delayed-inode.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 512
  24. #define BTRFS_DELAYED_BACKGROUND 128
  25. #define BTRFS_DELAYED_BATCH 16
  26. static struct kmem_cache *delayed_node_cache;
  27. int __init btrfs_delayed_inode_init(void)
  28. {
  29. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  30. sizeof(struct btrfs_delayed_node),
  31. 0,
  32. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  33. NULL);
  34. if (!delayed_node_cache)
  35. return -ENOMEM;
  36. return 0;
  37. }
  38. void btrfs_delayed_inode_exit(void)
  39. {
  40. if (delayed_node_cache)
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->count = 0;
  51. delayed_node->in_list = 0;
  52. delayed_node->inode_dirty = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. atomic_inc(&node->refs); /* can be accessed */
  100. atomic_inc(&node->refs); /* cached in the inode */
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. atomic_inc(&node->refs); /* cached in the btrfs inode */
  125. atomic_inc(&node->refs); /* can be accessed */
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. kmem_cache_free(delayed_node_cache, node);
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (node->in_list) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. node->in_list = 1;
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (node->in_list) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. node->in_list = 0;
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!node->in_list) { /* not in the list */
  207. if (list_empty(&delayed_root->node_list))
  208. goto out;
  209. p = delayed_root->node_list.next;
  210. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  211. goto out;
  212. else
  213. p = node->n_list.next;
  214. next = list_entry(p, struct btrfs_delayed_node, n_list);
  215. atomic_inc(&next->refs);
  216. out:
  217. spin_unlock(&delayed_root->lock);
  218. return next;
  219. }
  220. static void __btrfs_release_delayed_node(
  221. struct btrfs_delayed_node *delayed_node,
  222. int mod)
  223. {
  224. struct btrfs_delayed_root *delayed_root;
  225. if (!delayed_node)
  226. return;
  227. delayed_root = delayed_node->root->fs_info->delayed_root;
  228. mutex_lock(&delayed_node->mutex);
  229. if (delayed_node->count)
  230. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  231. else
  232. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  233. mutex_unlock(&delayed_node->mutex);
  234. if (atomic_dec_and_test(&delayed_node->refs)) {
  235. struct btrfs_root *root = delayed_node->root;
  236. spin_lock(&root->inode_lock);
  237. if (atomic_read(&delayed_node->refs) == 0) {
  238. radix_tree_delete(&root->delayed_nodes_tree,
  239. delayed_node->inode_id);
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. spin_unlock(&root->inode_lock);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. atomic_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. atomic_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. struct btrfs_delayed_item *item;
  344. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  345. NULL, NULL);
  346. return item;
  347. }
  348. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  349. struct btrfs_delayed_node *delayed_node,
  350. struct btrfs_key *key)
  351. {
  352. struct btrfs_delayed_item *item;
  353. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  354. NULL, NULL);
  355. return item;
  356. }
  357. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  358. struct btrfs_delayed_node *delayed_node,
  359. struct btrfs_key *key)
  360. {
  361. struct btrfs_delayed_item *item, *next;
  362. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  363. NULL, &next);
  364. if (!item)
  365. item = next;
  366. return item;
  367. }
  368. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  369. struct btrfs_delayed_node *delayed_node,
  370. struct btrfs_key *key)
  371. {
  372. struct btrfs_delayed_item *item, *next;
  373. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  374. NULL, &next);
  375. if (!item)
  376. item = next;
  377. return item;
  378. }
  379. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  380. struct btrfs_delayed_item *ins,
  381. int action)
  382. {
  383. struct rb_node **p, *node;
  384. struct rb_node *parent_node = NULL;
  385. struct rb_root *root;
  386. struct btrfs_delayed_item *item;
  387. int cmp;
  388. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  389. root = &delayed_node->ins_root;
  390. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  391. root = &delayed_node->del_root;
  392. else
  393. BUG();
  394. p = &root->rb_node;
  395. node = &ins->rb_node;
  396. while (*p) {
  397. parent_node = *p;
  398. item = rb_entry(parent_node, struct btrfs_delayed_item,
  399. rb_node);
  400. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  401. if (cmp < 0)
  402. p = &(*p)->rb_right;
  403. else if (cmp > 0)
  404. p = &(*p)->rb_left;
  405. else
  406. return -EEXIST;
  407. }
  408. rb_link_node(node, parent_node, p);
  409. rb_insert_color(node, root);
  410. ins->delayed_node = delayed_node;
  411. ins->ins_or_del = action;
  412. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  413. action == BTRFS_DELAYED_INSERTION_ITEM &&
  414. ins->key.offset >= delayed_node->index_cnt)
  415. delayed_node->index_cnt = ins->key.offset + 1;
  416. delayed_node->count++;
  417. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  418. return 0;
  419. }
  420. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  421. struct btrfs_delayed_item *item)
  422. {
  423. return __btrfs_add_delayed_item(node, item,
  424. BTRFS_DELAYED_INSERTION_ITEM);
  425. }
  426. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  427. struct btrfs_delayed_item *item)
  428. {
  429. return __btrfs_add_delayed_item(node, item,
  430. BTRFS_DELAYED_DELETION_ITEM);
  431. }
  432. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  433. {
  434. int seq = atomic_inc_return(&delayed_root->items_seq);
  435. if ((atomic_dec_return(&delayed_root->items) <
  436. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  437. waitqueue_active(&delayed_root->wait))
  438. wake_up(&delayed_root->wait);
  439. }
  440. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  441. {
  442. struct rb_root *root;
  443. struct btrfs_delayed_root *delayed_root;
  444. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  445. BUG_ON(!delayed_root);
  446. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  447. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  448. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  449. root = &delayed_item->delayed_node->ins_root;
