {
  946. other_start = end;
  947. other_end = 0;
  948. if (extent_mergeable(leaf, path->slots[0] + 1,
  949. ino, bytenr, orig_offset,
  950. &other_start, &other_end)) {
  951. fi = btrfs_item_ptr(leaf, path->slots[0],
  952. struct btrfs_file_extent_item);
  953. btrfs_set_file_extent_num_bytes(leaf, fi,
  954. start - key.offset);
  955. btrfs_set_file_extent_generation(leaf, fi,
  956. trans->transid);
  957. path->slots[0]++;
  958. new_key.offset = start;
  959. btrfs_set_item_key_safe(trans, root, path, &new_key);
  960. fi = btrfs_item_ptr(leaf, path->slots[0],
  961. struct btrfs_file_extent_item);
  962. btrfs_set_file_extent_generation(leaf, fi,
  963. trans->transid);
  964. btrfs_set_file_extent_num_bytes(leaf, fi,
  965. other_end - start);
  966. btrfs_set_file_extent_offset(leaf, fi,
  967. start - orig_offset);
  968. btrfs_mark_buffer_dirty(leaf);
  969. goto out;
  970. }
  971. }
  972. while (start > key.offset || end < extent_end) {
  973. if (key.offset == start)
  974. split = end;
  975. new_key.offset = split;
  976. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  977. if (ret == -EAGAIN) {
  978. btrfs_release_path(path);
  979. goto again;
  980. }
  981. if (ret < 0) {
  982. btrfs_abort_transaction(trans, root, ret);
  983. goto out;
  984. }
  985. leaf = path->nodes[0];
  986. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  987. struct btrfs_file_extent_item);
  988. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  989. btrfs_set_file_extent_num_bytes(leaf, fi,
  990. split - key.offset);
  991. fi = btrfs_item_ptr(leaf, path->slots[0],
  992. struct btrfs_file_extent_item);
  993. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  994. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  995. btrfs_set_file_extent_num_bytes(leaf, fi,
  996. extent_end - split);
  997. btrfs_mark_buffer_dirty(leaf);
  998. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  999. root->root_key.objectid,
  1000. ino, orig_offset, 0);
  1001. BUG_ON(ret); /* -ENOMEM */
  1002. if (split == start) {
  1003. key.offset = start;
  1004. } else {
  1005. BUG_ON(start != key.offset);
  1006. path->slots[0]--;
  1007. extent_end = end;
  1008. }
  1009. recow = 1;
  1010. }
  1011. other_start = end;
  1012. other_end = 0;
  1013. if (extent_mergeable(leaf, path->slots[0] + 1,
  1014. ino, bytenr, orig_offset,
  1015. &other_start, &other_end)) {
  1016. if (recow) {
  1017. btrfs_release_path(path);
  1018. goto again;
  1019. }
  1020. extent_end = other_end;
  1021. del_slot = path->slots[0] + 1;
  1022. del_nr++;
  1023. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1024. 0, root->root_key.objectid,
  1025. ino, orig_offset, 0);
  1026. BUG_ON(ret); /* -ENOMEM */
  1027. }
  1028. other_start = 0;
  1029. other_end = start;
  1030. if (extent_mergeable(leaf, path->slots[0] - 1,
  1031. ino, bytenr, orig_offset,
  1032. &other_start, &other_end)) {
  1033. if (recow) {
  1034. btrfs_release_path(path);
  1035. goto again;
  1036. }
  1037. key.offset = other_start;
  1038. del_slot = path->slots[0];
  1039. del_nr++;
  1040. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1041. 0, root->root_key.objectid,
  1042. ino, orig_offset, 0);
  1043. BUG_ON(ret); /* -ENOMEM */
  1044. }
  1045. if (del_nr == 0) {
  1046. fi = btrfs_item_ptr(leaf, path->slots[0],
  1047. struct btrfs_file_extent_item);
  1048. btrfs_set_file_extent_type(leaf, fi,
  1049. BTRFS_FILE_EXTENT_REG);
  1050. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1051. btrfs_mark_buffer_dirty(leaf);
  1052. } else {
  1053. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1054. struct btrfs_file_extent_item);
  1055. btrfs_set_file_extent_type(leaf, fi,
  1056. BTRFS_FILE_EXTENT_REG);
  1057. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1058. btrfs_set_file_extent_num_bytes(leaf, fi,
  1059. extent_end - key.offset);
  1060. btrfs_mark_buffer_dirty(leaf);
  1061. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1062. if (ret < 0) {
  1063. btrfs_abort_transaction(trans, root, ret);
  1064. goto out;
  1065. }
  1066. }
  1067. out:
  1068. btrfs_free_path(path);
  1069. return 0;
  1070. }
  1071. /*
  1072. * on error we return an unlocked page and the error value
  1073. * on success we return a locked page and 0
  1074. */
  1075. static int prepare_uptodate_page(struct page *page, u64 pos,
  1076. bool force_uptodate)
  1077. {
  1078. int ret = 0;
  1079. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1080. !PageUptodate(page)) {
  1081. ret = btrfs_readpage(NULL, page);
  1082. if (ret)
  1083. return ret;
  1084. lock_page(page);
  1085. if (!PageUptodate(page)) {
  1086. unlock_page(page);
  1087. return -EIO;
  1088. }
  1089. }
  1090. return 0;
  1091. }
  1092. /*
  1093. * this gets pages into the page cache and locks them down, it also properly
  1094. * waits for data=ordered extents to finish before allowing the pages to be
  1095. * modified.
