xhci.c 142 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #define DRIVER_AUTHOR "Sarah Sharp"
  31. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  32. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33. static int link_quirk;
  34. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  37. /*
  38. * xhci_handshake - spin reading hc until handshake completes or fails
  39. * @ptr: address of hc register to be read
  40. * @mask: bits to look at in result of read
  41. * @done: value of those bits when handshake succeeds
  42. * @usec: timeout in microseconds
  43. *
  44. * Returns negative errno, or zero on success
  45. *
  46. * Success happens when the "mask" bits have the specified value (hardware
  47. * handshake done). There are two failure modes: "usec" have passed (major
  48. * hardware flakeout), or the register reads as all-ones (hardware removed).
  49. */
  50. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  51. u32 mask, u32 done, int usec)
  52. {
  53. u32 result;
  54. do {
  55. result = xhci_readl(xhci, ptr);
  56. if (result == ~(u32)0) /* card removed */
  57. return -ENODEV;
  58. result &= mask;
  59. if (result == done)
  60. return 0;
  61. udelay(1);
  62. usec--;
  63. } while (usec > 0);
  64. return -ETIMEDOUT;
  65. }
  66. /*
  67. * Disable interrupts and begin the xHCI halting process.
  68. */
  69. void xhci_quiesce(struct xhci_hcd *xhci)
  70. {
  71. u32 halted;
  72. u32 cmd;
  73. u32 mask;
  74. mask = ~(XHCI_IRQS);
  75. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  76. if (!halted)
  77. mask &= ~CMD_RUN;
  78. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  79. cmd &= mask;
  80. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  81. }
  82. /*
  83. * Force HC into halt state.
  84. *
  85. * Disable any IRQs and clear the run/stop bit.
  86. * HC will complete any current and actively pipelined transactions, and
  87. * should halt within 16 ms of the run/stop bit being cleared.
  88. * Read HC Halted bit in the status register to see when the HC is finished.
  89. */
  90. int xhci_halt(struct xhci_hcd *xhci)
  91. {
  92. int ret;
  93. xhci_dbg(xhci, "// Halt the HC\n");
  94. xhci_quiesce(xhci);
  95. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  96. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  97. if (!ret) {
  98. xhci->xhc_state |= XHCI_STATE_HALTED;
  99. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  100. } else
  101. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  102. XHCI_MAX_HALT_USEC);
  103. return ret;
  104. }
  105. /*
  106. * Set the run bit and wait for the host to be running.
  107. */
  108. static int xhci_start(struct xhci_hcd *xhci)
  109. {
  110. u32 temp;
  111. int ret;
  112. temp = xhci_readl(xhci, &xhci->op_regs->command);
  113. temp |= (CMD_RUN);
  114. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  115. temp);
  116. xhci_writel(xhci, temp, &xhci->op_regs->command);
  117. /*
  118. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  119. * running.
  120. */
  121. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  122. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  123. if (ret == -ETIMEDOUT)
  124. xhci_err(xhci, "Host took too long to start, "
  125. "waited %u microseconds.\n",
  126. XHCI_MAX_HALT_USEC);
  127. if (!ret)
  128. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  129. return ret;
  130. }
  131. /*
  132. * Reset a halted HC.
  133. *
  134. * This resets pipelines, timers, counters, state machines, etc.
  135. * Transactions will be terminated immediately, and operational registers
  136. * will be set to their defaults.
  137. */
  138. int xhci_reset(struct xhci_hcd *xhci)
  139. {
  140. u32 command;
  141. u32 state;
  142. int ret, i;
  143. state = xhci_readl(xhci, &xhci->op_regs->status);
  144. if ((state & STS_HALT) == 0) {
  145. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  146. return 0;
  147. }
  148. xhci_dbg(xhci, "// Reset the HC\n");
  149. command = xhci_readl(xhci, &xhci->op_regs->command);
  150. command |= CMD_RESET;
  151. xhci_writel(xhci, command, &xhci->op_regs->command);
  152. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  153. CMD_RESET, 0, 10 * 1000 * 1000);
  154. if (ret)
  155. return ret;
  156. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  157. /*
  158. * xHCI cannot write to any doorbells or operational registers other
  159. * than status until the "Controller Not Ready" flag is cleared.
  160. */
  161. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  162. STS_CNR, 0, 10 * 1000 * 1000);
  163. for (i = 0; i < 2; ++i) {
  164. xhci->bus_state[i].port_c_suspend = 0;
  165. xhci->bus_state[i].suspended_ports = 0;
  166. xhci->bus_state[i].resuming_ports = 0;
  167. }
  168. return ret;
  169. }
  170. #ifdef CONFIG_PCI
  171. static int xhci_free_msi(struct xhci_hcd *xhci)
  172. {
  173. int i;
  174. if (!xhci->msix_entries)
  175. return -EINVAL;
  176. for (i = 0; i < xhci->msix_count; i++)
  177. if (xhci->msix_entries[i].vector)
  178. free_irq(xhci->msix_entries[i].vector,
  179. xhci_to_hcd(xhci));
  180. return 0;
  181. }
  182. /*
  183. * Set up MSI
  184. */
  185. static int xhci_setup_msi(struct xhci_hcd *xhci)
  186. {
  187. int ret;
  188. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  189. ret = pci_enable_msi(pdev);
  190. if (ret) {
  191. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  192. return ret;
  193. }
  194. ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
  195. 0, "xhci_hcd", xhci_to_hcd(xhci));
  196. if (ret) {
  197. xhci_dbg(xhci, "disable MSI interrupt\n");
  198. pci_disable_msi(pdev);
  199. }
  200. return ret;
  201. }
  202. /*
  203. * Free IRQs
  204. * free all IRQs request
  205. */
  206. static void xhci_free_irq(struct xhci_hcd *xhci)
  207. {
  208. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  209. int ret;
  210. /* return if using legacy interrupt */
  211. if (xhci_to_hcd(xhci)->irq > 0)
  212. return;
  213. ret = xhci_free_msi(xhci);
  214. if (!ret)
  215. return;
  216. if (pdev->irq > 0)
  217. free_irq(pdev->irq, xhci_to_hcd(xhci));
  218. return;
  219. }
  220. /*
  221. * Set up MSI-X
  222. */
  223. static int xhci_setup_msix(struct xhci_hcd *xhci)
  224. {
  225. int i, ret = 0;
  226. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  227. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  228. /*
  229. * calculate number of msi-x vectors supported.
  230. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  231. * with max number of interrupters based on the xhci HCSPARAMS1.
  232. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  233. * Add additional 1 vector to ensure always available interrupt.
  234. */
  235. xhci->msix_count = min(num_online_cpus() + 1,
  236. HCS_MAX_INTRS(xhci->hcs_params1));
  237. xhci->msix_entries =
  238. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  239. GFP_KERNEL);
  240. if (!xhci->msix_entries) {
  241. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  242. return -ENOMEM;
  243. }
  244. for (i = 0; i < xhci->msix_count; i++) {
  245. xhci->msix_entries[i].entry = i;
  246. xhci->msix_entries[i].vector = 0;
  247. }
  248. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  249. if (ret) {
  250. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  251. goto free_entries;
  252. }
  253. for (i = 0; i < xhci->msix_count; i++) {
  254. ret = request_irq(xhci->msix_entries[i].vector,
  255. (irq_handler_t)xhci_msi_irq,
  256. 0, "xhci_hcd", xhci_to_hcd(xhci));
  257. if (ret)
  258. goto disable_msix;
  259. }
  260. hcd->msix_enabled = 1;
  261. return ret;
  262. disable_msix:
  263. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  264. xhci_free_irq(xhci);
  265. pci_disable_msix(pdev);
  266. free_entries:
  267. kfree(xhci->msix_entries);
  268. xhci->msix_entries = NULL;
  269. return ret;
  270. }
  271. /* Free any IRQs and disable MSI-X */
  272. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  273. {
  274. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  275. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  276. xhci_free_irq(xhci);
  277. if (xhci->msix_entries) {
  278. pci_disable_msix(pdev);
  279. kfree(xhci->msix_entries);
  280. xhci->msix_entries = NULL;
  281. } else {
  282. pci_disable_msi(pdev);
  283. }
  284. hcd->msix_enabled = 0;
  285. return;
  286. }
  287. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  288. {
  289. int i;
  290. if (xhci->msix_entries) {
  291. for (i = 0; i < xhci->msix_count; i++)
  292. synchronize_irq(xhci->msix_entries[i].vector);
  293. }
  294. }
  295. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  296. {
  297. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  298. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  299. int ret;
  300. /*
  301. * Some Fresco Logic host controllers advertise MSI, but fail to
  302. * generate interrupts. Don't even try to enable MSI.
  303. */
  304. if (xhci->quirks & XHCI_BROKEN_MSI)
  305. goto legacy_irq;
  306. /* unregister the legacy interrupt */
  307. if (hcd->irq)
  308. free_irq(hcd->irq, hcd);
  309. hcd->irq = 0;
  310. ret = xhci_setup_msix(xhci);
  311. if (ret)
  312. /* fall back to msi*/
  313. ret = xhci_setup_msi(xhci);
  314. if (!ret)
  315. /* hcd->irq is 0, we have MSI */
  316. return 0;
  317. if (!pdev->irq) {
  318. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  319. return -EINVAL;
  320. }
  321. legacy_irq:
  322. /* fall back to legacy interrupt*/
  323. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  324. hcd->irq_descr, hcd);
  325. if (ret) {
  326. xhci_err(xhci, "request interrupt %d failed\n",
  327. pdev->irq);
  328. return ret;
  329. }
  330. hcd->irq = pdev->irq;
  331. return 0;
  332. }
  333. #else
  334. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  335. {
  336. return 0;
  337. }
  338. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  339. {
  340. }
  341. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  342. {
  343. }
  344. #endif
  345. static void compliance_mode_recovery(unsigned long arg)
  346. {
  347. struct xhci_hcd *xhci;
  348. struct usb_hcd *hcd;
  349. u32 temp;
  350. int i;
  351. xhci = (struct xhci_hcd *)arg;
  352. for (i = 0; i < xhci->num_usb3_ports; i++) {
  353. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  354. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  355. /*
  356. * Compliance Mode Detected. Letting USB Core
  357. * handle the Warm Reset
  358. */
  359. xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
  360. i + 1);
  361. xhci_dbg(xhci, "Attempting Recovery routine!\n");
  362. hcd = xhci->shared_hcd;
  363. if (hcd->state == HC_STATE_SUSPENDED)
  364. usb_hcd_resume_root_hub(hcd);
  365. usb_hcd_poll_rh_status(hcd);
  366. }
  367. }
  368. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  369. mod_timer(&xhci->comp_mode_recovery_timer,
  370. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  371. }
  372. /*
  373. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  374. * that causes ports behind that hardware to enter compliance mode sometimes.
  375. * The quirk creates a timer that polls every 2 seconds the link state of
  376. * each host controller's port and recovers it by issuing a Warm reset
  377. * if Compliance mode is detected, otherwise the port will become "dead" (no
  378. * device connections or disconnections will be detected anymore). Becasue no
  379. * status event is generated when entering compliance mode (per xhci spec),
  380. * this quirk is needed on systems that have the failing hardware installed.
  381. */
  382. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  383. {
  384. xhci->port_status_u0 = 0;
  385. init_timer(&xhci->comp_mode_recovery_timer);
  386. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  387. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  388. xhci->comp_mode_recovery_timer.expires = jiffies +
  389. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  390. set_timer_slack(&xhci->comp_mode_recovery_timer,
  391. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  392. add_timer(&xhci->comp_mode_recovery_timer);
  393. xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
  394. }
  395. /*
  396. * This function identifies the systems that have installed the SN65LVPE502CP
  397. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  398. * Systems:
  399. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  400. */
  401. static bool compliance_mode_recovery_timer_quirk_check(void)
  402. {
  403. const char *dmi_product_name, *dmi_sys_vendor;
  404. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  405. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  406. if (!dmi_product_name || !dmi_sys_vendor)
  407. return false;
  408. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  409. return false;
  410. if (strstr(dmi_product_name, "Z420") ||
  411. strstr(dmi_product_name, "Z620") ||
  412. strstr(dmi_product_name, "Z820") ||
  413. strstr(dmi_product_name, "Z1 Workstation"))
  414. return true;
  415. return false;
  416. }
  417. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  418. {
  419. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  420. }
  421. /*
  422. * Initialize memory for HCD and xHC (one-time init).
  423. *
  424. * Program the PAGESIZE register, initialize the device context array, create
  425. * device contexts (?), set up a command ring segment (or two?), create event
  426. * ring (one for now).
  427. */
  428. int xhci_init(struct usb_hcd *hcd)
  429. {
  430. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  431. int retval = 0;
  432. xhci_dbg(xhci, "xhci_init\n");
  433. spin_lock_init(&xhci->lock);
  434. if (xhci->hci_version == 0x95 && link_quirk) {
  435. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  436. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  437. } else {
  438. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  439. }
  440. retval = xhci_mem_init(xhci, GFP_KERNEL);
  441. xhci_dbg(xhci, "Finished xhci_init\n");
  442. /* Initializing Compliance Mode Recovery Data If Needed */
  443. if (compliance_mode_recovery_timer_quirk_check()) {
  444. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  445. compliance_mode_recovery_timer_init(xhci);
  446. }
  447. return retval;
  448. }
  449. /*-------------------------------------------------------------------------*/
  450. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  451. static void xhci_event_ring_work(unsigned long arg)
  452. {
  453. unsigned long flags;
  454. int temp;
  455. u64 temp_64;
  456. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  457. int i, j;
  458. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  459. spin_lock_irqsave(&xhci->lock, flags);
  460. temp = xhci_readl(xhci, &xhci->op_regs->status);
  461. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  462. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  463. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  464. xhci_dbg(xhci, "HW died, polling stopped.\n");
  465. spin_unlock_irqrestore(&xhci->lock, flags);
  466. return;
  467. }
  468. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  469. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  470. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  471. xhci->error_bitmask = 0;
  472. xhci_dbg(xhci, "Event ring:\n");
  473. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  474. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  475. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  476. temp_64 &= ~ERST_PTR_MASK;
  477. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  478. xhci_dbg(xhci, "Command ring:\n");
  479. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  480. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  481. xhci_dbg_cmd_ptrs(xhci);
  482. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  483. if (!xhci->devs[i])
  484. continue;
  485. for (j = 0; j < 31; ++j) {
  486. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  487. }
  488. }
  489. spin_unlock_irqrestore(&xhci->lock, flags);
  490. if (!xhci->zombie)
  491. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  492. else
  493. xhci_dbg(xhci, "Quit polling the event ring.\n");
  494. }
  495. #endif
  496. static int xhci_run_finished(struct xhci_hcd *xhci)
  497. {
  498. if (xhci_start(xhci)) {
  499. xhci_halt(xhci);
  500. return -ENODEV;
  501. }
  502. xhci->shared_hcd->state = HC_STATE_RUNNING;
  503. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  504. if (xhci->quirks & XHCI_NEC_HOST)
  505. xhci_ring_cmd_db(xhci);
  506. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  507. return 0;
  508. }
  509. /*
  510. * Start the HC after it was halted.
  511. *
  512. * This function is called by the USB core when the HC driver is added.
  513. * Its opposite is xhci_stop().
  514. *
  515. * xhci_init() must be called once before this function can be called.
  516. * Reset the HC, enable device slot contexts, program DCBAAP, and
  517. * set command ring pointer and event ring pointer.
  518. *
  519. * Setup MSI-X vectors and enable interrupts.
  520. */
  521. int xhci_run(struct usb_hcd *hcd)
  522. {
  523. u32 temp;
  524. u64 temp_64;
  525. int ret;
  526. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  527. /* Start the xHCI host controller running only after the USB 2.0 roothub
  528. * is setup.
  529. */
  530. hcd->uses_new_polling = 1;
  531. if (!usb_hcd_is_primary_hcd(hcd))
  532. return xhci_run_finished(xhci);
  533. xhci_dbg(xhci, "xhci_run\n");
  534. ret = xhci_try_enable_msi(hcd);
  535. if (ret)
  536. return ret;
  537. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  538. init_timer(&xhci->event_ring_timer);
  539. xhci->event_ring_timer.data = (unsigned long) xhci;
  540. xhci->event_ring_timer.function = xhci_event_ring_work;
  541. /* Poll the event ring */
  542. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  543. xhci->zombie = 0;
  544. xhci_dbg(xhci, "Setting event ring polling timer\n");
  545. add_timer(&xhci->event_ring_timer);
  546. #endif
  547. xhci_dbg(xhci, "Command ring memory map follows:\n");
  548. xhci_debug_ring(xhci, xhci->cmd_ring);
  549. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  550. xhci_dbg_cmd_ptrs(xhci);
  551. xhci_dbg(xhci, "ERST memory map follows:\n");
  552. xhci_dbg_erst(xhci, &xhci->erst);
  553. xhci_dbg(xhci, "Event ring:\n");
  554. xhci_debug_ring(xhci, xhci->event_ring);
  555. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  556. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  557. temp_64 &= ~ERST_PTR_MASK;
  558. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  559. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  560. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  561. temp &= ~ER_IRQ_INTERVAL_MASK;
  562. temp |= (u32) 160;
  563. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  564. /* Set the HCD state before we enable the irqs */
  565. temp = xhci_readl(xhci, &xhci->op_regs->command);
  566. temp |= (CMD_EIE);
  567. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  568. temp);
  569. xhci_writel(xhci, temp, &xhci->op_regs->command);
  570. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  571. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  572. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  573. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  574. &xhci->ir_set->irq_pending);
  575. xhci_print_ir_set(xhci, 0);
  576. if (xhci->quirks & XHCI_NEC_HOST)
  577. xhci_queue_vendor_command(xhci, 0, 0, 0,
  578. TRB_TYPE(TRB_NEC_GET_FW));
  579. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  580. return 0;
  581. }
  582. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  583. {
  584. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  585. spin_lock_irq(&xhci->lock);
  586. xhci_halt(xhci);
  587. /* The shared_hcd is going to be deallocated shortly (the USB core only
  588. * calls this function when allocation fails in usb_add_hcd(), or
  589. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  590. */
  591. xhci->shared_hcd = NULL;
  592. spin_unlock_irq(&xhci->lock);
  593. }
  594. /*
  595. * Stop xHCI driver.
