ehv_bytechan.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /* ePAPR hypervisor byte channel device driver
  2. *
  3. * Copyright 2009-2011 Freescale Semiconductor, Inc.
  4. *
  5. * Author: Timur Tabi <timur@freescale.com>
  6. *
  7. * This file is licensed under the terms of the GNU General Public License
  8. * version 2. This program is licensed "as is" without any warranty of any
  9. * kind, whether express or implied.
  10. *
  11. * This driver support three distinct interfaces, all of which are related to
  12. * ePAPR hypervisor byte channels.
  13. *
  14. * 1) An early-console (udbg) driver. This provides early console output
  15. * through a byte channel. The byte channel handle must be specified in a
  16. * Kconfig option.
  17. *
  18. * 2) A normal console driver. Output is sent to the byte channel designated
  19. * for stdout in the device tree. The console driver is for handling kernel
  20. * printk calls.
  21. *
  22. * 3) A tty driver, which is used to handle user-space input and output. The
  23. * byte channel used for the console is designated as the default tty.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/slab.h>
  28. #include <linux/err.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <asm/epapr_hcalls.h>
  33. #include <linux/of.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/cdev.h>
  36. #include <linux/console.h>
  37. #include <linux/tty.h>
  38. #include <linux/tty_flip.h>
  39. #include <linux/circ_buf.h>
  40. #include <asm/udbg.h>
  41. /* The size of the transmit circular buffer. This must be a power of two. */
  42. #define BUF_SIZE 2048
  43. /* Per-byte channel private data */
  44. struct ehv_bc_data {
  45. struct device *dev;
  46. struct tty_port port;
  47. uint32_t handle;
  48. unsigned int rx_irq;
  49. unsigned int tx_irq;
  50. spinlock_t lock; /* lock for transmit buffer */
  51. unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
  52. unsigned int head; /* circular buffer head */
  53. unsigned int tail; /* circular buffer tail */
  54. int tx_irq_enabled; /* true == TX interrupt is enabled */
  55. };
  56. /* Array of byte channel objects */
  57. static struct ehv_bc_data *bcs;
  58. /* Byte channel handle for stdout (and stdin), taken from device tree */
  59. static unsigned int stdout_bc;
  60. /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
  61. static unsigned int stdout_irq;
  62. /**************************** SUPPORT FUNCTIONS ****************************/
  63. /*
  64. * Enable the transmit interrupt
  65. *
  66. * Unlike a serial device, byte channels have no mechanism for disabling their
  67. * own receive or transmit interrupts. To emulate that feature, we toggle
  68. * the IRQ in the kernel.
  69. *
  70. * We cannot just blindly call enable_irq() or disable_irq(), because these
  71. * calls are reference counted. This means that we cannot call enable_irq()
  72. * if interrupts are already enabled. This can happen in two situations:
  73. *
  74. * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
  75. * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
  76. *
  77. * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
  78. */
  79. static void enable_tx_interrupt(struct ehv_bc_data *bc)
  80. {
  81. if (!bc->tx_irq_enabled) {
  82. enable_irq(bc->tx_irq);
  83. bc->tx_irq_enabled = 1;
  84. }
  85. }
  86. static void disable_tx_interrupt(struct ehv_bc_data *bc)
  87. {
  88. if (bc->tx_irq_enabled) {
  89. disable_irq_nosync(bc->tx_irq);
  90. bc->tx_irq_enabled = 0;
  91. }
  92. }
  93. /*
  94. * find the byte channel handle to use for the console
  95. *
  96. * The byte channel to be used for the console is specified via a "stdout"
  97. * property in the /chosen node.
  98. *
  99. * For compatible with legacy device trees, we also look for a "stdout" alias.
  100. */
  101. static int find_console_handle(void)
  102. {
  103. struct device_node *np, *np2;
  104. const char *sprop = NULL;
  105. const uint32_t *iprop;
  106. np = of_find_node_by_path("/chosen");
  107. if (np)
  108. sprop = of_get_property(np, "stdout-path", NULL);
  109. if (!np || !sprop) {
  110. of_node_put(np);
  111. np = of_find_node_by_name(NULL, "aliases");
  112. if (np)
  113. sprop = of_get_property(np, "stdout", NULL);
  114. }
  115. if (!sprop) {
  116. of_node_put(np);
  117. return 0;
  118. }
  119. /* We don't care what the aliased node is actually called. We only
  120. * care if it's compatible with "epapr,hv-byte-channel", because that
  121. * indicates that it's a byte channel node. We use a temporary
  122. * variable, 'np2', because we can't release 'np' until we're done with
  123. * 'sprop'.