  1096. */
  1097. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1098. struct page **pages, size_t num_pages,
  1099. loff_t pos, unsigned long first_index,
  1100. size_t write_bytes, bool force_uptodate)
  1101. {
  1102. struct extent_state *cached_state = NULL;
  1103. int i;
  1104. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1105. struct inode *inode = file_inode(file);
  1106. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1107. int err = 0;
  1108. int faili = 0;
  1109. u64 start_pos;
  1110. u64 last_pos;
  1111. start_pos = pos & ~((u64)root->sectorsize - 1);
  1112. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1113. again:
  1114. for (i = 0; i < num_pages; i++) {
  1115. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1116. mask | __GFP_WRITE);
  1117. if (!pages[i]) {
  1118. faili = i - 1;
  1119. err = -ENOMEM;
  1120. goto fail;
  1121. }
  1122. if (i == 0)
  1123. err = prepare_uptodate_page(pages[i], pos,
  1124. force_uptodate);
  1125. if (i == num_pages - 1)
  1126. err = prepare_uptodate_page(pages[i],
  1127. pos + write_bytes, false);
  1128. if (err) {
  1129. page_cache_release(pages[i]);
  1130. faili = i - 1;
  1131. goto fail;
  1132. }
  1133. wait_on_page_writeback(pages[i]);
  1134. }
  1135. err = 0;
  1136. if (start_pos < inode->i_size) {
  1137. struct btrfs_ordered_extent *ordered;
  1138. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1139. start_pos, last_pos - 1, 0, &cached_state);
  1140. ordered = btrfs_lookup_first_ordered_extent(inode,
  1141. last_pos - 1);
  1142. if (ordered &&
  1143. ordered->file_offset + ordered->len > start_pos &&
  1144. ordered->file_offset < last_pos) {
  1145. btrfs_put_ordered_extent(ordered);
  1146. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1147. start_pos, last_pos - 1,
  1148. &cached_state, GFP_NOFS);
  1149. for (i = 0; i < num_pages; i++) {
  1150. unlock_page(pages[i]);
  1151. page_cache_release(pages[i]);
  1152. }
  1153. btrfs_wait_ordered_range(inode, start_pos,
  1154. last_pos - start_pos);
  1155. goto again;
  1156. }
  1157. if (ordered)
  1158. btrfs_put_ordered_extent(ordered);
  1159. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1160. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1161. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1162. 0, 0, &cached_state, GFP_NOFS);
  1163. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1164. start_pos, last_pos - 1, &cached_state,
  1165. GFP_NOFS);
  1166. }
  1167. for (i = 0; i < num_pages; i++) {
  1168. if (clear_page_dirty_for_io(pages[i]))
  1169. account_page_redirty(pages[i]);
  1170. set_page_extent_mapped(pages[i]);
  1171. WARN_ON(!PageLocked(pages[i]));
  1172. }
  1173. return 0;
  1174. fail:
  1175. while (faili >= 0) {
  1176. unlock_page(pages[faili]);
  1177. page_cache_release(pages[faili]);
  1178. faili--;
  1179. }
  1180. return err;
  1181. }
  1182. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1183. struct iov_iter *i,
  1184. loff_t pos)
  1185. {
  1186. struct inode *inode = file_inode(file);
  1187. struct btrfs_root *root = BTRFS_I(inode)->root;
  1188. struct page **pages = NULL;
  1189. unsigned long first_index;
  1190. size_t num_written = 0;
  1191. int nrptrs;
  1192. int ret = 0;
  1193. bool force_page_uptodate = false;
  1194. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1195. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1196. (sizeof(struct page *)));
  1197. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1198. nrptrs = max(nrptrs, 8);
  1199. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1200. if (!pages)
  1201. return -ENOMEM;
  1202. first_index = pos >> PAGE_CACHE_SHIFT;
  1203. while (iov_iter_count(i) > 0) {
  1204. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1205. size_t write_bytes = min(iov_iter_count(i),
  1206. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1207. offset);
  1208. size_t num_pages = (write_bytes + offset +
  1209. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1210. size_t dirty_pages;
  1211. size_t copied;
  1212. WARN_ON(num_pages > nrptrs);
  1213. /*
  1214. * Fault pages before locking them in prepare_pages
  1215. * to avoid recursive lock
  1216. */
  1217. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1218. ret = -EFAULT;
  1219. break;
  1220. }
  1221. ret = btrfs_delalloc_reserve_space(inode,
  1222. num_pages << PAGE_CACHE_SHIFT);
  1223. if (ret)
  1224. break;
  1225. /*
  1226. * This is going to setup the pages array with the number of
  1227. * pages we want, so we don't really need to worry about the
  1228. * contents of pages from loop to loop
  1229. */
  1230. ret = prepare_pages(root, file, pages, num_pages,
  1231. pos, first_index, write_bytes,
  1232. force_page_uptodate);
  1233. if (ret) {
  1234. btrfs_delalloc_release_space(inode,
  1235. num_pages << PAGE_CACHE_SHIFT);
  1236. break;
  1237. }
  1238. copied = btrfs_copy_from_user(pos, num_pages,
  1239. write_bytes, pages, i);
  1240. /*
  1241. * if we have trouble faulting in the pages, fall
  1242. * back to one page at a time
  1243. */
  1244. if (copied < write_bytes)
  1245. nrptrs = 1;
  1246. if (copied == 0) {
  1247. force_page_uptodate = true;
  1248. dirty_pages = 0;
  1249. } else {
  1250. force_page_uptodate = false;
  1251. dirty_pages = (copied + offset +
  1252. PAGE_CACHE_SIZE - 1) >>
  1253. PAGE_CACHE_SHIFT;
  1254. }
  1255. /*
  1256. * If we had a short copy we need to release the excess delaloc
  1257. * bytes we reserved. We need to increment outstanding_extents
  1258. * because btrfs_delalloc_release_space will decrement it, but
  1259. * we still have an outstanding extent for the chunk we actually
  1260. * managed to copy.