  596. *
  597. * This function is called by the USB core when the HC driver is removed.
  598. * Its opposite is xhci_run().
  599. *
  600. * Disable device contexts, disable IRQs, and quiesce the HC.
  601. * Reset the HC, finish any completed transactions, and cleanup memory.
  602. */
  603. void xhci_stop(struct usb_hcd *hcd)
  604. {
  605. u32 temp;
  606. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  607. if (!usb_hcd_is_primary_hcd(hcd)) {
  608. xhci_only_stop_hcd(xhci->shared_hcd);
  609. return;
  610. }
  611. spin_lock_irq(&xhci->lock);
  612. /* Make sure the xHC is halted for a USB3 roothub
  613. * (xhci_stop() could be called as part of failed init).
  614. */
  615. xhci_halt(xhci);
  616. xhci_reset(xhci);
  617. spin_unlock_irq(&xhci->lock);
  618. xhci_cleanup_msix(xhci);
  619. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  620. /* Tell the event ring poll function not to reschedule */
  621. xhci->zombie = 1;
  622. del_timer_sync(&xhci->event_ring_timer);
  623. #endif
  624. /* Deleting Compliance Mode Recovery Timer */
  625. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  626. (!(xhci_all_ports_seen_u0(xhci))))
  627. del_timer_sync(&xhci->comp_mode_recovery_timer);
  628. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  629. usb_amd_dev_put();
  630. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  631. temp = xhci_readl(xhci, &xhci->op_regs->status);
  632. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  633. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  634. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  635. &xhci->ir_set->irq_pending);
  636. xhci_print_ir_set(xhci, 0);
  637. xhci_dbg(xhci, "cleaning up memory\n");
  638. xhci_mem_cleanup(xhci);
  639. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  640. xhci_readl(xhci, &xhci->op_regs->status));
  641. }
  642. /*
  643. * Shutdown HC (not bus-specific)
  644. *
  645. * This is called when the machine is rebooting or halting. We assume that the
  646. * machine will be powered off, and the HC's internal state will be reset.
  647. * Don't bother to free memory.
  648. *
  649. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  650. */
  651. void xhci_shutdown(struct usb_hcd *hcd)
  652. {
  653. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  654. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  655. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  656. spin_lock_irq(&xhci->lock);
  657. xhci_halt(xhci);
  658. spin_unlock_irq(&xhci->lock);
  659. xhci_cleanup_msix(xhci);
  660. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  661. xhci_readl(xhci, &xhci->op_regs->status));
  662. }
  663. #ifdef CONFIG_PM
  664. static void xhci_save_registers(struct xhci_hcd *xhci)
  665. {
  666. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  667. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  668. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  669. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  670. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  671. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  672. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  673. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  674. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  675. }
  676. static void xhci_restore_registers(struct xhci_hcd *xhci)
  677. {
  678. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  679. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  680. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  681. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  682. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  683. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  684. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  685. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  686. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  687. }
  688. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  689. {
  690. u64 val_64;
  691. /* step 2: initialize command ring buffer */
  692. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  693. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  694. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  695. xhci->cmd_ring->dequeue) &
  696. (u64) ~CMD_RING_RSVD_BITS) |
  697. xhci->cmd_ring->cycle_state;
  698. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  699. (long unsigned long) val_64);
  700. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  701. }
  702. /*
  703. * The whole command ring must be cleared to zero when we suspend the host.
  704. *
  705. * The host doesn't save the command ring pointer in the suspend well, so we
  706. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  707. * aligned, because of the reserved bits in the command ring dequeue pointer
  708. * register. Therefore, we can't just set the dequeue pointer back in the
  709. * middle of the ring (TRBs are 16-byte aligned).
  710. */
  711. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  712. {
  713. struct xhci_ring *ring;
  714. struct xhci_segment *seg;
  715. ring = xhci->cmd_ring;
  716. seg = ring->deq_seg;
  717. do {
  718. memset(seg->trbs, 0,
  719. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  720. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  721. cpu_to_le32(~TRB_CYCLE);
  722. seg = seg->next;
  723. } while (seg != ring->deq_seg);
  724. /* Reset the software enqueue and dequeue pointers */
  725. ring->deq_seg = ring->first_seg;
  726. ring->dequeue = ring->first_seg->trbs;
  727. ring->enq_seg = ring->deq_seg;
  728. ring->enqueue = ring->dequeue;
  729. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  730. /*
  731. * Ring is now zeroed, so the HW should look for change of ownership
  732. * when the cycle bit is set to 1.
  733. */
  734. ring->cycle_state = 1;
  735. /*
  736. * Reset the hardware dequeue pointer.
  737. * Yes, this will need to be re-written after resume, but we're paranoid
  738. * and want to make sure the hardware doesn't access bogus memory
  739. * because, say, the BIOS or an SMI started the host without changing
  740. * the command ring pointers.
  741. */
  742. xhci_set_cmd_ring_deq(xhci);
  743. }
  744. /*
  745. * Stop HC (not bus-specific)
  746. *
  747. * This is called when the machine transition into S3/S4 mode.
  748. *
  749. */
  750. int xhci_suspend(struct xhci_hcd *xhci)
  751. {
  752. int rc = 0;
  753. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  754. u32 command;
  755. if (hcd->state != HC_STATE_SUSPENDED ||
  756. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  757. return -EINVAL;
  758. /* Don't poll the roothubs on bus suspend. */
  759. xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
  760. clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  761. del_timer_sync(&hcd->rh_timer);
  762. spin_lock_irq(&xhci->lock);
  763. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  764. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  765. /* step 1: stop endpoint */
  766. /* skipped assuming that port suspend has done */
  767. /* step 2: clear Run/Stop bit */
  768. command = xhci_readl(xhci, &xhci->op_regs->command);
  769. command &= ~CMD_RUN;
  770. xhci_writel(xhci, command, &xhci->op_regs->command);
  771. if (xhci_handshake(xhci, &xhci->op_regs->status,
  772. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  773. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  774. spin_unlock_irq(&xhci->lock);
  775. return -ETIMEDOUT;
  776. }
  777. xhci_clear_command_ring(xhci);
  778. /* step 3: save registers */
  779. xhci_save_registers(xhci);
  780. /* step 4: set CSS flag */
  781. command = xhci_readl(xhci, &xhci->op_regs->command);
  782. command |= CMD_CSS;
  783. xhci_writel(xhci, command, &xhci->op_regs->command);
  784. if (xhci_handshake(xhci, &xhci->op_regs->status,
  785. STS_SAVE, 0, 10 * 1000)) {
  786. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  787. spin_unlock_irq(&xhci->lock);
  788. return -ETIMEDOUT;
  789. }
  790. spin_unlock_irq(&xhci->lock);
  791. /*
  792. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  793. * is about to be suspended.
  794. */
  795. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  796. (!(xhci_all_ports_seen_u0(xhci)))) {
  797. del_timer_sync(&xhci->comp_mode_recovery_timer);
  798. xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
  799. }
  800. /* step 5: remove core well power */
  801. /* synchronize irq when using MSI-X */
  802. xhci_msix_sync_irqs(xhci);
  803. return rc;
  804. }
  805. /*
  806. * start xHC (not bus-specific)
  807. *
  808. * This is called when the machine transition from S3/S4 mode.
  809. *
  810. */
  811. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  812. {
  813. u32 command, temp = 0;
  814. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  815. struct usb_hcd *secondary_hcd;
  816. int retval = 0;
  817. /* Wait a bit if either of the roothubs need to settle from the
  818. * transition into bus suspend.
  819. */
  820. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  821. time_before(jiffies,
  822. xhci->bus_state[1].next_statechange))
  823. msleep(100);
  824. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  825. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  826. spin_lock_irq(&xhci->lock);
  827. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  828. hibernated = true;
  829. if (!hibernated) {
  830. /* step 1: restore register */
  831. xhci_restore_registers(xhci);
  832. /* step 2: initialize command ring buffer */
  833. xhci_set_cmd_ring_deq(xhci);
  834. /* step 3: restore state and start state*/
  835. /* step 3: set CRS flag */
  836. command = xhci_readl(xhci, &xhci->op_regs->command);
  837. command |= CMD_CRS;
  838. xhci_writel(xhci, command, &xhci->op_regs->command);
  839. if (xhci_handshake(xhci, &xhci->op_regs->status,
  840. STS_RESTORE, 0, 10 * 1000)) {
  841. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  842. spin_unlock_irq(&xhci->lock);
  843. return -ETIMEDOUT;
  844. }
  845. temp = xhci_readl(xhci, &xhci->op_regs->status);
  846. }
  847. /* If restore operation fails, re-initialize the HC during resume */
  848. if ((temp & STS_SRE) || hibernated) {
  849. /* Let the USB core know _both_ roothubs lost power. */
  850. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  851. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  852. xhci_dbg(xhci, "Stop HCD\n");
  853. xhci_halt(xhci);
  854. xhci_reset(xhci);
  855. spin_unlock_irq(&xhci->lock);
  856. xhci_cleanup_msix(xhci);
  857. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  858. /* Tell the event ring poll function not to reschedule */
  859. xhci->zombie = 1;
  860. del_timer_sync(&xhci->event_ring_timer);
  861. #endif
  862. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  863. temp = xhci_readl(xhci, &xhci->op_regs->status);
  864. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  865. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  866. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  867. &xhci->ir_set->irq_pending);
  868. xhci_print_ir_set(xhci, 0);
  869. xhci_dbg(xhci, "cleaning up memory\n");
  870. xhci_mem_cleanup(xhci);
  871. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  872. xhci_readl(xhci, &xhci->op_regs->status));
  873. /* USB core calls the PCI reinit and start functions twice:
  874. * first with the primary HCD, and then with the secondary HCD.
  875. * If we don't do the same, the host will never be started.
  876. */
  877. if (!usb_hcd_is_primary_hcd(hcd))
  878. secondary_hcd = hcd;
  879. else
  880. secondary_hcd = xhci->shared_hcd;
  881. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  882. retval = xhci_init(hcd->primary_hcd);
  883. if (retval)
  884. return retval;
  885. xhci_dbg(xhci, "Start the primary HCD\n");
  886. retval = xhci_run(hcd->primary_hcd);
  887. if (!retval) {
  888. xhci_dbg(xhci, "Start the secondary HCD\n");
  889. retval = xhci_run(secondary_hcd);
  890. }
  891. hcd->state = HC_STATE_SUSPENDED;
  892. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  893. goto done;
  894. }
  895. /* step 4: set Run/Stop bit */
  896. command = xhci_readl(xhci, &xhci->op_regs->command);
  897. command |= CMD_RUN;
  898. xhci_writel(xhci, command, &xhci->op_regs->command);
  899. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  900. 0, 250 * 1000);
  901. /* step 5: walk topology and initialize portsc,
  902. * portpmsc and portli
  903. */
  904. /* this is done in bus_resume */
  905. /* step 6: restart each of the previously
  906. * Running endpoints by ringing their doorbells
  907. */
  908. spin_unlock_irq(&xhci->lock);
  909. done:
  910. if (retval == 0) {
  911. usb_hcd_resume_root_hub(hcd);
  912. usb_hcd_resume_root_hub(xhci->shared_hcd);
  913. }
  914. /*
  915. * If system is subject to the Quirk, Compliance Mode Timer needs to
  916. * be re-initialized Always after a system resume. Ports are subject
  917. * to suffer the Compliance Mode issue again. It doesn't matter if
  918. * ports have entered previously to U0 before system's suspension.
  919. */
  920. if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
  921. compliance_mode_recovery_timer_init(xhci);
  922. /* Re-enable port polling. */
  923. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  924. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  925. usb_hcd_poll_rh_status(hcd);
  926. return retval;
  927. }
  928. #endif /* CONFIG_PM */
  929. /*-------------------------------------------------------------------------*/
  930. /**
  931. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  932. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  933. * value to right shift 1 for the bitmask.
  934. *
  935. * Index = (epnum * 2) + direction - 1,
  936. * where direction = 0 for OUT, 1 for IN.
  937. * For control endpoints, the IN index is used (OUT index is unused), so
  938. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  939. */
  940. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  941. {
  942. unsigned int index;
  943. if (usb_endpoint_xfer_control(desc))
  944. index = (unsigned int) (usb_endpoint_num(desc)*2);
  945. else
  946. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  947. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  948. return index;
  949. }
  950. /* Find the flag for this endpoint (for use in the control context). Use the
  951. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  952. * bit 1, etc.
  953. */
  954. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  955. {
  956. return 1 << (xhci_get_endpoint_index(desc) + 1);
  957. }
  958. /* Find the flag for this endpoint (for use in the control context). Use the
  959. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  960. * bit 1, etc.
  961. */
  962. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  963. {
  964. return 1 << (ep_index + 1);
  965. }
  966. /* Compute the last valid endpoint context index. Basically, this is the
  967. * endpoint index plus one. For slot contexts with more than valid endpoint,
  968. * we find the most significant bit set in the added contexts flags.
  969. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  970. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  971. */
  972. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  973. {
  974. return fls(added_ctxs) - 1;
  975. }
  976. /* Returns 1 if the arguments are OK;
  977. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  978. */
  979. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  980. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  981. const char *func) {
  982. struct xhci_hcd *xhci;
  983. struct xhci_virt_device *virt_dev;
  984. if (!hcd || (check_ep && !ep) || !udev) {
  985. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  986. func);
  987. return -EINVAL;
  988. }
  989. if (!udev->parent) {
  990. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  991. func);
  992. return 0;
  993. }
  994. xhci = hcd_to_xhci(hcd);
  995. if (xhci->xhc_state & XHCI_STATE_HALTED)
  996. return -ENODEV;
  997. if (check_virt_dev) {
  998. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  999. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  1000. "device\n", func);
  1001. return -EINVAL;
  1002. }
  1003. virt_dev = xhci->devs[udev->slot_id];
  1004. if (virt_dev->udev != udev) {
  1005. printk(KERN_DEBUG "xHCI %s called with udev and "
  1006. "virt_dev does not match\n", func);
  1007. return -EINVAL;
  1008. }
  1009. }
  1010. return 1;
  1011. }
  1012. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  1013. struct usb_device *udev, struct xhci_command *command,
  1014. bool ctx_change, bool must_succeed);
  1015. /*
  1016. * Full speed devices may have a max packet size greater than 8 bytes, but the
  1017. * USB core doesn't know that until it reads the first 8 bytes of the
  1018. * descriptor. If the usb_device's max packet size changes after that point,
  1019. * we need to issue an evaluate context command and wait on it.
  1020. */
  1021. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  1022. unsigned int ep_index, struct urb *urb)
  1023. {
  1024. struct xhci_container_ctx *in_ctx;
  1025. struct xhci_container_ctx *out_ctx;
  1026. struct xhci_input_control_ctx *ctrl_ctx;
  1027. struct xhci_ep_ctx *ep_ctx;
  1028. int max_packet_size;
  1029. int hw_max_packet_size;
  1030. int ret = 0;
  1031. out_ctx = xhci->devs[slot_id]->out_ctx;
  1032. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1033. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1034. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1035. if (hw_max_packet_size != max_packet_size) {
  1036. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  1037. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  1038. max_packet_size);
  1039. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  1040. hw_max_packet_size);
  1041. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  1042. /* Set up the modified control endpoint 0 */
  1043. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1044. xhci->devs[slot_id]->out_ctx, ep_index);
  1045. in_ctx = xhci->devs[slot_id]->in_ctx;
  1046. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1047. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1048. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1049. /* Set up the input context flags for the command */
  1050. /* FIXME: This won't work if a non-default control endpoint
  1051. * changes max packet sizes.
  1052. */
  1053. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1054. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1055. ctrl_ctx->drop_flags = 0;
  1056. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1057. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1058. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1059. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1060. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1061. true, false);
  1062. /* Clean up the input context for later use by bandwidth
  1063. * functions.
  1064. */
  1065. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1066. }
  1067. return ret;
  1068. }
  1069. /*
  1070. * non-error returns are a promise to giveback() the urb later
  1071. * we drop ownership so next owner (or urb unlink) can get it
  1072. */
  1073. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1074. {
  1075. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1076. struct xhci_td *buffer;
  1077. unsigned long flags;
  1078. int ret = 0;
  1079. unsigned int slot_id, ep_index;
  1080. struct urb_priv *urb_priv;
  1081. int size, i;
  1082. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1083. true, true, __func__) <= 0)
  1084. return -EINVAL;
  1085. slot_id = urb->dev->slot_id;
  1086. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1087. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1088. if (!in_interrupt())
  1089. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1090. ret = -ESHUTDOWN;
  1091. goto exit;
  1092. }
  1093. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1094. size = urb->number_of_packets;
  1095. else
  1096. size = 1;
  1097. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1098. size * sizeof(struct xhci_td *), mem_flags);
  1099. if (!urb_priv)
  1100. return -ENOMEM;
  1101. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1102. if (!buffer) {
  1103. kfree(urb_priv);
  1104. return -ENOMEM;
  1105. }
  1106. for (i = 0; i < size; i++) {
  1107. urb_priv->td[i] = buffer;
  1108. buffer++;
  1109. }
  1110. urb_priv->length = size;
  1111. urb_priv->td_cnt = 0;
  1112. urb->hcpriv = urb_priv;
  1113. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1114. /* Check to see if the max packet size for the default control
  1115. * endpoint changed during FS device enumeration
  1116. */
  1117. if (urb->dev->speed == USB_SPEED_FULL) {
  1118. ret = xhci_check_maxpacket(xhci, slot_id,
  1119. ep_index, urb);
  1120. if (ret < 0) {
  1121. xhci_urb_free_priv(xhci, urb_priv);
  1122. urb->hcpriv = NULL;
  1123. return ret;
  1124. }
  1125. }
  1126. /* We have a spinlock and interrupts disabled, so we must pass
  1127. * atomic context to this function, which may allocate memory.
