urb.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include <linux/usb/hcd.h>
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, incrementes the usage counter, and returns a pointer to it.
  49. *
  50. * If no memory is available, NULL is returned.
  51. *
  52. * If the driver want to use this urb for interrupt, control, or bulk
  53. * endpoints, pass '0' as the number of iso packets.
  54. *
  55. * The driver must call usb_free_urb() when it is finished with the urb.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb) {
  64. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  65. return NULL;
  66. }
  67. usb_init_urb(urb);
  68. return urb;
  69. }
  70. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  71. /**
  72. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  73. * @urb: pointer to the urb to free, may be NULL
  74. *
  75. * Must be called when a user of a urb is finished with it. When the last user
  76. * of the urb calls this function, the memory of the urb is freed.
  77. *
  78. * Note: The transfer buffer associated with the urb is not freed unless the
  79. * URB_FREE_BUFFER transfer flag is set.
  80. */
  81. void usb_free_urb(struct urb *urb)
  82. {
  83. if (urb)
  84. kref_put(&urb->kref, urb_destroy);
  85. }
  86. EXPORT_SYMBOL_GPL(usb_free_urb);
  87. /**
  88. * usb_get_urb - increments the reference count of the urb
  89. * @urb: pointer to the urb to modify, may be NULL
  90. *
  91. * This must be called whenever a urb is transferred from a device driver to a
  92. * host controller driver. This allows proper reference counting to happen
  93. * for urbs.
  94. *
  95. * A pointer to the urb with the incremented reference counter is returned.
  96. */
  97. struct urb *usb_get_urb(struct urb *urb)
  98. {
  99. if (urb)
  100. kref_get(&urb->kref);
  101. return urb;
  102. }
  103. EXPORT_SYMBOL_GPL(usb_get_urb);
  104. /**
  105. * usb_anchor_urb - anchors an URB while it is processed
  106. * @urb: pointer to the urb to anchor
  107. * @anchor: pointer to the anchor
  108. *
  109. * This can be called to have access to URBs which are to be executed
  110. * without bothering to track them
  111. */
  112. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&anchor->lock, flags);
  116. usb_get_urb(urb);
  117. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  118. urb->anchor = anchor;
  119. if (unlikely(anchor->poisoned)) {
  120. atomic_inc(&urb->reject);
  121. }
  122. spin_unlock_irqrestore(&anchor->lock, flags);
  123. }
  124. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  125. /* Callers must hold anchor->lock */
  126. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  127. {
  128. urb->anchor = NULL;
  129. list_del(&urb->anchor_list);
  130. usb_put_urb(urb);
  131. if (list_empty(&anchor->urb_list))
  132. wake_up(&anchor->wait);
  133. }
  134. /**
  135. * usb_unanchor_urb - unanchors an URB
  136. * @urb: pointer to the urb to anchor
  137. *
  138. * Call this to stop the system keeping track of this URB
  139. */
  140. void usb_unanchor_urb(struct urb *urb)
  141. {
  142. unsigned long flags;
  143. struct usb_anchor *anchor;
  144. if (!urb)
  145. return;
  146. anchor = urb->anchor;
  147. if (!anchor)
  148. return;
  149. spin_lock_irqsave(&anchor->lock, flags);
  150. /*
  151. * At this point, we could be competing with another thread which
  152. * has the same intention. To protect the urb from being unanchored
  153. * twice, only the winner of the race gets the job.
  154. */
  155. if (likely(anchor == urb->anchor))
  156. __usb_unanchor_urb(urb, anchor);
  157. spin_unlock_irqrestore(&anchor->lock, flags);
  158. }
  159. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  160. /*-------------------------------------------------------------------*/
  161. /**
  162. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  163. * @urb: pointer to the urb describing the request
  164. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  165. * of valid options for this.
  166. *
  167. * This submits a transfer request, and transfers control of the URB
  168. * describing that request to the USB subsystem. Request completion will
  169. * be indicated later, asynchronously, by calling the completion handler.
  170. * The three types of completion are success, error, and unlink
  171. * (a software-induced fault, also called "request cancellation").
  172. *
  173. * URBs may be submitted in interrupt context.
