swiotlb-xen.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #include <linux/bootmem.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/export.h>
  38. #include <xen/swiotlb-xen.h>
  39. #include <xen/page.h>
  40. #include <xen/xen-ops.h>
  41. #include <xen/hvc-console.h>
  42. /*
  43. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  44. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  45. * API.
  46. */
  47. static char *xen_io_tlb_start, *xen_io_tlb_end;
  48. static unsigned long xen_io_tlb_nslabs;
  49. /*
  50. * Quick lookup value of the bus address of the IOTLB.
  51. */
  52. static u64 start_dma_addr;
  53. static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  54. {
  55. return phys_to_machine(XPADDR(paddr)).maddr;
  56. }
  57. static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  58. {
  59. return machine_to_phys(XMADDR(baddr)).paddr;
  60. }
  61. static dma_addr_t xen_virt_to_bus(void *address)
  62. {
  63. return xen_phys_to_bus(virt_to_phys(address));
  64. }
  65. static int check_pages_physically_contiguous(unsigned long pfn,
  66. unsigned int offset,
  67. size_t length)
  68. {
  69. unsigned long next_mfn;
  70. int i;
  71. int nr_pages;
  72. next_mfn = pfn_to_mfn(pfn);
  73. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  74. for (i = 1; i < nr_pages; i++) {
  75. if (pfn_to_mfn(++pfn) != ++next_mfn)
  76. return 0;
  77. }
  78. return 1;
  79. }
  80. static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  81. {
  82. unsigned long pfn = PFN_DOWN(p);
  83. unsigned int offset = p & ~PAGE_MASK;
  84. if (offset + size <= PAGE_SIZE)
  85. return 0;
  86. if (check_pages_physically_contiguous(pfn, offset, size))
  87. return 0;
  88. return 1;
  89. }
  90. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  91. {
  92. unsigned long mfn = PFN_DOWN(dma_addr);
  93. unsigned long pfn = mfn_to_local_pfn(mfn);
  94. phys_addr_t paddr;
  95. /* If the address is outside our domain, it CAN
  96. * have the same virtual address as another address
  97. * in our domain. Therefore _only_ check address within our domain.
  98. */
  99. if (pfn_valid(pfn)) {
  100. paddr = PFN_PHYS(pfn);
  101. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  102. paddr < virt_to_phys(xen_io_tlb_end);
  103. }
  104. return 0;
  105. }
  106. static int max_dma_bits = 32;
  107. static int
  108. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  109. {
  110. int i, rc;
  111. int dma_bits;
  112. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  113. i = 0;
  114. do {
  115. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  116. do {
  117. rc = xen_create_contiguous_region(
  118. (unsigned long)buf + (i << IO_TLB_SHIFT),
  119. get_order(slabs << IO_TLB_SHIFT),
  120. dma_bits);
  121. } while (rc && dma_bits++ < max_dma_bits);
  122. if (rc)
  123. return rc;
  124. i += slabs;
  125. } while (i < nslabs);
  126. return 0;
  127. }
  128. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  129. {
  130. if (!nr_tbl) {
  131. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  132. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  133. } else
  134. xen_io_tlb_nslabs = nr_tbl;
  135. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  136. }
  137. enum xen_swiotlb_err {
  138. XEN_SWIOTLB_UNKNOWN = 0,
  139. XEN_SWIOTLB_ENOMEM,
  140. XEN_SWIOTLB_EFIXUP
  141. };
  142. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  143. {
  144. switch (err) {
  145. case XEN_SWIOTLB_ENOMEM:
  146. return "Cannot allocate Xen-SWIOTLB buffer\n";
  147. case XEN_SWIOTLB_EFIXUP:
  148. return "Failed to get contiguous memory for DMA from Xen!\n"\
  149. "You either: don't have the permissions, do not have"\
  150. " enough free memory under 4GB, or the hypervisor memory"\
  151. " is too fragmented!";
  152. default:
  153. break;
  154. }
  155. return "";
  156. }
  157. int __ref xen_swiotlb_init(int verbose, bool early)
  158. {
  159. unsigned long bytes, order;
  160. int rc = -ENOMEM;
  161. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  162. unsigned int repeat = 3;
  163. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  164. retry:
  165. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  166. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  167. /*
  168. * Get IO TLB memory from any location.
  169. */
  170. if (early)
  171. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  172. else {
  173. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  174. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  175. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  176. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  177. if (xen_io_tlb_start)
  178. break;
  179. order--;
  180. }
  181. if (order != get_order(bytes)) {
  182. pr_warn("Warning: only able to allocate %ld MB "
  183. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  184. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  185. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  186. }
  187. }
  188. if (!xen_io_tlb_start) {
  189. m_ret = XEN_SWIOTLB_ENOMEM;
  190. goto error;
  191. }
  192. xen_io_tlb_end = xen_io_tlb_start + bytes;
  193. /*
  194. * And replace that memory with pages under 4GB.