  1128. */
  1129. spin_lock_irqsave(&xhci->lock, flags);
  1130. if (xhci->xhc_state & XHCI_STATE_DYING)
  1131. goto dying;
  1132. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1133. slot_id, ep_index);
  1134. if (ret)
  1135. goto free_priv;
  1136. spin_unlock_irqrestore(&xhci->lock, flags);
  1137. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1138. spin_lock_irqsave(&xhci->lock, flags);
  1139. if (xhci->xhc_state & XHCI_STATE_DYING)
  1140. goto dying;
  1141. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1142. EP_GETTING_STREAMS) {
  1143. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1144. "is transitioning to using streams.\n");
  1145. ret = -EINVAL;
  1146. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1147. EP_GETTING_NO_STREAMS) {
  1148. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1149. "is transitioning to "
  1150. "not having streams.\n");
  1151. ret = -EINVAL;
  1152. } else {
  1153. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1154. slot_id, ep_index);
  1155. }
  1156. if (ret)
  1157. goto free_priv;
  1158. spin_unlock_irqrestore(&xhci->lock, flags);
  1159. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1160. spin_lock_irqsave(&xhci->lock, flags);
  1161. if (xhci->xhc_state & XHCI_STATE_DYING)
  1162. goto dying;
  1163. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1164. slot_id, ep_index);
  1165. if (ret)
  1166. goto free_priv;
  1167. spin_unlock_irqrestore(&xhci->lock, flags);
  1168. } else {
  1169. spin_lock_irqsave(&xhci->lock, flags);
  1170. if (xhci->xhc_state & XHCI_STATE_DYING)
  1171. goto dying;
  1172. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1173. slot_id, ep_index);
  1174. if (ret)
  1175. goto free_priv;
  1176. spin_unlock_irqrestore(&xhci->lock, flags);
  1177. }
  1178. exit:
  1179. return ret;
  1180. dying:
  1181. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1182. "non-responsive xHCI host.\n",
  1183. urb->ep->desc.bEndpointAddress, urb);
  1184. ret = -ESHUTDOWN;
  1185. free_priv:
  1186. xhci_urb_free_priv(xhci, urb_priv);
  1187. urb->hcpriv = NULL;
  1188. spin_unlock_irqrestore(&xhci->lock, flags);
  1189. return ret;
  1190. }
  1191. /* Get the right ring for the given URB.
  1192. * If the endpoint supports streams, boundary check the URB's stream ID.
  1193. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1194. */
  1195. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1196. struct urb *urb)
  1197. {
  1198. unsigned int slot_id;
  1199. unsigned int ep_index;
  1200. unsigned int stream_id;
  1201. struct xhci_virt_ep *ep;
  1202. slot_id = urb->dev->slot_id;
  1203. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1204. stream_id = urb->stream_id;
  1205. ep = &xhci->devs[slot_id]->eps[ep_index];
  1206. /* Common case: no streams */
  1207. if (!(ep->ep_state & EP_HAS_STREAMS))
  1208. return ep->ring;
  1209. if (stream_id == 0) {
  1210. xhci_warn(xhci,
  1211. "WARN: Slot ID %u, ep index %u has streams, "
  1212. "but URB has no stream ID.\n",
  1213. slot_id, ep_index);
  1214. return NULL;
  1215. }
  1216. if (stream_id < ep->stream_info->num_streams)
  1217. return ep->stream_info->stream_rings[stream_id];
  1218. xhci_warn(xhci,
  1219. "WARN: Slot ID %u, ep index %u has "
  1220. "stream IDs 1 to %u allocated, "
  1221. "but stream ID %u is requested.\n",
  1222. slot_id, ep_index,
  1223. ep->stream_info->num_streams - 1,
  1224. stream_id);
  1225. return NULL;
  1226. }
  1227. /*
  1228. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1229. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1230. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1231. * Dequeue Pointer is issued.
  1232. *
  1233. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1234. * the ring. Since the ring is a contiguous structure, they can't be physically
  1235. * removed. Instead, there are two options:
  1236. *
  1237. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1238. * simply move the ring's dequeue pointer past those TRBs using the Set
  1239. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1240. * when drivers timeout on the last submitted URB and attempt to cancel.
  1241. *
  1242. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1243. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1244. * HC will need to invalidate the any TRBs it has cached after the stop
  1245. * endpoint command, as noted in the xHCI 0.95 errata.
  1246. *
  1247. * 3) The TD may have completed by the time the Stop Endpoint Command
  1248. * completes, so software needs to handle that case too.
  1249. *
  1250. * This function should protect against the TD enqueueing code ringing the
  1251. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1252. * It also needs to account for multiple cancellations on happening at the same
  1253. * time for the same endpoint.
  1254. *
  1255. * Note that this function can be called in any context, or so says
  1256. * usb_hcd_unlink_urb()
  1257. */
  1258. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1259. {
  1260. unsigned long flags;
  1261. int ret, i;
  1262. u32 temp;
  1263. struct xhci_hcd *xhci;
  1264. struct urb_priv *urb_priv;
  1265. struct xhci_td *td;
  1266. unsigned int ep_index;
  1267. struct xhci_ring *ep_ring;
  1268. struct xhci_virt_ep *ep;
  1269. xhci = hcd_to_xhci(hcd);
  1270. spin_lock_irqsave(&xhci->lock, flags);
  1271. /* Make sure the URB hasn't completed or been unlinked already */
  1272. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1273. if (ret || !urb->hcpriv)
  1274. goto done;
  1275. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1276. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1277. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1278. urb_priv = urb->hcpriv;
  1279. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1280. td = urb_priv->td[i];
  1281. if (!list_empty(&td->td_list))
  1282. list_del_init(&td->td_list);
  1283. if (!list_empty(&td->cancelled_td_list))
  1284. list_del_init(&td->cancelled_td_list);
  1285. }
  1286. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1287. spin_unlock_irqrestore(&xhci->lock, flags);
  1288. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1289. xhci_urb_free_priv(xhci, urb_priv);
  1290. return ret;
  1291. }
  1292. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1293. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1294. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1295. "non-responsive xHCI host.\n",
  1296. urb->ep->desc.bEndpointAddress, urb);
  1297. /* Let the stop endpoint command watchdog timer (which set this
  1298. * state) finish cleaning up the endpoint TD lists. We must
  1299. * have caught it in the middle of dropping a lock and giving
  1300. * back an URB.
  1301. */
  1302. goto done;
  1303. }
  1304. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1305. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1306. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1307. if (!ep_ring) {
  1308. ret = -EINVAL;
  1309. goto done;
  1310. }
  1311. urb_priv = urb->hcpriv;
  1312. i = urb_priv->td_cnt;
  1313. if (i < urb_priv->length)
  1314. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1315. "starting at offset 0x%llx\n",
  1316. urb, urb->dev->devpath,
  1317. urb->ep->desc.bEndpointAddress,
  1318. (unsigned long long) xhci_trb_virt_to_dma(
  1319. urb_priv->td[i]->start_seg,
  1320. urb_priv->td[i]->first_trb));
  1321. for (; i < urb_priv->length; i++) {
  1322. td = urb_priv->td[i];
  1323. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1324. }
  1325. /* Queue a stop endpoint command, but only if this is
  1326. * the first cancellation to be handled.
  1327. */
  1328. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1329. ep->ep_state |= EP_HALT_PENDING;
  1330. ep->stop_cmds_pending++;
  1331. ep->stop_cmd_timer.expires = jiffies +
  1332. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1333. add_timer(&ep->stop_cmd_timer);
  1334. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1335. xhci_ring_cmd_db(xhci);
  1336. }
  1337. done:
  1338. spin_unlock_irqrestore(&xhci->lock, flags);
  1339. return ret;
  1340. }
  1341. /* Drop an endpoint from a new bandwidth configuration for this device.
  1342. * Only one call to this function is allowed per endpoint before
  1343. * check_bandwidth() or reset_bandwidth() must be called.
  1344. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1345. * add the endpoint to the schedule with possibly new parameters denoted by a
  1346. * different endpoint descriptor in usb_host_endpoint.
  1347. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1348. * not allowed.
  1349. *
  1350. * The USB core will not allow URBs to be queued to an endpoint that is being
  1351. * disabled, so there's no need for mutual exclusion to protect
  1352. * the xhci->devs[slot_id] structure.
  1353. */
  1354. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1355. struct usb_host_endpoint *ep)
  1356. {
  1357. struct xhci_hcd *xhci;
  1358. struct xhci_container_ctx *in_ctx, *out_ctx;
  1359. struct xhci_input_control_ctx *ctrl_ctx;
  1360. struct xhci_slot_ctx *slot_ctx;
  1361. unsigned int last_ctx;
  1362. unsigned int ep_index;
  1363. struct xhci_ep_ctx *ep_ctx;
  1364. u32 drop_flag;
  1365. u32 new_add_flags, new_drop_flags, new_slot_info;
  1366. int ret;
  1367. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1368. if (ret <= 0)
  1369. return ret;
  1370. xhci = hcd_to_xhci(hcd);
  1371. if (xhci->xhc_state & XHCI_STATE_DYING)
  1372. return -ENODEV;
  1373. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1374. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1375. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1376. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1377. __func__, drop_flag);
  1378. return 0;
  1379. }
  1380. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1381. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1382. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1383. ep_index = xhci_get_endpoint_index(&ep->desc);
  1384. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1385. /* If the HC already knows the endpoint is disabled,
  1386. * or the HCD has noted it is disabled, ignore this request
  1387. */
  1388. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1389. cpu_to_le32(EP_STATE_DISABLED)) ||
  1390. le32_to_cpu(ctrl_ctx->drop_flags) &
  1391. xhci_get_endpoint_flag(&ep->desc)) {
  1392. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1393. __func__, ep);
  1394. return 0;
  1395. }
  1396. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1397. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1398. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1399. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1400. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1401. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1402. /* Update the last valid endpoint context, if we deleted the last one */
  1403. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1404. LAST_CTX(last_ctx)) {
  1405. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1406. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1407. }
  1408. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1409. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1410. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1411. (unsigned int) ep->desc.bEndpointAddress,
  1412. udev->slot_id,
  1413. (unsigned int) new_drop_flags,
  1414. (unsigned int) new_add_flags,
  1415. (unsigned int) new_slot_info);
  1416. return 0;
  1417. }
  1418. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1419. * Only one call to this function is allowed per endpoint before
  1420. * check_bandwidth() or reset_bandwidth() must be called.
  1421. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1422. * add the endpoint to the schedule with possibly new parameters denoted by a
  1423. * different endpoint descriptor in usb_host_endpoint.
  1424. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1425. * not allowed.
  1426. *
  1427. * The USB core will not allow URBs to be queued to an endpoint until the
  1428. * configuration or alt setting is installed in the device, so there's no need
  1429. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1430. */
  1431. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1432. struct usb_host_endpoint *ep)
  1433. {
  1434. struct xhci_hcd *xhci;
  1435. struct xhci_container_ctx *in_ctx, *out_ctx;
  1436. unsigned int ep_index;
  1437. struct xhci_slot_ctx *slot_ctx;
  1438. struct xhci_input_control_ctx *ctrl_ctx;
  1439. u32 added_ctxs;
  1440. unsigned int last_ctx;
  1441. u32 new_add_flags, new_drop_flags, new_slot_info;
  1442. struct xhci_virt_device *virt_dev;
  1443. int ret = 0;
  1444. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1445. if (ret <= 0) {
  1446. /* So we won't queue a reset ep command for a root hub */
  1447. ep->hcpriv = NULL;
  1448. return ret;
  1449. }
  1450. xhci = hcd_to_xhci(hcd);
  1451. if (xhci->xhc_state & XHCI_STATE_DYING)
  1452. return -ENODEV;
  1453. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1454. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1455. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1456. /* FIXME when we have to issue an evaluate endpoint command to
  1457. * deal with ep0 max packet size changing once we get the
  1458. * descriptors
  1459. */
  1460. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1461. __func__, added_ctxs);
  1462. return 0;
  1463. }
  1464. virt_dev = xhci->devs[udev->slot_id];
  1465. in_ctx = virt_dev->in_ctx;
  1466. out_ctx = virt_dev->out_ctx;
  1467. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1468. ep_index = xhci_get_endpoint_index(&ep->desc);
  1469. /* If this endpoint is already in use, and the upper layers are trying
  1470. * to add it again without dropping it, reject the addition.
  1471. */
  1472. if (virt_dev->eps[ep_index].ring &&
  1473. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1474. xhci_get_endpoint_flag(&ep->desc))) {
  1475. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1476. "without dropping it.\n",
  1477. (unsigned int) ep->desc.bEndpointAddress);
  1478. return -EINVAL;
  1479. }
  1480. /* If the HCD has already noted the endpoint is enabled,
  1481. * ignore this request.
  1482. */
  1483. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1484. xhci_get_endpoint_flag(&ep->desc)) {
  1485. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1486. __func__, ep);
  1487. return 0;
  1488. }
  1489. /*
  1490. * Configuration and alternate setting changes must be done in
  1491. * process context, not interrupt context (or so documenation
  1492. * for usb_set_interface() and usb_set_configuration() claim).
  1493. */
  1494. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1495. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1496. __func__, ep->desc.bEndpointAddress);
  1497. return -ENOMEM;
  1498. }
  1499. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1500. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1501. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1502. * xHC hasn't been notified yet through the check_bandwidth() call,
  1503. * this re-adds a new state for the endpoint from the new endpoint
  1504. * descriptors. We must drop and re-add this endpoint, so we leave the
  1505. * drop flags alone.
  1506. */
  1507. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1508. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1509. /* Update the last valid endpoint context, if we just added one past */
  1510. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1511. LAST_CTX(last_ctx)) {
  1512. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1513. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1514. }
  1515. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1516. /* Store the usb_device pointer for later use */
  1517. ep->hcpriv = udev;
  1518. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1519. (unsigned int) ep->desc.bEndpointAddress,
  1520. udev->slot_id,
  1521. (unsigned int) new_drop_flags,
  1522. (unsigned int) new_add_flags,
  1523. (unsigned int) new_slot_info);
  1524. return 0;
  1525. }
  1526. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1527. {
  1528. struct xhci_input_control_ctx *ctrl_ctx;
  1529. struct xhci_ep_ctx *ep_ctx;
  1530. struct xhci_slot_ctx *slot_ctx;
  1531. int i;
  1532. /* When a device's add flag and drop flag are zero, any subsequent
  1533. * configure endpoint command will leave that endpoint's state
  1534. * untouched. Make sure we don't leave any old state in the input
  1535. * endpoint contexts.
  1536. */
  1537. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1538. ctrl_ctx->drop_flags = 0;
  1539. ctrl_ctx->add_flags = 0;
  1540. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1541. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1542. /* Endpoint 0 is always valid */
  1543. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1544. for (i = 1; i < 31; ++i) {
  1545. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1546. ep_ctx->ep_info = 0;
  1547. ep_ctx->ep_info2 = 0;
  1548. ep_ctx->deq = 0;
  1549. ep_ctx->tx_info = 0;
  1550. }
  1551. }
  1552. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1553. struct usb_device *udev, u32 *cmd_status)
  1554. {
  1555. int ret;
  1556. switch (*cmd_status) {
  1557. case COMP_ENOMEM:
  1558. dev_warn(&udev->dev, "Not enough host controller resources "
  1559. "for new device state.\n");
  1560. ret = -ENOMEM;
  1561. /* FIXME: can we allocate more resources for the HC? */
  1562. break;
  1563. case COMP_BW_ERR:
  1564. case COMP_2ND_BW_ERR:
  1565. dev_warn(&udev->dev, "Not enough bandwidth "
  1566. "for new device state.\n");
  1567. ret = -ENOSPC;
  1568. /* FIXME: can we go back to the old state? */
  1569. break;
  1570. case COMP_TRB_ERR:
  1571. /* the HCD set up something wrong */
  1572. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1573. "add flag = 1, "
  1574. "and endpoint is not disabled.\n");
  1575. ret = -EINVAL;
  1576. break;
  1577. case COMP_DEV_ERR:
  1578. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1579. "configure command.\n");
  1580. ret = -ENODEV;
  1581. break;
  1582. case COMP_SUCCESS:
  1583. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1584. ret = 0;
  1585. break;
  1586. default:
  1587. xhci_err(xhci, "ERROR: unexpected command completion "
  1588. "code 0x%x.\n", *cmd_status);
  1589. ret = -EINVAL;
  1590. break;
  1591. }
  1592. return ret;
  1593. }
  1594. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1595. struct usb_device *udev, u32 *cmd_status)
  1596. {
  1597. int ret;
  1598. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1599. switch (*cmd_status) {
  1600. case COMP_EINVAL:
  1601. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1602. "context command.\n");
  1603. ret = -EINVAL;
  1604. break;
  1605. case COMP_EBADSLT:
  1606. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1607. "evaluate context command.\n");
  1608. ret = -EINVAL;
  1609. break;
  1610. case COMP_CTX_STATE:
  1611. dev_warn(&udev->dev, "WARN: invalid context state for "
  1612. "evaluate context command.\n");
  1613. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1614. ret = -EINVAL;
  1615. break;
  1616. case COMP_DEV_ERR:
  1617. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1618. "context command.\n");
  1619. ret = -ENODEV;
  1620. break;
  1621. case COMP_MEL_ERR:
  1622. /* Max Exit Latency too large error */
  1623. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1624. ret = -EINVAL;
  1625. break;
  1626. case COMP_SUCCESS:
  1627. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1628. ret = 0;
  1629. break;
  1630. default:
  1631. xhci_err(xhci, "ERROR: unexpected command completion "
  1632. "code 0x%x.\n", *cmd_status);
  1633. ret = -EINVAL;
  1634. break;
  1635. }
  1636. return ret;
  1637. }
  1638. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1639. struct xhci_container_ctx *in_ctx)
  1640. {
  1641. struct xhci_input_control_ctx *ctrl_ctx;
  1642. u32 valid_add_flags;
  1643. u32 valid_drop_flags;
  1644. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1645. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1646. * (bit 1). The default control endpoint is added during the Address
  1647. * Device command and is never removed until the slot is disabled.