  174. *
  175. * The caller must have correctly initialized the URB before submitting
  176. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  177. * available to ensure that most fields are correctly initialized, for
  178. * the particular kind of transfer, although they will not initialize
  179. * any transfer flags.
  180. *
  181. * Successful submissions return 0; otherwise this routine returns a
  182. * negative error number. If the submission is successful, the complete()
  183. * callback from the URB will be called exactly once, when the USB core and
  184. * Host Controller Driver (HCD) are finished with the URB. When the completion
  185. * function is called, control of the URB is returned to the device
  186. * driver which issued the request. The completion handler may then
  187. * immediately free or reuse that URB.
  188. *
  189. * With few exceptions, USB device drivers should never access URB fields
  190. * provided by usbcore or the HCD until its complete() is called.
  191. * The exceptions relate to periodic transfer scheduling. For both
  192. * interrupt and isochronous urbs, as part of successful URB submission
  193. * urb->interval is modified to reflect the actual transfer period used
  194. * (normally some power of two units). And for isochronous urbs,
  195. * urb->start_frame is modified to reflect when the URB's transfers were
  196. * scheduled to start.
  197. *
  198. * Not all isochronous transfer scheduling policies will work, but most
  199. * host controller drivers should easily handle ISO queues going from now
  200. * until 10-200 msec into the future. Drivers should try to keep at
  201. * least one or two msec of data in the queue; many controllers require
  202. * that new transfers start at least 1 msec in the future when they are
  203. * added. If the driver is unable to keep up and the queue empties out,
  204. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  205. * If the flag is set, or if the queue is idle, then the URB is always
  206. * assigned to the first available (and not yet expired) slot in the
  207. * endpoint's schedule. If the flag is not set and the queue is active
  208. * then the URB is always assigned to the next slot in the schedule
  209. * following the end of the endpoint's previous URB, even if that slot is
  210. * in the past. When a packet is assigned in this way to a slot that has
  211. * already expired, the packet is not transmitted and the corresponding
  212. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  213. * would happen to all the packets in the URB, submission fails with a
  214. * -EXDEV error code.
  215. *
  216. * For control endpoints, the synchronous usb_control_msg() call is
  217. * often used (in non-interrupt context) instead of this call.
  218. * That is often used through convenience wrappers, for the requests
  219. * that are standardized in the USB 2.0 specification. For bulk
  220. * endpoints, a synchronous usb_bulk_msg() call is available.
  221. *
  222. * Request Queuing:
  223. *
  224. * URBs may be submitted to endpoints before previous ones complete, to
  225. * minimize the impact of interrupt latencies and system overhead on data
  226. * throughput. With that queuing policy, an endpoint's queue would never
  227. * be empty. This is required for continuous isochronous data streams,
  228. * and may also be required for some kinds of interrupt transfers. Such
  229. * queuing also maximizes bandwidth utilization by letting USB controllers
  230. * start work on later requests before driver software has finished the
  231. * completion processing for earlier (successful) requests.
  232. *
  233. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  234. * than one. This was previously a HCD-specific behavior, except for ISO
  235. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  236. * after faults (transfer errors or cancellation).
  237. *
  238. * Reserved Bandwidth Transfers:
  239. *
  240. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  241. * using the interval specified in the urb. Submitting the first urb to
  242. * the endpoint reserves the bandwidth necessary to make those transfers.
  243. * If the USB subsystem can't allocate sufficient bandwidth to perform
  244. * the periodic request, submitting such a periodic request should fail.
  245. *
  246. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  247. * when the alt setting is selected. If there is not enough bus bandwidth, the
  248. * configuration/alt setting request will fail. Therefore, submissions to
  249. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  250. * constraints.
  251. *
  252. * Device drivers must explicitly request that repetition, by ensuring that
  253. * some URB is always on the endpoint's queue (except possibly for short
  254. * periods during completion callacks). When there is no longer an urb
  255. * queued, the endpoint's bandwidth reservation is canceled. This means
  256. * drivers can use their completion handlers to ensure they keep bandwidth
  257. * they need, by reinitializing and resubmitting the just-completed urb
  258. * until the driver longer needs that periodic bandwidth.
  259. *
  260. * Memory Flags:
  261. *
  262. * The general rules for how to decide which mem_flags to use
  263. * are the same as for kmalloc. There are four
  264. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  265. * GFP_ATOMIC.