  1261. */
  1262. if (num_pages > dirty_pages) {
  1263. if (copied > 0) {
  1264. spin_lock(&BTRFS_I(inode)->lock);
  1265. BTRFS_I(inode)->outstanding_extents++;
  1266. spin_unlock(&BTRFS_I(inode)->lock);
  1267. }
  1268. btrfs_delalloc_release_space(inode,
  1269. (num_pages - dirty_pages) <<
  1270. PAGE_CACHE_SHIFT);
  1271. }
  1272. if (copied > 0) {
  1273. ret = btrfs_dirty_pages(root, inode, pages,
  1274. dirty_pages, pos, copied,
  1275. NULL);
  1276. if (ret) {
  1277. btrfs_delalloc_release_space(inode,
  1278. dirty_pages << PAGE_CACHE_SHIFT);
  1279. btrfs_drop_pages(pages, num_pages);
  1280. break;
  1281. }
  1282. }
  1283. btrfs_drop_pages(pages, num_pages);
  1284. cond_resched();
  1285. balance_dirty_pages_ratelimited(inode->i_mapping);
  1286. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1287. btrfs_btree_balance_dirty(root);
  1288. pos += copied;
  1289. num_written += copied;
  1290. }
  1291. kfree(pages);
  1292. return num_written ? num_written : ret;
  1293. }
  1294. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1295. const struct iovec *iov,
  1296. unsigned long nr_segs, loff_t pos,
  1297. loff_t *ppos, size_t count, size_t ocount)
  1298. {
  1299. struct file *file = iocb->ki_filp;
  1300. struct iov_iter i;
  1301. ssize_t written;
  1302. ssize_t written_buffered;
  1303. loff_t endbyte;
  1304. int err;
  1305. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1306. count, ocount);
  1307. if (written < 0 || written == count)
  1308. return written;
  1309. pos += written;
  1310. count -= written;
  1311. iov_iter_init(&i, iov, nr_segs, count, written);
  1312. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1313. if (written_buffered < 0) {
  1314. err = written_buffered;
  1315. goto out;
  1316. }
  1317. endbyte = pos + written_buffered - 1;
  1318. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1319. if (err)
  1320. goto out;
  1321. written += written_buffered;
  1322. *ppos = pos + written_buffered;
  1323. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1324. endbyte >> PAGE_CACHE_SHIFT);
  1325. out:
  1326. return written ? written : err;
  1327. }
  1328. static void update_time_for_write(struct inode *inode)
  1329. {
  1330. struct timespec now;
  1331. if (IS_NOCMTIME(inode))
  1332. return;
  1333. now = current_fs_time(inode->i_sb);
  1334. if (!timespec_equal(&inode->i_mtime, &now))
  1335. inode->i_mtime = now;
  1336. if (!timespec_equal(&inode->i_ctime, &now))
  1337. inode->i_ctime = now;
  1338. if (IS_I_VERSION(inode))
  1339. inode_inc_iversion(inode);
  1340. }
  1341. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1342. const struct iovec *iov,
  1343. unsigned long nr_segs, loff_t pos)
  1344. {
  1345. struct file *file = iocb->ki_filp;
  1346. struct inode *inode = file_inode(file);
  1347. struct btrfs_root *root = BTRFS_I(inode)->root;
  1348. loff_t *ppos = &iocb->ki_pos;
  1349. u64 start_pos;
  1350. ssize_t num_written = 0;
  1351. ssize_t err = 0;
  1352. size_t count, ocount;
  1353. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1354. sb_start_write(inode->i_sb);
  1355. mutex_lock(&inode->i_mutex);
  1356. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1357. if (err) {
  1358. mutex_unlock(&inode->i_mutex);
  1359. goto out;
  1360. }
  1361. count = ocount;
  1362. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1363. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1364. if (err) {
  1365. mutex_unlock(&inode->i_mutex);
  1366. goto out;
  1367. }
  1368. if (count == 0) {
  1369. mutex_unlock(&inode->i_mutex);
  1370. goto out;
  1371. }
  1372. err = file_remove_suid(file);
  1373. if (err) {
  1374. mutex_unlock(&inode->i_mutex);
  1375. goto out;
  1376. }
  1377. /*
  1378. * If BTRFS flips readonly due to some impossible error
  1379. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1380. * although we have opened a file as writable, we have
  1381. * to stop this write operation to ensure FS consistency.
  1382. */
  1383. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1384. mutex_unlock(&inode->i_mutex);
  1385. err = -EROFS;
  1386. goto out;
  1387. }
  1388. /*
  1389. * We reserve space for updating the inode when we reserve space for the
  1390. * extent we are going to write, so we will enospc out there. We don't
  1391. * need to start yet another transaction to update the inode as we will
  1392. * update the inode when we finish writing whatever data we write.