  124. */
  125. np2 = of_find_node_by_path(sprop);
  126. of_node_put(np);
  127. np = np2;
  128. if (!np) {
  129. pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop);
  130. return 0;
  131. }
  132. /* Is it a byte channel? */
  133. if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) {
  134. of_node_put(np);
  135. return 0;
  136. }
  137. stdout_irq = irq_of_parse_and_map(np, 0);
  138. if (stdout_irq == NO_IRQ) {
  139. pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop);
  140. of_node_put(np);
  141. return 0;
  142. }
  143. /*
  144. * The 'hv-handle' property contains the handle for this byte channel.
  145. */
  146. iprop = of_get_property(np, "hv-handle", NULL);
  147. if (!iprop) {
  148. pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
  149. np->name);
  150. of_node_put(np);
  151. return 0;
  152. }
  153. stdout_bc = be32_to_cpu(*iprop);
  154. of_node_put(np);
  155. return 1;
  156. }
  157. /*************************** EARLY CONSOLE DRIVER ***************************/
  158. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  159. /*
  160. * send a byte to a byte channel, wait if necessary
  161. *
  162. * This function sends a byte to a byte channel, and it waits and
  163. * retries if the byte channel is full. It returns if the character
  164. * has been sent, or if some error has occurred.
  165. *
  166. */
  167. static void byte_channel_spin_send(const char data)
  168. {
  169. int ret, count;
  170. do {
  171. count = 1;
  172. ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  173. &count, &data);
  174. } while (ret == EV_EAGAIN);
  175. }
  176. /*
  177. * The udbg subsystem calls this function to display a single character.
  178. * We convert CR to a CR/LF.
  179. */
  180. static void ehv_bc_udbg_putc(char c)
  181. {
  182. if (c == '\n')
  183. byte_channel_spin_send('\r');
  184. byte_channel_spin_send(c);
  185. }
  186. /*
  187. * early console initialization
  188. *
  189. * PowerPC kernels support an early printk console, also known as udbg.
  190. * This function must be called via the ppc_md.init_early function pointer.
  191. * At this point, the device tree has been unflattened, so we can obtain the
  192. * byte channel handle for stdout.
  193. *
  194. * We only support displaying of characters (putc). We do not support
  195. * keyboard input.
  196. */
  197. void __init udbg_init_ehv_bc(void)
  198. {
  199. unsigned int rx_count, tx_count;
  200. unsigned int ret;
  201. /* Verify the byte channel handle */
  202. ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
  203. &rx_count, &tx_count);
  204. if (ret)
  205. return;
  206. udbg_putc = ehv_bc_udbg_putc;
  207. register_early_udbg_console();
  208. udbg_printf("ehv-bc: early console using byte channel handle %u\n",
  209. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  210. }
  211. #endif
  212. /****************************** CONSOLE DRIVER ******************************/
  213. static struct tty_driver *ehv_bc_driver;
  214. /*
  215. * Byte channel console sending worker function.
  216. *
  217. * For consoles, if the output buffer is full, we should just spin until it
  218. * clears.
  219. */
  220. static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
  221. unsigned int count)
  222. {
  223. unsigned int len;
  224. int ret = 0;
  225. while (count) {
  226. len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
  227. do {
  228. ret = ev_byte_channel_send(handle, &len, s);
  229. } while (ret == EV_EAGAIN);
  230. count -= len;
  231. s += len;
  232. }
  233. return ret;
  234. }
  235. /*
  236. * write a string to the console
  237. *
  238. * This function gets called to write a string from the kernel, typically from
  239. * a printk(). This function spins until all data is written.
  240. *
  241. * We copy the data to a temporary buffer because we need to insert a \r in
  242. * front of every \n. It's more efficient to copy the data to the buffer than
  243. * it is to make multiple hcalls for each character or each newline.