  1648. */
  1649. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1650. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1651. /* Use hweight32 to count the number of ones in the add flags, or
  1652. * number of endpoints added. Don't count endpoints that are changed
  1653. * (both added and dropped).
  1654. */
  1655. return hweight32(valid_add_flags) -
  1656. hweight32(valid_add_flags & valid_drop_flags);
  1657. }
  1658. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1659. struct xhci_container_ctx *in_ctx)
  1660. {
  1661. struct xhci_input_control_ctx *ctrl_ctx;
  1662. u32 valid_add_flags;
  1663. u32 valid_drop_flags;
  1664. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1665. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1666. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1667. return hweight32(valid_drop_flags) -
  1668. hweight32(valid_add_flags & valid_drop_flags);
  1669. }
  1670. /*
  1671. * We need to reserve the new number of endpoints before the configure endpoint
  1672. * command completes. We can't subtract the dropped endpoints from the number
  1673. * of active endpoints until the command completes because we can oversubscribe
  1674. * the host in this case:
  1675. *
  1676. * - the first configure endpoint command drops more endpoints than it adds
  1677. * - a second configure endpoint command that adds more endpoints is queued
  1678. * - the first configure endpoint command fails, so the config is unchanged
  1679. * - the second command may succeed, even though there isn't enough resources
  1680. *
  1681. * Must be called with xhci->lock held.
  1682. */
  1683. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1684. struct xhci_container_ctx *in_ctx)
  1685. {
  1686. u32 added_eps;
  1687. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1688. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1689. xhci_dbg(xhci, "Not enough ep ctxs: "
  1690. "%u active, need to add %u, limit is %u.\n",
  1691. xhci->num_active_eps, added_eps,
  1692. xhci->limit_active_eps);
  1693. return -ENOMEM;
  1694. }
  1695. xhci->num_active_eps += added_eps;
  1696. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1697. xhci->num_active_eps);
  1698. return 0;
  1699. }
  1700. /*
  1701. * The configure endpoint was failed by the xHC for some other reason, so we
  1702. * need to revert the resources that failed configuration would have used.
  1703. *
  1704. * Must be called with xhci->lock held.
  1705. */
  1706. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1707. struct xhci_container_ctx *in_ctx)
  1708. {
  1709. u32 num_failed_eps;
  1710. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1711. xhci->num_active_eps -= num_failed_eps;
  1712. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1713. num_failed_eps,
  1714. xhci->num_active_eps);
  1715. }
  1716. /*
  1717. * Now that the command has completed, clean up the active endpoint count by
  1718. * subtracting out the endpoints that were dropped (but not changed).
  1719. *
  1720. * Must be called with xhci->lock held.
  1721. */
  1722. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1723. struct xhci_container_ctx *in_ctx)
  1724. {
  1725. u32 num_dropped_eps;
  1726. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1727. xhci->num_active_eps -= num_dropped_eps;
  1728. if (num_dropped_eps)
  1729. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1730. num_dropped_eps,
  1731. xhci->num_active_eps);
  1732. }
  1733. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1734. {
  1735. switch (udev->speed) {
  1736. case USB_SPEED_LOW:
  1737. case USB_SPEED_FULL:
  1738. return FS_BLOCK;
  1739. case USB_SPEED_HIGH:
  1740. return HS_BLOCK;
  1741. case USB_SPEED_SUPER:
  1742. return SS_BLOCK;
  1743. case USB_SPEED_UNKNOWN:
  1744. case USB_SPEED_WIRELESS:
  1745. default:
  1746. /* Should never happen */
  1747. return 1;
  1748. }
  1749. }
  1750. static unsigned int
  1751. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1752. {
  1753. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1754. return LS_OVERHEAD;
  1755. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1756. return FS_OVERHEAD;
  1757. return HS_OVERHEAD;
  1758. }
  1759. /* If we are changing a LS/FS device under a HS hub,
  1760. * make sure (if we are activating a new TT) that the HS bus has enough
  1761. * bandwidth for this new TT.
  1762. */
  1763. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1764. struct xhci_virt_device *virt_dev,
  1765. int old_active_eps)
  1766. {
  1767. struct xhci_interval_bw_table *bw_table;
  1768. struct xhci_tt_bw_info *tt_info;
  1769. /* Find the bandwidth table for the root port this TT is attached to. */
  1770. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1771. tt_info = virt_dev->tt_info;
  1772. /* If this TT already had active endpoints, the bandwidth for this TT
  1773. * has already been added. Removing all periodic endpoints (and thus
  1774. * making the TT enactive) will only decrease the bandwidth used.
  1775. */
  1776. if (old_active_eps)
  1777. return 0;
  1778. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1779. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1780. return -ENOMEM;
  1781. return 0;
  1782. }
  1783. /* Not sure why we would have no new active endpoints...
  1784. *
  1785. * Maybe because of an Evaluate Context change for a hub update or a
  1786. * control endpoint 0 max packet size change?
  1787. * FIXME: skip the bandwidth calculation in that case.
  1788. */
  1789. return 0;
  1790. }
  1791. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1792. struct xhci_virt_device *virt_dev)
  1793. {
  1794. unsigned int bw_reserved;
  1795. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1796. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1797. return -ENOMEM;
  1798. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1799. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1800. return -ENOMEM;
  1801. return 0;
  1802. }
  1803. /*
  1804. * This algorithm is a very conservative estimate of the worst-case scheduling
  1805. * scenario for any one interval. The hardware dynamically schedules the
  1806. * packets, so we can't tell which microframe could be the limiting factor in
  1807. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1808. *
  1809. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1810. * case scenario. Instead, we come up with an estimate that is no less than
  1811. * the worst case bandwidth used for any one microframe, but may be an
  1812. * over-estimate.
  1813. *
  1814. * We walk the requirements for each endpoint by interval, starting with the
  1815. * smallest interval, and place packets in the schedule where there is only one
  1816. * possible way to schedule packets for that interval. In order to simplify
  1817. * this algorithm, we record the largest max packet size for each interval, and
  1818. * assume all packets will be that size.
  1819. *
  1820. * For interval 0, we obviously must schedule all packets for each interval.
  1821. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1822. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1823. * the number of packets).
  1824. *
  1825. * For interval 1, we have two possible microframes to schedule those packets
  1826. * in. For this algorithm, if we can schedule the same number of packets for
  1827. * each possible scheduling opportunity (each microframe), we will do so. The
  1828. * remaining number of packets will be saved to be transmitted in the gaps in
  1829. * the next interval's scheduling sequence.
  1830. *
  1831. * As we move those remaining packets to be scheduled with interval 2 packets,
  1832. * we have to double the number of remaining packets to transmit. This is
  1833. * because the intervals are actually powers of 2, and we would be transmitting
  1834. * the previous interval's packets twice in this interval. We also have to be
  1835. * sure that when we look at the largest max packet size for this interval, we
  1836. * also look at the largest max packet size for the remaining packets and take
  1837. * the greater of the two.
  1838. *
  1839. * The algorithm continues to evenly distribute packets in each scheduling
  1840. * opportunity, and push the remaining packets out, until we get to the last
  1841. * interval. Then those packets and their associated overhead are just added
  1842. * to the bandwidth used.
  1843. */
  1844. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1845. struct xhci_virt_device *virt_dev,
  1846. int old_active_eps)
  1847. {
  1848. unsigned int bw_reserved;
  1849. unsigned int max_bandwidth;
  1850. unsigned int bw_used;
  1851. unsigned int block_size;
  1852. struct xhci_interval_bw_table *bw_table;
  1853. unsigned int packet_size = 0;
  1854. unsigned int overhead = 0;
  1855. unsigned int packets_transmitted = 0;
  1856. unsigned int packets_remaining = 0;
  1857. unsigned int i;
  1858. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1859. return xhci_check_ss_bw(xhci, virt_dev);
  1860. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1861. max_bandwidth = HS_BW_LIMIT;
  1862. /* Convert percent of bus BW reserved to blocks reserved */
  1863. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1864. } else {
  1865. max_bandwidth = FS_BW_LIMIT;
  1866. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1867. }
  1868. bw_table = virt_dev->bw_table;
  1869. /* We need to translate the max packet size and max ESIT payloads into
  1870. * the units the hardware uses.
  1871. */
  1872. block_size = xhci_get_block_size(virt_dev->udev);
  1873. /* If we are manipulating a LS/FS device under a HS hub, double check
  1874. * that the HS bus has enough bandwidth if we are activing a new TT.
  1875. */
  1876. if (virt_dev->tt_info) {
  1877. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1878. virt_dev->real_port);
  1879. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1880. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1881. "newly activated TT.\n");
  1882. return -ENOMEM;
  1883. }
  1884. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1885. virt_dev->tt_info->slot_id,
  1886. virt_dev->tt_info->ttport);
  1887. } else {
  1888. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1889. virt_dev->real_port);
  1890. }
  1891. /* Add in how much bandwidth will be used for interval zero, or the
  1892. * rounded max ESIT payload + number of packets * largest overhead.
  1893. */
  1894. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1895. bw_table->interval_bw[0].num_packets *
  1896. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1897. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1898. unsigned int bw_added;
  1899. unsigned int largest_mps;
  1900. unsigned int interval_overhead;
  1901. /*
  1902. * How many packets could we transmit in this interval?
  1903. * If packets didn't fit in the previous interval, we will need
  1904. * to transmit that many packets twice within this interval.
  1905. */
  1906. packets_remaining = 2 * packets_remaining +
  1907. bw_table->interval_bw[i].num_packets;
  1908. /* Find the largest max packet size of this or the previous
  1909. * interval.
  1910. */
  1911. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1912. largest_mps = 0;
  1913. else {
  1914. struct xhci_virt_ep *virt_ep;
  1915. struct list_head *ep_entry;
  1916. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1917. virt_ep = list_entry(ep_entry,
  1918. struct xhci_virt_ep, bw_endpoint_list);
  1919. /* Convert to blocks, rounding up */
  1920. largest_mps = DIV_ROUND_UP(
  1921. virt_ep->bw_info.max_packet_size,
  1922. block_size);
  1923. }
  1924. if (largest_mps > packet_size)
  1925. packet_size = largest_mps;
  1926. /* Use the larger overhead of this or the previous interval. */
  1927. interval_overhead = xhci_get_largest_overhead(
  1928. &bw_table->interval_bw[i]);
  1929. if (interval_overhead > overhead)
  1930. overhead = interval_overhead;
  1931. /* How many packets can we evenly distribute across
  1932. * (1 << (i + 1)) possible scheduling opportunities?
  1933. */
  1934. packets_transmitted = packets_remaining >> (i + 1);
  1935. /* Add in the bandwidth used for those scheduled packets */
  1936. bw_added = packets_transmitted * (overhead + packet_size);
  1937. /* How many packets do we have remaining to transmit? */
  1938. packets_remaining = packets_remaining % (1 << (i + 1));
  1939. /* What largest max packet size should those packets have? */
  1940. /* If we've transmitted all packets, don't carry over the
  1941. * largest packet size.
  1942. */
  1943. if (packets_remaining == 0) {
  1944. packet_size = 0;
  1945. overhead = 0;
  1946. } else if (packets_transmitted > 0) {
  1947. /* Otherwise if we do have remaining packets, and we've
  1948. * scheduled some packets in this interval, take the
  1949. * largest max packet size from endpoints with this
  1950. * interval.
  1951. */
  1952. packet_size = largest_mps;
  1953. overhead = interval_overhead;
  1954. }
  1955. /* Otherwise carry over packet_size and overhead from the last
  1956. * time we had a remainder.
  1957. */
  1958. bw_used += bw_added;
  1959. if (bw_used > max_bandwidth) {
  1960. xhci_warn(xhci, "Not enough bandwidth. "
  1961. "Proposed: %u, Max: %u\n",
  1962. bw_used, max_bandwidth);
  1963. return -ENOMEM;
  1964. }
  1965. }
  1966. /*
  1967. * Ok, we know we have some packets left over after even-handedly
  1968. * scheduling interval 15. We don't know which microframes they will
  1969. * fit into, so we over-schedule and say they will be scheduled every
  1970. * microframe.
  1971. */
  1972. if (packets_remaining > 0)
  1973. bw_used += overhead + packet_size;
  1974. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1975. unsigned int port_index = virt_dev->real_port - 1;
  1976. /* OK, we're manipulating a HS device attached to a
  1977. * root port bandwidth domain. Include the number of active TTs
  1978. * in the bandwidth used.
  1979. */
  1980. bw_used += TT_HS_OVERHEAD *
  1981. xhci->rh_bw[port_index].num_active_tts;
  1982. }
  1983. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1984. "Available: %u " "percent\n",
  1985. bw_used, max_bandwidth, bw_reserved,
  1986. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1987. max_bandwidth);
  1988. bw_used += bw_reserved;
  1989. if (bw_used > max_bandwidth) {
  1990. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1991. bw_used, max_bandwidth);
  1992. return -ENOMEM;
  1993. }
  1994. bw_table->bw_used = bw_used;
  1995. return 0;
  1996. }
  1997. static bool xhci_is_async_ep(unsigned int ep_type)
  1998. {
  1999. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  2000. ep_type != ISOC_IN_EP &&
  2001. ep_type != INT_IN_EP);
  2002. }
  2003. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  2004. {
  2005. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  2006. }
  2007. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  2008. {
  2009. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  2010. if (ep_bw->ep_interval == 0)
  2011. return SS_OVERHEAD_BURST +
  2012. (ep_bw->mult * ep_bw->num_packets *
  2013. (SS_OVERHEAD + mps));
  2014. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  2015. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  2016. 1 << ep_bw->ep_interval);
  2017. }
  2018. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2019. struct xhci_bw_info *ep_bw,
  2020. struct xhci_interval_bw_table *bw_table,
  2021. struct usb_device *udev,
  2022. struct xhci_virt_ep *virt_ep,
  2023. struct xhci_tt_bw_info *tt_info)
  2024. {
  2025. struct xhci_interval_bw *interval_bw;
  2026. int normalized_interval;
  2027. if (xhci_is_async_ep(ep_bw->type))
  2028. return;
  2029. if (udev->speed == USB_SPEED_SUPER) {
  2030. if (xhci_is_sync_in_ep(ep_bw->type))
  2031. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2032. xhci_get_ss_bw_consumed(ep_bw);
  2033. else
  2034. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2035. xhci_get_ss_bw_consumed(ep_bw);
  2036. return;
  2037. }
  2038. /* SuperSpeed endpoints never get added to intervals in the table, so
  2039. * this check is only valid for HS/FS/LS devices.
  2040. */
  2041. if (list_empty(&virt_ep->bw_endpoint_list))
  2042. return;
  2043. /* For LS/FS devices, we need to translate the interval expressed in
  2044. * microframes to frames.
  2045. */
  2046. if (udev->speed == USB_SPEED_HIGH)
  2047. normalized_interval = ep_bw->ep_interval;
  2048. else
  2049. normalized_interval = ep_bw->ep_interval - 3;
  2050. if (normalized_interval == 0)
  2051. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2052. interval_bw = &bw_table->interval_bw[normalized_interval];
  2053. interval_bw->num_packets -= ep_bw->num_packets;
  2054. switch (udev->speed) {
  2055. case USB_SPEED_LOW:
  2056. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2057. break;
  2058. case USB_SPEED_FULL:
  2059. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2060. break;
  2061. case USB_SPEED_HIGH:
  2062. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2063. break;
  2064. case USB_SPEED_SUPER:
  2065. case USB_SPEED_UNKNOWN:
  2066. case USB_SPEED_WIRELESS:
  2067. /* Should never happen because only LS/FS/HS endpoints will get
  2068. * added to the endpoint list.
  2069. */
  2070. return;
  2071. }
  2072. if (tt_info)
  2073. tt_info->active_eps -= 1;
  2074. list_del_init(&virt_ep->bw_endpoint_list);
  2075. }
  2076. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2077. struct xhci_bw_info *ep_bw,
  2078. struct xhci_interval_bw_table *bw_table,
  2079. struct usb_device *udev,
  2080. struct xhci_virt_ep *virt_ep,
  2081. struct xhci_tt_bw_info *tt_info)
  2082. {
  2083. struct xhci_interval_bw *interval_bw;
  2084. struct xhci_virt_ep *smaller_ep;
  2085. int normalized_interval;
  2086. if (xhci_is_async_ep(ep_bw->type))
  2087. return;
  2088. if (udev->speed == USB_SPEED_SUPER) {
  2089. if (xhci_is_sync_in_ep(ep_bw->type))
  2090. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2091. xhci_get_ss_bw_consumed(ep_bw);
  2092. else
  2093. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2094. xhci_get_ss_bw_consumed(ep_bw);
  2095. return;
  2096. }
  2097. /* For LS/FS devices, we need to translate the interval expressed in
  2098. * microframes to frames.
  2099. */
  2100. if (udev->speed == USB_SPEED_HIGH)
  2101. normalized_interval = ep_bw->ep_interval;
  2102. else
  2103. normalized_interval = ep_bw->ep_interval - 3;
  2104. if (normalized_interval == 0)
  2105. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2106. interval_bw = &bw_table->interval_bw[normalized_interval];
  2107. interval_bw->num_packets += ep_bw->num_packets;
  2108. switch (udev->speed) {
  2109. case USB_SPEED_LOW:
  2110. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2111. break;
  2112. case USB_SPEED_FULL:
  2113. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2114. break;
  2115. case USB_SPEED_HIGH:
  2116. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2117. break;
  2118. case USB_SPEED_SUPER:
  2119. case USB_SPEED_UNKNOWN:
  2120. case USB_SPEED_WIRELESS:
  2121. /* Should never happen because only LS/FS/HS endpoints will get
  2122. * added to the endpoint list.