  1393. */
  1394. update_time_for_write(inode);
  1395. start_pos = round_down(pos, root->sectorsize);
  1396. if (start_pos > i_size_read(inode)) {
  1397. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1398. if (err) {
  1399. mutex_unlock(&inode->i_mutex);
  1400. goto out;
  1401. }
  1402. }
  1403. if (sync)
  1404. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1405. if (unlikely(file->f_flags & O_DIRECT)) {
  1406. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1407. pos, ppos, count, ocount);
  1408. } else {
  1409. struct iov_iter i;
  1410. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1411. num_written = __btrfs_buffered_write(file, &i, pos);
  1412. if (num_written > 0)
  1413. *ppos = pos + num_written;
  1414. }
  1415. mutex_unlock(&inode->i_mutex);
  1416. /*
  1417. * we want to make sure fsync finds this change
  1418. * but we haven't joined a transaction running right now.
  1419. *
  1420. * Later on, someone is sure to update the inode and get the
  1421. * real transid recorded.
  1422. *
  1423. * We set last_trans now to the fs_info generation + 1,
  1424. * this will either be one more than the running transaction
  1425. * or the generation used for the next transaction if there isn't
  1426. * one running right now.
  1427. *
  1428. * We also have to set last_sub_trans to the current log transid,
  1429. * otherwise subsequent syncs to a file that's been synced in this
  1430. * transaction will appear to have already occured.
  1431. */
  1432. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1433. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1434. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1435. err = generic_write_sync(file, pos, num_written);
  1436. if (err < 0 && num_written > 0)
  1437. num_written = err;
  1438. }
  1439. if (sync)
  1440. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1441. out:
  1442. sb_end_write(inode->i_sb);
  1443. current->backing_dev_info = NULL;
  1444. return num_written ? num_written : err;
  1445. }
  1446. int btrfs_release_file(struct inode *inode, struct file *filp)
  1447. {
  1448. /*
  1449. * ordered_data_close is set by settattr when we are about to truncate
  1450. * a file from a non-zero size to a zero size. This tries to
  1451. * flush down new bytes that may have been written if the
  1452. * application were using truncate to replace a file in place.
  1453. */
  1454. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1455. &BTRFS_I(inode)->runtime_flags)) {
  1456. struct btrfs_trans_handle *trans;
  1457. struct btrfs_root *root = BTRFS_I(inode)->root;
  1458. /*
  1459. * We need to block on a committing transaction to keep us from
  1460. * throwing a ordered operation on to the list and causing
  1461. * something like sync to deadlock trying to flush out this
  1462. * inode.
  1463. */
  1464. trans = btrfs_start_transaction(root, 0);
  1465. if (IS_ERR(trans))
  1466. return PTR_ERR(trans);
  1467. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1468. btrfs_end_transaction(trans, root);
  1469. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1470. filemap_flush(inode->i_mapping);
  1471. }
  1472. if (filp->private_data)
  1473. btrfs_ioctl_trans_end(filp);
  1474. return 0;
  1475. }
  1476. /*
  1477. * fsync call for both files and directories. This logs the inode into
  1478. * the tree log instead of forcing full commits whenever possible.
  1479. *
  1480. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1481. * in the metadata btree are up to date for copying to the log.
  1482. *
  1483. * It drops the inode mutex before doing the tree log commit. This is an
  1484. * important optimization for directories because holding the mutex prevents
  1485. * new operations on the dir while we write to disk.
  1486. */
  1487. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1488. {
  1489. struct dentry *dentry = file->f_path.dentry;
  1490. struct inode *inode = dentry->d_inode;
  1491. struct btrfs_root *root = BTRFS_I(inode)->root;
  1492. int ret = 0;
  1493. struct btrfs_trans_handle *trans;
  1494. bool full_sync = 0;
  1495. trace_btrfs_sync_file(file, datasync);
  1496. /*
  1497. * We write the dirty pages in the range and wait until they complete
  1498. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1499. * multi-task, and make the performance up. See
  1500. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1501. */
  1502. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1503. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1504. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1505. &BTRFS_I(inode)->runtime_flags))
  1506. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1507. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1508. if (ret)
  1509. return ret;
  1510. mutex_lock(&inode->i_mutex);
  1511. /*
  1512. * We flush the dirty pages again to avoid some dirty pages in the
  1513. * range being left.
  1514. */
  1515. atomic_inc(&root->log_batch);
  1516. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1517. &BTRFS_I(inode)->runtime_flags);
  1518. if (full_sync)
  1519. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1520. atomic_inc(&root->log_batch);
  1521. /*
  1522. * check the transaction that last modified this inode
  1523. * and see if its already been committed
  1524. */
  1525. if (!BTRFS_I(inode)->last_trans) {
  1526. mutex_unlock(&inode->i_mutex);
  1527. goto out;
  1528. }
  1529. /*
  1530. * if the last transaction that changed this file was before
  1531. * the current transaction, we can bail out now without any
  1532. * syncing
  1533. */
  1534. smp_mb();
  1535. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1536. BTRFS_I(inode)->last_trans <=
  1537. root->fs_info->last_trans_committed) {
  1538. BTRFS_I(inode)->last_trans = 0;
  1539. /*
  1540. * We'v had everything committed since the last time we were
  1541. * modified so clear this flag in case it was set for whatever
  1542. * reason, it's no longer relevant.