  450. else
  451. root = &delayed_item->delayed_node->del_root;
  452. rb_erase(&delayed_item->rb_node, root);
  453. delayed_item->delayed_node->count--;
  454. finish_one_item(delayed_root);
  455. }
  456. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  457. {
  458. if (item) {
  459. __btrfs_remove_delayed_item(item);
  460. if (atomic_dec_and_test(&item->refs))
  461. kfree(item);
  462. }
  463. }
  464. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  465. struct btrfs_delayed_node *delayed_node)
  466. {
  467. struct rb_node *p;
  468. struct btrfs_delayed_item *item = NULL;
  469. p = rb_first(&delayed_node->ins_root);
  470. if (p)
  471. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  472. return item;
  473. }
  474. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  475. struct btrfs_delayed_node *delayed_node)
  476. {
  477. struct rb_node *p;
  478. struct btrfs_delayed_item *item = NULL;
  479. p = rb_first(&delayed_node->del_root);
  480. if (p)
  481. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  482. return item;
  483. }
  484. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  485. struct btrfs_delayed_item *item)
  486. {
  487. struct rb_node *p;
  488. struct btrfs_delayed_item *next = NULL;
  489. p = rb_next(&item->rb_node);
  490. if (p)
  491. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  492. return next;
  493. }
  494. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  495. u64 root_id)
  496. {
  497. struct btrfs_key root_key;
  498. if (root->objectid == root_id)
  499. return root;
  500. root_key.objectid = root_id;
  501. root_key.type = BTRFS_ROOT_ITEM_KEY;
  502. root_key.offset = (u64)-1;
  503. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  504. }
  505. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  506. struct btrfs_root *root,
  507. struct btrfs_delayed_item *item)
  508. {
  509. struct btrfs_block_rsv *src_rsv;
  510. struct btrfs_block_rsv *dst_rsv;
  511. u64 num_bytes;
  512. int ret;
  513. if (!trans->bytes_reserved)
  514. return 0;
  515. src_rsv = trans->block_rsv;
  516. dst_rsv = &root->fs_info->delayed_block_rsv;
  517. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  518. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  519. if (!ret) {
  520. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  521. item->key.objectid,
  522. num_bytes, 1);
  523. item->bytes_reserved = num_bytes;
  524. }
  525. return ret;
  526. }
  527. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  528. struct btrfs_delayed_item *item)
  529. {
  530. struct btrfs_block_rsv *rsv;
  531. if (!item->bytes_reserved)
  532. return;
  533. rsv = &root->fs_info->delayed_block_rsv;
  534. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  535. item->key.objectid, item->bytes_reserved,
  536. 0);
  537. btrfs_block_rsv_release(root, rsv,
  538. item->bytes_reserved);
  539. }
  540. static int btrfs_delayed_inode_reserve_metadata(
  541. struct btrfs_trans_handle *trans,
  542. struct btrfs_root *root,
  543. struct inode *inode,
  544. struct btrfs_delayed_node *node)
  545. {
  546. struct btrfs_block_rsv *src_rsv;
  547. struct btrfs_block_rsv *dst_rsv;
  548. u64 num_bytes;
  549. int ret;
  550. bool release = false;
  551. src_rsv = trans->block_rsv;
  552. dst_rsv = &root->fs_info->delayed_block_rsv;
  553. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  554. /*
  555. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  556. * which doesn't reserve space for speed. This is a problem since we
  557. * still need to reserve space for this update, so try to reserve the
  558. * space.
  559. *
  560. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  561. * we're accounted for.
  562. */
  563. if (!src_rsv || (!trans->bytes_reserved &&
  564. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  565. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  566. BTRFS_RESERVE_NO_FLUSH);
  567. /*
  568. * Since we're under a transaction reserve_metadata_bytes could
  569. * try to commit the transaction which will make it return
  570. * EAGAIN to make us stop the transaction we have, so return
  571. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  572. */
  573. if (ret == -EAGAIN)
  574. ret = -ENOSPC;
  575. if (!ret) {
  576. node->bytes_reserved = num_bytes;
  577. trace_btrfs_space_reservation(root->fs_info,
  578. "delayed_inode",
  579. btrfs_ino(inode),
  580. num_bytes, 1);
  581. }
  582. return ret;
  583. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  584. spin_lock(&BTRFS_I(inode)->lock);
  585. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  586. &BTRFS_I(inode)->runtime_flags)) {
  587. spin_unlock(&BTRFS_I(inode)->lock);
  588. release = true;
  589. goto migrate;
  590. }
  591. spin_unlock(&BTRFS_I(inode)->lock);
  592. /* Ok we didn't have space pre-reserved. This shouldn't happen
  593. * too often but it can happen if we do delalloc to an existing
  594. * inode which gets dirtied because of the time update, and then
  595. * isn't touched again until after the transaction commits and
  596. * then we try to write out the data. First try to be nice and
  597. * reserve something strictly for us. If not be a pain and try
  598. * to steal from the delalloc block rsv.
  599. */
  600. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  601. BTRFS_RESERVE_NO_FLUSH);
  602. if (!ret)
  603. goto out;
  604. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  605. if (!ret)
  606. goto out;
  607. /*
  608. * Ok this is a problem, let's just steal from the global rsv
  609. * since this really shouldn't happen that often.
  610. */
  611. WARN_ON(1);
  612. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  613. dst_rsv, num_bytes);
  614. goto out;
  615. }
  616. migrate:
  617. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  618. out:
  619. /*
  620. * Migrate only takes a reservation, it doesn't touch the size of the
  621. * block_rsv. This is to simplify people who don't normally have things
  622. * migrated from their block rsv. If they go to release their
  623. * reservation, that will decrease the size as well, so if migrate
  624. * reduced size we'd end up with a negative size. But for the
  625. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  626. * but we could in fact do this reserve/migrate dance several times
  627. * between the time we did the original reservation and we'd clean it
  628. * up. So to take care of this, release the space for the meta
  629. * reservation here. I think it may be time for a documentation page on
  630. * how block rsvs. work.