  244. */
  245. static void ehv_bc_console_write(struct console *co, const char *s,
  246. unsigned int count)
  247. {
  248. char s2[EV_BYTE_CHANNEL_MAX_BYTES];
  249. unsigned int i, j = 0;
  250. char c;
  251. for (i = 0; i < count; i++) {
  252. c = *s++;
  253. if (c == '\n')
  254. s2[j++] = '\r';
  255. s2[j++] = c;
  256. if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
  257. if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
  258. return;
  259. j = 0;
  260. }
  261. }
  262. if (j)
  263. ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
  264. }
  265. /*
  266. * When /dev/console is opened, the kernel iterates the console list looking
  267. * for one with ->device and then calls that method. On success, it expects
  268. * the passed-in int* to contain the minor number to use.
  269. */
  270. static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
  271. {
  272. *index = co->index;
  273. return ehv_bc_driver;
  274. }
  275. static struct console ehv_bc_console = {
  276. .name = "ttyEHV",
  277. .write = ehv_bc_console_write,
  278. .device = ehv_bc_console_device,
  279. .flags = CON_PRINTBUFFER | CON_ENABLED,
  280. };
  281. /*
  282. * Console initialization
  283. *
  284. * This is the first function that is called after the device tree is
  285. * available, so here is where we determine the byte channel handle and IRQ for
  286. * stdout/stdin, even though that information is used by the tty and character
  287. * drivers.
  288. */
  289. static int __init ehv_bc_console_init(void)
  290. {
  291. if (!find_console_handle()) {
  292. pr_debug("ehv-bc: stdout is not a byte channel\n");
  293. return -ENODEV;
  294. }
  295. #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
  296. /* Print a friendly warning if the user chose the wrong byte channel
  297. * handle for udbg.
  298. */
  299. if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
  300. pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
  301. CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
  302. #endif
  303. /* add_preferred_console() must be called before register_console(),
  304. otherwise it won't work. However, we don't want to enumerate all the
  305. byte channels here, either, since we only care about one. */
  306. add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
  307. register_console(&ehv_bc_console);
  308. pr_info("ehv-bc: registered console driver for byte channel %u\n",
  309. stdout_bc);
  310. return 0;
  311. }
  312. console_initcall(ehv_bc_console_init);
  313. /******************************** TTY DRIVER ********************************/
  314. /*
  315. * byte channel receive interupt handler
  316. *
  317. * This ISR is called whenever data is available on a byte channel.
  318. */
  319. static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
  320. {
  321. struct ehv_bc_data *bc = data;
  322. unsigned int rx_count, tx_count, len;
  323. int count;
  324. char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
  325. int ret;
  326. /* Find out how much data needs to be read, and then ask the TTY layer
  327. * if it can handle that much. We want to ensure that every byte we
  328. * read from the byte channel will be accepted by the TTY layer.
  329. */
  330. ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
  331. count = tty_buffer_request_room(&bc->port, rx_count);
  332. /* 'count' is the maximum amount of data the TTY layer can accept at
  333. * this time. However, during testing, I was never able to get 'count'
  334. * to be less than 'rx_count'. I'm not sure whether I'm calling it
  335. * correctly.
  336. */
  337. while (count > 0) {
  338. len = min_t(unsigned int, count, sizeof(buffer));
  339. /* Read some data from the byte channel. This function will
  340. * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
  341. */
  342. ev_byte_channel_receive(bc->handle, &len, buffer);
  343. /* 'len' is now the amount of data that's been received. 'len'
  344. * can't be zero, and most likely it's equal to one.
  345. */
  346. /* Pass the received data to the tty layer. */
  347. ret = tty_insert_flip_string(&bc->port, buffer, len);
  348. /* 'ret' is the number of bytes that the TTY layer accepted.
  349. * If it's not equal to 'len', then it means the buffer is
  350. * full, which should never happen. If it does happen, we can
  351. * exit gracefully, but we drop the last 'len - ret' characters
  352. * that we read from the byte channel.
  353. */
  354. if (ret != len)
  355. break;
  356. count -= len;
  357. }
  358. /* Tell the tty layer that we're done. */
  359. tty_flip_buffer_push(&bc->port);
  360. return IRQ_HANDLED;
  361. }
  362. /*
  363. * dequeue the transmit buffer to the hypervisor
  364. *
  365. * This function, which can be called in interrupt context, dequeues as much
  366. * data as possible from the transmit buffer to the byte channel.