  1543. */
  1544. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1545. &BTRFS_I(inode)->runtime_flags);
  1546. mutex_unlock(&inode->i_mutex);
  1547. goto out;
  1548. }
  1549. /*
  1550. * ok we haven't committed the transaction yet, lets do a commit
  1551. */
  1552. if (file->private_data)
  1553. btrfs_ioctl_trans_end(file);
  1554. trans = btrfs_start_transaction(root, 0);
  1555. if (IS_ERR(trans)) {
  1556. ret = PTR_ERR(trans);
  1557. mutex_unlock(&inode->i_mutex);
  1558. goto out;
  1559. }
  1560. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1561. if (ret < 0) {
  1562. mutex_unlock(&inode->i_mutex);
  1563. goto out;
  1564. }
  1565. /* we've logged all the items and now have a consistent
  1566. * version of the file in the log. It is possible that
  1567. * someone will come in and modify the file, but that's
  1568. * fine because the log is consistent on disk, and we
  1569. * have references to all of the file's extents
  1570. *
  1571. * It is possible that someone will come in and log the
  1572. * file again, but that will end up using the synchronization
  1573. * inside btrfs_sync_log to keep things safe.
  1574. */
  1575. mutex_unlock(&inode->i_mutex);
  1576. if (ret != BTRFS_NO_LOG_SYNC) {
  1577. if (ret > 0) {
  1578. /*
  1579. * If we didn't already wait for ordered extents we need
  1580. * to do that now.
  1581. */
  1582. if (!full_sync)
  1583. btrfs_wait_ordered_range(inode, start,
  1584. end - start + 1);
  1585. ret = btrfs_commit_transaction(trans, root);
  1586. } else {
  1587. ret = btrfs_sync_log(trans, root);
  1588. if (ret == 0) {
  1589. ret = btrfs_end_transaction(trans, root);
  1590. } else {
  1591. if (!full_sync)
  1592. btrfs_wait_ordered_range(inode, start,
  1593. end -
  1594. start + 1);
  1595. ret = btrfs_commit_transaction(trans, root);
  1596. }
  1597. }
  1598. } else {
  1599. ret = btrfs_end_transaction(trans, root);
  1600. }
  1601. out:
  1602. return ret > 0 ? -EIO : ret;
  1603. }
  1604. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1605. .fault = filemap_fault,
  1606. .page_mkwrite = btrfs_page_mkwrite,
  1607. .remap_pages = generic_file_remap_pages,
  1608. };
  1609. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1610. {
  1611. struct address_space *mapping = filp->f_mapping;
  1612. if (!mapping->a_ops->readpage)
  1613. return -ENOEXEC;
  1614. file_accessed(filp);
  1615. vma->vm_ops = &btrfs_file_vm_ops;
  1616. return 0;
  1617. }
  1618. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1619. int slot, u64 start, u64 end)
  1620. {
  1621. struct btrfs_file_extent_item *fi;
  1622. struct btrfs_key key;
  1623. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1624. return 0;
  1625. btrfs_item_key_to_cpu(leaf, &key, slot);
  1626. if (key.objectid != btrfs_ino(inode) ||
  1627. key.type != BTRFS_EXTENT_DATA_KEY)
  1628. return 0;
  1629. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1630. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1631. return 0;
  1632. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1633. return 0;
  1634. if (key.offset == end)
  1635. return 1;
  1636. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1637. return 1;
  1638. return 0;
  1639. }
  1640. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1641. struct btrfs_path *path, u64 offset, u64 end)
  1642. {
  1643. struct btrfs_root *root = BTRFS_I(inode)->root;
  1644. struct extent_buffer *leaf;
  1645. struct btrfs_file_extent_item *fi;
  1646. struct extent_map *hole_em;
  1647. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1648. struct btrfs_key key;
  1649. int ret;
  1650. key.objectid = btrfs_ino(inode);
  1651. key.type = BTRFS_EXTENT_DATA_KEY;
  1652. key.offset = offset;
  1653. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1654. if (ret < 0)
  1655. return ret;
  1656. BUG_ON(!ret);
  1657. leaf = path->nodes[0];
  1658. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1659. u64 num_bytes;
  1660. path->slots[0]--;
  1661. fi = btrfs_item_ptr(leaf, path->slots[0],
  1662. struct btrfs_file_extent_item);
  1663. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1664. end - offset;
  1665. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1666. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1667. btrfs_set_file_extent_offset(leaf, fi, 0);
  1668. btrfs_mark_buffer_dirty(leaf);
  1669. goto out;
  1670. }
  1671. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1672. u64 num_bytes;
  1673. path->slots[0]++;
  1674. key.offset = offset;
  1675. btrfs_set_item_key_safe(trans, root, path, &key);
  1676. fi = btrfs_item_ptr(leaf, path->slots[0],
  1677. struct btrfs_file_extent_item);
  1678. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1679. offset;
  1680. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1681. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1682. btrfs_set_file_extent_offset(leaf, fi, 0);
  1683. btrfs_mark_buffer_dirty(leaf);
  1684. goto out;
  1685. }
  1686. btrfs_release_path(path);
  1687. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1688. 0, 0, end - offset, 0, end - offset,
  1689. 0, 0, 0);
  1690. if (ret)
  1691. return ret;
  1692. out:
  1693. btrfs_release_path(path);
  1694. hole_em = alloc_extent_map();
  1695. if (!hole_em) {
  1696. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1697. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1698. &BTRFS_I(inode)->runtime_flags);
  1699. } else {
  1700. hole_em->start = offset;
  1701. hole_em->len = end - offset;
  1702. hole_em->orig_start = offset;
  1703. hole_em->block_start = EXTENT_MAP_HOLE;
  1704. hole_em->block_len = 0;
  1705. hole_em->orig_block_len = 0;
  1706. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1707. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1708. hole_em->generation = trans->transid;
  1709. do {
  1710. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1711. write_lock(&em_tree->lock);
  1712. ret = add_extent_mapping(em_tree, hole_em);
  1713. if (!ret)
  1714. list_move(&hole_em->list,
  1715. &em_tree->modified_extents);
  1716. write_unlock(&em_tree->lock);
  1717. } while (ret == -EEXIST);
  1718. free_extent_map(hole_em);
  1719. if (ret)
  1720. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1721. &BTRFS_I(inode)->runtime_flags);
  1722. }
  1723. return 0;
  1724. }
  1725. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1726. {
  1727. struct btrfs_root *root = BTRFS_I(inode)->root;
  1728. struct extent_state *cached_state = NULL;
  1729. struct btrfs_path *path;
  1730. struct btrfs_block_rsv *rsv;
  1731. struct btrfs_trans_handle *trans;
  1732. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1733. u64 lockend = round_down(offset + len,
  1734. BTRFS_I(inode)->root->sectorsize) - 1;
  1735. u64 cur_offset = lockstart;
  1736. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1737. u64 drop_end;
  1738. int ret = 0;
  1739. int err = 0;
  1740. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1741. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1742. btrfs_wait_ordered_range(inode, offset, len);
  1743. mutex_lock(&inode->i_mutex);
  1744. /*
  1745. * We needn't truncate any page which is beyond the end of the file
  1746. * because we are sure there is no data there.