  2123. */
  2124. return;
  2125. }
  2126. if (tt_info)
  2127. tt_info->active_eps += 1;
  2128. /* Insert the endpoint into the list, largest max packet size first. */
  2129. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2130. bw_endpoint_list) {
  2131. if (ep_bw->max_packet_size >=
  2132. smaller_ep->bw_info.max_packet_size) {
  2133. /* Add the new ep before the smaller endpoint */
  2134. list_add_tail(&virt_ep->bw_endpoint_list,
  2135. &smaller_ep->bw_endpoint_list);
  2136. return;
  2137. }
  2138. }
  2139. /* Add the new endpoint at the end of the list. */
  2140. list_add_tail(&virt_ep->bw_endpoint_list,
  2141. &interval_bw->endpoints);
  2142. }
  2143. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2144. struct xhci_virt_device *virt_dev,
  2145. int old_active_eps)
  2146. {
  2147. struct xhci_root_port_bw_info *rh_bw_info;
  2148. if (!virt_dev->tt_info)
  2149. return;
  2150. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2151. if (old_active_eps == 0 &&
  2152. virt_dev->tt_info->active_eps != 0) {
  2153. rh_bw_info->num_active_tts += 1;
  2154. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2155. } else if (old_active_eps != 0 &&
  2156. virt_dev->tt_info->active_eps == 0) {
  2157. rh_bw_info->num_active_tts -= 1;
  2158. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2159. }
  2160. }
  2161. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2162. struct xhci_virt_device *virt_dev,
  2163. struct xhci_container_ctx *in_ctx)
  2164. {
  2165. struct xhci_bw_info ep_bw_info[31];
  2166. int i;
  2167. struct xhci_input_control_ctx *ctrl_ctx;
  2168. int old_active_eps = 0;
  2169. if (virt_dev->tt_info)
  2170. old_active_eps = virt_dev->tt_info->active_eps;
  2171. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2172. for (i = 0; i < 31; i++) {
  2173. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2174. continue;
  2175. /* Make a copy of the BW info in case we need to revert this */
  2176. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2177. sizeof(ep_bw_info[i]));
  2178. /* Drop the endpoint from the interval table if the endpoint is
  2179. * being dropped or changed.
  2180. */
  2181. if (EP_IS_DROPPED(ctrl_ctx, i))
  2182. xhci_drop_ep_from_interval_table(xhci,
  2183. &virt_dev->eps[i].bw_info,
  2184. virt_dev->bw_table,
  2185. virt_dev->udev,
  2186. &virt_dev->eps[i],
  2187. virt_dev->tt_info);
  2188. }
  2189. /* Overwrite the information stored in the endpoints' bw_info */
  2190. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2191. for (i = 0; i < 31; i++) {
  2192. /* Add any changed or added endpoints to the interval table */
  2193. if (EP_IS_ADDED(ctrl_ctx, i))
  2194. xhci_add_ep_to_interval_table(xhci,
  2195. &virt_dev->eps[i].bw_info,
  2196. virt_dev->bw_table,
  2197. virt_dev->udev,
  2198. &virt_dev->eps[i],
  2199. virt_dev->tt_info);
  2200. }
  2201. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2202. /* Ok, this fits in the bandwidth we have.
  2203. * Update the number of active TTs.
  2204. */
  2205. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2206. return 0;
  2207. }
  2208. /* We don't have enough bandwidth for this, revert the stored info. */
  2209. for (i = 0; i < 31; i++) {
  2210. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2211. continue;
  2212. /* Drop the new copies of any added or changed endpoints from
  2213. * the interval table.
  2214. */
  2215. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2216. xhci_drop_ep_from_interval_table(xhci,
  2217. &virt_dev->eps[i].bw_info,
  2218. virt_dev->bw_table,
  2219. virt_dev->udev,
  2220. &virt_dev->eps[i],
  2221. virt_dev->tt_info);
  2222. }
  2223. /* Revert the endpoint back to its old information */
  2224. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2225. sizeof(ep_bw_info[i]));
  2226. /* Add any changed or dropped endpoints back into the table */
  2227. if (EP_IS_DROPPED(ctrl_ctx, i))
  2228. xhci_add_ep_to_interval_table(xhci,
  2229. &virt_dev->eps[i].bw_info,
  2230. virt_dev->bw_table,
  2231. virt_dev->udev,
  2232. &virt_dev->eps[i],
  2233. virt_dev->tt_info);
  2234. }
  2235. return -ENOMEM;
  2236. }
  2237. /* Issue a configure endpoint command or evaluate context command
  2238. * and wait for it to finish.
  2239. */
  2240. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2241. struct usb_device *udev,
  2242. struct xhci_command *command,
  2243. bool ctx_change, bool must_succeed)
  2244. {
  2245. int ret;
  2246. int timeleft;
  2247. unsigned long flags;
  2248. struct xhci_container_ctx *in_ctx;
  2249. struct completion *cmd_completion;
  2250. u32 *cmd_status;
  2251. struct xhci_virt_device *virt_dev;
  2252. union xhci_trb *cmd_trb;
  2253. spin_lock_irqsave(&xhci->lock, flags);
  2254. virt_dev = xhci->devs[udev->slot_id];
  2255. if (command)
  2256. in_ctx = command->in_ctx;
  2257. else
  2258. in_ctx = virt_dev->in_ctx;
  2259. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2260. xhci_reserve_host_resources(xhci, in_ctx)) {
  2261. spin_unlock_irqrestore(&xhci->lock, flags);
  2262. xhci_warn(xhci, "Not enough host resources, "
  2263. "active endpoint contexts = %u\n",
  2264. xhci->num_active_eps);
  2265. return -ENOMEM;
  2266. }
  2267. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2268. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2269. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2270. xhci_free_host_resources(xhci, in_ctx);
  2271. spin_unlock_irqrestore(&xhci->lock, flags);
  2272. xhci_warn(xhci, "Not enough bandwidth\n");
  2273. return -ENOMEM;
  2274. }
  2275. if (command) {
  2276. cmd_completion = command->completion;
  2277. cmd_status = &command->status;
  2278. command->command_trb = xhci->cmd_ring->enqueue;
  2279. /* Enqueue pointer can be left pointing to the link TRB,
  2280. * we must handle that
  2281. */
  2282. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2283. command->command_trb =
  2284. xhci->cmd_ring->enq_seg->next->trbs;
  2285. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2286. } else {
  2287. cmd_completion = &virt_dev->cmd_completion;
  2288. cmd_status = &virt_dev->cmd_status;
  2289. }
  2290. init_completion(cmd_completion);
  2291. cmd_trb = xhci->cmd_ring->dequeue;
  2292. if (!ctx_change)
  2293. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2294. udev->slot_id, must_succeed);
  2295. else
  2296. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2297. udev->slot_id, must_succeed);
  2298. if (ret < 0) {
  2299. if (command)
  2300. list_del(&command->cmd_list);
  2301. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2302. xhci_free_host_resources(xhci, in_ctx);
  2303. spin_unlock_irqrestore(&xhci->lock, flags);
  2304. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2305. return -ENOMEM;
  2306. }
  2307. xhci_ring_cmd_db(xhci);
  2308. spin_unlock_irqrestore(&xhci->lock, flags);
  2309. /* Wait for the configure endpoint command to complete */
  2310. timeleft = wait_for_completion_interruptible_timeout(
  2311. cmd_completion,
  2312. XHCI_CMD_DEFAULT_TIMEOUT);
  2313. if (timeleft <= 0) {
  2314. xhci_warn(xhci, "%s while waiting for %s command\n",
  2315. timeleft == 0 ? "Timeout" : "Signal",
  2316. ctx_change == 0 ?
  2317. "configure endpoint" :
  2318. "evaluate context");
  2319. /* cancel the configure endpoint command */
  2320. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2321. if (ret < 0)
  2322. return ret;
  2323. return -ETIME;
  2324. }
  2325. if (!ctx_change)
  2326. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2327. else
  2328. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2329. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2330. spin_lock_irqsave(&xhci->lock, flags);
  2331. /* If the command failed, remove the reserved resources.
  2332. * Otherwise, clean up the estimate to include dropped eps.
  2333. */
  2334. if (ret)
  2335. xhci_free_host_resources(xhci, in_ctx);
  2336. else
  2337. xhci_finish_resource_reservation(xhci, in_ctx);
  2338. spin_unlock_irqrestore(&xhci->lock, flags);
  2339. }
  2340. return ret;
  2341. }
  2342. /* Called after one or more calls to xhci_add_endpoint() or
  2343. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2344. * to call xhci_reset_bandwidth().
  2345. *
  2346. * Since we are in the middle of changing either configuration or
  2347. * installing a new alt setting, the USB core won't allow URBs to be
  2348. * enqueued for any endpoint on the old config or interface. Nothing
  2349. * else should be touching the xhci->devs[slot_id] structure, so we
  2350. * don't need to take the xhci->lock for manipulating that.
  2351. */
  2352. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2353. {
  2354. int i;
  2355. int ret = 0;
  2356. struct xhci_hcd *xhci;
  2357. struct xhci_virt_device *virt_dev;
  2358. struct xhci_input_control_ctx *ctrl_ctx;
  2359. struct xhci_slot_ctx *slot_ctx;
  2360. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2361. if (ret <= 0)
  2362. return ret;
  2363. xhci = hcd_to_xhci(hcd);
  2364. if (xhci->xhc_state & XHCI_STATE_DYING)
  2365. return -ENODEV;
  2366. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2367. virt_dev = xhci->devs[udev->slot_id];
  2368. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2369. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2370. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2371. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2372. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2373. /* Don't issue the command if there's no endpoints to update. */
  2374. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2375. ctrl_ctx->drop_flags == 0)
  2376. return 0;
  2377. xhci_dbg(xhci, "New Input Control Context:\n");
  2378. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2379. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2380. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2381. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2382. false, false);
  2383. if (ret) {
  2384. /* Callee should call reset_bandwidth() */
  2385. return ret;
  2386. }
  2387. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2388. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2389. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2390. /* Free any rings that were dropped, but not changed. */
  2391. for (i = 1; i < 31; ++i) {
  2392. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2393. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2394. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2395. }
  2396. xhci_zero_in_ctx(xhci, virt_dev);
  2397. /*
  2398. * Install any rings for completely new endpoints or changed endpoints,
  2399. * and free or cache any old rings from changed endpoints.
  2400. */
  2401. for (i = 1; i < 31; ++i) {
  2402. if (!virt_dev->eps[i].new_ring)
  2403. continue;
  2404. /* Only cache or free the old ring if it exists.
  2405. * It may not if this is the first add of an endpoint.
  2406. */
  2407. if (virt_dev->eps[i].ring) {
  2408. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2409. }
  2410. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2411. virt_dev->eps[i].new_ring = NULL;
  2412. }
  2413. return ret;
  2414. }
  2415. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2416. {
  2417. struct xhci_hcd *xhci;
  2418. struct xhci_virt_device *virt_dev;
  2419. int i, ret;
  2420. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2421. if (ret <= 0)
  2422. return;
  2423. xhci = hcd_to_xhci(hcd);
  2424. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2425. virt_dev = xhci->devs[udev->slot_id];
  2426. /* Free any rings allocated for added endpoints */
  2427. for (i = 0; i < 31; ++i) {
  2428. if (virt_dev->eps[i].new_ring) {
  2429. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2430. virt_dev->eps[i].new_ring = NULL;
  2431. }
  2432. }
  2433. xhci_zero_in_ctx(xhci, virt_dev);
  2434. }
  2435. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2436. struct xhci_container_ctx *in_ctx,
  2437. struct xhci_container_ctx *out_ctx,
  2438. u32 add_flags, u32 drop_flags)
  2439. {
  2440. struct xhci_input_control_ctx *ctrl_ctx;
  2441. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2442. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2443. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2444. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2445. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2446. xhci_dbg(xhci, "Input Context:\n");
  2447. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2448. }
  2449. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2450. unsigned int slot_id, unsigned int ep_index,
  2451. struct xhci_dequeue_state *deq_state)
  2452. {
  2453. struct xhci_container_ctx *in_ctx;
  2454. struct xhci_ep_ctx *ep_ctx;
  2455. u32 added_ctxs;
  2456. dma_addr_t addr;
  2457. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2458. xhci->devs[slot_id]->out_ctx, ep_index);
  2459. in_ctx = xhci->devs[slot_id]->in_ctx;
  2460. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2461. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2462. deq_state->new_deq_ptr);
  2463. if (addr == 0) {
  2464. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2465. "reset ep command\n");
  2466. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2467. deq_state->new_deq_seg,
  2468. deq_state->new_deq_ptr);
  2469. return;
  2470. }
  2471. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2472. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2473. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2474. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2475. }
  2476. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2477. struct usb_device *udev, unsigned int ep_index)
  2478. {
  2479. struct xhci_dequeue_state deq_state;
  2480. struct xhci_virt_ep *ep;
  2481. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2482. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2483. /* We need to move the HW's dequeue pointer past this TD,
  2484. * or it will attempt to resend it on the next doorbell ring.
  2485. */
  2486. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2487. ep_index, ep->stopped_stream, ep->stopped_td,
  2488. &deq_state);
  2489. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2490. * issue a configure endpoint command later.
  2491. */
  2492. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2493. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2494. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2495. ep_index, ep->stopped_stream, &deq_state);
  2496. } else {
  2497. /* Better hope no one uses the input context between now and the
  2498. * reset endpoint completion!
  2499. * XXX: No idea how this hardware will react when stream rings
  2500. * are enabled.
  2501. */
  2502. xhci_dbg(xhci, "Setting up input context for "
  2503. "configure endpoint command\n");
  2504. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2505. ep_index, &deq_state);
  2506. }
  2507. }
  2508. /* Deal with stalled endpoints. The core should have sent the control message
  2509. * to clear the halt condition. However, we need to make the xHCI hardware
  2510. * reset its sequence number, since a device will expect a sequence number of
  2511. * zero after the halt condition is cleared.
  2512. * Context: in_interrupt
  2513. */
  2514. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2515. struct usb_host_endpoint *ep)
  2516. {
  2517. struct xhci_hcd *xhci;
  2518. struct usb_device *udev;
  2519. unsigned int ep_index;
  2520. unsigned long flags;
  2521. int ret;
  2522. struct xhci_virt_ep *virt_ep;
  2523. xhci = hcd_to_xhci(hcd);
  2524. udev = (struct usb_device *) ep->hcpriv;
  2525. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2526. * with xhci_add_endpoint()
  2527. */
  2528. if (!ep->hcpriv)
  2529. return;
  2530. ep_index = xhci_get_endpoint_index(&ep->desc);
  2531. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2532. if (!virt_ep->stopped_td) {
  2533. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2534. ep->desc.bEndpointAddress);
  2535. return;
  2536. }
  2537. if (usb_endpoint_xfer_control(&ep->desc)) {
  2538. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2539. return;
  2540. }
  2541. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2542. spin_lock_irqsave(&xhci->lock, flags);
  2543. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2544. /*
  2545. * Can't change the ring dequeue pointer until it's transitioned to the
  2546. * stopped state, which is only upon a successful reset endpoint
  2547. * command. Better hope that last command worked!
  2548. */
  2549. if (!ret) {
  2550. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2551. kfree(virt_ep->stopped_td);
  2552. xhci_ring_cmd_db(xhci);
  2553. }
  2554. virt_ep->stopped_td = NULL;
  2555. virt_ep->stopped_trb = NULL;
  2556. virt_ep->stopped_stream = 0;
  2557. spin_unlock_irqrestore(&xhci->lock, flags);
  2558. if (ret)
  2559. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2560. }
  2561. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2562. struct usb_device *udev, struct usb_host_endpoint *ep,
  2563. unsigned int slot_id)
  2564. {
  2565. int ret;
  2566. unsigned int ep_index;
  2567. unsigned int ep_state;
  2568. if (!ep)
  2569. return -EINVAL;
  2570. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2571. if (ret <= 0)
  2572. return -EINVAL;
  2573. if (ep->ss_ep_comp.bmAttributes == 0) {
  2574. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2575. " descriptor for ep 0x%x does not support streams\n",
  2576. ep->desc.bEndpointAddress);
  2577. return -EINVAL;
  2578. }
  2579. ep_index = xhci_get_endpoint_index(&ep->desc);
  2580. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2581. if (ep_state & EP_HAS_STREAMS ||
  2582. ep_state & EP_GETTING_STREAMS) {
  2583. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2584. "already has streams set up.\n",
  2585. ep->desc.bEndpointAddress);
  2586. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2587. "dynamic stream context array reallocation.\n");
  2588. return -EINVAL;
  2589. }
  2590. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2591. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2592. "endpoint 0x%x; URBs are pending.\n",
  2593. ep->desc.bEndpointAddress);
  2594. return -EINVAL;
  2595. }
  2596. return 0;
  2597. }
  2598. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2599. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2600. {
  2601. unsigned int max_streams;
  2602. /* The stream context array size must be a power of two */
  2603. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2604. /*
  2605. * Find out how many primary stream array entries the host controller
  2606. * supports. Later we may use secondary stream arrays (similar to 2nd
  2607. * level page entries), but that's an optional feature for xHCI host
  2608. * controllers. xHCs must support at least 4 stream IDs.
  2609. */
  2610. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2611. if (*num_stream_ctxs > max_streams) {
  2612. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2613. max_streams);
  2614. *num_stream_ctxs = max_streams;
  2615. *num_streams = max_streams;
  2616. }
  2617. }
  2618. /* Returns an error code if one of the endpoint already has streams.
  2619. * This does not change any data structures, it only checks and gathers
  2620. * information.