  367. */
  368. static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
  369. {
  370. unsigned int count;
  371. unsigned int len, ret;
  372. unsigned long flags;
  373. do {
  374. spin_lock_irqsave(&bc->lock, flags);
  375. len = min_t(unsigned int,
  376. CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
  377. EV_BYTE_CHANNEL_MAX_BYTES);
  378. ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
  379. /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
  380. if (!ret || (ret == EV_EAGAIN))
  381. bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
  382. count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
  383. spin_unlock_irqrestore(&bc->lock, flags);
  384. } while (count && !ret);
  385. spin_lock_irqsave(&bc->lock, flags);
  386. if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
  387. /*
  388. * If we haven't emptied the buffer, then enable the TX IRQ.
  389. * We'll get an interrupt when there's more room in the
  390. * hypervisor's output buffer.
  391. */
  392. enable_tx_interrupt(bc);
  393. else
  394. disable_tx_interrupt(bc);
  395. spin_unlock_irqrestore(&bc->lock, flags);
  396. }
  397. /*
  398. * byte channel transmit interupt handler
  399. *
  400. * This ISR is called whenever space becomes available for transmitting
  401. * characters on a byte channel.
  402. */
  403. static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
  404. {
  405. struct ehv_bc_data *bc = data;
  406. struct tty_struct *ttys = tty_port_tty_get(&bc->port);
  407. ehv_bc_tx_dequeue(bc);
  408. if (ttys) {
  409. tty_wakeup(ttys);
  410. tty_kref_put(ttys);
  411. }
  412. return IRQ_HANDLED;
  413. }
  414. /*
  415. * This function is called when the tty layer has data for us send. We store
  416. * the data first in a circular buffer, and then dequeue as much of that data
  417. * as possible.
  418. *
  419. * We don't need to worry about whether there is enough room in the buffer for
  420. * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
  421. * layer how much data it can safely send to us. We guarantee that
  422. * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
  423. * too much data.
  424. */
  425. static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
  426. int count)
  427. {
  428. struct ehv_bc_data *bc = ttys->driver_data;
  429. unsigned long flags;
  430. unsigned int len;
  431. unsigned int written = 0;
  432. while (1) {
  433. spin_lock_irqsave(&bc->lock, flags);
  434. len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
  435. if (count < len)
  436. len = count;
  437. if (len) {
  438. memcpy(bc->buf + bc->head, s, len);
  439. bc->head = (bc->head + len) & (BUF_SIZE - 1);
  440. }
  441. spin_unlock_irqrestore(&bc->lock, flags);
  442. if (!len)
  443. break;
  444. s += len;
  445. count -= len;
  446. written += len;
  447. }
  448. ehv_bc_tx_dequeue(bc);
  449. return written;
  450. }
  451. /*
  452. * This function can be called multiple times for a given tty_struct, which is
  453. * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
  454. *
  455. * The tty layer will still call this function even if the device was not
  456. * registered (i.e. tty_register_device() was not called). This happens
  457. * because tty_register_device() is optional and some legacy drivers don't
  458. * use it. So we need to check for that.
  459. */
  460. static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
  461. {
  462. struct ehv_bc_data *bc = &bcs[ttys->index];
  463. if (!bc->dev)
  464. return -ENODEV;
  465. return tty_port_open(&bc->port, ttys, filp);
  466. }
  467. /*
  468. * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
  469. * still call this function to close the tty device. So we can't assume that
  470. * the tty port has been initialized.
  471. */
  472. static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
  473. {
  474. struct ehv_bc_data *bc = &bcs[ttys->index];
  475. if (bc->dev)
  476. tty_port_close(&bc->port, ttys, filp);
  477. }
  478. /*
  479. * Return the amount of space in the output buffer
  480. *
  481. * This is actually a contract between the driver and the tty layer outlining
  482. * how much write room the driver can guarantee will be sent OR BUFFERED. This
  483. * driver MUST honor the return value.
  484. */
  485. static int ehv_bc_tty_write_room(struct tty_struct *ttys)
  486. {
  487. struct ehv_bc_data *bc = ttys->driver_data;
  488. unsigned long flags;
  489. int count;
  490. spin_lock_irqsave(&bc->lock, flags);
  491. count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
  492. spin_unlock_irqrestore(&bc->lock, flags);
  493. return count;
  494. }
  495. /*
  496. * Stop sending data to the tty layer
  497. *
  498. * This function is called when the tty layer's input buffers are getting full,
  499. * so the driver should stop sending it data. The easiest way to do this is to
  500. * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
  501. * called.