  266. *
  267. * GFP_NOFS is not ever used, as it has not been implemented yet.
  268. *
  269. * GFP_ATOMIC is used when
  270. * (a) you are inside a completion handler, an interrupt, bottom half,
  271. * tasklet or timer, or
  272. * (b) you are holding a spinlock or rwlock (does not apply to
  273. * semaphores), or
  274. * (c) current->state != TASK_RUNNING, this is the case only after
  275. * you've changed it.
  276. *
  277. * GFP_NOIO is used in the block io path and error handling of storage
  278. * devices.
  279. *
  280. * All other situations use GFP_KERNEL.
  281. *
  282. * Some more specific rules for mem_flags can be inferred, such as
  283. * (1) start_xmit, timeout, and receive methods of network drivers must
  284. * use GFP_ATOMIC (they are called with a spinlock held);
  285. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  286. * called with a spinlock held);
  287. * (3) If you use a kernel thread with a network driver you must use
  288. * GFP_NOIO, unless (b) or (c) apply;
  289. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  290. * apply or your are in a storage driver's block io path;
  291. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  292. * (6) changing firmware on a running storage or net device uses
  293. * GFP_NOIO, unless b) or c) apply
  294. *
  295. */
  296. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  297. {
  298. int xfertype, max;
  299. struct usb_device *dev;
  300. struct usb_host_endpoint *ep;
  301. int is_out;
  302. if (!urb || !urb->complete)
  303. return -EINVAL;
  304. if (urb->hcpriv) {
  305. WARN_ONCE(1, "URB %p submitted while active\n", urb);
  306. return -EBUSY;
  307. }
  308. dev = urb->dev;
  309. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  310. return -ENODEV;
  311. /* For now, get the endpoint from the pipe. Eventually drivers
  312. * will be required to set urb->ep directly and we will eliminate
  313. * urb->pipe.
  314. */
  315. ep = usb_pipe_endpoint(dev, urb->pipe);
  316. if (!ep)
  317. return -ENOENT;
  318. urb->ep = ep;
  319. urb->status = -EINPROGRESS;
  320. urb->actual_length = 0;
  321. /* Lots of sanity checks, so HCDs can rely on clean data
  322. * and don't need to duplicate tests
  323. */
  324. xfertype = usb_endpoint_type(&ep->desc);
  325. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  326. struct usb_ctrlrequest *setup =
  327. (struct usb_ctrlrequest *) urb->setup_packet;
  328. if (!setup)
  329. return -ENOEXEC;
  330. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  331. !setup->wLength;
  332. } else {
  333. is_out = usb_endpoint_dir_out(&ep->desc);
  334. }
  335. /* Clear the internal flags and cache the direction for later use */
  336. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  337. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  338. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  339. URB_DMA_SG_COMBINED);
  340. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  341. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  342. dev->state < USB_STATE_CONFIGURED)
  343. return -ENODEV;
  344. max = usb_endpoint_maxp(&ep->desc);
  345. if (max <= 0) {
  346. dev_dbg(&dev->dev,
  347. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  348. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  349. __func__, max);
  350. return -EMSGSIZE;
  351. }
  352. /* periodic transfers limit size per frame/uframe,
  353. * but drivers only control those sizes for ISO.
  354. * while we're checking, initialize return status.
  355. */
  356. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  357. int n, len;
  358. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  359. * 3 packets each
  360. */
  361. if (dev->speed == USB_SPEED_SUPER) {
  362. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  363. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  364. max *= burst;
  365. max *= mult;
  366. }
  367. /* "high bandwidth" mode, 1-3 packets/uframe? */
  368. if (dev->speed == USB_SPEED_HIGH) {
  369. int mult = 1 + ((max >> 11) & 0x03);
  370. max &= 0x07ff;
  371. max *= mult;
  372. }
  373. if (urb->number_of_packets <= 0)
  374. return -EINVAL;
  375. for (n = 0; n < urb->number_of_packets; n++) {
  376. len = urb->iso_frame_desc[n].length;
  377. if (len < 0 || len > max)
  378. return -EMSGSIZE;
  379. urb->iso_frame_desc[n].status = -EXDEV;
  380. urb->iso_frame_desc[n].actual_length = 0;
  381. }
  382. }
  383. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  384. if (urb->transfer_buffer_length > INT_MAX)
  385. return -EMSGSIZE;
  386. #ifdef DEBUG
  387. /* stuff that drivers shouldn't do, but which shouldn't
  388. * cause problems in HCDs if they get it wrong.