  2621. */
  2622. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2623. struct usb_device *udev,
  2624. struct usb_host_endpoint **eps, unsigned int num_eps,
  2625. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2626. {
  2627. unsigned int max_streams;
  2628. unsigned int endpoint_flag;
  2629. int i;
  2630. int ret;
  2631. for (i = 0; i < num_eps; i++) {
  2632. ret = xhci_check_streams_endpoint(xhci, udev,
  2633. eps[i], udev->slot_id);
  2634. if (ret < 0)
  2635. return ret;
  2636. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2637. if (max_streams < (*num_streams - 1)) {
  2638. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2639. eps[i]->desc.bEndpointAddress,
  2640. max_streams);
  2641. *num_streams = max_streams+1;
  2642. }
  2643. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2644. if (*changed_ep_bitmask & endpoint_flag)
  2645. return -EINVAL;
  2646. *changed_ep_bitmask |= endpoint_flag;
  2647. }
  2648. return 0;
  2649. }
  2650. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2651. struct usb_device *udev,
  2652. struct usb_host_endpoint **eps, unsigned int num_eps)
  2653. {
  2654. u32 changed_ep_bitmask = 0;
  2655. unsigned int slot_id;
  2656. unsigned int ep_index;
  2657. unsigned int ep_state;
  2658. int i;
  2659. slot_id = udev->slot_id;
  2660. if (!xhci->devs[slot_id])
  2661. return 0;
  2662. for (i = 0; i < num_eps; i++) {
  2663. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2664. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2665. /* Are streams already being freed for the endpoint? */
  2666. if (ep_state & EP_GETTING_NO_STREAMS) {
  2667. xhci_warn(xhci, "WARN Can't disable streams for "
  2668. "endpoint 0x%x\n, "
  2669. "streams are being disabled already.",
  2670. eps[i]->desc.bEndpointAddress);
  2671. return 0;
  2672. }
  2673. /* Are there actually any streams to free? */
  2674. if (!(ep_state & EP_HAS_STREAMS) &&
  2675. !(ep_state & EP_GETTING_STREAMS)) {
  2676. xhci_warn(xhci, "WARN Can't disable streams for "
  2677. "endpoint 0x%x\n, "
  2678. "streams are already disabled!",
  2679. eps[i]->desc.bEndpointAddress);
  2680. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2681. "with non-streams endpoint\n");
  2682. return 0;
  2683. }
  2684. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2685. }
  2686. return changed_ep_bitmask;
  2687. }
  2688. /*
  2689. * The USB device drivers use this function (though the HCD interface in USB
  2690. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2691. * coordinate mass storage command queueing across multiple endpoints (basically
  2692. * a stream ID == a task ID).
  2693. *
  2694. * Setting up streams involves allocating the same size stream context array
  2695. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2696. *
  2697. * Don't allow the call to succeed if one endpoint only supports one stream
  2698. * (which means it doesn't support streams at all).
  2699. *
  2700. * Drivers may get less stream IDs than they asked for, if the host controller
  2701. * hardware or endpoints claim they can't support the number of requested
  2702. * stream IDs.
  2703. */
  2704. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2705. struct usb_host_endpoint **eps, unsigned int num_eps,
  2706. unsigned int num_streams, gfp_t mem_flags)
  2707. {
  2708. int i, ret;
  2709. struct xhci_hcd *xhci;
  2710. struct xhci_virt_device *vdev;
  2711. struct xhci_command *config_cmd;
  2712. unsigned int ep_index;
  2713. unsigned int num_stream_ctxs;
  2714. unsigned long flags;
  2715. u32 changed_ep_bitmask = 0;
  2716. if (!eps)
  2717. return -EINVAL;
  2718. /* Add one to the number of streams requested to account for
  2719. * stream 0 that is reserved for xHCI usage.
  2720. */
  2721. num_streams += 1;
  2722. xhci = hcd_to_xhci(hcd);
  2723. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2724. num_streams);
  2725. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2726. if (!config_cmd) {
  2727. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2728. return -ENOMEM;
  2729. }
  2730. /* Check to make sure all endpoints are not already configured for
  2731. * streams. While we're at it, find the maximum number of streams that
  2732. * all the endpoints will support and check for duplicate endpoints.
  2733. */
  2734. spin_lock_irqsave(&xhci->lock, flags);
  2735. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2736. num_eps, &num_streams, &changed_ep_bitmask);
  2737. if (ret < 0) {
  2738. xhci_free_command(xhci, config_cmd);
  2739. spin_unlock_irqrestore(&xhci->lock, flags);
  2740. return ret;
  2741. }
  2742. if (num_streams <= 1) {
  2743. xhci_warn(xhci, "WARN: endpoints can't handle "
  2744. "more than one stream.\n");
  2745. xhci_free_command(xhci, config_cmd);
  2746. spin_unlock_irqrestore(&xhci->lock, flags);
  2747. return -EINVAL;
  2748. }
  2749. vdev = xhci->devs[udev->slot_id];
  2750. /* Mark each endpoint as being in transition, so
  2751. * xhci_urb_enqueue() will reject all URBs.
  2752. */
  2753. for (i = 0; i < num_eps; i++) {
  2754. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2755. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2756. }
  2757. spin_unlock_irqrestore(&xhci->lock, flags);
  2758. /* Setup internal data structures and allocate HW data structures for
  2759. * streams (but don't install the HW structures in the input context
  2760. * until we're sure all memory allocation succeeded).
  2761. */
  2762. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2763. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2764. num_stream_ctxs, num_streams);
  2765. for (i = 0; i < num_eps; i++) {
  2766. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2767. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2768. num_stream_ctxs,
  2769. num_streams, mem_flags);
  2770. if (!vdev->eps[ep_index].stream_info)
  2771. goto cleanup;
  2772. /* Set maxPstreams in endpoint context and update deq ptr to
  2773. * point to stream context array. FIXME
  2774. */
  2775. }
  2776. /* Set up the input context for a configure endpoint command. */
  2777. for (i = 0; i < num_eps; i++) {
  2778. struct xhci_ep_ctx *ep_ctx;
  2779. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2780. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2781. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2782. vdev->out_ctx, ep_index);
  2783. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2784. vdev->eps[ep_index].stream_info);
  2785. }
  2786. /* Tell the HW to drop its old copy of the endpoint context info
  2787. * and add the updated copy from the input context.
  2788. */
  2789. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2790. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2791. /* Issue and wait for the configure endpoint command */
  2792. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2793. false, false);
  2794. /* xHC rejected the configure endpoint command for some reason, so we
  2795. * leave the old ring intact and free our internal streams data
  2796. * structure.
  2797. */
  2798. if (ret < 0)
  2799. goto cleanup;
  2800. spin_lock_irqsave(&xhci->lock, flags);
  2801. for (i = 0; i < num_eps; i++) {
  2802. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2803. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2804. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2805. udev->slot_id, ep_index);
  2806. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2807. }
  2808. xhci_free_command(xhci, config_cmd);
  2809. spin_unlock_irqrestore(&xhci->lock, flags);
  2810. /* Subtract 1 for stream 0, which drivers can't use */
  2811. return num_streams - 1;
  2812. cleanup:
  2813. /* If it didn't work, free the streams! */
  2814. for (i = 0; i < num_eps; i++) {
  2815. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2816. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2817. vdev->eps[ep_index].stream_info = NULL;
  2818. /* FIXME Unset maxPstreams in endpoint context and
  2819. * update deq ptr to point to normal string ring.
  2820. */
  2821. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2822. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2823. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2824. }
  2825. xhci_free_command(xhci, config_cmd);
  2826. return -ENOMEM;
  2827. }
  2828. /* Transition the endpoint from using streams to being a "normal" endpoint
  2829. * without streams.
  2830. *
  2831. * Modify the endpoint context state, submit a configure endpoint command,
  2832. * and free all endpoint rings for streams if that completes successfully.
  2833. */
  2834. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2835. struct usb_host_endpoint **eps, unsigned int num_eps,
  2836. gfp_t mem_flags)
  2837. {
  2838. int i, ret;
  2839. struct xhci_hcd *xhci;
  2840. struct xhci_virt_device *vdev;
  2841. struct xhci_command *command;
  2842. unsigned int ep_index;
  2843. unsigned long flags;
  2844. u32 changed_ep_bitmask;
  2845. xhci = hcd_to_xhci(hcd);
  2846. vdev = xhci->devs[udev->slot_id];
  2847. /* Set up a configure endpoint command to remove the streams rings */
  2848. spin_lock_irqsave(&xhci->lock, flags);
  2849. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2850. udev, eps, num_eps);
  2851. if (changed_ep_bitmask == 0) {
  2852. spin_unlock_irqrestore(&xhci->lock, flags);
  2853. return -EINVAL;
  2854. }
  2855. /* Use the xhci_command structure from the first endpoint. We may have
  2856. * allocated too many, but the driver may call xhci_free_streams() for
  2857. * each endpoint it grouped into one call to xhci_alloc_streams().
  2858. */
  2859. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2860. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2861. for (i = 0; i < num_eps; i++) {
  2862. struct xhci_ep_ctx *ep_ctx;
  2863. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2864. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2865. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2866. EP_GETTING_NO_STREAMS;
  2867. xhci_endpoint_copy(xhci, command->in_ctx,
  2868. vdev->out_ctx, ep_index);
  2869. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2870. &vdev->eps[ep_index]);
  2871. }
  2872. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2873. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2874. spin_unlock_irqrestore(&xhci->lock, flags);
  2875. /* Issue and wait for the configure endpoint command,
  2876. * which must succeed.
  2877. */
  2878. ret = xhci_configure_endpoint(xhci, udev, command,
  2879. false, true);
  2880. /* xHC rejected the configure endpoint command for some reason, so we
  2881. * leave the streams rings intact.
  2882. */
  2883. if (ret < 0)
  2884. return ret;
  2885. spin_lock_irqsave(&xhci->lock, flags);
  2886. for (i = 0; i < num_eps; i++) {
  2887. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2888. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2889. vdev->eps[ep_index].stream_info = NULL;
  2890. /* FIXME Unset maxPstreams in endpoint context and
  2891. * update deq ptr to point to normal string ring.
  2892. */
  2893. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2894. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2895. }
  2896. spin_unlock_irqrestore(&xhci->lock, flags);
  2897. return 0;
  2898. }
  2899. /*
  2900. * Deletes endpoint resources for endpoints that were active before a Reset
  2901. * Device command, or a Disable Slot command. The Reset Device command leaves
  2902. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2903. *
  2904. * Must be called with xhci->lock held.
  2905. */
  2906. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2907. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2908. {
  2909. int i;
  2910. unsigned int num_dropped_eps = 0;
  2911. unsigned int drop_flags = 0;
  2912. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2913. if (virt_dev->eps[i].ring) {
  2914. drop_flags |= 1 << i;
  2915. num_dropped_eps++;
  2916. }
  2917. }
  2918. xhci->num_active_eps -= num_dropped_eps;
  2919. if (num_dropped_eps)
  2920. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2921. "%u now active.\n",
  2922. num_dropped_eps, drop_flags,
  2923. xhci->num_active_eps);
  2924. }
  2925. /*
  2926. * This submits a Reset Device Command, which will set the device state to 0,
  2927. * set the device address to 0, and disable all the endpoints except the default
  2928. * control endpoint. The USB core should come back and call
  2929. * xhci_address_device(), and then re-set up the configuration. If this is
  2930. * called because of a usb_reset_and_verify_device(), then the old alternate
  2931. * settings will be re-installed through the normal bandwidth allocation
  2932. * functions.
  2933. *
  2934. * Wait for the Reset Device command to finish. Remove all structures
  2935. * associated with the endpoints that were disabled. Clear the input device
  2936. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2937. *
  2938. * If the virt_dev to be reset does not exist or does not match the udev,
  2939. * it means the device is lost, possibly due to the xHC restore error and
  2940. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2941. * re-allocate the device.
  2942. */
  2943. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2944. {
  2945. int ret, i;
  2946. unsigned long flags;
  2947. struct xhci_hcd *xhci;
  2948. unsigned int slot_id;
  2949. struct xhci_virt_device *virt_dev;
  2950. struct xhci_command *reset_device_cmd;
  2951. int timeleft;
  2952. int last_freed_endpoint;
  2953. struct xhci_slot_ctx *slot_ctx;
  2954. int old_active_eps = 0;
  2955. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2956. if (ret <= 0)
  2957. return ret;
  2958. xhci = hcd_to_xhci(hcd);
  2959. slot_id = udev->slot_id;
  2960. virt_dev = xhci->devs[slot_id];
  2961. if (!virt_dev) {
  2962. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2963. "not exist. Re-allocate the device\n", slot_id);
  2964. ret = xhci_alloc_dev(hcd, udev);
  2965. if (ret == 1)
  2966. return 0;
  2967. else
  2968. return -EINVAL;
  2969. }
  2970. if (virt_dev->udev != udev) {
  2971. /* If the virt_dev and the udev does not match, this virt_dev
  2972. * may belong to another udev.
  2973. * Re-allocate the device.
  2974. */
  2975. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2976. "not match the udev. Re-allocate the device\n",
  2977. slot_id);
  2978. ret = xhci_alloc_dev(hcd, udev);
  2979. if (ret == 1)
  2980. return 0;
  2981. else
  2982. return -EINVAL;
  2983. }
  2984. /* If device is not setup, there is no point in resetting it */
  2985. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2986. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  2987. SLOT_STATE_DISABLED)
  2988. return 0;
  2989. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  2990. /* Allocate the command structure that holds the struct completion.
  2991. * Assume we're in process context, since the normal device reset
  2992. * process has to wait for the device anyway. Storage devices are
  2993. * reset as part of error handling, so use GFP_NOIO instead of
  2994. * GFP_KERNEL.
  2995. */
  2996. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  2997. if (!reset_device_cmd) {
  2998. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  2999. return -ENOMEM;
  3000. }
  3001. /* Attempt to submit the Reset Device command to the command ring */
  3002. spin_lock_irqsave(&xhci->lock, flags);
  3003. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  3004. /* Enqueue pointer can be left pointing to the link TRB,
  3005. * we must handle that
  3006. */
  3007. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  3008. reset_device_cmd->command_trb =
  3009. xhci->cmd_ring->enq_seg->next->trbs;
  3010. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3011. ret = xhci_queue_reset_device(xhci, slot_id);
  3012. if (ret) {
  3013. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3014. list_del(&reset_device_cmd->cmd_list);
  3015. spin_unlock_irqrestore(&xhci->lock, flags);
  3016. goto command_cleanup;
  3017. }
  3018. xhci_ring_cmd_db(xhci);
  3019. spin_unlock_irqrestore(&xhci->lock, flags);
  3020. /* Wait for the Reset Device command to finish */
  3021. timeleft = wait_for_completion_interruptible_timeout(
  3022. reset_device_cmd->completion,
  3023. USB_CTRL_SET_TIMEOUT);
  3024. if (timeleft <= 0) {
  3025. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3026. timeleft == 0 ? "Timeout" : "Signal");
  3027. spin_lock_irqsave(&xhci->lock, flags);
  3028. /* The timeout might have raced with the event ring handler, so
  3029. * only delete from the list if the item isn't poisoned.
  3030. */
  3031. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3032. list_del(&reset_device_cmd->cmd_list);
  3033. spin_unlock_irqrestore(&xhci->lock, flags);
  3034. ret = -ETIME;
  3035. goto command_cleanup;
  3036. }
  3037. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3038. * unless we tried to reset a slot ID that wasn't enabled,
  3039. * or the device wasn't in the addressed or configured state.
  3040. */
  3041. ret = reset_device_cmd->status;
  3042. switch (ret) {
  3043. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3044. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3045. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3046. slot_id,
  3047. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3048. xhci_info(xhci, "Not freeing device rings.\n");
  3049. /* Don't treat this as an error. May change my mind later. */
  3050. ret = 0;
  3051. goto command_cleanup;
  3052. case COMP_SUCCESS:
  3053. xhci_dbg(xhci, "Successful reset device command.\n");
  3054. break;
  3055. default:
  3056. if (xhci_is_vendor_info_code(xhci, ret))
  3057. break;
  3058. xhci_warn(xhci, "Unknown completion code %u for "
  3059. "reset device command.\n", ret);
  3060. ret = -EINVAL;
  3061. goto command_cleanup;
  3062. }
  3063. /* Free up host controller endpoint resources */
  3064. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3065. spin_lock_irqsave(&xhci->lock, flags);
  3066. /* Don't delete the default control endpoint resources */
  3067. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3068. spin_unlock_irqrestore(&xhci->lock, flags);
  3069. }
  3070. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3071. last_freed_endpoint = 1;
  3072. for (i = 1; i < 31; ++i) {
  3073. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3074. if (ep->ep_state & EP_HAS_STREAMS) {
  3075. xhci_free_stream_info(xhci, ep->stream_info);
  3076. ep->stream_info = NULL;
  3077. ep->ep_state &= ~EP_HAS_STREAMS;
  3078. }
  3079. if (ep->ring) {
  3080. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3081. last_freed_endpoint = i;
  3082. }
  3083. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3084. xhci_drop_ep_from_interval_table(xhci,
  3085. &virt_dev->eps[i].bw_info,
  3086. virt_dev->bw_table,
  3087. udev,
  3088. &virt_dev->eps[i],
  3089. virt_dev->tt_info);
  3090. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3091. }
  3092. /* If necessary, update the number of active TTs on this root port */
  3093. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3094. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3095. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3096. ret = 0;
  3097. command_cleanup:
  3098. xhci_free_command(xhci, reset_device_cmd);
  3099. return ret;
  3100. }
  3101. /*
  3102. * At this point, the struct usb_device is about to go away, the device has
  3103. * disconnected, and all traffic has been stopped and the endpoints have been
  3104. * disabled. Free any HC data structures associated with that device.
  3105. */
  3106. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3107. {
  3108. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3109. struct xhci_virt_device *virt_dev;
  3110. unsigned long flags;
  3111. u32 state;
  3112. int i, ret;
  3113. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3114. /* If the host is halted due to driver unload, we still need to free the
  3115. * device.
  3116. */
  3117. if (ret <= 0 && ret != -ENODEV)
  3118. return;
  3119. virt_dev = xhci->devs[udev->slot_id];
  3120. /* Stop any wayward timer functions (which may grab the lock) */
  3121. for (i = 0; i < 31; ++i) {
  3122. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3123. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3124. }
  3125. if (udev->usb2_hw_lpm_enabled) {
  3126. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3127. udev->usb2_hw_lpm_enabled = 0;
  3128. }
  3129. spin_lock_irqsave(&xhci->lock, flags);
  3130. /* Don't disable the slot if the host controller is dead. */
  3131. state = xhci_readl(xhci, &xhci->op_regs->status);
  3132. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3133. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3134. xhci_free_virt_device(xhci, udev->slot_id);
  3135. spin_unlock_irqrestore(&xhci->lock, flags);
  3136. return;
  3137. }
  3138. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3139. spin_unlock_irqrestore(&xhci->lock, flags);
  3140. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3141. return;
  3142. }
  3143. xhci_ring_cmd_db(xhci);
  3144. spin_unlock_irqrestore(&xhci->lock, flags);
  3145. /*
  3146. * Event command completion handler will free any data structures
  3147. * associated with the slot. XXX Can free sleep?