  631. */
  632. if (!ret) {
  633. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  634. btrfs_ino(inode), num_bytes, 1);
  635. node->bytes_reserved = num_bytes;
  636. }
  637. if (release) {
  638. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  639. btrfs_ino(inode), num_bytes, 0);
  640. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  641. }
  642. return ret;
  643. }
  644. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  645. struct btrfs_delayed_node *node)
  646. {
  647. struct btrfs_block_rsv *rsv;
  648. if (!node->bytes_reserved)
  649. return;
  650. rsv = &root->fs_info->delayed_block_rsv;
  651. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  652. node->inode_id, node->bytes_reserved, 0);
  653. btrfs_block_rsv_release(root, rsv,
  654. node->bytes_reserved);
  655. node->bytes_reserved = 0;
  656. }
  657. /*
  658. * This helper will insert some continuous items into the same leaf according
  659. * to the free space of the leaf.
  660. */
  661. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  662. struct btrfs_root *root,
  663. struct btrfs_path *path,
  664. struct btrfs_delayed_item *item)
  665. {
  666. struct btrfs_delayed_item *curr, *next;
  667. int free_space;
  668. int total_data_size = 0, total_size = 0;
  669. struct extent_buffer *leaf;
  670. char *data_ptr;
  671. struct btrfs_key *keys;
  672. u32 *data_size;
  673. struct list_head head;
  674. int slot;
  675. int nitems;
  676. int i;
  677. int ret = 0;
  678. BUG_ON(!path->nodes[0]);
  679. leaf = path->nodes[0];
  680. free_space = btrfs_leaf_free_space(root, leaf);
  681. INIT_LIST_HEAD(&head);
  682. next = item;
  683. nitems = 0;
  684. /*
  685. * count the number of the continuous items that we can insert in batch
  686. */
  687. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  688. free_space) {
  689. total_data_size += next->data_len;
  690. total_size += next->data_len + sizeof(struct btrfs_item);
  691. list_add_tail(&next->tree_list, &head);
  692. nitems++;
  693. curr = next;
  694. next = __btrfs_next_delayed_item(curr);
  695. if (!next)
  696. break;
  697. if (!btrfs_is_continuous_delayed_item(curr, next))
  698. break;
  699. }
  700. if (!nitems) {
  701. ret = 0;
  702. goto out;
  703. }
  704. /*
  705. * we need allocate some memory space, but it might cause the task
  706. * to sleep, so we set all locked nodes in the path to blocking locks
  707. * first.
  708. */
  709. btrfs_set_path_blocking(path);
  710. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  711. if (!keys) {
  712. ret = -ENOMEM;
  713. goto out;
  714. }
  715. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  716. if (!data_size) {
  717. ret = -ENOMEM;
  718. goto error;
  719. }
  720. /* get keys of all the delayed items */
  721. i = 0;
  722. list_for_each_entry(next, &head, tree_list) {
  723. keys[i] = next->key;
  724. data_size[i] = next->data_len;
  725. i++;
  726. }
  727. /* reset all the locked nodes in the patch to spinning locks. */
  728. btrfs_clear_path_blocking(path, NULL, 0);
  729. /* insert the keys of the items */
  730. setup_items_for_insert(trans, root, path, keys, data_size,
  731. total_data_size, total_size, nitems);
  732. /* insert the dir index items */
  733. slot = path->slots[0];
  734. list_for_each_entry_safe(curr, next, &head, tree_list) {
  735. data_ptr = btrfs_item_ptr(leaf, slot, char);
  736. write_extent_buffer(leaf, &curr->data,
  737. (unsigned long)data_ptr,
  738. curr->data_len);
  739. slot++;
  740. btrfs_delayed_item_release_metadata(root, curr);
  741. list_del(&curr->tree_list);
  742. btrfs_release_delayed_item(curr);
  743. }
  744. error:
  745. kfree(data_size);
  746. kfree(keys);
  747. out:
  748. return ret;
  749. }
  750. /*
  751. * This helper can just do simple insertion that needn't extend item for new
  752. * data, such as directory name index insertion, inode insertion.
  753. */
  754. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  755. struct btrfs_root *root,
  756. struct btrfs_path *path,
  757. struct btrfs_delayed_item *delayed_item)
  758. {
  759. struct extent_buffer *leaf;
  760. char *ptr;
  761. int ret;
  762. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  763. delayed_item->data_len);
  764. if (ret < 0 && ret != -EEXIST)
  765. return ret;
  766. leaf = path->nodes[0];
  767. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  768. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  769. delayed_item->data_len);
  770. btrfs_mark_buffer_dirty(leaf);
  771. btrfs_delayed_item_release_metadata(root, delayed_item);
  772. return 0;
  773. }
  774. /*
  775. * we insert an item first, then if there are some continuous items, we try
  776. * to insert those items into the same leaf.