  502. *
  503. * The hypervisor will continue to queue up any incoming data. If there is any
  504. * data in the queue when the RX interrupt is enabled, we'll immediately get an
  505. * RX interrupt.
  506. */
  507. static void ehv_bc_tty_throttle(struct tty_struct *ttys)
  508. {
  509. struct ehv_bc_data *bc = ttys->driver_data;
  510. disable_irq(bc->rx_irq);
  511. }
  512. /*
  513. * Resume sending data to the tty layer
  514. *
  515. * This function is called after previously calling ehv_bc_tty_throttle(). The
  516. * tty layer's input buffers now have more room, so the driver can resume
  517. * sending it data.
  518. */
  519. static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
  520. {
  521. struct ehv_bc_data *bc = ttys->driver_data;
  522. /* If there is any data in the queue when the RX interrupt is enabled,
  523. * we'll immediately get an RX interrupt.
  524. */
  525. enable_irq(bc->rx_irq);
  526. }
  527. static void ehv_bc_tty_hangup(struct tty_struct *ttys)
  528. {
  529. struct ehv_bc_data *bc = ttys->driver_data;
  530. ehv_bc_tx_dequeue(bc);
  531. tty_port_hangup(&bc->port);
  532. }
  533. /*
  534. * TTY driver operations
  535. *
  536. * If we could ask the hypervisor how much data is still in the TX buffer, or
  537. * at least how big the TX buffers are, then we could implement the
  538. * .wait_until_sent and .chars_in_buffer functions.
  539. */
  540. static const struct tty_operations ehv_bc_ops = {
  541. .open = ehv_bc_tty_open,
  542. .close = ehv_bc_tty_close,
  543. .write = ehv_bc_tty_write,
  544. .write_room = ehv_bc_tty_write_room,
  545. .throttle = ehv_bc_tty_throttle,
  546. .unthrottle = ehv_bc_tty_unthrottle,
  547. .hangup = ehv_bc_tty_hangup,
  548. };
  549. /*
  550. * initialize the TTY port
  551. *
  552. * This function will only be called once, no matter how many times
  553. * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
  554. * why we initialize tty_struct-related variables here.
  555. */
  556. static int ehv_bc_tty_port_activate(struct tty_port *port,
  557. struct tty_struct *ttys)
  558. {
  559. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  560. int ret;
  561. ttys->driver_data = bc;
  562. ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
  563. if (ret < 0) {
  564. dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
  565. bc->rx_irq, ret);
  566. return ret;
  567. }
  568. /* request_irq also enables the IRQ */
  569. bc->tx_irq_enabled = 1;
  570. ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
  571. if (ret < 0) {
  572. dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
  573. bc->tx_irq, ret);
  574. free_irq(bc->rx_irq, bc);
  575. return ret;
  576. }
  577. /* The TX IRQ is enabled only when we can't write all the data to the
  578. * byte channel at once, so by default it's disabled.
  579. */
  580. disable_tx_interrupt(bc);
  581. return 0;
  582. }
  583. static void ehv_bc_tty_port_shutdown(struct tty_port *port)
  584. {
  585. struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
  586. free_irq(bc->tx_irq, bc);
  587. free_irq(bc->rx_irq, bc);
  588. }
  589. static const struct tty_port_operations ehv_bc_tty_port_ops = {
  590. .activate = ehv_bc_tty_port_activate,
  591. .shutdown = ehv_bc_tty_port_shutdown,
  592. };
  593. static int ehv_bc_tty_probe(struct platform_device *pdev)
  594. {
  595. struct device_node *np = pdev->dev.of_node;
  596. struct ehv_bc_data *bc;
  597. const uint32_t *iprop;
  598. unsigned int handle;
  599. int ret;
  600. static unsigned int index = 1;
  601. unsigned int i;
  602. iprop = of_get_property(np, "hv-handle", NULL);
  603. if (!iprop) {
  604. dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
  605. np->name);
  606. return -ENODEV;
  607. }
  608. /* We already told the console layer that the index for the console
  609. * device is zero, so we need to make sure that we use that index when
  610. * we probe the console byte channel node.