  1747. */
  1748. /*
  1749. * Only do this if we are in the same page and we aren't doing the
  1750. * entire page.
  1751. */
  1752. if (same_page && len < PAGE_CACHE_SIZE) {
  1753. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1754. ret = btrfs_truncate_page(inode, offset, len, 0);
  1755. mutex_unlock(&inode->i_mutex);
  1756. return ret;
  1757. }
  1758. /* zero back part of the first page */
  1759. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1760. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1761. if (ret) {
  1762. mutex_unlock(&inode->i_mutex);
  1763. return ret;
  1764. }
  1765. }
  1766. /* zero the front end of the last page */
  1767. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1768. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1769. if (ret) {
  1770. mutex_unlock(&inode->i_mutex);
  1771. return ret;
  1772. }
  1773. }
  1774. if (lockend < lockstart) {
  1775. mutex_unlock(&inode->i_mutex);
  1776. return 0;
  1777. }
  1778. while (1) {
  1779. struct btrfs_ordered_extent *ordered;
  1780. truncate_pagecache_range(inode, lockstart, lockend);
  1781. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1782. 0, &cached_state);
  1783. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1784. /*
  1785. * We need to make sure we have no ordered extents in this range
  1786. * and nobody raced in and read a page in this range, if we did
  1787. * we need to try again.
  1788. */
  1789. if ((!ordered ||
  1790. (ordered->file_offset + ordered->len < lockstart ||
  1791. ordered->file_offset > lockend)) &&
  1792. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1793. lockend, EXTENT_UPTODATE, 0,
  1794. cached_state)) {
  1795. if (ordered)
  1796. btrfs_put_ordered_extent(ordered);
  1797. break;
  1798. }
  1799. if (ordered)
  1800. btrfs_put_ordered_extent(ordered);
  1801. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1802. lockend, &cached_state, GFP_NOFS);
  1803. btrfs_wait_ordered_range(inode, lockstart,
  1804. lockend - lockstart + 1);
  1805. }
  1806. path = btrfs_alloc_path();
  1807. if (!path) {
  1808. ret = -ENOMEM;
  1809. goto out;
  1810. }
  1811. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1812. if (!rsv) {
  1813. ret = -ENOMEM;
  1814. goto out_free;
  1815. }
  1816. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1817. rsv->failfast = 1;
  1818. /*
  1819. * 1 - update the inode
  1820. * 1 - removing the extents in the range
  1821. * 1 - adding the hole extent
  1822. */
  1823. trans = btrfs_start_transaction(root, 3);
  1824. if (IS_ERR(trans)) {
  1825. err = PTR_ERR(trans);
  1826. goto out_free;
  1827. }
  1828. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1829. min_size);
  1830. BUG_ON(ret);
  1831. trans->block_rsv = rsv;
  1832. while (cur_offset < lockend) {
  1833. ret = __btrfs_drop_extents(trans, root, inode, path,
  1834. cur_offset, lockend + 1,
  1835. &drop_end, 1);
  1836. if (ret != -ENOSPC)
  1837. break;
  1838. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1839. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1840. if (ret) {
  1841. err = ret;
  1842. break;
  1843. }
  1844. cur_offset = drop_end;
  1845. ret = btrfs_update_inode(trans, root, inode);
  1846. if (ret) {
  1847. err = ret;
  1848. break;
  1849. }
  1850. btrfs_end_transaction(trans, root);
  1851. btrfs_btree_balance_dirty(root);
  1852. trans = btrfs_start_transaction(root, 3);
  1853. if (IS_ERR(trans)) {
  1854. ret = PTR_ERR(trans);
  1855. trans = NULL;
  1856. break;
  1857. }
  1858. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1859. rsv, min_size);
  1860. BUG_ON(ret); /* shouldn't happen */
  1861. trans->block_rsv = rsv;
  1862. }
  1863. if (ret) {
  1864. err = ret;
  1865. goto out_trans;
  1866. }
  1867. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1868. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1869. if (ret) {
  1870. err = ret;
  1871. goto out_trans;
  1872. }
  1873. out_trans:
  1874. if (!trans)
  1875. goto out_free;
  1876. inode_inc_iversion(inode);
  1877. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1878. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1879. ret = btrfs_update_inode(trans, root, inode);
  1880. btrfs_end_transaction(trans, root);
  1881. btrfs_btree_balance_dirty(root);
  1882. out_free:
  1883. btrfs_free_path(path);
  1884. btrfs_free_block_rsv(root, rsv);
  1885. out:
  1886. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1887. &cached_state, GFP_NOFS);
  1888. mutex_unlock(&inode->i_mutex);
  1889. if (ret && !err)
  1890. err = ret;
  1891. return err;
  1892. }
  1893. static long btrfs_fallocate(struct file *file, int mode,
  1894. loff_t offset, loff_t len)
  1895. {
  1896. struct inode *inode = file_inode(file);
  1897. struct extent_state *cached_state = NULL;
  1898. struct btrfs_root *root = BTRFS_I(inode)->root;
  1899. u64 cur_offset;
  1900. u64 last_byte;
  1901. u64 alloc_start;
  1902. u64 alloc_end;
  1903. u64 alloc_hint = 0;
  1904. u64 locked_end;
  1905. struct extent_map *em;
  1906. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1907. int ret;
  1908. alloc_start = round_down(offset, blocksize);
  1909. alloc_end = round_up(offset + len, blocksize);
  1910. /* Make sure we aren't being give some crap mode */
  1911. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1912. return -EOPNOTSUPP;
  1913. if (mode & FALLOC_FL_PUNCH_HOLE)
  1914. return btrfs_punch_hole(inode, offset, len);
  1915. /*
  1916. * Make sure we have enough space before we do the
  1917. * allocation.