  3148. */
  3149. }
  3150. /*
  3151. * Checks if we have enough host controller resources for the default control
  3152. * endpoint.
  3153. *
  3154. * Must be called with xhci->lock held.
  3155. */
  3156. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3157. {
  3158. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3159. xhci_dbg(xhci, "Not enough ep ctxs: "
  3160. "%u active, need to add 1, limit is %u.\n",
  3161. xhci->num_active_eps, xhci->limit_active_eps);
  3162. return -ENOMEM;
  3163. }
  3164. xhci->num_active_eps += 1;
  3165. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3166. xhci->num_active_eps);
  3167. return 0;
  3168. }
  3169. /*
  3170. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3171. * timed out, or allocating memory failed. Returns 1 on success.
  3172. */
  3173. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3174. {
  3175. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3176. unsigned long flags;
  3177. int timeleft;
  3178. int ret;
  3179. union xhci_trb *cmd_trb;
  3180. spin_lock_irqsave(&xhci->lock, flags);
  3181. cmd_trb = xhci->cmd_ring->dequeue;
  3182. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3183. if (ret) {
  3184. spin_unlock_irqrestore(&xhci->lock, flags);
  3185. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3186. return 0;
  3187. }
  3188. xhci_ring_cmd_db(xhci);
  3189. spin_unlock_irqrestore(&xhci->lock, flags);
  3190. /* XXX: how much time for xHC slot assignment? */
  3191. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3192. XHCI_CMD_DEFAULT_TIMEOUT);
  3193. if (timeleft <= 0) {
  3194. xhci_warn(xhci, "%s while waiting for a slot\n",
  3195. timeleft == 0 ? "Timeout" : "Signal");
  3196. /* cancel the enable slot request */
  3197. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3198. }
  3199. if (!xhci->slot_id) {
  3200. xhci_err(xhci, "Error while assigning device slot ID\n");
  3201. return 0;
  3202. }
  3203. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3204. spin_lock_irqsave(&xhci->lock, flags);
  3205. ret = xhci_reserve_host_control_ep_resources(xhci);
  3206. if (ret) {
  3207. spin_unlock_irqrestore(&xhci->lock, flags);
  3208. xhci_warn(xhci, "Not enough host resources, "
  3209. "active endpoint contexts = %u\n",
  3210. xhci->num_active_eps);
  3211. goto disable_slot;
  3212. }
  3213. spin_unlock_irqrestore(&xhci->lock, flags);
  3214. }
  3215. /* Use GFP_NOIO, since this function can be called from
  3216. * xhci_discover_or_reset_device(), which may be called as part of
  3217. * mass storage driver error handling.
  3218. */
  3219. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3220. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3221. goto disable_slot;
  3222. }
  3223. udev->slot_id = xhci->slot_id;
  3224. /* Is this a LS or FS device under a HS hub? */
  3225. /* Hub or peripherial? */
  3226. return 1;
  3227. disable_slot:
  3228. /* Disable slot, if we can do it without mem alloc */
  3229. spin_lock_irqsave(&xhci->lock, flags);
  3230. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3231. xhci_ring_cmd_db(xhci);
  3232. spin_unlock_irqrestore(&xhci->lock, flags);
  3233. return 0;
  3234. }
  3235. /*
  3236. * Issue an Address Device command (which will issue a SetAddress request to
  3237. * the device).
  3238. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3239. * we should only issue and wait on one address command at the same time.
  3240. *
  3241. * We add one to the device address issued by the hardware because the USB core
  3242. * uses address 1 for the root hubs (even though they're not really devices).
  3243. */
  3244. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3245. {
  3246. unsigned long flags;
  3247. int timeleft;
  3248. struct xhci_virt_device *virt_dev;
  3249. int ret = 0;
  3250. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3251. struct xhci_slot_ctx *slot_ctx;
  3252. struct xhci_input_control_ctx *ctrl_ctx;
  3253. u64 temp_64;
  3254. union xhci_trb *cmd_trb;
  3255. if (!udev->slot_id) {
  3256. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3257. return -EINVAL;
  3258. }
  3259. virt_dev = xhci->devs[udev->slot_id];
  3260. if (WARN_ON(!virt_dev)) {
  3261. /*
  3262. * In plug/unplug torture test with an NEC controller,
  3263. * a zero-dereference was observed once due to virt_dev = 0.
  3264. * Print useful debug rather than crash if it is observed again!
  3265. */
  3266. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3267. udev->slot_id);
  3268. return -EINVAL;
  3269. }
  3270. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3271. /*
  3272. * If this is the first Set Address since device plug-in or
  3273. * virt_device realloaction after a resume with an xHCI power loss,
  3274. * then set up the slot context.
  3275. */
  3276. if (!slot_ctx->dev_info)
  3277. xhci_setup_addressable_virt_dev(xhci, udev);
  3278. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3279. else
  3280. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3281. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3282. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3283. ctrl_ctx->drop_flags = 0;
  3284. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3285. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3286. spin_lock_irqsave(&xhci->lock, flags);
  3287. cmd_trb = xhci->cmd_ring->dequeue;
  3288. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3289. udev->slot_id);
  3290. if (ret) {
  3291. spin_unlock_irqrestore(&xhci->lock, flags);
  3292. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3293. return ret;
  3294. }
  3295. xhci_ring_cmd_db(xhci);
  3296. spin_unlock_irqrestore(&xhci->lock, flags);
  3297. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3298. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3299. XHCI_CMD_DEFAULT_TIMEOUT);
  3300. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3301. * the SetAddress() "recovery interval" required by USB and aborting the
  3302. * command on a timeout.
  3303. */
  3304. if (timeleft <= 0) {
  3305. xhci_warn(xhci, "%s while waiting for address device command\n",
  3306. timeleft == 0 ? "Timeout" : "Signal");
  3307. /* cancel the address device command */
  3308. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3309. if (ret < 0)
  3310. return ret;
  3311. return -ETIME;
  3312. }
  3313. switch (virt_dev->cmd_status) {
  3314. case COMP_CTX_STATE:
  3315. case COMP_EBADSLT:
  3316. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3317. udev->slot_id);
  3318. ret = -EINVAL;
  3319. break;
  3320. case COMP_TX_ERR:
  3321. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3322. ret = -EPROTO;
  3323. break;
  3324. case COMP_DEV_ERR:
  3325. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3326. "device command.\n");
  3327. ret = -ENODEV;
  3328. break;
  3329. case COMP_SUCCESS:
  3330. xhci_dbg(xhci, "Successful Address Device command\n");
  3331. break;
  3332. default:
  3333. xhci_err(xhci, "ERROR: unexpected command completion "
  3334. "code 0x%x.\n", virt_dev->cmd_status);
  3335. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3336. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3337. ret = -EINVAL;
  3338. break;
  3339. }
  3340. if (ret) {
  3341. return ret;
  3342. }
  3343. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3344. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3345. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3346. udev->slot_id,
  3347. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3348. (unsigned long long)
  3349. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3350. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3351. (unsigned long long)virt_dev->out_ctx->dma);
  3352. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3353. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3354. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3355. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3356. /*
  3357. * USB core uses address 1 for the roothubs, so we add one to the
  3358. * address given back to us by the HC.
  3359. */
  3360. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3361. /* Use kernel assigned address for devices; store xHC assigned
  3362. * address locally. */
  3363. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3364. + 1;
  3365. /* Zero the input context control for later use */
  3366. ctrl_ctx->add_flags = 0;
  3367. ctrl_ctx->drop_flags = 0;
  3368. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3369. return 0;
  3370. }
  3371. /*
  3372. * Transfer the port index into real index in the HW port status
  3373. * registers. Caculate offset between the port's PORTSC register
  3374. * and port status base. Divide the number of per port register
  3375. * to get the real index. The raw port number bases 1.
  3376. */
  3377. int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
  3378. {
  3379. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3380. __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
  3381. __le32 __iomem *addr;
  3382. int raw_port;
  3383. if (hcd->speed != HCD_USB3)
  3384. addr = xhci->usb2_ports[port1 - 1];
  3385. else
  3386. addr = xhci->usb3_ports[port1 - 1];
  3387. raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
  3388. return raw_port;
  3389. }
  3390. #ifdef CONFIG_USB_SUSPEND
  3391. /* BESL to HIRD Encoding array for USB2 LPM */
  3392. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3393. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3394. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3395. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3396. struct usb_device *udev)
  3397. {
  3398. int u2del, besl, besl_host;
  3399. int besl_device = 0;
  3400. u32 field;
  3401. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3402. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3403. if (field & USB_BESL_SUPPORT) {
  3404. for (besl_host = 0; besl_host < 16; besl_host++) {
  3405. if (xhci_besl_encoding[besl_host] >= u2del)
  3406. break;
  3407. }
  3408. /* Use baseline BESL value as default */
  3409. if (field & USB_BESL_BASELINE_VALID)
  3410. besl_device = USB_GET_BESL_BASELINE(field);
  3411. else if (field & USB_BESL_DEEP_VALID)
  3412. besl_device = USB_GET_BESL_DEEP(field);
  3413. } else {
  3414. if (u2del <= 50)
  3415. besl_host = 0;
  3416. else
  3417. besl_host = (u2del - 51) / 75 + 1;
  3418. }
  3419. besl = besl_host + besl_device;
  3420. if (besl > 15)
  3421. besl = 15;
  3422. return besl;
  3423. }
  3424. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3425. struct usb_device *udev)
  3426. {
  3427. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3428. struct dev_info *dev_info;
  3429. __le32 __iomem **port_array;
  3430. __le32 __iomem *addr, *pm_addr;
  3431. u32 temp, dev_id;
  3432. unsigned int port_num;
  3433. unsigned long flags;
  3434. int hird;
  3435. int ret;
  3436. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3437. !udev->lpm_capable)
  3438. return -EINVAL;
  3439. /* we only support lpm for non-hub device connected to root hub yet */
  3440. if (!udev->parent || udev->parent->parent ||
  3441. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3442. return -EINVAL;
  3443. spin_lock_irqsave(&xhci->lock, flags);
  3444. /* Look for devices in lpm_failed_devs list */
  3445. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3446. le16_to_cpu(udev->descriptor.idProduct);
  3447. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3448. if (dev_info->dev_id == dev_id) {
  3449. ret = -EINVAL;
  3450. goto finish;
  3451. }
  3452. }
  3453. port_array = xhci->usb2_ports;
  3454. port_num = udev->portnum - 1;
  3455. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3456. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3457. ret = -EINVAL;
  3458. goto finish;
  3459. }
  3460. /*
  3461. * Test USB 2.0 software LPM.
  3462. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3463. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3464. * in the June 2011 errata release.
  3465. */
  3466. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3467. /*
  3468. * Set L1 Device Slot and HIRD/BESL.
  3469. * Check device's USB 2.0 extension descriptor to determine whether
  3470. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3471. */
  3472. pm_addr = port_array[port_num] + 1;
  3473. hird = xhci_calculate_hird_besl(xhci, udev);
  3474. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3475. xhci_writel(xhci, temp, pm_addr);
  3476. /* Set port link state to U2(L1) */
  3477. addr = port_array[port_num];
  3478. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3479. /* wait for ACK */
  3480. spin_unlock_irqrestore(&xhci->lock, flags);
  3481. msleep(10);
  3482. spin_lock_irqsave(&xhci->lock, flags);
  3483. /* Check L1 Status */
  3484. ret = xhci_handshake(xhci, pm_addr,
  3485. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3486. if (ret != -ETIMEDOUT) {
  3487. /* enter L1 successfully */
  3488. temp = xhci_readl(xhci, addr);
  3489. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3490. port_num, temp);
  3491. ret = 0;
  3492. } else {
  3493. temp = xhci_readl(xhci, pm_addr);
  3494. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3495. port_num, temp & PORT_L1S_MASK);
  3496. ret = -EINVAL;
  3497. }
  3498. /* Resume the port */
  3499. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3500. spin_unlock_irqrestore(&xhci->lock, flags);
  3501. msleep(10);
  3502. spin_lock_irqsave(&xhci->lock, flags);
  3503. /* Clear PLC */
  3504. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3505. /* Check PORTSC to make sure the device is in the right state */
  3506. if (!ret) {
  3507. temp = xhci_readl(xhci, addr);
  3508. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3509. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3510. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3511. xhci_dbg(xhci, "port L1 resume fail\n");
  3512. ret = -EINVAL;
  3513. }
  3514. }
  3515. if (ret) {
  3516. /* Insert dev to lpm_failed_devs list */
  3517. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3518. "re-enumerate\n");
  3519. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3520. if (!dev_info) {
  3521. ret = -ENOMEM;
  3522. goto finish;
  3523. }
  3524. dev_info->dev_id = dev_id;
  3525. INIT_LIST_HEAD(&dev_info->list);
  3526. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3527. } else {
  3528. xhci_ring_device(xhci, udev->slot_id);
  3529. }
  3530. finish:
  3531. spin_unlock_irqrestore(&xhci->lock, flags);
  3532. return ret;
  3533. }
  3534. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3535. struct usb_device *udev, int enable)
  3536. {
  3537. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3538. __le32 __iomem **port_array;
  3539. __le32 __iomem *pm_addr;
  3540. u32 temp;
  3541. unsigned int port_num;
  3542. unsigned long flags;
  3543. int hird;
  3544. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3545. !udev->lpm_capable)
  3546. return -EPERM;
  3547. if (!udev->parent || udev->parent->parent ||
  3548. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3549. return -EPERM;
  3550. if (udev->usb2_hw_lpm_capable != 1)
  3551. return -EPERM;
  3552. spin_lock_irqsave(&xhci->lock, flags);
  3553. port_array = xhci->usb2_ports;
  3554. port_num = udev->portnum - 1;
  3555. pm_addr = port_array[port_num] + 1;
  3556. temp = xhci_readl(xhci, pm_addr);
  3557. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3558. enable ? "enable" : "disable", port_num);
  3559. hird = xhci_calculate_hird_besl(xhci, udev);
  3560. if (enable) {
  3561. temp &= ~PORT_HIRD_MASK;
  3562. temp |= PORT_HIRD(hird) | PORT_RWE;
  3563. xhci_writel(xhci, temp, pm_addr);
  3564. temp = xhci_readl(xhci, pm_addr);
  3565. temp |= PORT_HLE;
  3566. xhci_writel(xhci, temp, pm_addr);
  3567. } else {
  3568. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3569. xhci_writel(xhci, temp, pm_addr);
  3570. }
  3571. spin_unlock_irqrestore(&xhci->lock, flags);
  3572. return 0;
  3573. }
  3574. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3575. {
  3576. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3577. int ret;
  3578. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3579. if (!ret) {
  3580. xhci_dbg(xhci, "software LPM test succeed\n");
  3581. if (xhci->hw_lpm_support == 1) {
  3582. udev->usb2_hw_lpm_capable = 1;
  3583. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3584. if (!ret)
  3585. udev->usb2_hw_lpm_enabled = 1;
  3586. }
  3587. }
  3588. return 0;
  3589. }
  3590. #else
  3591. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3592. struct usb_device *udev, int enable)
  3593. {
  3594. return 0;
  3595. }
  3596. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3597. {
  3598. return 0;
  3599. }
  3600. #endif /* CONFIG_USB_SUSPEND */
  3601. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3602. #ifdef CONFIG_PM
  3603. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3604. static unsigned long long xhci_service_interval_to_ns(
  3605. struct usb_endpoint_descriptor *desc)
  3606. {
  3607. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3608. }
  3609. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3610. enum usb3_link_state state)
  3611. {
  3612. unsigned long long sel;
  3613. unsigned long long pel;
  3614. unsigned int max_sel_pel;
  3615. char *state_name;
  3616. switch (state) {
  3617. case USB3_LPM_U1:
  3618. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3619. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3620. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3621. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3622. state_name = "U1";
  3623. break;
  3624. case USB3_LPM_U2:
  3625. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3626. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3627. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3628. state_name = "U2";
  3629. break;
  3630. default:
  3631. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3632. __func__);
  3633. return USB3_LPM_DISABLED;
  3634. }
  3635. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3636. return USB3_LPM_DEVICE_INITIATED;
  3637. if (sel > max_sel_pel)
  3638. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3639. "due to long SEL %llu ms\n",
  3640. state_name, sel);
  3641. else
  3642. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3643. "due to long PEL %llu\n ms",
  3644. state_name, pel);
  3645. return USB3_LPM_DISABLED;
  3646. }
  3647. /* Returns the hub-encoded U1 timeout value.
  3648. * The U1 timeout should be the maximum of the following values:
  3649. * - For control endpoints, U1 system exit latency (SEL) * 3
  3650. * - For bulk endpoints, U1 SEL * 5
  3651. * - For interrupt endpoints:
  3652. * - Notification EPs, U1 SEL * 3
  3653. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3654. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3655. */
  3656. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3657. struct usb_endpoint_descriptor *desc)
  3658. {
  3659. unsigned long long timeout_ns;
  3660. int ep_type;
  3661. int intr_type;
  3662. ep_type = usb_endpoint_type(desc);
  3663. switch (ep_type) {
  3664. case USB_ENDPOINT_XFER_CONTROL:
  3665. timeout_ns = udev->u1_params.sel * 3;
  3666. break;
  3667. case USB_ENDPOINT_XFER_BULK:
  3668. timeout_ns = udev->u1_params.sel * 5;
  3669. break;
  3670. case USB_ENDPOINT_XFER_INT:
  3671. intr_type = usb_endpoint_interrupt_type(desc);
  3672. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3673. timeout_ns = udev->u1_params.sel * 3;
  3674. break;
  3675. }
  3676. /* Otherwise the calculation is the same as isoc eps */
  3677. case USB_ENDPOINT_XFER_ISOC:
  3678. timeout_ns = xhci_service_interval_to_ns(desc);
  3679. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3680. if (timeout_ns < udev->u1_params.sel * 2)
  3681. timeout_ns = udev->u1_params.sel * 2;
  3682. break;
  3683. default:
  3684. return 0;
  3685. }
  3686. /* The U1 timeout is encoded in 1us intervals. */
  3687. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3688. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3689. if (timeout_ns == USB3_LPM_DISABLED)
  3690. timeout_ns++;
  3691. /* If the necessary timeout value is bigger than what we can set in the
  3692. * USB 3.0 hub, we have to disable hub-initiated U1.