  195. */
  196. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  197. bytes,
  198. xen_io_tlb_nslabs);
  199. if (rc) {
  200. if (early)
  201. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  202. else {
  203. free_pages((unsigned long)xen_io_tlb_start, order);
  204. xen_io_tlb_start = NULL;
  205. }
  206. m_ret = XEN_SWIOTLB_EFIXUP;
  207. goto error;
  208. }
  209. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  210. if (early) {
  211. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  212. verbose))
  213. panic("Cannot allocate SWIOTLB buffer");
  214. rc = 0;
  215. } else
  216. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  217. return rc;
  218. error:
  219. if (repeat--) {
  220. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  221. (xen_io_tlb_nslabs >> 1));
  222. printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
  223. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  224. goto retry;
  225. }
  226. pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  227. if (early)
  228. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  229. else
  230. free_pages((unsigned long)xen_io_tlb_start, order);
  231. return rc;
  232. }
  233. void *
  234. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  235. dma_addr_t *dma_handle, gfp_t flags,
  236. struct dma_attrs *attrs)
  237. {
  238. void *ret;
  239. int order = get_order(size);
  240. u64 dma_mask = DMA_BIT_MASK(32);
  241. unsigned long vstart;
  242. phys_addr_t phys;
  243. dma_addr_t dev_addr;
  244. /*
  245. * Ignore region specifiers - the kernel's ideas of
  246. * pseudo-phys memory layout has nothing to do with the
  247. * machine physical layout. We can't allocate highmem
  248. * because we can't return a pointer to it.
  249. */
  250. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  251. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  252. return ret;
  253. vstart = __get_free_pages(flags, order);
  254. ret = (void *)vstart;
  255. if (!ret)
  256. return ret;
  257. if (hwdev && hwdev->coherent_dma_mask)
  258. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  259. phys = virt_to_phys(ret);
  260. dev_addr = xen_phys_to_bus(phys);
  261. if (((dev_addr + size - 1 <= dma_mask)) &&
  262. !range_straddles_page_boundary(phys, size))
  263. *dma_handle = dev_addr;
  264. else {
  265. if (xen_create_contiguous_region(vstart, order,
  266. fls64(dma_mask)) != 0) {
  267. free_pages(vstart, order);
  268. return NULL;
  269. }
  270. *dma_handle = virt_to_machine(ret).maddr;
  271. }
  272. memset(ret, 0, size);
  273. return ret;
  274. }
  275. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  276. void
  277. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  278. dma_addr_t dev_addr, struct dma_attrs *attrs)
  279. {
  280. int order = get_order(size);
  281. phys_addr_t phys;
  282. u64 dma_mask = DMA_BIT_MASK(32);
  283. if (dma_release_from_coherent(hwdev, order, vaddr))
  284. return;
  285. if (hwdev && hwdev->coherent_dma_mask)
  286. dma_mask = hwdev->coherent_dma_mask;
  287. phys = virt_to_phys(vaddr);
  288. if (((dev_addr + size - 1 > dma_mask)) ||
  289. range_straddles_page_boundary(phys, size))
  290. xen_destroy_contiguous_region((unsigned long)vaddr, order);
  291. free_pages((unsigned long)vaddr, order);
  292. }
  293. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  294. /*
  295. * Map a single buffer of the indicated size for DMA in streaming mode. The
  296. * physical address to use is returned.
  297. *
  298. * Once the device is given the dma address, the device owns this memory until
  299. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  300. */
  301. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  302. unsigned long offset, size_t size,
  303. enum dma_data_direction dir,
  304. struct dma_attrs *attrs)
  305. {
  306. phys_addr_t map, phys = page_to_phys(page) + offset;
  307. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  308. BUG_ON(dir == DMA_NONE);
  309. /*
  310. * If the address happens to be in the device's DMA window,
  311. * we can safely return the device addr and not worry about bounce
  312. * buffering it.
  313. */
  314. if (dma_capable(dev, dev_addr, size) &&
  315. !range_straddles_page_boundary(phys, size) && !swiotlb_force)
  316. return dev_addr;
  317. /*
  318. * Oh well, have to allocate and map a bounce buffer.
  319. */
  320. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  321. if (map == SWIOTLB_MAP_ERROR)
  322. return DMA_ERROR_CODE;
  323. dev_addr = xen_phys_to_bus(map);
  324. /*
  325. * Ensure that the address returned is DMA'ble
  326. */
  327. if (!dma_capable(dev, dev_addr, size)) {
  328. swiotlb_tbl_unmap_single(dev, map, size, dir);
  329. dev_addr = 0;
  330. }
  331. return dev_addr;
  332. }
  333. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  334. /*
  335. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  336. * match what was provided for in a previous xen_swiotlb_map_page call. All
  337. * other usages are undefined.
  338. *
  339. * After this call, reads by the cpu to the buffer are guaranteed to see
  340. * whatever the device wrote there.