  1918. */
  1919. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  1920. if (ret)
  1921. return ret;
  1922. if (root->fs_info->quota_enabled) {
  1923. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  1924. if (ret)
  1925. goto out_reserve_fail;
  1926. }
  1927. /*
  1928. * wait for ordered IO before we have any locks. We'll loop again
  1929. * below with the locks held.
  1930. */
  1931. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1932. mutex_lock(&inode->i_mutex);
  1933. ret = inode_newsize_ok(inode, alloc_end);
  1934. if (ret)
  1935. goto out;
  1936. if (alloc_start > inode->i_size) {
  1937. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1938. alloc_start);
  1939. if (ret)
  1940. goto out;
  1941. }
  1942. locked_end = alloc_end - 1;
  1943. while (1) {
  1944. struct btrfs_ordered_extent *ordered;
  1945. /* the extent lock is ordered inside the running
  1946. * transaction
  1947. */
  1948. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1949. locked_end, 0, &cached_state);
  1950. ordered = btrfs_lookup_first_ordered_extent(inode,
  1951. alloc_end - 1);
  1952. if (ordered &&
  1953. ordered->file_offset + ordered->len > alloc_start &&
  1954. ordered->file_offset < alloc_end) {
  1955. btrfs_put_ordered_extent(ordered);
  1956. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1957. alloc_start, locked_end,
  1958. &cached_state, GFP_NOFS);
  1959. /*
  1960. * we can't wait on the range with the transaction
  1961. * running or with the extent lock held
  1962. */
  1963. btrfs_wait_ordered_range(inode, alloc_start,
  1964. alloc_end - alloc_start);
  1965. } else {
  1966. if (ordered)
  1967. btrfs_put_ordered_extent(ordered);
  1968. break;
  1969. }
  1970. }
  1971. cur_offset = alloc_start;
  1972. while (1) {
  1973. u64 actual_end;
  1974. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1975. alloc_end - cur_offset, 0);
  1976. if (IS_ERR_OR_NULL(em)) {
  1977. if (!em)
  1978. ret = -ENOMEM;
  1979. else
  1980. ret = PTR_ERR(em);
  1981. break;
  1982. }
  1983. last_byte = min(extent_map_end(em), alloc_end);
  1984. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1985. last_byte = ALIGN(last_byte, blocksize);
  1986. if (em->block_start == EXTENT_MAP_HOLE ||
  1987. (cur_offset >= inode->i_size &&
  1988. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1989. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1990. last_byte - cur_offset,
  1991. 1 << inode->i_blkbits,
  1992. offset + len,
  1993. &alloc_hint);
  1994. if (ret < 0) {
  1995. free_extent_map(em);
  1996. break;
  1997. }
  1998. } else if (actual_end > inode->i_size &&
  1999. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2000. /*
  2001. * We didn't need to allocate any more space, but we
  2002. * still extended the size of the file so we need to
  2003. * update i_size.
  2004. */
  2005. inode->i_ctime = CURRENT_TIME;
  2006. i_size_write(inode, actual_end);
  2007. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2008. }
  2009. free_extent_map(em);
  2010. cur_offset = last_byte;
  2011. if (cur_offset >= alloc_end) {
  2012. ret = 0;
  2013. break;
  2014. }
  2015. }
  2016. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2017. &cached_state, GFP_NOFS);
  2018. out:
  2019. mutex_unlock(&inode->i_mutex);
  2020. if (root->fs_info->quota_enabled)
  2021. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2022. out_reserve_fail:
  2023. /* Let go of our reservation. */
  2024. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2025. return ret;
  2026. }
  2027. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2028. {
  2029. struct btrfs_root *root = BTRFS_I(inode)->root;
  2030. struct extent_map *em;
  2031. struct extent_state *cached_state = NULL;
  2032. u64 lockstart = *offset;
  2033. u64 lockend = i_size_read(inode);
  2034. u64 start = *offset;
  2035. u64 orig_start = *offset;
  2036. u64 len = i_size_read(inode);
  2037. u64 last_end = 0;
  2038. int ret = 0;
  2039. lockend = max_t(u64, root->sectorsize, lockend);
  2040. if (lockend <= lockstart)
  2041. lockend = lockstart + root->sectorsize;
  2042. lockend--;
  2043. len = lockend - lockstart + 1;
  2044. len = max_t(u64, len, root->sectorsize);
  2045. if (inode->i_size == 0)
  2046. return -ENXIO;
  2047. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2048. &cached_state);
  2049. /*
  2050. * Delalloc is such a pain. If we have a hole and we have pending
  2051. * delalloc for a portion of the hole we will get back a hole that
  2052. * exists for the entire range since it hasn't been actually written
  2053. * yet. So to take care of this case we need to look for an extent just
  2054. * before the position we want in case there is outstanding delalloc
  2055. * going on here.