  777. */
  778. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  779. struct btrfs_path *path,
  780. struct btrfs_root *root,
  781. struct btrfs_delayed_node *node)
  782. {
  783. struct btrfs_delayed_item *curr, *prev;
  784. int ret = 0;
  785. do_again:
  786. mutex_lock(&node->mutex);
  787. curr = __btrfs_first_delayed_insertion_item(node);
  788. if (!curr)
  789. goto insert_end;
  790. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  791. if (ret < 0) {
  792. btrfs_release_path(path);
  793. goto insert_end;
  794. }
  795. prev = curr;
  796. curr = __btrfs_next_delayed_item(prev);
  797. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  798. /* insert the continuous items into the same leaf */
  799. path->slots[0]++;
  800. btrfs_batch_insert_items(trans, root, path, curr);
  801. }
  802. btrfs_release_delayed_item(prev);
  803. btrfs_mark_buffer_dirty(path->nodes[0]);
  804. btrfs_release_path(path);
  805. mutex_unlock(&node->mutex);
  806. goto do_again;
  807. insert_end:
  808. mutex_unlock(&node->mutex);
  809. return ret;
  810. }
  811. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  812. struct btrfs_root *root,
  813. struct btrfs_path *path,
  814. struct btrfs_delayed_item *item)
  815. {
  816. struct btrfs_delayed_item *curr, *next;
  817. struct extent_buffer *leaf;
  818. struct btrfs_key key;
  819. struct list_head head;
  820. int nitems, i, last_item;
  821. int ret = 0;
  822. BUG_ON(!path->nodes[0]);
  823. leaf = path->nodes[0];
  824. i = path->slots[0];
  825. last_item = btrfs_header_nritems(leaf) - 1;
  826. if (i > last_item)
  827. return -ENOENT; /* FIXME: Is errno suitable? */
  828. next = item;
  829. INIT_LIST_HEAD(&head);
  830. btrfs_item_key_to_cpu(leaf, &key, i);
  831. nitems = 0;
  832. /*
  833. * count the number of the dir index items that we can delete in batch
  834. */
  835. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  836. list_add_tail(&next->tree_list, &head);
  837. nitems++;
  838. curr = next;
  839. next = __btrfs_next_delayed_item(curr);
  840. if (!next)
  841. break;
  842. if (!btrfs_is_continuous_delayed_item(curr, next))
  843. break;
  844. i++;
  845. if (i > last_item)
  846. break;
  847. btrfs_item_key_to_cpu(leaf, &key, i);
  848. }
  849. if (!nitems)
  850. return 0;
  851. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  852. if (ret)
  853. goto out;
  854. list_for_each_entry_safe(curr, next, &head, tree_list) {
  855. btrfs_delayed_item_release_metadata(root, curr);
  856. list_del(&curr->tree_list);
  857. btrfs_release_delayed_item(curr);
  858. }
  859. out:
  860. return ret;
  861. }
  862. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  863. struct btrfs_path *path,
  864. struct btrfs_root *root,
  865. struct btrfs_delayed_node *node)
  866. {
  867. struct btrfs_delayed_item *curr, *prev;
  868. int ret = 0;
  869. do_again:
  870. mutex_lock(&node->mutex);
  871. curr = __btrfs_first_delayed_deletion_item(node);
  872. if (!curr)
  873. goto delete_fail;
  874. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  875. if (ret < 0)
  876. goto delete_fail;
  877. else if (ret > 0) {
  878. /*
  879. * can't find the item which the node points to, so this node
  880. * is invalid, just drop it.
  881. */
  882. prev = curr;
  883. curr = __btrfs_next_delayed_item(prev);
  884. btrfs_release_delayed_item(prev);
  885. ret = 0;
  886. btrfs_release_path(path);
  887. if (curr) {
  888. mutex_unlock(&node->mutex);
  889. goto do_again;
  890. } else
  891. goto delete_fail;
  892. }
  893. btrfs_batch_delete_items(trans, root, path, curr);
  894. btrfs_release_path(path);
  895. mutex_unlock(&node->mutex);
  896. goto do_again;
  897. delete_fail:
  898. btrfs_release_path(path);
  899. mutex_unlock(&node->mutex);
  900. return ret;
  901. }
  902. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  903. {
  904. struct btrfs_delayed_root *delayed_root;
  905. if (delayed_node && delayed_node->inode_dirty) {
  906. BUG_ON(!delayed_node->root);
  907. delayed_node->inode_dirty = 0;
  908. delayed_node->count--;
  909. delayed_root = delayed_node->root->fs_info->delayed_root;
  910. finish_one_item(delayed_root);
  911. }
  912. }
  913. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  914. struct btrfs_root *root,
  915. struct btrfs_path *path,
  916. struct btrfs_delayed_node *node)
  917. {
  918. struct btrfs_key key;
  919. struct btrfs_inode_item *inode_item;
  920. struct extent_buffer *leaf;
  921. int ret;
  922. key.objectid = node->inode_id;
  923. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  924. key.offset = 0;
  925. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  926. if (ret > 0) {
  927. btrfs_release_path(path);
  928. return -ENOENT;
  929. } else if (ret < 0) {
  930. return ret;
  931. }
  932. btrfs_unlock_up_safe(path, 1);
  933. leaf = path->nodes[0];
  934. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  935. struct btrfs_inode_item);
  936. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  937. sizeof(struct btrfs_inode_item));
  938. btrfs_mark_buffer_dirty(leaf);
  939. btrfs_release_path(path);
  940. btrfs_delayed_inode_release_metadata(root, node);
  941. btrfs_release_delayed_inode(node);
  942. return 0;
  943. }
  944. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  945. struct btrfs_root *root,
  946. struct btrfs_path *path,
  947. struct btrfs_delayed_node *node)
  948. {
  949. int ret;
  950. mutex_lock(&node->mutex);
  951. if (!node->inode_dirty) {
  952. mutex_unlock(&node->mutex);
  953. return 0;
  954. }
  955. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  956. mutex_unlock(&node->mutex);
  957. return ret;
  958. }
  959. static inline int
  960. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  961. struct btrfs_path *path,
  962. struct btrfs_delayed_node *node)
  963. {
  964. int ret;
  965. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  966. if (ret)
  967. return ret;
  968. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  969. if (ret)
  970. return ret;
  971. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  972. return ret;
  973. }
  974. /*
  975. * Called when committing the transaction.
  976. * Returns 0 on success.
  977. * Returns < 0 on error and returns with an aborted transaction with any
  978. * outstanding delayed items cleaned up.