  611. */
  612. handle = be32_to_cpu(*iprop);
  613. i = (handle == stdout_bc) ? 0 : index++;
  614. bc = &bcs[i];
  615. bc->handle = handle;
  616. bc->head = 0;
  617. bc->tail = 0;
  618. spin_lock_init(&bc->lock);
  619. bc->rx_irq = irq_of_parse_and_map(np, 0);
  620. bc->tx_irq = irq_of_parse_and_map(np, 1);
  621. if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
  622. dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
  623. np->name);
  624. ret = -ENODEV;
  625. goto error;
  626. }
  627. tty_port_init(&bc->port);
  628. bc->port.ops = &ehv_bc_tty_port_ops;
  629. bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
  630. &pdev->dev);
  631. if (IS_ERR(bc->dev)) {
  632. ret = PTR_ERR(bc->dev);
  633. dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
  634. goto error;
  635. }
  636. dev_set_drvdata(&pdev->dev, bc);
  637. dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
  638. ehv_bc_driver->name, i, bc->handle);
  639. return 0;
  640. error:
  641. tty_port_destroy(&bc->port);
  642. irq_dispose_mapping(bc->tx_irq);
  643. irq_dispose_mapping(bc->rx_irq);
  644. memset(bc, 0, sizeof(struct ehv_bc_data));
  645. return ret;
  646. }
  647. static int ehv_bc_tty_remove(struct platform_device *pdev)
  648. {
  649. struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
  650. tty_unregister_device(ehv_bc_driver, bc - bcs);
  651. tty_port_destroy(&bc->port);
  652. irq_dispose_mapping(bc->tx_irq);
  653. irq_dispose_mapping(bc->rx_irq);
  654. return 0;
  655. }
  656. static const struct of_device_id ehv_bc_tty_of_ids[] = {
  657. { .compatible = "epapr,hv-byte-channel" },
  658. {}
  659. };
  660. static struct platform_driver ehv_bc_tty_driver = {
  661. .driver = {
  662. .owner = THIS_MODULE,
  663. .name = "ehv-bc",
  664. .of_match_table = ehv_bc_tty_of_ids,
  665. },
  666. .probe = ehv_bc_tty_probe,
  667. .remove = ehv_bc_tty_remove,
  668. };
  669. /**
  670. * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
  671. *
  672. * This function is called when this module is loaded.
  673. */
  674. static int __init ehv_bc_init(void)
  675. {
  676. struct device_node *np;
  677. unsigned int count = 0; /* Number of elements in bcs[] */
  678. int ret;
  679. pr_info("ePAPR hypervisor byte channel driver\n");
  680. /* Count the number of byte channels */
  681. for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
  682. count++;
  683. if (!count)
  684. return -ENODEV;
  685. /* The array index of an element in bcs[] is the same as the tty index
  686. * for that element. If you know the address of an element in the
  687. * array, then you can use pointer math (e.g. "bc - bcs") to get its
  688. * tty index.
  689. */
  690. bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
  691. if (!bcs)
  692. return -ENOMEM;
  693. ehv_bc_driver = alloc_tty_driver(count);
  694. if (!ehv_bc_driver) {
  695. ret = -ENOMEM;
  696. goto error;
  697. }
  698. ehv_bc_driver->driver_name = "ehv-bc";
  699. ehv_bc_driver->name = ehv_bc_console.name;
  700. ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
  701. ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
  702. ehv_bc_driver->init_termios = tty_std_termios;
  703. ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
  704. tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
  705. ret = tty_register_driver(ehv_bc_driver);
  706. if (ret) {
  707. pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
  708. goto error;
  709. }
  710. ret = platform_driver_register(&ehv_bc_tty_driver);
  711. if (ret) {
  712. pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
  713. ret);
  714. goto error;
  715. }
  716. return 0;
  717. error:
  718. if (ehv_bc_driver) {
  719. tty_unregister_driver(ehv_bc_driver);
  720. put_tty_driver(ehv_bc_driver);
  721. }
  722. kfree(bcs);
  723. return ret;
  724. }
  725. /**
  726. * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
  727. *
  728. * This function is called when this driver is unloaded.
  729. */
  730. static void __exit ehv_bc_exit(void)
  731. {
  732. tty_unregister_driver(ehv_bc_driver);
  733. put_tty_driver(ehv_bc_driver);
  734. kfree(bcs);
  735. }
  736. module_init(ehv_bc_init);
  737. module_exit(ehv_bc_exit);
  738. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  739. MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
  740. MODULE_LICENSE("GPL v2");