  389. */
  390. {
  391. unsigned int allowed;
  392. static int pipetypes[4] = {
  393. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  394. };
  395. /* Check that the pipe's type matches the endpoint's type */
  396. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  397. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  398. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  399. /* Check against a simple/standard policy */
  400. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  401. URB_FREE_BUFFER);
  402. switch (xfertype) {
  403. case USB_ENDPOINT_XFER_BULK:
  404. if (is_out)
  405. allowed |= URB_ZERO_PACKET;
  406. /* FALLTHROUGH */
  407. case USB_ENDPOINT_XFER_CONTROL:
  408. allowed |= URB_NO_FSBR; /* only affects UHCI */
  409. /* FALLTHROUGH */
  410. default: /* all non-iso endpoints */
  411. if (!is_out)
  412. allowed |= URB_SHORT_NOT_OK;
  413. break;
  414. case USB_ENDPOINT_XFER_ISOC:
  415. allowed |= URB_ISO_ASAP;
  416. break;
  417. }
  418. allowed &= urb->transfer_flags;
  419. /* warn if submitter gave bogus flags */
  420. if (allowed != urb->transfer_flags)
  421. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  422. urb->transfer_flags, allowed);
  423. }
  424. #endif
  425. /*
  426. * Force periodic transfer intervals to be legal values that are
  427. * a power of two (so HCDs don't need to).
  428. *
  429. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  430. * supports different values... this uses EHCI/UHCI defaults (and
  431. * EHCI can use smaller non-default values).
  432. */
  433. switch (xfertype) {
  434. case USB_ENDPOINT_XFER_ISOC:
  435. case USB_ENDPOINT_XFER_INT:
  436. /* too small? */
  437. switch (dev->speed) {
  438. case USB_SPEED_WIRELESS:
  439. if (urb->interval < 6)
  440. return -EINVAL;
  441. break;
  442. default:
  443. if (urb->interval <= 0)
  444. return -EINVAL;
  445. break;
  446. }
  447. /* too big? */
  448. switch (dev->speed) {
  449. case USB_SPEED_SUPER: /* units are 125us */
  450. /* Handle up to 2^(16-1) microframes */
  451. if (urb->interval > (1 << 15))
  452. return -EINVAL;
  453. max = 1 << 15;
  454. break;
  455. case USB_SPEED_WIRELESS:
  456. if (urb->interval > 16)
  457. return -EINVAL;
  458. break;
  459. case USB_SPEED_HIGH: /* units are microframes */
  460. /* NOTE usb handles 2^15 */
  461. if (urb->interval > (1024 * 8))
  462. urb->interval = 1024 * 8;
  463. max = 1024 * 8;
  464. break;
  465. case USB_SPEED_FULL: /* units are frames/msec */
  466. case USB_SPEED_LOW:
  467. if (xfertype == USB_ENDPOINT_XFER_INT) {
  468. if (urb->interval > 255)
  469. return -EINVAL;
  470. /* NOTE ohci only handles up to 32 */
  471. max = 128;
  472. } else {
  473. if (urb->interval > 1024)
  474. urb->interval = 1024;
  475. /* NOTE usb and ohci handle up to 2^15 */
  476. max = 1024;
  477. }
  478. break;
  479. default:
  480. return -EINVAL;
  481. }
  482. if (dev->speed != USB_SPEED_WIRELESS) {
  483. /* Round down to a power of 2, no more than max */
  484. urb->interval = min(max, 1 << ilog2(urb->interval));
  485. }
  486. }
  487. return usb_hcd_submit_urb(urb, mem_flags);
  488. }
  489. EXPORT_SYMBOL_GPL(usb_submit_urb);
  490. /*-------------------------------------------------------------------*/
  491. /**
  492. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  493. * @urb: pointer to urb describing a previously submitted request,
  494. * may be NULL
  495. *
  496. * This routine cancels an in-progress request. URBs complete only once
  497. * per submission, and may be canceled only once per submission.