  979. */
  980. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  981. struct btrfs_root *root, int nr)
  982. {
  983. struct btrfs_delayed_root *delayed_root;
  984. struct btrfs_delayed_node *curr_node, *prev_node;
  985. struct btrfs_path *path;
  986. struct btrfs_block_rsv *block_rsv;
  987. int ret = 0;
  988. bool count = (nr > 0);
  989. if (trans->aborted)
  990. return -EIO;
  991. path = btrfs_alloc_path();
  992. if (!path)
  993. return -ENOMEM;
  994. path->leave_spinning = 1;
  995. block_rsv = trans->block_rsv;
  996. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  997. delayed_root = btrfs_get_delayed_root(root);
  998. curr_node = btrfs_first_delayed_node(delayed_root);
  999. while (curr_node && (!count || (count && nr--))) {
  1000. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1001. curr_node);
  1002. if (ret) {
  1003. btrfs_release_delayed_node(curr_node);
  1004. curr_node = NULL;
  1005. btrfs_abort_transaction(trans, root, ret);
  1006. break;
  1007. }
  1008. prev_node = curr_node;
  1009. curr_node = btrfs_next_delayed_node(curr_node);
  1010. btrfs_release_delayed_node(prev_node);
  1011. }
  1012. if (curr_node)
  1013. btrfs_release_delayed_node(curr_node);
  1014. btrfs_free_path(path);
  1015. trans->block_rsv = block_rsv;
  1016. return ret;
  1017. }
  1018. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1019. struct btrfs_root *root)
  1020. {
  1021. return __btrfs_run_delayed_items(trans, root, -1);
  1022. }
  1023. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1024. struct btrfs_root *root, int nr)
  1025. {
  1026. return __btrfs_run_delayed_items(trans, root, nr);
  1027. }
  1028. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1029. struct inode *inode)
  1030. {
  1031. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1032. struct btrfs_path *path;
  1033. struct btrfs_block_rsv *block_rsv;
  1034. int ret;
  1035. if (!delayed_node)
  1036. return 0;
  1037. mutex_lock(&delayed_node->mutex);
  1038. if (!delayed_node->count) {
  1039. mutex_unlock(&delayed_node->mutex);
  1040. btrfs_release_delayed_node(delayed_node);
  1041. return 0;
  1042. }
  1043. mutex_unlock(&delayed_node->mutex);
  1044. path = btrfs_alloc_path();
  1045. if (!path)
  1046. return -ENOMEM;
  1047. path->leave_spinning = 1;
  1048. block_rsv = trans->block_rsv;
  1049. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1050. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1051. btrfs_release_delayed_node(delayed_node);
  1052. btrfs_free_path(path);
  1053. trans->block_rsv = block_rsv;
  1054. return ret;
  1055. }
  1056. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1057. {
  1058. struct btrfs_trans_handle *trans;
  1059. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1060. struct btrfs_path *path;
  1061. struct btrfs_block_rsv *block_rsv;
  1062. int ret;
  1063. if (!delayed_node)
  1064. return 0;
  1065. mutex_lock(&delayed_node->mutex);
  1066. if (!delayed_node->inode_dirty) {
  1067. mutex_unlock(&delayed_node->mutex);
  1068. btrfs_release_delayed_node(delayed_node);
  1069. return 0;
  1070. }
  1071. mutex_unlock(&delayed_node->mutex);
  1072. trans = btrfs_join_transaction(delayed_node->root);
  1073. if (IS_ERR(trans)) {
  1074. ret = PTR_ERR(trans);
  1075. goto out;
  1076. }
  1077. path = btrfs_alloc_path();
  1078. if (!path) {
  1079. ret = -ENOMEM;
  1080. goto trans_out;
  1081. }
  1082. path->leave_spinning = 1;
  1083. block_rsv = trans->block_rsv;
  1084. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1085. mutex_lock(&delayed_node->mutex);
  1086. if (delayed_node->inode_dirty)
  1087. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1088. path, delayed_node);
  1089. else
  1090. ret = 0;
  1091. mutex_unlock(&delayed_node->mutex);
  1092. btrfs_free_path(path);
  1093. trans->block_rsv = block_rsv;
  1094. trans_out:
  1095. btrfs_end_transaction(trans, delayed_node->root);
  1096. btrfs_btree_balance_dirty(delayed_node->root);
  1097. out:
  1098. btrfs_release_delayed_node(delayed_node);
  1099. return ret;
  1100. }
  1101. void btrfs_remove_delayed_node(struct inode *inode)
  1102. {
  1103. struct btrfs_delayed_node *delayed_node;
  1104. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1105. if (!delayed_node)
  1106. return;
  1107. BTRFS_I(inode)->delayed_node = NULL;
  1108. btrfs_release_delayed_node(delayed_node);
  1109. }
  1110. struct btrfs_async_delayed_work {
  1111. struct btrfs_delayed_root *delayed_root;
  1112. int nr;
  1113. struct btrfs_work work;
  1114. };
  1115. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1116. {
  1117. struct btrfs_async_delayed_work *async_work;
  1118. struct btrfs_delayed_root *delayed_root;
  1119. struct btrfs_trans_handle *trans;
  1120. struct btrfs_path *path;
  1121. struct btrfs_delayed_node *delayed_node = NULL;
  1122. struct btrfs_root *root;
  1123. struct btrfs_block_rsv *block_rsv;
  1124. int total_done = 0;
  1125. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1126. delayed_root = async_work->delayed_root;
  1127. path = btrfs_alloc_path();
  1128. if (!path)
  1129. goto out;
  1130. again:
  1131. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1132. goto free_path;
  1133. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1134. if (!delayed_node)
  1135. goto free_path;
  1136. path->leave_spinning = 1;
  1137. root = delayed_node->root;
  1138. trans = btrfs_join_transaction(root);
  1139. if (IS_ERR(trans))
  1140. goto release_path;
  1141. block_rsv = trans->block_rsv;
  1142. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1143. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1144. /*
  1145. * Maybe new delayed items have been inserted, so we need requeue
  1146. * the work. Besides that, we must dequeue the empty delayed nodes
  1147. * to avoid the race between delayed items balance and the worker.
  1148. * The race like this:
  1149. * Task1 Worker thread
  1150. * count == 0, needn't requeue
  1151. * also needn't insert the
  1152. * delayed node into prepare
  1153. * list again.
  1154. * add lots of delayed items
  1155. * queue the delayed node
  1156. * already in the list,
  1157. * and not in the prepare
  1158. * list, it means the delayed
  1159. * node is being dealt with
  1160. * by the worker.