  3693. */
  3694. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3695. return timeout_ns;
  3696. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3697. "due to long timeout %llu ms\n", timeout_ns);
  3698. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3699. }
  3700. /* Returns the hub-encoded U2 timeout value.
  3701. * The U2 timeout should be the maximum of:
  3702. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3703. * - largest bInterval of any active periodic endpoint (to avoid going
  3704. * into lower power link states between intervals).
  3705. * - the U2 Exit Latency of the device
  3706. */
  3707. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3708. struct usb_endpoint_descriptor *desc)
  3709. {
  3710. unsigned long long timeout_ns;
  3711. unsigned long long u2_del_ns;
  3712. timeout_ns = 10 * 1000 * 1000;
  3713. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3714. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3715. timeout_ns = xhci_service_interval_to_ns(desc);
  3716. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3717. if (u2_del_ns > timeout_ns)
  3718. timeout_ns = u2_del_ns;
  3719. /* The U2 timeout is encoded in 256us intervals */
  3720. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3721. /* If the necessary timeout value is bigger than what we can set in the
  3722. * USB 3.0 hub, we have to disable hub-initiated U2.
  3723. */
  3724. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3725. return timeout_ns;
  3726. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3727. "due to long timeout %llu ms\n", timeout_ns);
  3728. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3729. }
  3730. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3731. struct usb_device *udev,
  3732. struct usb_endpoint_descriptor *desc,
  3733. enum usb3_link_state state,
  3734. u16 *timeout)
  3735. {
  3736. if (state == USB3_LPM_U1) {
  3737. if (xhci->quirks & XHCI_INTEL_HOST)
  3738. return xhci_calculate_intel_u1_timeout(udev, desc);
  3739. } else {
  3740. if (xhci->quirks & XHCI_INTEL_HOST)
  3741. return xhci_calculate_intel_u2_timeout(udev, desc);
  3742. }
  3743. return USB3_LPM_DISABLED;
  3744. }
  3745. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3746. struct usb_device *udev,
  3747. struct usb_endpoint_descriptor *desc,
  3748. enum usb3_link_state state,
  3749. u16 *timeout)
  3750. {
  3751. u16 alt_timeout;
  3752. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3753. desc, state, timeout);
  3754. /* If we found we can't enable hub-initiated LPM, or
  3755. * the U1 or U2 exit latency was too high to allow
  3756. * device-initiated LPM as well, just stop searching.
  3757. */
  3758. if (alt_timeout == USB3_LPM_DISABLED ||
  3759. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3760. *timeout = alt_timeout;
  3761. return -E2BIG;
  3762. }
  3763. if (alt_timeout > *timeout)
  3764. *timeout = alt_timeout;
  3765. return 0;
  3766. }
  3767. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3768. struct usb_device *udev,
  3769. struct usb_host_interface *alt,
  3770. enum usb3_link_state state,
  3771. u16 *timeout)
  3772. {
  3773. int j;
  3774. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3775. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3776. &alt->endpoint[j].desc, state, timeout))
  3777. return -E2BIG;
  3778. continue;
  3779. }
  3780. return 0;
  3781. }
  3782. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3783. enum usb3_link_state state)
  3784. {
  3785. struct usb_device *parent;
  3786. unsigned int num_hubs;
  3787. if (state == USB3_LPM_U2)
  3788. return 0;
  3789. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3790. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3791. parent = parent->parent)
  3792. num_hubs++;
  3793. if (num_hubs < 2)
  3794. return 0;
  3795. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3796. " below second-tier hub.\n");
  3797. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3798. "to decrease power consumption.\n");
  3799. return -E2BIG;
  3800. }
  3801. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3802. struct usb_device *udev,
  3803. enum usb3_link_state state)
  3804. {
  3805. if (xhci->quirks & XHCI_INTEL_HOST)
  3806. return xhci_check_intel_tier_policy(udev, state);
  3807. return -EINVAL;
  3808. }
  3809. /* Returns the U1 or U2 timeout that should be enabled.
  3810. * If the tier check or timeout setting functions return with a non-zero exit
  3811. * code, that means the timeout value has been finalized and we shouldn't look
  3812. * at any more endpoints.
  3813. */
  3814. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3815. struct usb_device *udev, enum usb3_link_state state)
  3816. {
  3817. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3818. struct usb_host_config *config;
  3819. char *state_name;
  3820. int i;
  3821. u16 timeout = USB3_LPM_DISABLED;
  3822. if (state == USB3_LPM_U1)
  3823. state_name = "U1";
  3824. else if (state == USB3_LPM_U2)
  3825. state_name = "U2";
  3826. else {
  3827. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3828. state);
  3829. return timeout;
  3830. }
  3831. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3832. return timeout;
  3833. /* Gather some information about the currently installed configuration
  3834. * and alternate interface settings.
  3835. */
  3836. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3837. state, &timeout))
  3838. return timeout;
  3839. config = udev->actconfig;
  3840. if (!config)
  3841. return timeout;
  3842. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3843. struct usb_driver *driver;
  3844. struct usb_interface *intf = config->interface[i];
  3845. if (!intf)
  3846. continue;
  3847. /* Check if any currently bound drivers want hub-initiated LPM
  3848. * disabled.
  3849. */
  3850. if (intf->dev.driver) {
  3851. driver = to_usb_driver(intf->dev.driver);
  3852. if (driver && driver->disable_hub_initiated_lpm) {
  3853. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3854. "at request of driver %s\n",
  3855. state_name, driver->name);
  3856. return xhci_get_timeout_no_hub_lpm(udev, state);
  3857. }
  3858. }
  3859. /* Not sure how this could happen... */
  3860. if (!intf->cur_altsetting)
  3861. continue;
  3862. if (xhci_update_timeout_for_interface(xhci, udev,
  3863. intf->cur_altsetting,
  3864. state, &timeout))
  3865. return timeout;
  3866. }
  3867. return timeout;
  3868. }
  3869. /*
  3870. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3871. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3872. */
  3873. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3874. struct usb_device *udev, u16 max_exit_latency)
  3875. {
  3876. struct xhci_virt_device *virt_dev;
  3877. struct xhci_command *command;
  3878. struct xhci_input_control_ctx *ctrl_ctx;
  3879. struct xhci_slot_ctx *slot_ctx;
  3880. unsigned long flags;
  3881. int ret;
  3882. spin_lock_irqsave(&xhci->lock, flags);
  3883. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3884. spin_unlock_irqrestore(&xhci->lock, flags);
  3885. return 0;
  3886. }
  3887. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3888. virt_dev = xhci->devs[udev->slot_id];
  3889. command = xhci->lpm_command;
  3890. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3891. spin_unlock_irqrestore(&xhci->lock, flags);
  3892. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3893. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3894. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3895. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3896. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3897. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3898. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3899. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3900. /* Issue and wait for the evaluate context command. */
  3901. ret = xhci_configure_endpoint(xhci, udev, command,
  3902. true, true);
  3903. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3904. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3905. if (!ret) {
  3906. spin_lock_irqsave(&xhci->lock, flags);
  3907. virt_dev->current_mel = max_exit_latency;
  3908. spin_unlock_irqrestore(&xhci->lock, flags);
  3909. }
  3910. return ret;
  3911. }
  3912. static int calculate_max_exit_latency(struct usb_device *udev,
  3913. enum usb3_link_state state_changed,
  3914. u16 hub_encoded_timeout)
  3915. {
  3916. unsigned long long u1_mel_us = 0;
  3917. unsigned long long u2_mel_us = 0;
  3918. unsigned long long mel_us = 0;
  3919. bool disabling_u1;
  3920. bool disabling_u2;
  3921. bool enabling_u1;
  3922. bool enabling_u2;
  3923. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3924. hub_encoded_timeout == USB3_LPM_DISABLED);
  3925. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3926. hub_encoded_timeout == USB3_LPM_DISABLED);
  3927. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3928. hub_encoded_timeout != USB3_LPM_DISABLED);
  3929. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3930. hub_encoded_timeout != USB3_LPM_DISABLED);
  3931. /* If U1 was already enabled and we're not disabling it,
  3932. * or we're going to enable U1, account for the U1 max exit latency.
  3933. */
  3934. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3935. enabling_u1)
  3936. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3937. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3938. enabling_u2)
  3939. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3940. if (u1_mel_us > u2_mel_us)
  3941. mel_us = u1_mel_us;
  3942. else
  3943. mel_us = u2_mel_us;
  3944. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3945. if (mel_us > MAX_EXIT) {
  3946. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3947. "is too big.\n", mel_us);
  3948. return -E2BIG;
  3949. }
  3950. return mel_us;
  3951. }
  3952. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3953. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3954. struct usb_device *udev, enum usb3_link_state state)
  3955. {
  3956. struct xhci_hcd *xhci;
  3957. u16 hub_encoded_timeout;
  3958. int mel;
  3959. int ret;
  3960. xhci = hcd_to_xhci(hcd);
  3961. /* The LPM timeout values are pretty host-controller specific, so don't
  3962. * enable hub-initiated timeouts unless the vendor has provided
  3963. * information about their timeout algorithm.
  3964. */
  3965. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3966. !xhci->devs[udev->slot_id])
  3967. return USB3_LPM_DISABLED;
  3968. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3969. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3970. if (mel < 0) {
  3971. /* Max Exit Latency is too big, disable LPM. */
  3972. hub_encoded_timeout = USB3_LPM_DISABLED;
  3973. mel = 0;
  3974. }
  3975. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3976. if (ret)
  3977. return ret;
  3978. return hub_encoded_timeout;
  3979. }
  3980. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3981. struct usb_device *udev, enum usb3_link_state state)
  3982. {
  3983. struct xhci_hcd *xhci;
  3984. u16 mel;
  3985. int ret;
  3986. xhci = hcd_to_xhci(hcd);
  3987. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3988. !xhci->devs[udev->slot_id])
  3989. return 0;
  3990. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  3991. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3992. if (ret)
  3993. return ret;
  3994. return 0;
  3995. }
  3996. #else /* CONFIG_PM */
  3997. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3998. struct usb_device *udev, enum usb3_link_state state)
  3999. {
  4000. return USB3_LPM_DISABLED;
  4001. }
  4002. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4003. struct usb_device *udev, enum usb3_link_state state)
  4004. {
  4005. return 0;
  4006. }
  4007. #endif /* CONFIG_PM */
  4008. /*-------------------------------------------------------------------------*/
  4009. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  4010. * internal data structures for the device.
  4011. */
  4012. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  4013. struct usb_tt *tt, gfp_t mem_flags)
  4014. {
  4015. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4016. struct xhci_virt_device *vdev;
  4017. struct xhci_command *config_cmd;
  4018. struct xhci_input_control_ctx *ctrl_ctx;
  4019. struct xhci_slot_ctx *slot_ctx;
  4020. unsigned long flags;
  4021. unsigned think_time;
  4022. int ret;
  4023. /* Ignore root hubs */
  4024. if (!hdev->parent)
  4025. return 0;
  4026. vdev = xhci->devs[hdev->slot_id];
  4027. if (!vdev) {
  4028. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4029. return -EINVAL;
  4030. }
  4031. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4032. if (!config_cmd) {
  4033. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4034. return -ENOMEM;
  4035. }
  4036. spin_lock_irqsave(&xhci->lock, flags);
  4037. if (hdev->speed == USB_SPEED_HIGH &&
  4038. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4039. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4040. xhci_free_command(xhci, config_cmd);
  4041. spin_unlock_irqrestore(&xhci->lock, flags);
  4042. return -ENOMEM;
  4043. }
  4044. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4045. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4046. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4047. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4048. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4049. if (tt->multi)
  4050. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4051. if (xhci->hci_version > 0x95) {
  4052. xhci_dbg(xhci, "xHCI version %x needs hub "
  4053. "TT think time and number of ports\n",
  4054. (unsigned int) xhci->hci_version);
  4055. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4056. /* Set TT think time - convert from ns to FS bit times.
  4057. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4058. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4059. *
  4060. * xHCI 1.0: this field shall be 0 if the device is not a
  4061. * High-spped hub.
  4062. */
  4063. think_time = tt->think_time;
  4064. if (think_time != 0)
  4065. think_time = (think_time / 666) - 1;
  4066. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4067. slot_ctx->tt_info |=
  4068. cpu_to_le32(TT_THINK_TIME(think_time));
  4069. } else {
  4070. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4071. "TT think time or number of ports\n",
  4072. (unsigned int) xhci->hci_version);
  4073. }
  4074. slot_ctx->dev_state = 0;
  4075. spin_unlock_irqrestore(&xhci->lock, flags);
  4076. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4077. (xhci->hci_version > 0x95) ?
  4078. "configure endpoint" : "evaluate context");
  4079. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4080. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4081. /* Issue and wait for the configure endpoint or
  4082. * evaluate context command.
  4083. */
  4084. if (xhci->hci_version > 0x95)
  4085. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4086. false, false);
  4087. else
  4088. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4089. true, false);
  4090. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4091. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4092. xhci_free_command(xhci, config_cmd);
  4093. return ret;
  4094. }
  4095. int xhci_get_frame(struct usb_hcd *hcd)
  4096. {
  4097. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4098. /* EHCI mods by the periodic size. Why? */
  4099. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4100. }
  4101. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4102. {
  4103. struct xhci_hcd *xhci;
  4104. struct device *dev = hcd->self.controller;
  4105. int retval;
  4106. u32 temp;
  4107. /* Accept arbitrarily long scatter-gather lists */
  4108. hcd->self.sg_tablesize = ~0;
  4109. /* XHCI controllers don't stop the ep queue on short packets :| */
  4110. hcd->self.no_stop_on_short = 1;
  4111. if (usb_hcd_is_primary_hcd(hcd)) {
  4112. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4113. if (!xhci)
  4114. return -ENOMEM;
  4115. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4116. xhci->main_hcd = hcd;
  4117. /* Mark the first roothub as being USB 2.0.
  4118. * The xHCI driver will register the USB 3.0 roothub.
  4119. */
  4120. hcd->speed = HCD_USB2;
  4121. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4122. /*
  4123. * USB 2.0 roothub under xHCI has an integrated TT,
  4124. * (rate matching hub) as opposed to having an OHCI/UHCI
  4125. * companion controller.
  4126. */
  4127. hcd->has_tt = 1;
  4128. } else {
  4129. /* xHCI private pointer was set in xhci_pci_probe for the second
  4130. * registered roothub.
  4131. */
  4132. xhci = hcd_to_xhci(hcd);
  4133. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4134. if (HCC_64BIT_ADDR(temp)) {
  4135. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4136. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4137. } else {
  4138. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4139. }
  4140. return 0;
  4141. }
  4142. xhci->cap_regs = hcd->regs;
  4143. xhci->op_regs = hcd->regs +
  4144. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4145. xhci->run_regs = hcd->regs +
  4146. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4147. /* Cache read-only capability registers */
  4148. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4149. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4150. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4151. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4152. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4153. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4154. xhci_print_registers(xhci);
  4155. get_quirks(dev, xhci);
  4156. /* Make sure the HC is halted. */
  4157. retval = xhci_halt(xhci);
  4158. if (retval)
  4159. goto error;
  4160. xhci_dbg(xhci, "Resetting HCD\n");
  4161. /* Reset the internal HC memory state and registers. */
  4162. retval = xhci_reset(xhci);
  4163. if (retval)
  4164. goto error;
  4165. xhci_dbg(xhci, "Reset complete\n");
  4166. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4167. if (HCC_64BIT_ADDR(temp)) {
  4168. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4169. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4170. } else {
  4171. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4172. }
  4173. xhci_dbg(xhci, "Calling HCD init\n");
  4174. /* Initialize HCD and host controller data structures. */
  4175. retval = xhci_init(hcd);
  4176. if (retval)
  4177. goto error;
  4178. xhci_dbg(xhci, "Called HCD init\n");
  4179. return 0;
  4180. error:
  4181. kfree(xhci);
  4182. return retval;
  4183. }
  4184. MODULE_DESCRIPTION(DRIVER_DESC);
  4185. MODULE_AUTHOR(DRIVER_AUTHOR);
  4186. MODULE_LICENSE("GPL");
  4187. static int __init xhci_hcd_init(void)
  4188. {
  4189. int retval;
  4190. retval = xhci_register_pci();
  4191. if (retval < 0) {
  4192. printk(KERN_DEBUG "Problem registering PCI driver.");
  4193. return retval;
  4194. }
  4195. retval = xhci_register_plat();
  4196. if (retval < 0) {
  4197. printk(KERN_DEBUG "Problem registering platform driver.");
  4198. goto unreg_pci;
  4199. }
  4200. /*
  4201. * Check the compiler generated sizes of structures that must be laid
  4202. * out in specific ways for hardware access.
  4203. */
  4204. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4205. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4206. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4207. /* xhci_device_control has eight fields, and also
  4208. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4209. */
  4210. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4211. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4212. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4213. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4214. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4215. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4216. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4217. return 0;
  4218. unreg_pci:
  4219. xhci_unregister_pci();
  4220. return retval;
  4221. }
  4222. module_init(xhci_hcd_init);
  4223. static void __exit xhci_hcd_cleanup(void)
  4224. {
  4225. xhci_unregister_pci();
  4226. xhci_unregister_plat();
  4227. }
  4228. module_exit(xhci_hcd_cleanup);