  498. * Successful cancellation means termination of @urb will be expedited
  499. * and the completion handler will be called with a status code
  500. * indicating that the request has been canceled (rather than any other
  501. * code).
  502. *
  503. * Drivers should not call this routine or related routines, such as
  504. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  505. * method has returned. The disconnect function should synchronize with
  506. * a driver's I/O routines to insure that all URB-related activity has
  507. * completed before it returns.
  508. *
  509. * This request is asynchronous, however the HCD might call the ->complete()
  510. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  511. * must not hold any locks that may be taken by the completion function.
  512. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  513. * probably not yet have been given back to the device driver. When it is
  514. * eventually called, the completion function will see @urb->status ==
  515. * -ECONNRESET.
  516. * Failure is indicated by usb_unlink_urb() returning any other value.
  517. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  518. * never submitted, or it was unlinked before, or the hardware is already
  519. * finished with it), even if the completion handler has not yet run.
  520. *
  521. * The URB must not be deallocated while this routine is running. In
  522. * particular, when a driver calls this routine, it must insure that the
  523. * completion handler cannot deallocate the URB.
  524. *
  525. * Unlinking and Endpoint Queues:
  526. *
  527. * [The behaviors and guarantees described below do not apply to virtual
  528. * root hubs but only to endpoint queues for physical USB devices.]
  529. *
  530. * Host Controller Drivers (HCDs) place all the URBs for a particular
  531. * endpoint in a queue. Normally the queue advances as the controller
  532. * hardware processes each request. But when an URB terminates with an
  533. * error its queue generally stops (see below), at least until that URB's
  534. * completion routine returns. It is guaranteed that a stopped queue
  535. * will not restart until all its unlinked URBs have been fully retired,
  536. * with their completion routines run, even if that's not until some time
  537. * after the original completion handler returns. The same behavior and
  538. * guarantee apply when an URB terminates because it was unlinked.
  539. *
  540. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  541. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  542. * and -EREMOTEIO. Control endpoint queues behave the same way except
  543. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  544. * for isochronous endpoints are treated differently, because they must
  545. * advance at fixed rates. Such queues do not stop when an URB
  546. * encounters an error or is unlinked. An unlinked isochronous URB may
  547. * leave a gap in the stream of packets; it is undefined whether such
  548. * gaps can be filled in.
  549. *
  550. * Note that early termination of an URB because a short packet was
  551. * received will generate a -EREMOTEIO error if and only if the
  552. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  553. * drivers can build deep queues for large or complex bulk transfers
  554. * and clean them up reliably after any sort of aborted transfer by
  555. * unlinking all pending URBs at the first fault.
  556. *
  557. * When a control URB terminates with an error other than -EREMOTEIO, it
  558. * is quite likely that the status stage of the transfer will not take
  559. * place.
  560. */
  561. int usb_unlink_urb(struct urb *urb)
  562. {
  563. if (!urb)
  564. return -EINVAL;
  565. if (!urb->dev)
  566. return -ENODEV;
  567. if (!urb->ep)
  568. return -EIDRM;
  569. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  570. }
  571. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  572. /**
  573. * usb_kill_urb - cancel a transfer request and wait for it to finish
  574. * @urb: pointer to URB describing a previously submitted request,
  575. * may be NULL
  576. *
  577. * This routine cancels an in-progress request. It is guaranteed that
  578. * upon return all completion handlers will have finished and the URB
  579. * will be totally idle and available for reuse. These features make
  580. * this an ideal way to stop I/O in a disconnect() callback or close()
  581. * function. If the request has not already finished or been unlinked
  582. * the completion handler will see urb->status == -ENOENT.
  583. *
  584. * While the routine is running, attempts to resubmit the URB will fail
  585. * with error -EPERM. Thus even if the URB's completion handler always
  586. * tries to resubmit, it will not succeed and the URB will become idle.
  587. *
  588. * The URB must not be deallocated while this routine is running. In
  589. * particular, when a driver calls this routine, it must insure that the
  590. * completion handler cannot deallocate the URB.
  591. *
  592. * This routine may not be used in an interrupt context (such as a bottom
  593. * half or a completion handler), or when holding a spinlock, or in other
  594. * situations where the caller can't schedule().
  595. *
  596. * This routine should not be called by a driver after its disconnect
  597. * method has returned.