  1161. * do delayed items balance
  1162. * the delayed node is being
  1163. * dealt with by the worker
  1164. * now, just wait.
  1165. * the worker goto idle.
  1166. * Task1 will sleep until the transaction is commited.
  1167. */
  1168. mutex_lock(&delayed_node->mutex);
  1169. btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
  1170. mutex_unlock(&delayed_node->mutex);
  1171. trans->block_rsv = block_rsv;
  1172. btrfs_end_transaction_dmeta(trans, root);
  1173. btrfs_btree_balance_dirty_nodelay(root);
  1174. release_path:
  1175. btrfs_release_path(path);
  1176. total_done++;
  1177. btrfs_release_prepared_delayed_node(delayed_node);
  1178. if (async_work->nr == 0 || total_done < async_work->nr)
  1179. goto again;
  1180. free_path:
  1181. btrfs_free_path(path);
  1182. out:
  1183. wake_up(&delayed_root->wait);
  1184. kfree(async_work);
  1185. }
  1186. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1187. struct btrfs_root *root, int nr)
  1188. {
  1189. struct btrfs_async_delayed_work *async_work;
  1190. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1191. return 0;
  1192. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1193. if (!async_work)
  1194. return -ENOMEM;
  1195. async_work->delayed_root = delayed_root;
  1196. async_work->work.func = btrfs_async_run_delayed_root;
  1197. async_work->work.flags = 0;
  1198. async_work->nr = nr;
  1199. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
  1200. return 0;
  1201. }
  1202. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1203. {
  1204. struct btrfs_delayed_root *delayed_root;
  1205. delayed_root = btrfs_get_delayed_root(root);
  1206. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1207. }
  1208. static int refs_newer(struct btrfs_delayed_root *delayed_root,
  1209. int seq, int count)
  1210. {
  1211. int val = atomic_read(&delayed_root->items_seq);
  1212. if (val < seq || val >= seq + count)
  1213. return 1;
  1214. return 0;
  1215. }
  1216. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1217. {
  1218. struct btrfs_delayed_root *delayed_root;
  1219. int seq;
  1220. delayed_root = btrfs_get_delayed_root(root);
  1221. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1222. return;
  1223. seq = atomic_read(&delayed_root->items_seq);
  1224. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1225. int ret;
  1226. DEFINE_WAIT(__wait);
  1227. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1228. if (ret)
  1229. return;
  1230. while (1) {
  1231. prepare_to_wait(&delayed_root->wait, &__wait,
  1232. TASK_INTERRUPTIBLE);
  1233. if (refs_newer(delayed_root, seq,
  1234. BTRFS_DELAYED_BATCH) ||
  1235. atomic_read(&delayed_root->items) <
  1236. BTRFS_DELAYED_BACKGROUND) {
  1237. break;
  1238. }
  1239. if (!signal_pending(current))
  1240. schedule();
  1241. else
  1242. break;
  1243. }
  1244. finish_wait(&delayed_root->wait, &__wait);
  1245. }
  1246. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1247. }
  1248. /* Will return 0 or -ENOMEM */
  1249. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1250. struct btrfs_root *root, const char *name,
  1251. int name_len, struct inode *dir,
  1252. struct btrfs_disk_key *disk_key, u8 type,
  1253. u64 index)
  1254. {
  1255. struct btrfs_delayed_node *delayed_node;
  1256. struct btrfs_delayed_item *delayed_item;
  1257. struct btrfs_dir_item *dir_item;
  1258. int ret;
  1259. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1260. if (IS_ERR(delayed_node))
  1261. return PTR_ERR(delayed_node);
  1262. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1263. if (!delayed_item) {
  1264. ret = -ENOMEM;
  1265. goto release_node;
  1266. }
  1267. delayed_item->key.objectid = btrfs_ino(dir);
  1268. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1269. delayed_item->key.offset = index;
  1270. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1271. dir_item->location = *disk_key;
  1272. dir_item->transid = cpu_to_le64(trans->transid);
  1273. dir_item->data_len = 0;
  1274. dir_item->name_len = cpu_to_le16(name_len);
  1275. dir_item->type = type;
  1276. memcpy((char *)(dir_item + 1), name, name_len);
  1277. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1278. /*
  1279. * we have reserved enough space when we start a new transaction,
  1280. * so reserving metadata failure is impossible
  1281. */
  1282. BUG_ON(ret);
  1283. mutex_lock(&delayed_node->mutex);
  1284. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1285. if (unlikely(ret)) {
  1286. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1287. "the insertion tree of the delayed node"
  1288. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1289. name,
  1290. (unsigned long long)delayed_node->root->objectid,
  1291. (unsigned long long)delayed_node->inode_id,
  1292. ret);
  1293. BUG();
  1294. }
  1295. mutex_unlock(&delayed_node->mutex);
  1296. release_node:
  1297. btrfs_release_delayed_node(delayed_node);
  1298. return ret;
  1299. }
  1300. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1301. struct btrfs_delayed_node *node,
  1302. struct btrfs_key *key)
  1303. {
  1304. struct btrfs_delayed_item *item;
  1305. mutex_lock(&node->mutex);
  1306. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1307. if (!item) {
  1308. mutex_unlock(&node->mutex);
  1309. return 1;
  1310. }
  1311. btrfs_delayed_item_release_metadata(root, item);
  1312. btrfs_release_delayed_item(item);
  1313. mutex_unlock(&node->mutex);
  1314. return 0;
  1315. }
  1316. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1317. struct btrfs_root *root, struct inode *dir,
  1318. u64 index)
  1319. {
  1320. struct btrfs_delayed_node *node;
  1321. struct btrfs_delayed_item *item;
  1322. struct btrfs_key item_key;
  1323. int ret;
  1324. node = btrfs_get_or_create_delayed_node(dir);
  1325. if (IS_ERR(node))
  1326. return PTR_ERR(node);
  1327. item_key.objectid = btrfs_ino(dir);
  1328. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1329. item_key.offset = index;
  1330. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1331. if (!ret)
  1332. goto end;
  1333. item = btrfs_alloc_delayed_item(0);
  1334. if (!item) {
  1335. ret = -ENOMEM;
  1336. goto end;
  1337. }
  1338. item->key = item_key;
  1339. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1340. /*
  1341. * we have reserved enough space when we start a new transaction,
  1342. * so reserving metadata failure is impossible.