  2056. */
  2057. if (whence == SEEK_HOLE && start != 0) {
  2058. if (start <= root->sectorsize)
  2059. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2060. root->sectorsize, 0);
  2061. else
  2062. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2063. start - root->sectorsize,
  2064. root->sectorsize, 0);
  2065. if (IS_ERR(em)) {
  2066. ret = PTR_ERR(em);
  2067. goto out;
  2068. }
  2069. last_end = em->start + em->len;
  2070. if (em->block_start == EXTENT_MAP_DELALLOC)
  2071. last_end = min_t(u64, last_end, inode->i_size);
  2072. free_extent_map(em);
  2073. }
  2074. while (1) {
  2075. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2076. if (IS_ERR(em)) {
  2077. ret = PTR_ERR(em);
  2078. break;
  2079. }
  2080. if (em->block_start == EXTENT_MAP_HOLE) {
  2081. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2082. if (last_end <= orig_start) {
  2083. free_extent_map(em);
  2084. ret = -ENXIO;
  2085. break;
  2086. }
  2087. }
  2088. if (whence == SEEK_HOLE) {
  2089. *offset = start;
  2090. free_extent_map(em);
  2091. break;
  2092. }
  2093. } else {
  2094. if (whence == SEEK_DATA) {
  2095. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2096. if (start >= inode->i_size) {
  2097. free_extent_map(em);
  2098. ret = -ENXIO;
  2099. break;
  2100. }
  2101. }
  2102. if (!test_bit(EXTENT_FLAG_PREALLOC,
  2103. &em->flags)) {
  2104. *offset = start;
  2105. free_extent_map(em);
  2106. break;
  2107. }
  2108. }
  2109. }
  2110. start = em->start + em->len;
  2111. last_end = em->start + em->len;
  2112. if (em->block_start == EXTENT_MAP_DELALLOC)
  2113. last_end = min_t(u64, last_end, inode->i_size);
  2114. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2115. free_extent_map(em);
  2116. ret = -ENXIO;
  2117. break;
  2118. }
  2119. free_extent_map(em);
  2120. cond_resched();
  2121. }
  2122. if (!ret)
  2123. *offset = min(*offset, inode->i_size);
  2124. out:
  2125. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2126. &cached_state, GFP_NOFS);
  2127. return ret;
  2128. }
  2129. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2130. {
  2131. struct inode *inode = file->f_mapping->host;
  2132. int ret;
  2133. mutex_lock(&inode->i_mutex);
  2134. switch (whence) {
  2135. case SEEK_END:
  2136. case SEEK_CUR:
  2137. offset = generic_file_llseek(file, offset, whence);
  2138. goto out;
  2139. case SEEK_DATA:
  2140. case SEEK_HOLE:
  2141. if (offset >= i_size_read(inode)) {
  2142. mutex_unlock(&inode->i_mutex);
  2143. return -ENXIO;
  2144. }
  2145. ret = find_desired_extent(inode, &offset, whence);
  2146. if (ret) {
  2147. mutex_unlock(&inode->i_mutex);
  2148. return ret;
  2149. }
  2150. }
  2151. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2152. offset = -EINVAL;
  2153. goto out;
  2154. }
  2155. if (offset > inode->i_sb->s_maxbytes) {
  2156. offset = -EINVAL;
  2157. goto out;
  2158. }
  2159. /* Special lock needed here? */
  2160. if (offset != file->f_pos) {
  2161. file->f_pos = offset;
  2162. file->f_version = 0;
  2163. }
  2164. out:
  2165. mutex_unlock(&inode->i_mutex);
  2166. return offset;
  2167. }
  2168. const struct file_operations btrfs_file_operations = {
  2169. .llseek = btrfs_file_llseek,
  2170. .read = do_sync_read,
  2171. .write = do_sync_write,
  2172. .aio_read = generic_file_aio_read,
  2173. .splice_read = generic_file_splice_read,
  2174. .aio_write = btrfs_file_aio_write,
  2175. .mmap = btrfs_file_mmap,
  2176. .open = generic_file_open,
  2177. .release = btrfs_release_file,
  2178. .fsync = btrfs_sync_file,
  2179. .fallocate = btrfs_fallocate,
  2180. .unlocked_ioctl = btrfs_ioctl,
  2181. #ifdef CONFIG_COMPAT
  2182. .compat_ioctl = btrfs_ioctl,
  2183. #endif
  2184. };
  2185. void btrfs_auto_defrag_exit(void)
  2186. {
  2187. if (btrfs_inode_defrag_cachep)
  2188. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2189. }
  2190. int btrfs_auto_defrag_init(void)
  2191. {
  2192. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2193. sizeof(struct inode_defrag), 0,
  2194. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2195. NULL);
  2196. if (!btrfs_inode_defrag_cachep)
  2197. return -ENOMEM;
  2198. return 0;
  2199. }