  598. */
  599. void usb_kill_urb(struct urb *urb)
  600. {
  601. might_sleep();
  602. if (!(urb && urb->dev && urb->ep))
  603. return;
  604. atomic_inc(&urb->reject);
  605. usb_hcd_unlink_urb(urb, -ENOENT);
  606. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  607. atomic_dec(&urb->reject);
  608. }
  609. EXPORT_SYMBOL_GPL(usb_kill_urb);
  610. /**
  611. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  612. * @urb: pointer to URB describing a previously submitted request,
  613. * may be NULL
  614. *
  615. * This routine cancels an in-progress request. It is guaranteed that
  616. * upon return all completion handlers will have finished and the URB
  617. * will be totally idle and cannot be reused. These features make
  618. * this an ideal way to stop I/O in a disconnect() callback.
  619. * If the request has not already finished or been unlinked
  620. * the completion handler will see urb->status == -ENOENT.
  621. *
  622. * After and while the routine runs, attempts to resubmit the URB will fail
  623. * with error -EPERM. Thus even if the URB's completion handler always
  624. * tries to resubmit, it will not succeed and the URB will become idle.
  625. *
  626. * The URB must not be deallocated while this routine is running. In
  627. * particular, when a driver calls this routine, it must insure that the
  628. * completion handler cannot deallocate the URB.
  629. *
  630. * This routine may not be used in an interrupt context (such as a bottom
  631. * half or a completion handler), or when holding a spinlock, or in other
  632. * situations where the caller can't schedule().
  633. *
  634. * This routine should not be called by a driver after its disconnect
  635. * method has returned.
  636. */
  637. void usb_poison_urb(struct urb *urb)
  638. {
  639. might_sleep();
  640. if (!(urb && urb->dev && urb->ep))
  641. return;
  642. atomic_inc(&urb->reject);
  643. usb_hcd_unlink_urb(urb, -ENOENT);
  644. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  645. }
  646. EXPORT_SYMBOL_GPL(usb_poison_urb);
  647. void usb_unpoison_urb(struct urb *urb)
  648. {
  649. if (!urb)
  650. return;
  651. atomic_dec(&urb->reject);
  652. }
  653. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  654. /**
  655. * usb_block_urb - reliably prevent further use of an URB
  656. * @urb: pointer to URB to be blocked, may be NULL
  657. *
  658. * After the routine has run, attempts to resubmit the URB will fail
  659. * with error -EPERM. Thus even if the URB's completion handler always
  660. * tries to resubmit, it will not succeed and the URB will become idle.
  661. *
  662. * The URB must not be deallocated while this routine is running. In
  663. * particular, when a driver calls this routine, it must insure that the
  664. * completion handler cannot deallocate the URB.
  665. */
  666. void usb_block_urb(struct urb *urb)
  667. {
  668. if (!urb)
  669. return;
  670. atomic_inc(&urb->reject);
  671. }
  672. EXPORT_SYMBOL_GPL(usb_block_urb);
  673. /**
  674. * usb_kill_anchored_urbs - cancel transfer requests en masse
  675. * @anchor: anchor the requests are bound to
  676. *
  677. * this allows all outstanding URBs to be killed starting
  678. * from the back of the queue
  679. *
  680. * This routine should not be called by a driver after its disconnect
  681. * method has returned.
  682. */
  683. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  684. {
  685. struct urb *victim;
  686. spin_lock_irq(&anchor->lock);
  687. while (!list_empty(&anchor->urb_list)) {
  688. victim = list_entry(anchor->urb_list.prev, struct urb,
  689. anchor_list);
  690. /* we must make sure the URB isn't freed before we kill it*/
  691. usb_get_urb(victim);
  692. spin_unlock_irq(&anchor->lock);
  693. /* this will unanchor the URB */
  694. usb_kill_urb(victim);
  695. usb_put_urb(victim);
  696. spin_lock_irq(&anchor->lock);
  697. }
  698. spin_unlock_irq(&anchor->lock);
  699. }
  700. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  701. /**
  702. * usb_poison_anchored_urbs - cease all traffic from an anchor
  703. * @anchor: anchor the requests are bound to
  704. *
  705. * this allows all outstanding URBs to be poisoned starting
  706. * from the back of the queue. Newly added URBs will also be
  707. * poisoned
  708. *
  709. * This routine should not be called by a driver after its disconnect
  710. * method has returned.