  1343. */
  1344. BUG_ON(ret);
  1345. mutex_lock(&node->mutex);
  1346. ret = __btrfs_add_delayed_deletion_item(node, item);
  1347. if (unlikely(ret)) {
  1348. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1349. "into the deletion tree of the delayed node"
  1350. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1351. (unsigned long long)index,
  1352. (unsigned long long)node->root->objectid,
  1353. (unsigned long long)node->inode_id,
  1354. ret);
  1355. BUG();
  1356. }
  1357. mutex_unlock(&node->mutex);
  1358. end:
  1359. btrfs_release_delayed_node(node);
  1360. return ret;
  1361. }
  1362. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1363. {
  1364. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1365. if (!delayed_node)
  1366. return -ENOENT;
  1367. /*
  1368. * Since we have held i_mutex of this directory, it is impossible that
  1369. * a new directory index is added into the delayed node and index_cnt
  1370. * is updated now. So we needn't lock the delayed node.
  1371. */
  1372. if (!delayed_node->index_cnt) {
  1373. btrfs_release_delayed_node(delayed_node);
  1374. return -EINVAL;
  1375. }
  1376. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1377. btrfs_release_delayed_node(delayed_node);
  1378. return 0;
  1379. }
  1380. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1381. struct list_head *del_list)
  1382. {
  1383. struct btrfs_delayed_node *delayed_node;
  1384. struct btrfs_delayed_item *item;
  1385. delayed_node = btrfs_get_delayed_node(inode);
  1386. if (!delayed_node)
  1387. return;
  1388. mutex_lock(&delayed_node->mutex);
  1389. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1390. while (item) {
  1391. atomic_inc(&item->refs);
  1392. list_add_tail(&item->readdir_list, ins_list);
  1393. item = __btrfs_next_delayed_item(item);
  1394. }
  1395. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1396. while (item) {
  1397. atomic_inc(&item->refs);
  1398. list_add_tail(&item->readdir_list, del_list);
  1399. item = __btrfs_next_delayed_item(item);
  1400. }
  1401. mutex_unlock(&delayed_node->mutex);
  1402. /*
  1403. * This delayed node is still cached in the btrfs inode, so refs
  1404. * must be > 1 now, and we needn't check it is going to be freed
  1405. * or not.
  1406. *
  1407. * Besides that, this function is used to read dir, we do not
  1408. * insert/delete delayed items in this period. So we also needn't
  1409. * requeue or dequeue this delayed node.
  1410. */
  1411. atomic_dec(&delayed_node->refs);
  1412. }
  1413. void btrfs_put_delayed_items(struct list_head *ins_list,
  1414. struct list_head *del_list)
  1415. {
  1416. struct btrfs_delayed_item *curr, *next;
  1417. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1418. list_del(&curr->readdir_list);
  1419. if (atomic_dec_and_test(&curr->refs))
  1420. kfree(curr);
  1421. }
  1422. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1423. list_del(&curr->readdir_list);
  1424. if (atomic_dec_and_test(&curr->refs))
  1425. kfree(curr);
  1426. }
  1427. }
  1428. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1429. u64 index)
  1430. {
  1431. struct btrfs_delayed_item *curr, *next;
  1432. int ret;
  1433. if (list_empty(del_list))
  1434. return 0;
  1435. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1436. if (curr->key.offset > index)
  1437. break;
  1438. list_del(&curr->readdir_list);
  1439. ret = (curr->key.offset == index);
  1440. if (atomic_dec_and_test(&curr->refs))
  1441. kfree(curr);
  1442. if (ret)
  1443. return 1;
  1444. else
  1445. continue;
  1446. }
  1447. return 0;
  1448. }
  1449. /*
  1450. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1451. *
  1452. */
  1453. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1454. filldir_t filldir,
  1455. struct list_head *ins_list)
  1456. {
  1457. struct btrfs_dir_item *di;
  1458. struct btrfs_delayed_item *curr, *next;
  1459. struct btrfs_key location;
  1460. char *name;
  1461. int name_len;
  1462. int over = 0;
  1463. unsigned char d_type;
  1464. if (list_empty(ins_list))
  1465. return 0;
  1466. /*
  1467. * Changing the data of the delayed item is impossible. So
  1468. * we needn't lock them. And we have held i_mutex of the
  1469. * directory, nobody can delete any directory indexes now.