  341. */
  342. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  343. size_t size, enum dma_data_direction dir)
  344. {
  345. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  346. BUG_ON(dir == DMA_NONE);
  347. /* NOTE: We use dev_addr here, not paddr! */
  348. if (is_xen_swiotlb_buffer(dev_addr)) {
  349. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  350. return;
  351. }
  352. if (dir != DMA_FROM_DEVICE)
  353. return;
  354. /*
  355. * phys_to_virt doesn't work with hihgmem page but we could
  356. * call dma_mark_clean() with hihgmem page here. However, we
  357. * are fine since dma_mark_clean() is null on POWERPC. We can
  358. * make dma_mark_clean() take a physical address if necessary.
  359. */
  360. dma_mark_clean(phys_to_virt(paddr), size);
  361. }
  362. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  363. size_t size, enum dma_data_direction dir,
  364. struct dma_attrs *attrs)
  365. {
  366. xen_unmap_single(hwdev, dev_addr, size, dir);
  367. }
  368. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  369. /*
  370. * Make physical memory consistent for a single streaming mode DMA translation
  371. * after a transfer.
  372. *
  373. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  374. * using the cpu, yet do not wish to teardown the dma mapping, you must
  375. * call this function before doing so. At the next point you give the dma
  376. * address back to the card, you must first perform a
  377. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  378. */
  379. static void
  380. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  381. size_t size, enum dma_data_direction dir,
  382. enum dma_sync_target target)
  383. {
  384. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  385. BUG_ON(dir == DMA_NONE);
  386. /* NOTE: We use dev_addr here, not paddr! */
  387. if (is_xen_swiotlb_buffer(dev_addr)) {
  388. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  389. return;
  390. }
  391. if (dir != DMA_FROM_DEVICE)
  392. return;
  393. dma_mark_clean(phys_to_virt(paddr), size);
  394. }
  395. void
  396. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  397. size_t size, enum dma_data_direction dir)
  398. {
  399. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  400. }
  401. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  402. void
  403. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  404. size_t size, enum dma_data_direction dir)
  405. {
  406. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  407. }
  408. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  409. /*
  410. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  411. * This is the scatter-gather version of the above xen_swiotlb_map_page
  412. * interface. Here the scatter gather list elements are each tagged with the
  413. * appropriate dma address and length. They are obtained via
  414. * sg_dma_{address,length}(SG).
  415. *
  416. * NOTE: An implementation may be able to use a smaller number of
  417. * DMA address/length pairs than there are SG table elements.
  418. * (for example via virtual mapping capabilities)
  419. * The routine returns the number of addr/length pairs actually
  420. * used, at most nents.
  421. *
  422. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  423. * same here.
  424. */
  425. int
  426. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  427. int nelems, enum dma_data_direction dir,
  428. struct dma_attrs *attrs)
  429. {
  430. struct scatterlist *sg;
  431. int i;
  432. BUG_ON(dir == DMA_NONE);
  433. for_each_sg(sgl, sg, nelems, i) {
  434. phys_addr_t paddr = sg_phys(sg);
  435. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  436. if (swiotlb_force ||
  437. !dma_capable(hwdev, dev_addr, sg->length) ||
  438. range_straddles_page_boundary(paddr, sg->length)) {
  439. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  440. start_dma_addr,
  441. sg_phys(sg),
  442. sg->length,
  443. dir);
  444. if (map == SWIOTLB_MAP_ERROR) {
  445. /* Don't panic here, we expect map_sg users
  446. to do proper error handling. */
  447. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  448. attrs);
  449. sgl[0].dma_length = 0;
  450. return DMA_ERROR_CODE;
  451. }
  452. sg->dma_address = xen_phys_to_bus(map);
  453. } else
  454. sg->dma_address = dev_addr;
  455. sg->dma_length = sg->length;
  456. }
  457. return nelems;
  458. }
  459. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  460. /*
  461. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  462. * concerning calls here are the same as for swiotlb_unmap_page() above.
  463. */
  464. void
  465. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  466. int nelems, enum dma_data_direction dir,
  467. struct dma_attrs *attrs)
  468. {
  469. struct scatterlist *sg;
  470. int i;
  471. BUG_ON(dir == DMA_NONE);
  472. for_each_sg(sgl, sg, nelems, i)
  473. xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  474. }
  475. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  476. /*
  477. * Make physical memory consistent for a set of streaming mode DMA translations
  478. * after a transfer.
  479. *
  480. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  481. * and usage.
  482. */
  483. static void
  484. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  485. int nelems, enum dma_data_direction dir,
  486. enum dma_sync_target target)
  487. {
  488. struct scatterlist *sg;
  489. int i;
  490. for_each_sg(sgl, sg, nelems, i)
  491. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  492. sg->dma_length, dir, target);
  493. }
  494. void
  495. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  496. int nelems, enum dma_data_direction dir)
  497. {
  498. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  499. }
  500. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  501. void
  502. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  503. int nelems, enum dma_data_direction dir)
  504. {
  505. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  506. }
  507. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  508. int
  509. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  510. {
  511. return !dma_addr;
  512. }
  513. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  514. /*
  515. * Return whether the given device DMA address mask can be supported
  516. * properly. For example, if your device can only drive the low 24-bits
  517. * during bus mastering, then you would pass 0x00ffffff as the mask to
  518. * this function.
  519. */
  520. int
  521. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  522. {
  523. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  524. }
  525. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);