  711. */
  712. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  713. {
  714. struct urb *victim;
  715. spin_lock_irq(&anchor->lock);
  716. anchor->poisoned = 1;
  717. while (!list_empty(&anchor->urb_list)) {
  718. victim = list_entry(anchor->urb_list.prev, struct urb,
  719. anchor_list);
  720. /* we must make sure the URB isn't freed before we kill it*/
  721. usb_get_urb(victim);
  722. spin_unlock_irq(&anchor->lock);
  723. /* this will unanchor the URB */
  724. usb_poison_urb(victim);
  725. usb_put_urb(victim);
  726. spin_lock_irq(&anchor->lock);
  727. }
  728. spin_unlock_irq(&anchor->lock);
  729. }
  730. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  731. /**
  732. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  733. * @anchor: anchor the requests are bound to
  734. *
  735. * Reverses the effect of usb_poison_anchored_urbs
  736. * the anchor can be used normally after it returns
  737. */
  738. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  739. {
  740. unsigned long flags;
  741. struct urb *lazarus;
  742. spin_lock_irqsave(&anchor->lock, flags);
  743. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  744. usb_unpoison_urb(lazarus);
  745. }
  746. anchor->poisoned = 0;
  747. spin_unlock_irqrestore(&anchor->lock, flags);
  748. }
  749. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  750. /**
  751. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  752. * @anchor: anchor the requests are bound to
  753. *
  754. * this allows all outstanding URBs to be unlinked starting
  755. * from the back of the queue. This function is asynchronous.
  756. * The unlinking is just tiggered. It may happen after this
  757. * function has returned.
  758. *
  759. * This routine should not be called by a driver after its disconnect
  760. * method has returned.
  761. */
  762. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  763. {
  764. struct urb *victim;
  765. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  766. usb_unlink_urb(victim);
  767. usb_put_urb(victim);
  768. }
  769. }
  770. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  771. /**
  772. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  773. * @anchor: the anchor you want to become unused
  774. * @timeout: how long you are willing to wait in milliseconds
  775. *
  776. * Call this is you want to be sure all an anchor's
  777. * URBs have finished
  778. */
  779. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  780. unsigned int timeout)
  781. {
  782. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  783. msecs_to_jiffies(timeout));
  784. }
  785. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  786. /**
  787. * usb_get_from_anchor - get an anchor's oldest urb
  788. * @anchor: the anchor whose urb you want
  789. *
  790. * this will take the oldest urb from an anchor,
  791. * unanchor and return it
  792. */
  793. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  794. {
  795. struct urb *victim;
  796. unsigned long flags;
  797. spin_lock_irqsave(&anchor->lock, flags);
  798. if (!list_empty(&anchor->urb_list)) {
  799. victim = list_entry(anchor->urb_list.next, struct urb,
  800. anchor_list);
  801. usb_get_urb(victim);
  802. __usb_unanchor_urb(victim, anchor);
  803. } else {
  804. victim = NULL;
  805. }
  806. spin_unlock_irqrestore(&anchor->lock, flags);
  807. return victim;
  808. }
  809. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  810. /**
  811. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  812. * @anchor: the anchor whose urbs you want to unanchor
  813. *
  814. * use this to get rid of all an anchor's urbs
  815. */
  816. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  817. {
  818. struct urb *victim;
  819. unsigned long flags;
  820. spin_lock_irqsave(&anchor->lock, flags);
  821. while (!list_empty(&anchor->urb_list)) {
  822. victim = list_entry(anchor->urb_list.prev, struct urb,
  823. anchor_list);
  824. __usb_unanchor_urb(victim, anchor);
  825. }
  826. spin_unlock_irqrestore(&anchor->lock, flags);
  827. }
  828. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  829. /**
  830. * usb_anchor_empty - is an anchor empty
  831. * @anchor: the anchor you want to query
  832. *
  833. * returns 1 if the anchor has no urbs associated with it
  834. */
  835. int usb_anchor_empty(struct usb_anchor *anchor)
  836. {
  837. return list_empty(&anchor->urb_list);
  838. }
  839. EXPORT_SYMBOL_GPL(usb_anchor_empty);