  1470. */
  1471. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1472. list_del(&curr->readdir_list);
  1473. if (curr->key.offset < filp->f_pos) {
  1474. if (atomic_dec_and_test(&curr->refs))
  1475. kfree(curr);
  1476. continue;
  1477. }
  1478. filp->f_pos = curr->key.offset;
  1479. di = (struct btrfs_dir_item *)curr->data;
  1480. name = (char *)(di + 1);
  1481. name_len = le16_to_cpu(di->name_len);
  1482. d_type = btrfs_filetype_table[di->type];
  1483. btrfs_disk_key_to_cpu(&location, &di->location);
  1484. over = filldir(dirent, name, name_len, curr->key.offset,
  1485. location.objectid, d_type);
  1486. if (atomic_dec_and_test(&curr->refs))
  1487. kfree(curr);
  1488. if (over)
  1489. return 1;
  1490. }
  1491. return 0;
  1492. }
  1493. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1494. generation, 64);
  1495. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1496. sequence, 64);
  1497. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1498. transid, 64);
  1499. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1500. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1501. nbytes, 64);
  1502. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1503. block_group, 64);
  1504. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1505. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1506. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1507. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1508. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1509. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1510. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1511. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1512. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1513. struct btrfs_inode_item *inode_item,
  1514. struct inode *inode)
  1515. {
  1516. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1517. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1518. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1519. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1520. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1521. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1522. btrfs_set_stack_inode_generation(inode_item,
  1523. BTRFS_I(inode)->generation);
  1524. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1525. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1526. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1527. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1528. btrfs_set_stack_inode_block_group(inode_item, 0);
  1529. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1530. inode->i_atime.tv_sec);
  1531. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1532. inode->i_atime.tv_nsec);
  1533. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1534. inode->i_mtime.tv_sec);
  1535. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1536. inode->i_mtime.tv_nsec);
  1537. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1538. inode->i_ctime.tv_sec);
  1539. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1540. inode->i_ctime.tv_nsec);
  1541. }
  1542. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1543. {
  1544. struct btrfs_delayed_node *delayed_node;
  1545. struct btrfs_inode_item *inode_item;
  1546. struct btrfs_timespec *tspec;
  1547. delayed_node = btrfs_get_delayed_node(inode);
  1548. if (!delayed_node)
  1549. return -ENOENT;
  1550. mutex_lock(&delayed_node->mutex);
  1551. if (!delayed_node->inode_dirty) {
  1552. mutex_unlock(&delayed_node->mutex);
  1553. btrfs_release_delayed_node(delayed_node);
  1554. return -ENOENT;
  1555. }
  1556. inode_item = &delayed_node->inode_item;
  1557. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1558. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1559. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1560. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1561. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1562. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1563. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1564. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1565. inode->i_rdev = 0;
  1566. *rdev = btrfs_stack_inode_rdev(inode_item);
  1567. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1568. tspec = btrfs_inode_atime(inode_item);
  1569. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1570. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1571. tspec = btrfs_inode_mtime(inode_item);
  1572. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1573. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1574. tspec = btrfs_inode_ctime(inode_item);
  1575. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1576. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1577. inode->i_generation = BTRFS_I(inode)->generation;
  1578. BTRFS_I(inode)->index_cnt = (u64)-1;
  1579. mutex_unlock(&delayed_node->mutex);
  1580. btrfs_release_delayed_node(delayed_node);
  1581. return 0;
  1582. }
  1583. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1584. struct btrfs_root *root, struct inode *inode)
  1585. {
  1586. struct btrfs_delayed_node *delayed_node;
  1587. int ret = 0;
  1588. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1589. if (IS_ERR(delayed_node))
  1590. return PTR_ERR(delayed_node);
  1591. mutex_lock(&delayed_node->mutex);
  1592. if (delayed_node->inode_dirty) {
  1593. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1594. goto release_node;
  1595. }
  1596. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1597. delayed_node);
  1598. if (ret)
  1599. goto release_node;
  1600. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1601. delayed_node->inode_dirty = 1;
  1602. delayed_node->count++;
  1603. atomic_inc(&root->fs_info->delayed_root->items);
  1604. release_node:
  1605. mutex_unlock(&delayed_node->mutex);
  1606. btrfs_release_delayed_node(delayed_node);
  1607. return ret;
  1608. }
  1609. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1610. {
  1611. struct btrfs_root *root = delayed_node->root;
  1612. struct btrfs_delayed_item *curr_item, *prev_item;
  1613. mutex_lock(&delayed_node->mutex);
  1614. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1615. while (curr_item) {
  1616. btrfs_delayed_item_release_metadata(root, curr_item);
  1617. prev_item = curr_item;
  1618. curr_item = __btrfs_next_delayed_item(prev_item);
  1619. btrfs_release_delayed_item(prev_item);
  1620. }
  1621. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1622. while (curr_item) {
  1623. btrfs_delayed_item_release_metadata(root, curr_item);
  1624. prev_item = curr_item;
  1625. curr_item = __btrfs_next_delayed_item(prev_item);
  1626. btrfs_release_delayed_item(prev_item);
  1627. }
  1628. if (delayed_node->inode_dirty) {
  1629. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1630. btrfs_release_delayed_inode(delayed_node);
  1631. }
  1632. mutex_unlock(&delayed_node->mutex);
  1633. }
  1634. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1635. {
  1636. struct btrfs_delayed_node *delayed_node;
  1637. delayed_node = btrfs_get_delayed_node(inode);
  1638. if (!delayed_node)
  1639. return;
  1640. __btrfs_kill_delayed_node(delayed_node);
  1641. btrfs_release_delayed_node(delayed_node);
  1642. }
  1643. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1644. {
  1645. u64 inode_id = 0;
  1646. struct btrfs_delayed_node *delayed_nodes[8];
  1647. int i, n;
  1648. while (1) {
  1649. spin_lock(&root->inode_lock);
  1650. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1651. (void **)delayed_nodes, inode_id,
  1652. ARRAY_SIZE(delayed_nodes));
  1653. if (!n) {
  1654. spin_unlock(&root->inode_lock);
  1655. break;
  1656. }
  1657. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1658. for (i = 0; i < n; i++)
  1659. atomic_inc(&delayed_nodes[i]->refs);
  1660. spin_unlock(&root->inode_lock);
  1661. for (i = 0; i < n; i++) {
  1662. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1663. btrfs_release_delayed_node(delayed_nodes[i]);
  1664. }
  1665. }
  1666. }
  1667. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1668. {
  1669. struct btrfs_delayed_root *delayed_root;
  1670. struct btrfs_delayed_node *curr_node, *prev_node;
  1671. delayed_root = btrfs_get_delayed_root(root);
  1672. curr_node = btrfs_first_delayed_node(delayed_root);
  1673. while (curr_node) {
  1674. __btrfs_kill_delayed_node(curr_node);
  1675. prev_node = curr_node;
  1676. curr_node = btrfs_next_delayed_node(curr_node);
  1677. btrfs_release_delayed_node(prev_node);
  1678. }
  1679. }